EP3746346B1 - Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke - Google Patents

Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke Download PDF

Info

Publication number
EP3746346B1
EP3746346B1 EP19700195.1A EP19700195A EP3746346B1 EP 3746346 B1 EP3746346 B1 EP 3746346B1 EP 19700195 A EP19700195 A EP 19700195A EP 3746346 B1 EP3746346 B1 EP 3746346B1
Authority
EP
European Patent Office
Prior art keywords
measuring
track
rail vehicle
coordinate system
measuring platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19700195.1A
Other languages
English (en)
French (fr)
Other versions
EP3746346A1 (de
Inventor
Bernd Metzger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP3746346A1 publication Critical patent/EP3746346A1/de
Application granted granted Critical
Publication of EP3746346B1 publication Critical patent/EP3746346B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction

Definitions

  • the invention relates to a rail vehicle with a vehicle frame that can be moved on rails of a track, supported on rail chassis, comprising a first measuring platform with a first inertial measuring system for detecting a track course and a first spatial curve.
  • the invention relates to a method for measuring a stretch of track using the rail vehicle.
  • Track measuring vehicles are used that are set up to record the current track geometry of a track section. Maintenance measures are planned and carried out on the basis of collected measurement data.
  • a wide variety of sensors are used as measuring devices, which record both the track itself and the track environment. The latter is done, for example, by means of camera systems that are arranged on the track measuring vehicle.
  • inertial Measurement Unit Inertial Measurement Unit
  • IMU Inertial Measurement Unit
  • Such an inertial measuring system is described in the journal Eisenbahningenieur (52) 9/2001 on pages 6-9. Also the DE 10 2008 062 143 B3 and the DE 195 32 104 C1 describe an inertial measuring principle for detecting a track position.
  • the invention is based on the object of specifying improvements over the prior art for a rail vehicle and a method of the type mentioned at the outset.
  • a second measuring platform is arranged on the rail vehicle, which comprises a second inertial measuring system and at least one sensor device for detecting surface points of a track section.
  • the movement of the sensor device in three-dimensional space is recorded in a simple manner with the second measuring platform and the second inertial measuring system. In this way, the measurement data recorded with the sensor device can be spatially assigned exactly.
  • a computer is arranged directly on the rail vehicle, to which measurement data from the inertial measurement systems and the sensor device are fed and which is set up to transform coordinates of the surface points from a coordinate system of the second measurement platform that is moved along with the sensor device into a coordinate system of the first measurement platform that follows the course of the track.
  • the surface points detected with the sensor device are related to the course of the track. This means that statements can be made immediately about the position of detected objects in relation to the course of the track.
  • an evaluation device is arranged on the rail vehicle, which is set up to compare the coordinates of the surface points in the coordinate system of the first measuring platform with a predetermined clearance gauge of the track section.
  • An advantageous embodiment of the invention provides that the first measuring platform is arranged on one of the rail carriages. This allows the course of the track to be recorded easily using the first inertial measuring system.
  • the first measuring platform comprises a measuring frame which is arranged on the wheel axles of the rail undercarriage and on which the first inertial measuring system is arranged.
  • the movements of the first inertial measuring system in three-dimensional space thus remain unaffected by resilient relative movements of the rail undercarriage.
  • the longitudinal gradients of the track are recorded immediately.
  • At least two position measuring devices for determining the position of the measuring frame relative to the rails of the track are arranged on the measuring frame. The exact position of the measuring frame relative to the rails is thus continuously recorded and taken into account when determining the course of the track by means of the first inertial measuring system.
  • the second measuring platform is arranged on a front side of the rail vehicle. In this way, a wide area surrounding the rail vehicle can be detected with just a few sensors.
  • the sensor device includes a laser scanner for detecting the surface points as a point cloud.
  • a precise and high-resolution detection of the surfaces of the track and its surroundings can be realized by means of such a sensor. Redundant or complementary rotary and line scanners increase the accuracy and quality of the measurement data.
  • the method according to the invention for measuring a stretch of track with an aforementioned rail vehicle provides that the course of the track - in particular as a movement course of a coordinate system of the first measuring platform - is recorded by means of the first inertial measuring system, that a movement course of the sensor device is recorded by means of the second inertial measuring system - in particular as a Course of movement of a coordinate system of the second measuring platform - is recorded and that surface points of the track section are recorded by means of the sensor device.
  • coordinates of the surface points are transformed from a coordinate system of the second measuring platform that is moved along with the sensor device into a coordinate system of the first measuring platform that follows the course of the track. This is done either online using a computer carried on the rail vehicle or offline in a remote system center.
  • coordinates of the surface points are included in the coordinate system of the first measuring platform compared to a gauge of the track section. In this way, clearance profile violations are automatically detected.
  • a surface point exceeding the clearance gauge is displayed in an output device. This takes place either directly in the rail vehicle or in a system center in order to be able to prevent dangerous situations.
  • a rail vehicle 2 travels along the track 1 in a measuring direction 3 .
  • a first measuring platform 5 is arranged on a front rail chassis 4 .
  • This first measuring platform 5 expediently comprises a measuring frame 6 which is fastened to axles of the rail undercarriage 4 designed as a bogie.
