AT17971U1 - Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten - Google Patents

Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten Download PDF

Info

Publication number
AT17971U1
AT17971U1 ATGM8004/2023U AT80042023U AT17971U1 AT 17971 U1 AT17971 U1 AT 17971U1 AT 80042023 U AT80042023 U AT 80042023U AT 17971 U1 AT17971 U1 AT 17971U1
Authority
AT
Austria
Prior art keywords
track
measuring
position data
measuring system
inertial
Prior art date
Application number
ATGM8004/2023U
Other languages
English (en)
Original Assignee
Plasser & Theurer Export Von Bahnbaumaschinen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser & Theurer Export Von Bahnbaumaschinen Gmbh filed Critical Plasser & Theurer Export Von Bahnbaumaschinen Gmbh
Priority to ATGM8004/2023U priority Critical patent/AT17971U1/de
Publication of AT17971U1 publication Critical patent/AT17971U1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Die Erfindung betrifft ein Schienenfahrzeug (1) mit einem Fahrzeugrahmen (2), der auf Schienenfahrwerken (3) abgestützt auf Schienen (5) eines Gleises (4) verfahrbar ist, umfassend eine Messplattform (9) mit einem ersten Inertialmesssystem (13) zur Erfassung von Gleislagedaten. Dabei ist derselben Messplattform (9) ein zweites Inertialmesssystem (13) zum Messen einer Bewegung der Messplattform (9) zugeordnet, wobei beide Inertialmesssysteme (13) mit einem Computer (17) gekoppelt sind und wobei im Computer (17) ein Algorithmus zum Auswerten von erfassten Gleislagedaten eingerichtet ist. Damit stehen zusätzliche Messwerte für die Berechnung der Gleislagedaten zur Verfügung.

Description

Beschreibung
SCHIENENFAHRZEUG UND VERFAHREN ZUR ERFASSUNG VON GLEISLAGEDATEN
TECHNISCHES GEBIET
[0001] Die Erfindung betrifft ein Schienenfahrzeug mit einem Fahrzeugrahmen, der auf Schienenfahrwerken abgestützt auf Schienen eines Gleises verfahrbar ist, umfassend eine Messplattform mit einem ersten Inertialmesssystem zur Erfassung von ersten Gleislagedaten. Des Weiteren betrifft die Erfindung ein Verfahren zum Betreiben eines solchen Schienenfahrzeugs.
STAND DER TECHNIK
[0002] Ein Schienenfahrzeug mit einem Inertialmesssystem zur Erfassung von Gleislagedaten ist beispielsweise aus der AT 523627 A4 bekannt. Mittels einer inertialen Messeinheit (Inertial Measurement Unit, IMU) werden während einer Messfahrt Messdaten einer Trajektorie erfasst. Relativvewegungen der inertialen Messeinheit gegenüber dem Gleis werden mittels Lagemesseinrichtungen kompensiert. Als Resultat liefert das Inertialmesssystem Ist-Gleislagedaten, die zur Errechnung einer Soll-Geometrie des Gleises genutzt werden.
[0003] Aus der AT 520526 A4 ist ein Schienenfahrzeug bekannt, bei dem an einem Schienenfahrwerk eine erste Messplattform angeordnet ist. Mittels eines auf der ersten Messplattform befestigten Inertialmesssystems wird ein Gleisverlauf erfasst. Am Wagenkasten des Schienenfahrzeugs ist eine zweite Messplattform mit einem zweiten Inertialmesssystem und mit einer Sensoreinrichtung zur Erfassung von Oberflächenpunkten einer Gleisstrecke angeordnet. Mit dem zweiten Inertialmesssystem wird eine Bewegung der Sensoreinrichtung im dreidimensionalen Raum erfasst.
DARSTELLUNG DER ERFINDUNG
[0004] Der Erfindung liegt die Aufgabe zugrunde, ein Schienenfahrzeug der eingangs genannten Art dahingehend zu verbessern, dass eine Erfassung der Gleislagedaten mit höherer Qualität, insbesondere mit höherer Prozesssicherheit, durchführbar ist. Zudem soll ein entsprechendes Verfahren angegeben werden.