  • two position measuring devices 8 can be attached to the first measuring platform 5 for each rail 7 of the track 1 in order to detect movements of the first measuring platform 5 relative to the rails 7 .
  • the respective position measuring device 8 includes, for example, a laser directed onto the rail 7 and a camera for detecting the laser projection.
  • a first inertial measuring system 9 is set up on the first measuring platform 5 and records a first spatial curve 10 in relation to an inertial reference system x i , y i , z i .
  • This first spatial curve 10 runs at a known distance parallel to a track axis 11 which runs symmetrically between the inner edges of the two rails 8 . A relative course of the track is thus determined.
  • a coordinate system x g , y g , z g of the first measurement platform 5 is along this first space curve 10 moves. If necessary, the position measuring devices 8 are used to record the spatial curve for each rail 7 of the track 1.
  • a second measuring platform 14 is arranged on a front side 13 of the rail vehicle 2 and is rigidly connected to a vehicle frame 12 .
  • a second inertial measuring system 15 for detecting a second space curve 16 is attached to this second measuring platform 14 .
  • a coordinate system x s , y s , z s of the second measurement platform 14 is moved along the second space curve 16 .
  • each inertial measurement system 9, 15 three accelerometers and three yaw rate sensors are orthogonally combined.
  • the relative position to the inertial reference system x is determined from the measured rotation rates of the respective inertial measuring system 9, 15, which are given in the associated co-moving coordinate system x g , y g , z g or x s , y s , z s i , y i , z i determined.
  • the second measuring platform 14 serves as a carrier for a sensor device 17 which is designed to detect surface points P of a track section 18 to be checked.
  • a sensor device 17 which is designed to detect surface points P of a track section 18 to be checked.
  • the position of these objects 19-22 with respect to the coordinate system x s , y s is initially known , z s of the second measuring platform 14 can be determined.
  • the sensor device 17 comprises a plurality of laser scanners, for example two 2D rotary scanners 23 and two 2D area scanners 24. With a known traveling speed of the rail vehicle 2, the measurement result is a three-dimensional point cloud. Their resolution can be varied by adjusting the scanning rates of the scanners 23, 24 and the driving speed. The coordinates of the individual surface points P of this point cloud are stored in a computer 25 with respect to the coordinate system x s , y s , z s of the second measurement platform 14 .
  • the computer 25 is used to transform the coordinates of the surface points P from the coordinate system x s , y s , z s of the second measuring platform 14 moved with the sensor device 17 into the dem Track course following coordinate system x g , y g , z g of the first measuring platform 5 set up.
  • a distance A between the two inertial measuring systems 9, 15 and the known driving speed are taken into account in order to synchronize the measured values of the two inertial measuring systems 9, 15.
  • the coordinate transformation is in 2 illustrated.
  • the coordinate system x s , y s , z s of the second measuring platform 14 is converted into the coordinate system x g , y g , z g of the first measuring platform 5 , with the inertial reference system x i , y i , z i serving as a common basis.
  • Rail vehicle 2 is in 3 shown in a plan view and is located at the entrance to a curve in the track section 18.
  • the 2D rotation scanner 23 scans the track 1 and the objects 19-22 located next to it in a helical manner during forward travel.
  • the detected surface points P correspond to a profile of the track environment.
  • This point cloud is supplemented with surface points P, which are recorded using the 2D area scanner 24 .
  • the 2D area scanners 24 are aimed at areas that lie in a visual shadow of the 2D rotary scanner 23 .
  • the two inertial measuring systems 9, 15 While driving through the curve, the two inertial measuring systems 9, 15 record different spatial curves 10, 16. In particular, the swinging out of the vehicle area in front of the front rail chassis 4 causes a significant deviation. In 4 the two space curves 10, 16 are superimposed as seen from above, with the origin points 0 g , 0 s of the two co-moving coordinate systems x g , y g , z g or x s , y s , z s being synchronized using the known distance A and the driving speed are.
  • each detected surface point P are the coordinates x p s , y p s in the coordinate system x s , y s , z s of the second measuring platform 14 in coordinates xp, y p G in the coordinate system x g , y g , z g of the first measurement platform 5 can be transformed.
  • the transformed coordinates x p G , y p G of the respective surface point P indicate the position with respect to the course of the track or the track axis 11.
  • the results of the coordinate transformation are used in particular for checking clearances.
  • those surface points P are taken into account whose x-coordinate (in the longitudinal direction of the track) in the co-moving coordinate system x g , y g , z g of the first measuring platform 5 is equal to zero.
  • the y-coordinates and z-coordinates of these surface points P are compared with limit values of a clearance gauge to be maintained.
  • a clearance gauge is exceeded if a surface point P lies within the specified clearance gauge.
  • the corresponding y-coordinate or z-coordinate is then less than a specified clearance gauge limit value.
  • excess clearance gauges are displayed in a control center. Immediate display in an output device 26 of the rail vehicle 2 is also useful.
  • the computer 25 is advantageously set up as an evaluation device for an online comparison of the coordinates of the surface points P with the clearance profile limit values.
  • a path measuring device 27 or a GNSS receiver is arranged on the rail vehicle 2 .
  • a fixed point measuring device attached to the rail vehicle 2 is useful in order to determine an absolute position relative to fixed points located next to the track 1 .
  • a further advantage of the invention is given by the fact that the surface points P of the inner rail edges are also detected by means of the sensor device 17 . This allows the course of the track to be determined using the described coordinate transformation. This can be done offline, for example after a measurement run, in order to check the accuracy of the course of the track recorded by means of the first measurement platform 5 .
  • the present invention thus includes redundant systems for determining the course of the track.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