[0005] Erfindungsgemäß werden diese Aufgaben gelöst durch die Merkmale der unabhängigen Ansprüche 1 und 9. Abhängige Ansprüche geben vorteilhafte Ausgestaltungen der Erfindung an.
[0006] Dabei ist derselben Messplattform ein zweites Inertialmesssystem zum Messen einer Bewegung der Messplattform zugeordnet, wobei beide Inertialmesssysteme mit einem Computer gekoppelt sind und wobei im Computer ein Algorithmus zum Auswerten von erfassten Gleislagedaten eingerichtet ist. Konkret erfasst in jedem Inertialmesssystem eine inertiale Messeinheit (IMU) die Bewegung der Messplattform im freien Raum mit drei Beschleunigungssensoren und drei Kreiselkompasse. Die Messplattform ist ein starrer Bauteil des Schienenfahrzeugs. Durch die fixe Anordnung der inertialen Messeinheiten beider Inertialmesssysteme auf derselben starren Messplattform wird die Bewegung der Messplattform zweifach erfasst. Damit stehen zusätzliche Messwerte für die Erfassung bzw. Berechnung der Gleislagedaten zur Verfügung. Einerseits sind die erfassten Messdaten zur gegenseitigen Überprüfung nutzbar. Andererseits können bei entsprechender Anordnung der inertialen Messeinheiten aus den sich ergebenden Trajektorien zusätzliche Informationen zur Berechnung der Gleislagedaten gewonnen werden. Präzise Gleislagedaten ergeben sich direkt aus der jeweiligen Trajektorie, wenn die Messplattform mit gegen eine Schiene gepressten Spurkranzrädern entlang des Gleises geführt wird. Andernfalls ist die jeweilige Trajektorie dem Gleisverlauf zumindest angenähert, wobei Abweichungen optional erfassbar und kompensierbar sind. Die Erfassung angenäherter Gleislagedaten ist für manche Anwendungsfälle ausreichend.
[0007] In einer vorteilhaften Weiterbildung ist jedes Inertialmesssystem zur separaten Erfassung von Gleislagedaten eingerichtet. Beide Inertialmesssysteme messen die Gleisgeometrie vor-
schriftsgemäß, beispielsweise gemäß der Norm EN 13848-2, Mit den beiden in einem Gesamtsystem integrierten Inertialmesssystemen wird die Gleislage redundant aufgenommen. Das Gesamtsystem überprüft sich vollkommen autonom und wiederkehrend. Messfehler werden automatisiert erkannt und sofort korrigiert. Auf diese Weise führen die redundant zur Verfügung stehenden Gleislagedaten zu einer höheren Prozesssicherheit.
[0008] Vorzugsweise ist die Messplattform an einem der Schienenfahrwerke, insbesondere als ein mit Radachsen verbundener Messrahmen, angeordnet. Damit können Relativbewegungen der Messplattform gegenüber dem Gleis minimiert werden. Bei einem mit den Radachsen verbundenen Messrahmen sind lediglich Pendelbewegungen der Räder gegenüber den Schienen zu berücksichtigen. Davon abgesehen entsprechen die mittels der inertialen Messeinheiten erfassten Trajektorien dem Gileisverlauf.
[0009] Bei einer vorteilhaften Variante ist auf der Messplattform zumindest eine Spurmesseinheit zur Erfassung der Lage der Messplattform gegenüber zumindest einer Schiene des Gleises angeordnet. Damit werden etwaige Relativbewegungen zwischen der Messplattform und der Schiene in Querrichtung zur Gleisachse erfasst. Beispielsweise ist die Spurmesseinheit als Lichtschnittsensors ausgebildet und auf die Innenkante des Schienenkopfes gerichtet. Der exakte Verlauf dieser Schieneninnenkante ist dann aus den mittels der beiden inertialen Messeinheiten erfassten Trajektorien ableitbar.