    Gebiet der Technik
  • Die Erfindung betrifft ein Schienenfahrzeug mit einem Fahrzeugrahmen, der auf Schienenfahrwerken abgestützt auf Schienen eines Gleises verfahrbar ist, umfassend eine erste Messplattform mit einem ersten Intertial-Messsystem zur Erfassung eines Gleisverlaufs und einer ersten Raumkurve. Zudem betrifft die Erfindung ein Verfahren zum Vermessen einer Gleisstrecke mittels des Schienenfahrzeugs.
  • Stand der Technik
  • Für eine zuverlässige Instandhaltung eines Gleisoberbaus sind regelmäßige Kontrollen erforderlich. Es kommen dabei Gleismessfahrzeuge zum Einsatz, die zur Erfassung einer aktuellen Gleisgeometrie einer Gleisstrecke eingerichtet sind. Auf Basis gesammelter Messdaten werden Instandhaltungsmaßnahmen geplant und durchgeführt. Als Messvorrichtungen dienen verschiedenste Sensoren, die sowohl das Gleis selbst als auch die Gleisumgebung erfassen. Letzteres geschieht beispielsweise mittels Kamerasysteme, die am Gleismessfahrzeug angeordnet sind.
  • Um den Gleisverlauf bzw. die relative Gleislage zu ermitteln, kommt bei modernen Gleismessfahrzeugen ein sogenanntes Inertial-Messsystem (Inertial Measurement Unit, IMU) zum Einsatz. Ein solches Inertial-Messsystem ist in der Fachzeitschrift Eisenbahningenieur (52) 9/2001 auf den Seiten 6-9 beschrieben. Auch die DE 10 2008 062 143 B3 und die DE 195 32 104 C1 beschreiben ein Inertial-Messprinzip zur Erfassung einer Gleislage.
  • Zusammenfassung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, für ein Schienenfahrzeug und ein Verfahren der eingangs genannten Art Verbesserungen gegenüber dem Stand der Technik anzugeben.
  • Erfindungsgemäß werden diese Aufgaben gelöst durch die Merkmale der Ansprüche 1 und 9. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Dabei ist an dem Schienenfahrzeug eine zweite Messplattform angeordnet, die ein zweites Inertial-Messsystem und zumindest eine Sensoreinrichtung zur Erfassung von Oberflächenpunkten einer Gleisstrecke umfasst. Mit der zweiten Messplattform und dem zweiten Inertial-Messsystem wird auf einfache Weise die Bewegung der Sensoreinrichtung im dreidimensionalen Raum erfasst. Die mit der Sensoreinrichtung erfassten Messdaten sind auf diese Weise räumlich exakt zuordenbar.
  • Vorteilhafterweise ist direkt am Schienenfahrzeug ein Computer angeordnet, dem Messdaten der Inertial-Messsysteme und der Sensoreinrichtung zugeführt sind und der zur Transformation von Koordinaten der Oberflächenpunkte aus einem mit der Sensoreinrichtung mitbewegten Koordinatensystem der zweiten Messplattform in ein dem Gleisverlauf folgenden Koordinatensystem der ersten Messplattform eingerichtet ist. Im Ergebnis sind die mit der Sensoreinrichtung erfassten Oberflächenpunkte auf den Gleisverlauf bezogen. Damit können sofort Aussagen über die Lage erfasster Objekte in Bezug auf den Gleisverlauf getroffen werden.
  • Bei einer weiteren Verbesserung ist am Schienenfahrzeug eine Auswerteeinrichtung angeordnet, die zum Vergleich der Koordinaten der Oberflächenpunkte im Koordinatensystem der ersten Messplattform mit einem vorgegeben Lichtraumprofil der Gleisstrecke eingerichtet ist.
  • Eine vorteilhafte Ausprägung der Erfindung sieht vor, dass die erste Messplattform an einem der Schienenfahrwerke angeordnet ist. Das erlaubt eine einfache Erfassung des Gleisverlaufs mittels des ersten Inertial-Messsystems.
  • Dabei ist es günstig, wenn die erste Messplattform einen an Radachsen des Schienenfahrwerks angeordneten Messrahmen umfasst, an dem das erste Inertial-Messsystem angeordnet ist. Die Bewegungen des ersten Inertial-Messsystems im dreidimensionalen Raum bleiben somit von federnden Relativbewegungen des Schienenfahrwerks unbeeinflusst. Es erfolgt eine unmittelbare Erfassung der Längsneigungen des Gleises.
  • Um den Einfluss von Querbewegungen bzw. Pendelbewegungen des Schienenfahrwerks zu kompensieren, ist es von Vorteil, wenn an dem Messrahmen zumindest zwei Lagemesseinrichtungen zur Bestimmung der Lage des Messrahmens gegenüber den Schienen des Gleises angeordnet sind. Damit wird laufend die exakte Lage des Messrahmens gegenüber den Schienen erfasst und bei der Bestimmung des Gleisverlaufs mittels des ersten Inertial-Messsystems berücksichtigt.
  • In einer vorteilhaften Ausprägung der Erfindung ist die zweite Messplattform an einer Stirnseite des Schienenfahrzeugs angeordnet. Auf diese Weise ist mit wenigen Sensoren ein weiter Umgebungsbereich des Schienenfahrzeugs erfassbar.
  • Zudem ist es günstig, wenn die Sensoreinrichtung einen Laserscanner zur Erfassung der Oberflächenpunkte als eine Punktwolke umfasst. Mittels eines derartigen Sensors ist eine genaue und hochauflösende Erfassung der Oberflächen des Gleises und seiner Umgebung realisierbar. Redundante bzw. sich ergänzende Rotations- und Linienscanner erhöhen dabei die Genauigkeit bzw. Qualität der Messdaten.