[0010] Eine weitere Verbesserung ermöglicht die exakte Erfassung beider Schienenverläufe, indem auf der Messplattform ein vorderes Spurweitenmesssystem und ein davon in Fahrzeuglängsrichtung beabstandetes hinteres Spurweitenmesssystem angeordnet sind. Damit ist die Lage der Messplattform im Stillstand, bei niedrigen und bei hohen Geschwindigkeiten gegenüber beiden Schienen des Gleises bestimmbar. Zudem ist mit jedem der Spurweitenmesssysteme die Spurweite separat messbar.
[0011] Vorteilhafterweise sind im ersten Inertialmesssystem und im zweiten Inertialmesssystem verschiedene Algorithmen zur Verarbeitung von Bewegungsdaten eingerichtet. Damit wird die funktionale Sicherheit erhöht, wodurch höhere Sicherheits-Integritätslevel (SIL) erreicht werden. Eine hohe Gesamtgenauigkeit liegt vor, wenn die mit beiden Algorithmen erzielten Ergebnisse innerhalb eines schmalen Toleranzbereichs liegen. Entsprechende Genauigkeitsvorgaben sind in der Norm EN 13848-2 definiert.
[0012] Des Weiteren erfolgt eine Erhöhung der funktionalen Sicherheit, wenn das erste Inertialmesssystem und das zweite Inertialmesssystem verschiedene Hardwarekomponenten, insbesondere verschiedene inertiale Messeinheiten, umfassen. Auf diese Weise ist sichergestellt, dass etwaige systeminhärente Fehlerquellen sofort erkannt und korrigiert werden können.
[0013] Zur Erfassung einer vom Schienenfahrzeug zurückgelegten Wegstrecke ist vorteilhafterweise an einer Radachse ein Odometer angeordnet. Die mittels der Inertialmesssysteme erfassten Daten werden gemeinsam mit dem gemessenen Weg ausgewertet. Des Weiteren können mehrere hintereinander angeordnete Spurweitenmesssysteme zur Wegmessung genutzt werden. Dabei werden geringfügige Anderungen im Verlauf der Spurweite genutzt. Jede Stelle des Gleises weist in ihrer Umgebung einen charakteristischen Spurweitenverlauf auf. Somit kann aus der Messung des Spurweitenverlaufs auf die entsprechende Stelle im Gleis und in weiterer Folge auf einen zurückgelegten Weg geschlossen werden. Diese Nutzung der Spurweitenmesssysteme ist auch zur Überprüfung des mittels des Odometers gemessenen Weges einsetzbar. Das steigert wiederum die funktionale Sicherheit, weil die Wegstrecke mit zwei voneinander unabhängigen und physikalisch unterschiedlich funktionierenden Systemen erfasst wird.
[0014] Beim erfindungsgemäßen Verfahren zum Betreiben des beschriebenen Schienenfahrzeugs wird mittels beider Inertialmesssysteme eine Bewegung der Messplattform gemessen, wobei aus der gemessenen Bewegung Gileislagedaten abgeleitet werden und wobei die Gleislagedaten mittels des im Computer eingerichteten Algorithmus ausgewertet werden. Die zweifache Bewegungsmessung derselben Messplattform erhöht die Gesamtgenauigkeit und die Prozesssicherheit.
[0015] Vorteilhafterweise werden mittels des ersten Inertialmesssystems erste Gleislagedaten und mittels des zweiten Inertialmesssystems zweite Gleislagedaten erfasst, wobei insbesondere Längshöhendaten, Pfeilhöhendaten, Verwindungsdaten, UÜberhöhungsdaten und Spurweitendaten als jeweilige Gleislagedaten erfasst werden. Bei dieser Erfindungsausprägung erfasst zunächst jedes der beiden Inertialmesssysteme unabhängig vom jeweils anderen Inertialmesssystem die Gleislagedaten. Erst danach erfolgt eine gemeinsame Auswertung mittels des Computers.