  • Das erfindungsgemäße Verfahren zum Vermessen einer Gleisstrecke mit einem vorgenannten Schienenfahrzeug sieht vor, dass mittels des ersten Intertial-Messsystems der Gleisverlauf - insbesondere als Bewegungsverlauf eines Koordinatensystems der ersten Messplattform - erfasst wird, dass mittels des zweiten Interial-Messsystems ein Bewegungsverlauf der Sensoreinrichtung - insbesondere als Bewegungsverlauf eines Koordinatensystems der zweiten Messplattform - erfasst wird und dass mittels der Sensoreinrichtung Oberflächenpunkte der Gleisstrecke erfasst werden.
  • In einer Weiterbildung des Verfahrens werden Koordinaten der Oberflächenpunkte aus einem mit der Sensoreinrichtung mitbewegten Koordinatensystem der zweiten Messplattform in ein dem Gleisverlauf folgenden Koordinatensystem der ersten Messplattform transformiert. Das geschieht entweder online mittels eines am Schienenfahrzeug mitgeführten Computers oder offline in einer entfernten Systemzentrale.
  • Bei einem vorteilhaften zusätzlichen Verfahrensschritt werden Koordinaten der Oberflächenpunkte im Koordinatensystem der ersten Messplattform mit einem Lichtraumprofil der Gleisstrecke verglichen. Auf diese Weise werden Lichtraumprofilverletzungen automatisiert erkannt.
  • Dabei ist es günstig, wenn eine Lichtraumprofilüberschreitung eines Oberflächenpunkts in einer Ausgabeeinrichtung angezeigt wird. Das geschieht entweder direkt im Schienenfahrzeug oder in einer Systemzentrale, um Gefahrensituationen vorbeugen zu können.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:
    • Fig. 1 Schienenfahrzeug auf einem Gleis
    • Fig. 2 Koordinatentransformation
    • Fig. 3Erfassungssituation in einer Kurveneinfahrt
    • Fig. 4Erfassungssituation gemäß Fig. 3 mit Koordinatentransformation
    Beschreibung der Ausführungsformen
  • Zur anschaulichen Erläuterung der vorliegenden Erfindung sind Verwerfungen eines Gleises 1 in Fig. 1 stark überzogen dargestellt. Entlang des Gleises 1 fährt ein Schienenfahrzeug 2 in einer Messrichtung 3. An einem vorderen Schienenfahrwerk 4 ist eine erste Messplattform 5 angeordnet. Günstigerweise umfasst diese erste Messplattform 5 einen Messrahmen 6, der an Achsen des als Drehgestell ausgebildeten Schienenfahrwerks 4 befestigt ist. Zusätzlich können für jede Schiene 7 des Gleises 1 zwei Lagemesseinrichtungen 8 an der ersten Messplattform 5 angebracht sein, um Relativbewegungen der ersten Messplattform 5 gegenüber den Schienen 7 zu erfassen. Die jeweilige Lagemesseinrichtung 8 umfasst beispielsweise einen auf die Schiene 7 gerichteten Laser und eine Kamera zur Erfassung der Laserprojektion.
  • Auf der ersten Messplattform 5 ist ein erstes Intertial-Messsystem 9 aufgebaut, das eine erste Raumkurve 10 gegenüber einem intertialen Bezugssystem xi, yi, zi erfasst. Diese erste Raumkurve 10 verläuft mit bekanntem Abstand parallel zu einer Gleisachse 11, die symmetrisch zwischen Innenkannten der beiden Schienen 8 verläuft. Damit ist ein relativer Gleisverlauf bestimmt. Ein Koordinatensystem xg, yg, zg der ersten Messplattform 5 wird entlang dieser ersten Raumkurve 10 mitbewegt. Gegebenenfalls erfolgt mittels der Lagemesseinrichtungen 8 eine Raumkurvenerfassung für jede Schiene 7 des Gleises 1.
  • Mit einem Fahrzeugrahmen 12 starr verbunden ist an einer Stirnseite 13 des Schienenfahrzeugs 2 eine zweite Messplattform 14 angeordnet. Auf dieser zweiten Messplattform 14 ist ein zweites Inertial-Messsystem 15 zur Erfassung einer zweiten Raumkurve 16 befestigt. Ein Koordinatensystem xs, ys, zs der zweiten Messplattform 14 wird entlang der zweiten Raumkurve 16 mitbewegt.
  • In jedem Inertial-Messsystem 9, 15 sind jeweils drei Beschleunigungsmesser und drei Drehratensensoren orthogonal zusammengefügt. Mit einer Lageintegration werden aus den gemessenen Drehraten des jeweiligen Inertial-Messystems 9, 15, welche im zugehörigen mitbewegten Koordinatensystem xg, yg, zg bzw. xs, ys, zs gegeben sind, die relative Lage zum inertialen Bezugssystem xi, yi, zi bestimmt.
  • Die zweite Messplattform 14 dient als Träger einer Sensoreinrichtung 17, die zur Erfassung von Oberflächenpunkten P einer zu kontrollierenden Gleisstrecke 18 ausgebildet ist. Dabei befinden sich entlang der Gleisstrecke 18 neben dem Gleis 1 verschiedene Objekte wie beispielsweise Bahnsteige 19, Masten 20, Signaleinrichtungen 21 und Oberleitungen 22. Durch die Erfassung der Oberflächenpunkte P ist zunächst die Lage dieser Objekte 19-22 bezüglich des Koordinatensystems xs, ys, zs der zweiten Messplattform 14 bestimmbar.
  • Die Sensoreinrichtung 17 umfasst mehrere Laserscanner, beispielsweise zwei 2D-Rotationsscanner 23 und zwei 2D-Fächerscanner 24. Mit einer bekannten Fahrgeschwindigkeit des Schienenfahrzeugs 2 ergibt sich damit als Messergebnis eine dreidimensionale Punktwolke. Deren Auflösung ist durch eine Anpassung der Abtastraten der Scanner 23, 24 sowie der Fahrgeschwindigkeit variierbar. Die Koordinaten der einzelnen Oberflächenpunkte P dieser Punktwolke werden bezüglich des Koordinatensystems xs, ys, zs der zweiten Messplattform 14 in einem Computer 25 abgespeichert.