[0016] In einer bevorzugten Weiterbildung wird mittels des Algorithmus zumindest eine Auswahl erster Gleislagedaten mit einer entsprechenden Auswahl zweiter Gleislagedaten verglichen, wobei eine Fehlermeldung generiert wird, wenn eine Differenz zwischen den verglichenen Gleislagedaten eine Toleranzgrenze erreicht. Mit dieser laufenden Integritätsprüfung wird eine hohe funktionale Sicherheit erreicht.
[0017] Von Vorteil ist eine Registrierung der Fehlermeldung in einem digitalen Messprotokoll. Ein solches Messprotokoll stellt sicher, dass die mit den Inertialmesssystemen durchgeführten Messungen nachvollziehbar bleiben. Die digitale Fehlerregistrierung ermöglicht eine automatische Weiterverarbeitung der Messergebnisse, wobei mittels eines maschinellen Lernalgorithmus wiederkehrende Fehler erkannt und kompensiert werden können.
[0018] Bei einer weiteren Verbesserung des Verfahrens werden mittels einer an der Messplattform angeordneten Spurmesseinheit Lagedaten der Messplattform gegenüber zumindest einer Schiene des Gleises erfasst. Damit sind Relativbewegungen der Messplattform gegenüber der Schiene in Gleisquerrichtung auf einfache Weise kompensierbar.
[0019] In einer bevorzugten Weiterbildung werden auf Basis der Lagedaten mittels einer dem ersten Inertialmesssystem zugeordneten Auswerteeinrichtung die ersten Gleislagedaten und mittels einer dem zweiten Inertialmesssystem zugeordneten Auswerteeinrichtung die zweiten Gleislagedaten berechnet. Jedes Inertialmesssystem ist somit zur separaten Erfassung der Gleislagedaten eingerichtet, wobei Relativovewegungen der Messplattform gegenüber dem Gleis mit denselben Lagedaten kompensiert werden.
[0020] Vorteilhafterweise wird die Lage der Messplattform mittels eines vorderen Spurweitenmesssystems und eines hinteren Spurweitenmesssystems erfasst, wobei damit erfasste Spurweitendaten mit Spurweitendaten eines weiteren am Schienenfahrzeug angeordneten Spurweitenmesssystems abgeglichen werden. Neben der exakten Lageerfassung der Messplattform ermöglicht diese Verfahrensverbesserung eine redundante Wegerfassung auf Basis des charakteristischen Spurweitenverlaufs. Das steigert die Messgenauigkeit und die Prozesssicherheit.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
[0021] Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:
Fig. 1 Schienenfahrzeug auf einem Gleis in Seitenansicht
Fig. 2 Schienenfahrzeug auf einem Gleis in Schrägansicht
Fig. 3 Querschnitt eines Schienenfahrzeugs auf einem Gleis
Fig. 4 Fahrwegmessung mit zwei Spurweitenmesssystemen
BESCHREIBUNG DER AUSFÜHRUNGSFORMEN
[0022] Das in Fig. 1 darstellte Schienenfahrzeug 1 umfasst einen Fahrzeugrahmen 2, der auf Schienenfahrwerken 3 auf einem Gleis 4 verfahrbar ist. Das Gleis 4 umfasst zwei Schienen 5, die auf in einem Schotterbett 6 gelagerten Schwellen 7 befestigt sind. Die Erfindung bezieht sich auch auf eine nicht dargestellt Feste Fahrbahn, bei der die Schienen 5 auf einem festen Oberbau aus Beton befestigt sind. Das Schienenfahrzeug 1 ist beispielsweise ein Messfahrzeug oder eine Gleisbaumaschine mit einem Arbeitsaggregat 8 zur Gleisbearbeitung.