  • Zudem ist der Computer 25 zur Transformation der Koordinaten der Oberflächenpunkte P aus dem mit der Sensoreinrichtung 17 mitbewegten Koordinatensystem xs, ys, zs der zweiten Messplattform 14 in das dem Gleisverlauf folgenden Koordinatensystem xg, yg, zg der ersten Messplattform 5 eingerichtet. Dabei werden ein Abstand A zwischen den beiden Inertial-Messsystemen 9, 15 und die bekannten Fahrgeschwindigkeit berücksichtigt, um die Messwerte der beiden Inertial-Messsysteme 9, 15 zu synchronisieren.
  • Die Koordinatentransformation ist in Fig. 2 veranschaulicht. Das Koordinatensystem xs, ys, zs der zweiten Messplattform 14 wird in das Koordinatensystem xg, yg, zg der ersten Messplattform 5 übergeführt, wobei das inertiale Bezugssystem xi, yi, zi als gemeinsame Basis dient.
  • Anhand der Figuren 3 und 4 wird der Vorgang für einen beispielhaften Oberflächenpunkt P näher erläutert. Das Schienenfahrzeug 2 ist in Fig. 3 in einer Draufsicht dargestellt und befindet sich in einer Kurveneinfahrt der Gleisstrecke 18. Die 2D-Rotationsscanner 23 tasten während einer Vorwärtsfahrt das Gleis 1 und die daneben befindlichen Objekte 19-22 helixförmig ab. Die dabei erfassten Oberflächenpunkte P entsprechen einem Profil der Gleisumgebung. Diese Punktwolke wird mit Oberflächenpunkten P, die mittels der 2D-Fächerscanner 24 erfasst werden, ergänzt. Dabei sind die 2D-Fächerscanner 24 auf Bereiche gerichtet, die in einem Sichtschatten der 2D-Rotationsscanner 23 liegen.
  • Während der Kurvendurchfahrt erfassen die beiden Inertial-Messsysteme 9, 15 unterschiedliche Raumkurven 10, 16. Insbesondere das Ausschwenken des vor dem vorderen Schienenfahrwerk 4 befindlichen Fahrzeugbereichs verursacht eine erhebliche Abweichung. In Fig. 4 sind die beiden Raumkurven 10, 16 von oben gesehen übereinandergelegt, wobei Ursprungspunkte 0g, 0s der beiden mitbewegten Koordinatensysteme xg, yg, zg bzw. xs, ys, zs mittels des bekannten Abstands A und der Fahrgeschwindigkeit synchronisiert sind.
  • Für jeden erfassten Oberflächenpunkt P sind die Koordinaten x p s , y p s
    Figure imgb0001
    im Koordinatensystem xs, ys, zs der zweiten Messplattform 14 in Koordinaten xp, y p g
    Figure imgb0002
    im Koordinatensystem xg, yg, zg der ersten Messplattform 5 transformierbar. Die transformierten Koordinaten x p g , y p g
    Figure imgb0003
    des jeweiligen Oberflächenpunktes P geben die Lage bezüglich des Gleisverlaufs bzw. der Gleisachse 11 an.
  • Genutzt werden die Ergebnisse der Koordinatentransformation insbesondere zur Lichtraumkontrolle. Dabei werden mittels einer Auswerteeinrichtung die Profildaten der Gleisumgebung in Bezug auf die Gleisachse 11 ausgewertet. An der jeweiligen Kontrollstelle werden jene Oberflächenpunkte P berücksichtigt, deren x-Koordinate (in Gleislängsrichtung) im mitbewegten Koordinatensystem xg, yg, zg der ersten Messplattform 5 gleich null ist. Die y-Koordinaten und z-Koordinaten dieser Oberflächenpunkte P werden mit Grenzwerten eines einzuhaltenden Lichtraumprofils verglichen. Dabei ist es sinnvoll, den Nullpunkt 0g des Koordinatensystems xg, yg, zg der ersten Messplattform 5 in die Gleisachse 11 zu verschieben, weil sich standardisierte Lichtraumprofileangaben ebenfalls auf die Gleisachse 11 beziehen.
  • Eine Lichtraumprofilüberschreitung liegt vor, wenn ein Oberflächenpunkt P innerhalb des vorgegebenen Lichtraumprofils liegt. Die entsprechende y-Koordinate bzw. z-Koordinate ist dann geringer als ein vorgegebener Lichtraumprofilgrenzwert. Um Gefahren einer Kollision zu vermeiden, werden Lichtraumprofileüberschreitungen in einer Kontrollzentrale angezeigt. Auch eine sofortige Anzeige in einer Ausgabeeinrichtung 26 des Schienenfahrzeugs 2 ist sinnvoll. Dabei ist günstigerweise der Computer 25 als Auswerteeinrichtung für einen Online-Vergleich der Koordinaten der Oberflächenpunkte P mit den Lichtraumprofilgrenzwerten eingerichtet.
  • Insbesondere werden bei einer Lichtraumprofilüberschreitung Ausgabedaten generiert, die Lagedaten eines den Lichtraum verletzenden Objektes 19-22 mit einer Kilometrierung der kontrollierten Gleisstrecke 18 verknüpfen. Auf diese Weise ist jede Problemstelle in einem Streckennetz gezielt auffindbar, um geeignete Gegenmaßnahmen zu ergreifen. Dabei ist am Schienenfahrzeug 2 eine Wegmesseinrichtung 27 oder ein GNSS-Empfänger angeordnet. Zudem ist eine am Schienenfahrzeug 2 angebrachte Festpunktmesseinrichtung sinnvoll, um eine absolute Position gegenüber neben dem Gleis 1 befindlicher Festpunkte zu bestimmen.
  • Ein weiterer Vorteil der Erfindung ist dadurch gegeben, dass mittels der Sensoreinrichtung 17 auch die Oberflächenpunkte P der Schieneninnenkanten miterfasst werden. Damit lässt sich durch die beschriebene Koordinatentransformation der Gleisverlauf bestimmen. Das kann beispielsweise nach einer Messfahrt offline geschehen, um die Genauigkeit des mittels der ersten Messplattform 5 erfassten Gleisverlaufs zu überprüfen. Die vorliegende Erfindung umfasst somit redundante Systeme zur Bestimmung des Gleisverlaufes.