[0023] Das dargestellte Schienenfahrzeug 1 umfasst mehrere Messplattformen 9, die zueinander beweglich sind. Beispielsweise ist auf einer der Messplattformen 9 im Frontbereich ein optisches
Messsystem 10 zur Erfassung von Oberflächenpunkten des Gleises 4 aufgebaut. Zwischen den Schienenfahrwerken 3 befindet sich eine weitere Messplattform 9 mit darauf befestigten Spurweitenmesssystemen 11, die jeweils auf die Schienen 5 gerichtete Spurmesseinheiten 12 umfassen. Die jeweilige Spurmesseinheit 12 ist zum Beispiel ein Lichtschnittsensor, der die Lage der Messplattform 9 gegenüber der zugeordneten Schiene 5 erfasst.
[0024] Zudem ist an einem der Schienenfahrwerke 3 eine als Messrahmen ausgebildete Messplattform 9 angeordnet. Relativbewegungen zwischen dieser Messplattform 9 und den anderen Messplattformen 9 ergeben sich durch die Federung, Lenkung und Neigung des Schienenfahrwerks 3 gegenüber dem Fahrzeugrahmen 2. Dem starren Messrahmen sind ein erstes und ein zweites Inertialmesssystem 13 zugeordnet. Dabei sind zumindest die inertialen Messeinheiten 14 der beiden Inertialmesssysteme 13 in ihrer Lage zueinander unveränderlich auf der Messplattform 9 fixiert. Der Begriff inertiale Messeinheit (IMU) bezeichnet das eigentliche Messinstrument zur Drehraten- und Beschleunigungsmessung. Das jeweilige Inertialmesssystem 13 ist zudem in der Lage, Korrekturalgorithmen abzuarbeiten und die Position zu bestimmen. Gewöhnlich sind das Messinstrument und ein Mikrocontroller 20 in einem gemeinsamen Gehäuse untergebracht. Die Komponenten können jedoch auch auf mehrere Gehäuse aufgeteilt sein.
[0025] Aus den mittels des jeweiligen Inertialmesssystems 13 erfassten Bewegungsdaten ist eine Trajektorie 15 der zugeordneten inertialen Messeinheit 14 ableitbar. Als Bezugssystem dient in der Regel ein Koordinatensystem mit dem Ursprung an der Startposition einer Messfahrt. Sobald sich das Schienenfahrzeug 1 in Bewegung setzt, werden entlang der beiden Trajektorien 15 Positionspunkte erfasst, deren Koordinaten in weiterer Folge für Auswertungen zur Verfügung stehen.
[0026] Der zurückgelegte Weg wird beispielsweise mittels eines Odometers 16 erfasst. Alternativ dazu oder zusätzlich dienen die Spurweitenmesssysteme 11 zur Wegerfassung. Während einer Vorwärtsfahrt des Schienenfahrzeugs 1 erfasst jedes Spurweitenmesssystem 11 einen Verlauf der Spurweite g über einer Fahrzeit t, wie in Fig. 4 dargestellt. Weil beide Spurweitenmesssysteme 11 dasselbe Gleis 4 unmittelbar hintereinander vermessen, ergeben sich zwei annähernd idente Spurweitenverläufe mit einem zeitlichen Versatz At. Dieser zeitliche Versatz At wird ausgewertet, wobei sich mit einem fixen Abstand a der Spurweitenmesssysteme 9 zueinander die aktuelle Fahrgeschwindigkeit und der zurückgelegte Fahrweg bestimmen lassen. Auf diese Weise werden die Spurweitenmesssysteme 11 zusätzlich zur Lage- und Spurweitenmessung auch für die Wegmessung eingesetzt.
[0027] Zudem steigert die mehrfach durchgeführte Spurweitenmessung die Prozesssicherheit. Dazu sind die Spurweitenmesssysteme 11 mit einem Computer 17 gekoppelt. Der Computer 17 vergleicht laufend die Eingangsparameter in Form der Gleisspuren. Verglichen werden beispielsweise die Messergebnisse einer ersten Gruppe der am Fahrzeugrahmen 2 angeordneten Spurweitenmesssysteme 11 mit den Messergebnissen einer zweiten Gruppe der am Schienenfahrwerk 3 angeordneten Spurweitenmesssysteme 11. Letztere sind mit den Inertialmesssystemen 13 gekoppelt. Aus den Messergebnissen der ersten Gruppe wird zum Beispiel ein Mittelwert gebildet, welcher über einen bekannten Längs-Offset b laufend mit einem aktuellen Messwert der zweiten Gruppe verglichen wird. Bei zu starken Abweichungen wird eine Fehlermeldung generiert.