Claims (12)

  1. Schienenfahrzeug (2) mit einem Fahrzeugrahmen (12), der auf Schienenfahrwerken (4) abgestützt auf Schienen (7) eines Gleises (1) verfahrbar ist, umfassend eine erste Messplattform (5) mit einem ersten Inertial-Messsystem (9) zur Erfassung eines Gleisverlaufs und einer ersten Raumkurve (10), dadurch gekennzeichnet, dass an dem Schienenfahrzeug (2) eine zweite Messplattform (14) angeordnet ist, die ein zweites Inertial-Messsystem (15) zur Erfassung einer zweiten Raumkurve (16) und zumindest eine Sensoreinrichtung (17) zur Erfassung von Oberflächenpunkten (P) einer Gleisstrecke (18) umfasst, wobei mit dem zweiten Inertial-Messsystem (15) die Bewegung der Sensoreinrichtung (17) im dreidimensionalen Raum erfasst wird.
  2. Schienenfahrzeug (2) nach Anspruch 1, dadurch gekennzeichnet, dass am Schienenfahrzeug (2) ein Computer (25) angeordnet ist, dem Messdaten der Inertial-Messsysteme (9, 15) und der Sensoreinrichtung (17) zugeführt sind und der zur Transformation von Koordinaten der Oberflächenpunkte (P) aus einem mit der Sensoreinrichtung (17) mitbewegten Koordinatensystem (xs, ys, zs) der zweiten Messplattform (14) in ein dem Gleisverlauf folgenden Koordinatensystem (xg, yg, zg) der ersten Messplattform (5) eingerichtet ist.
  3. Schienenfahrzeug (2) nach Anspruch 2, dadurch gekennzeichnet, dass am Schienenfahrzeug (2) eine Auswerteeinrichtung angeordnet ist, die zum Vergleich der Koordinaten der Oberflächenpunkte (P) im Koordinatensystem (xg, yg, zg) der ersten Messplattform (5) mit einem vorgegebenen Lichtraumprofil der Gleisstrecke (18) eingerichtet ist.
  4. Schienenfahrzeug (2) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die erste Messplattform (5) an einem der Schienenfahrwerke (4) angeordnet ist.
  5. Schienenfahrzeug (2) nach Anspruch 4, dadurch gekennzeichnet, dass die erste Messplattform (5) einen an Radachsen des Schienenfahrwerks (4) angeordneten Messrahmen (6) umfasst, an dem das erste Inertial-Messsystem (9) angeordnet ist.
  6. Schienenfahrzeug (2) nach Anspruch 5, dadurch gekennzeichnet, dass an dem Messrahmen (6) zumindest zwei Lagemesseinrichtungen (8) zur Bestimmung der Lage des Messrahmens (6) gegenüber den Schienen (7) des Gleises (1) angeordnet sind.
  7. Schienenfahrzeug (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die zweite Messplattform (14) an einer Stirnseite (13) des Schienenfahrzeugs (2) angeordnet ist.
  8. Schienenfahrzeug (2) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Sensoreinrichtung (17) einen Laserscanner (23, 24) zur Erfassung der Oberflächenpunkte (P) als eine Punktwolke umfasst.
  9. Verfahren zum Vermessen einer Gleisstrecke (18) mittels eines Schienenfahrzeugs (2) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mittels des ersten Inertial-Messsystems (9) der Gleisverlauf - insbesondere als Bewegungsverlauf eines Koordinatensystems (xg, yg, zg) der ersten Messplattform (5) - erfasst wird, dass mittels des zweiten Inertial-Messsystems (15) ein Bewegungsverlauf der Sensoreinrichtung (17) - insbesondere als Bewegungsverlauf eines Koordinatensystems (xs, ys, zs) der zweiten Messplattform (14) - erfasst wird und dass mittels der Sensoreinrichtung (17) Oberflächenpunkte (P) der Gleisstrecke (17) erfasst werden.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass Koordinaten der Oberflächenpunkte (P) aus einem mit der Sensoreinrichtung (17) mitbewegten Koordinatensystem (xs, ys, zs) der zweiten Messplattform (14) in ein dem Gleisverlauf folgenden Koordinatensystem (xg, yg, zg) der ersten Messplattform (5) transformiert werden.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass Koordinaten der Oberflächenpunkte (P) im Koordinatensystem (xg, yg, zg) der ersten Messplattform (5) mit einem Lichtraumprofil der Gleisstrecke (17) verglichen werden.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass eine Lichtraumprofilüberschreitung eines Oberflächenpunkts (P) in einer Ausgabeeinrichtung (26) angezeigt wird.
EP19700195.1A 2018-02-02 2019-01-02 Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke Active EP3746346B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA29/2018A AT520526B1 (de) 2018-02-02 2018-02-02 Schienenfahrzeug und Verfahren zum Vermessen einer Gleisstrecke
PCT/EP2019/050013 WO2019149456A1 (de) 2018-02-02 2019-01-02 Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke

Publications (2)

Publication Number Publication Date
EP3746346A1 EP3746346A1 (de) 2020-12-09
EP3746346B1 true EP3746346B1 (de) 2023-03-08

Family

ID=65010770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19700195.1A Active EP3746346B1 (de) 2018-02-02 2019-01-02 Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke

Country Status (12)

Country Link
US (1) US11912317B2 (de)
EP (1) EP3746346B1 (de)
JP (1) JP7247206B2 (de)
KR (1) KR102712220B1 (de)
CN (1) CN111587202B (de)
AT (1) AT520526B1 (de)
AU (1) AU2019216197B2 (de)
CA (1) CA3087478A1 (de)
EA (1) EA039709B1 (de)
ES (1) ES2945477T3 (de)
PL (1) PL3746346T3 (de)
WO (1) WO2019149456A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519263B1 (de) * 2016-12-19 2018-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Gleismessfahrzeug und Verfahren zum Erfassen einer Gleisgeometrie eines Gleises
AT520526B1 (de) * 2018-02-02 2019-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Schienenfahrzeug und Verfahren zum Vermessen einer Gleisstrecke
US10807623B2 (en) 2018-06-01 2020-10-20 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
AU2020273465A1 (en) 2019-05-16 2022-01-06 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
CN114485511A (zh) * 2020-10-27 2022-05-13 湖南中车智行科技有限公司 一种车辆限界宽度的测量方法及装置
AT524207B1 (de) * 2020-12-11 2022-04-15 Siemens Mobility Austria Gmbh Fahrwerk für ein Schienenfahrzeug
CN112678023B (zh) * 2021-01-04 2022-08-30 天津路安工程咨询有限公司 一种轨道交通限界检测装置以及检测方法
AT525018A1 (de) 2021-05-12 2022-11-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh System und Verfahren zur Oberflächenerfassung einer Gleisstrecke
AT17971U1 (de) 2022-05-24 2023-09-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten
CN115451826B (zh) * 2022-08-10 2023-05-30 西南交通大学 一种接触网几何参数的摄影测量方法及装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT353487B (de) * 1977-05-31 1979-11-12 Plasser Bahnbaumasch Franz Vermessungseinrichtung zur anzeige bzw. registrierung des profilverlaufes von tunnel- roehren, durchlaessen u.dgl. engstellen
US4654973A (en) * 1985-10-21 1987-04-07 Worthy James T Railroad track gage
DE3913159A1 (de) * 1989-04-21 1990-10-25 Linsinger Maschinenbau Gmbh Verfahren und vorrichtung zur messung von wellenfoermigen deformationen an wenigstens einer schienenoberseite (schienenlaufflaeche) eines schienenweges
AT402519B (de) * 1990-02-06 1997-06-25 Plasser Bahnbaumasch Franz Kontinuierlich verfahrbare gleisbaumaschine zum verdichten der schotterbettung eines gleises
AT402953B (de) * 1990-11-12 1997-10-27 Plasser Bahnbaumasch Franz Einrichtung zur berührungslosen spurweitenmessung von schienen
DE19532104C1 (de) 1995-08-30 1997-01-16 Daimler Benz Ag Verfahren und Vorrichtung zur Bestimmung der Position wenigstens einer Stelle eines spurgeführten Fahrzeugs
DE19721915C1 (de) * 1997-05-26 1998-12-10 Stn Atlas Elektronik Gmbh Verfahren und Vorrichtung zur Messung von Unebenheiten in einer Objektoberfläche
US7164975B2 (en) * 1999-06-15 2007-01-16 Andian Technologies Ltd. Geometric track and track/vehicle analyzers and methods for controlling railroad systems
FR2798347B1 (fr) * 1999-09-09 2001-11-30 Matisa Materiel Ind Sa Vehicule de mesure de l'etat geometrique d'une voie ferree
DE10220175C1 (de) 2002-05-06 2003-04-17 Db Netz Ag Messverfahren und Anordnung zum Erfassen der Nachgiebigkeit eines Gleises
JP3597832B2 (ja) 2002-07-19 2004-12-08 ジェイアール西日本コンサルタンツ株式会社 軌道狂い計測方法およびその方法に用いられる軌道狂い計測システム
GB2403861B (en) * 2003-07-11 2006-03-29 Omnicom Engineering Ltd A method and system of surveying and measurement
JP2005069700A (ja) 2003-08-25 2005-03-17 East Japan Railway Co 三次元データ取得装置
RU2256575C1 (ru) * 2003-11-04 2005-07-20 Общество с ограниченной ответственностью "Научно-производственная фирма "Электронные системы управления и приборы" (ООО "НПФ "ЭСУП") Способ измерения геометрии рельсового пути и устройство для его осуществления
US7937246B2 (en) * 2007-09-07 2011-05-03 Board Of Regents Of The University Of Nebraska Vertical track modulus trending
AT505029B1 (de) 2007-07-31 2008-10-15 Plasser Bahnbaumasch Franz Verfahren zur vermessung einer gleislage
US8412393B2 (en) * 2008-07-01 2013-04-02 General Electric Company Apparatus and method for monitoring of infrastructure condition
KR101026350B1 (ko) 2008-12-15 2011-04-04 한국철도기술연구원 관성센서를 이용한 궤도의 수평 틀림 측정 시스템 및 그 방법
DE102008062143B3 (de) 2008-12-16 2010-05-12 Db Netz Ag Verfahren zur Bestimmung der vertikalen Gleislage des schienengebundenen Eisenbahnverkehrs
DE102009030076A1 (de) 2009-06-23 2010-12-30 Symeo Gmbh Abbildungsverfahren mittels synthetischer Apertur, Verfahren zur Bestimmung einer Relativgeschwindigkeit zwischen einem wellenbasierten Sensor und einem Objekt bzw. Vorrichtung zur Durchführung der Verfahren
JP2012208043A (ja) * 2011-03-30 2012-10-25 Railway Technical Research Institute 鉄道構造物の振動特性同定方法および装置
US9810533B2 (en) 2011-04-27 2017-11-07 Trimble Inc. Railway track monitoring
CN203020332U (zh) 2013-01-15 2013-06-26 萨伏威(西安)导航技术有限公司 一种卫星导航与惯性测量组合轨道测量系统
JP2014194366A (ja) 2013-03-28 2014-10-09 Hitachi High-Technologies Corp 軌道形状測定方法及び装置
DE102013210361A1 (de) * 2013-06-04 2014-12-04 Siemens Aktiengesellschaft Verfahren zur Ermittlung zumindest einer Geschwindigkeit bei einem Schienenfahrzeug
US9079109B2 (en) 2013-08-20 2015-07-14 Disney Enterprises, Inc. Electronic reach envelope intrusion examiner
CN104420405A (zh) * 2013-08-29 2015-03-18 中国铁道科学研究院铁道建筑研究所 一种测量铁路轨道静态几何参数的装置
AT515208B1 (de) * 2014-02-20 2015-07-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Gleisbaumaschine zur Durchführung von Gleislagekorrekturen und Verfahren
JP6293579B2 (ja) 2014-06-02 2018-03-14 日本信号株式会社 軌道検査装置
GB2542115B (en) * 2015-09-03 2017-11-15 Rail Vision Europe Ltd Rail track asset survey system
AT518579B1 (de) * 2016-04-15 2019-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Messsystem zum Erfassen eines Festpunktes neben einem Gleis
AT518692B1 (de) 2016-06-13 2019-02-15 Plasser & Theurer Exp Von Bahnbaumaschinen G M B H Verfahren und System zur Instandhaltung eines Fahrwegs für Schienenfahrzeuge
EP3601006A4 (de) * 2017-03-27 2021-04-28 Harsco Technologies LLC Gleisgeometriemesssystem mit trägheitsmessung
CN107097807A (zh) 2017-03-27 2017-08-29 北京交通大学 一种高速铁路轮轨动态接触状态的测定系统
AT520526B1 (de) * 2018-02-02 2019-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Schienenfahrzeug und Verfahren zum Vermessen einer Gleisstrecke
US11377130B2 (en) * 2018-06-01 2022-07-05 Tetra Tech, Inc. Autonomous track assessment system
AU2020273465A1 (en) * 2019-05-16 2022-01-06 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path

Also Published As

Publication number Publication date
AT520526A4 (de) 2019-05-15
PL3746346T3 (pl) 2023-07-10
CN111587202A (zh) 2020-08-25
JP7247206B2 (ja) 2023-03-28
JP2021512813A (ja) 2021-05-20
EA039709B1 (ru) 2022-03-03
WO2019149456A1 (de) 2019-08-08
AU2019216197A1 (en) 2020-07-02
AT520526B1 (de) 2019-05-15
ES2945477T3 (es) 2023-07-03
US20200361502A1 (en) 2020-11-19
US11912317B2 (en) 2024-02-27
BR112020012799A2 (pt) 2020-11-24
KR102712220B1 (ko) 2024-09-30
EP3746346A1 (de) 2020-12-09
CN111587202B (zh) 2023-07-18
KR20200111673A (ko) 2020-09-29
EA202000159A1 (ru) 2020-11-30
CA3087478A1 (en) 2019-08-08
AU2019216197B2 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
EP3746346B1 (de) Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke
DE10040139B4 (de) Verfahren zur Messung von Schienenprofilen und Gleislagestörungen sowie Vorrichtung zur Durchführung des Verfahrens
EP2793045B1 (de) Verfahren zur Überprüfung eines Umfelderfassungssystems eines Fahrzeugs
EP3358079A1 (de) Verfahren und vorrichtung zur optimierung einer gleislage
WO2007096273A1 (de) Verfahren zur rechnergestützten überwachung des betriebs eines einen vorgegebenen streckenverlauf fahrenden fahrzeugs, insbesondere eines spurgebundenen schienenfahrzeugs
EP3580393B1 (de) Verfahren und schienenfahrzeug zur berührungslosen erfassung einer gleisgeometrie
EP3160820B1 (de) Vorrichtung und verfahren zur bestimmung mindestens einer eigenschaft eines gleises für ein schienenfahrzeug sowie schienenfahrzeug
EP4021778B1 (de) Verfahren und messfahrzeug zur ermittlung einer ist-lage eines gleises
EP4214103A1 (de) Verfahren und system zur ermittlung eines soll-gleisverlaufs für eine lagekorrektur
DE102017222017A1 (de) Verfahren und System zum Ermitteln und Bereitstellen eines Bodenprofils
AT520291A4 (de) Verfahren zur Ermittlung einer Ist-Lage von Schienen eines Gleises
WO1994011705A1 (de) Verfahren und vorrichtung zum gewinnen von profil- und gleisdaten
DE102016224212A1 (de) Automatisierte Freiraumerkennung mittels Differenzanalyse für Fahrzeuge
EP3310637A1 (de) Prüfeinrichtung und verfahren zur überprüfung eines definierten profils von einem zugverband aus fahrzeugen, insbesondere schienenfahrzeugen
EP4251491B1 (de) Verfahren und system zur ermittlung von korrekturwerten für eine lagekorrektur eines gleises
DE212021000415U1 (de) On-Board-Gleisprüfsystem
DE102004055069A1 (de) Mehrdimensionale Fahrbahnvermessung
DE102004050690A1 (de) Verfahren, Computer-Programm mit Programm-Code-Mitteln, Computer-Programm-Produkt und Gerät zur Modellierung der Umwelt eines autonomen mobilen Systems
EP3990322B1 (de) Verfahren zur kalibrierung der orientierung eines in einem fahrzeug vorgesehenen beschleunigungssensors
EP4029758A1 (de) Sicherheitskritische bordseitige überwachung der umgebung eines schienenfahrzeugs
DE102019110942A1 (de) Automatische Steuerung einer Bahn eines Kraftfahrzeugs bezüglich einer Fahrspur
DE102018213994A1 (de) Verfahren und System zur Bestimmung der Bewegung eines Kraftfahrzeuges
EP4105103A1 (de) Selbstjustierende umfelderfassungseinrichtung für schienenfahrzeuge
DE102022205527A1 (de) Validierung einer Sensoreinheit eines Schienenfahrzeugs zur Objektlokalisierung
EP3736195A1 (de) Verfahren und vorrichtung zur bestimmung fahrtechnischer parameter bei fahrzeugen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 23/04 20060101ALI20220729BHEP

Ipc: B61K 9/08 20060101AFI20220729BHEP

INTG Intention to grant announced

Effective date: 20220825

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1552411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007147

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2945477

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230703

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007147

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231222

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

26N No opposition filed

Effective date: 20231211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240207

Year of fee payment: 6

Ref country code: IE

Payment date: 20240118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20231215

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240326

Year of fee payment: 6

Ref country code: CH

Payment date: 20240202

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240131

Year of fee payment: 6

Ref country code: FR

Payment date: 20240123

Year of fee payment: 6

Ref country code: BE

Payment date: 20240112

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240102