[0028] Auch beide Inertialmesssysteme 13 sind mit dem Computer 17 gekoppelt. Mittels eines im Computer 17 eingerichteten Algorithmus werden die erfassten Gleislagendaten ausgewertet, wobei auch die Integrität der Daten geprüft wird. Im einfachsten Fall werden die mittels der Inertialmesssysteme 13 erfassten Daten laufend verglichen. Sobald eine Differenz eine Toleranzgrenze erreicht, wird eine Fehlermeldung generiert. Das ist sinnvoll, wenn die inertialen Messeinheiten 14 unmittelbar nebeneinander auf der Messplattform 9 angeordnet sind. Dann ist davon auszugehen, dass bei einem fehlerfreien Betrieb synchron dieselben Bewegungsdaten erfasst werden. Eine solche Anordnung zeigt Fig. 2, wobei zur besseren Sichtbarkeit der einzelnen Komponenten ein Wagenkasten des Schienenfahrzeugs 1 von den Schienenfahrwerken 3 abgehoben dargestellt ist.
[0029] Vorteilhafterweise unterscheiden sich die beiden Inertialmesssysteme 13 durch die verbauten Hardwarekomponenten. Um die Prozesssicherheit weiter zu steigern, unterscheiden sich die beiden Inertialmesssysteme 13 auch durch die eingerichteten Algorithmen und Filter zur Verarbeitung der Bewegungsdaten. Die Verwendung unterschiedlicher Systeme zur Erfassung und Verarbeitung der Bewegungsdaten erhöht den Sicherheits-Integritätslevel. Erfüllt wird diese Vorgabe beispielsweise durch den Einsatz von Inertialmesssystemen 13 unterschiedlicher Hersteller.
[0030] Des Weiteren besteht die Möglichkeit, die beiden Inertialmesssysteme 13 automatisch zu kalibrierten, indem die Messergebnisse laufend aufeinander abgestimmt werden. Eine bei inertialen Messeinheiten 14 üblicherweise auftretende Drift kann damit kompensiert werden.
[0031] Mit einer beabstandeten Anordnung der inertialen Messeinheiten 14 auf der Messplattform 9 werden zusätzliche Informationen gewonnen. Im Beispiel in Fig. 1 ist die erste inertiale Messeinheit 14 an einem vorderen Querbalken des Messrahmens angeordnet und die zweite inertiale Messeinheit 14 ist an einem hinteren Querbalken des Messrahmens angeordnet. Auf diese Weise wird die Bewegung der Messplattform 9 im Raum an unterschiedlichen Stellen erfasst. Aus den sich ergebenden Bewegungsdaten lässt sich die Vorwärtsbewegung des Schienenfahrzeugs 1 ableiten.
[0032] Mit den jeweils vorne und hinten am Messrahmen angeordneten Spurweitenmesssystemen 11 wird die Lage des Messrahmens gegenüber den Schienen 5 bestimmt. Fig. 3 zeigt eines dieser Spurweitenmesssysteme 11 mit zwei Spurmesseinheiten 12. In jeder Spurmesseinheit 12 projiziert eine Laserquelle 18 einen Lichtfächer auf die zugeordnete Schiene 5. Die sich ergebende Projektion auf der Schiene 5 wird mittels einer Kamera 19 erfasst und in einem Mikrocontroller 20 ausgewertet. Auf diese Weise wird die Lage der Spurmesseinheit 12 gegenüber der zugeordneten Schiene 5 erfasst. Alle vier am Messrahmen angeordnete Spurmesseinheiten 12 liefern Lagedaten des Messrahmens gegenüber den Schienen 5.
[0033] In einer Auswerteeinrichtung 21 werden die mittels der Spurweitenmesssysteme 11 erfassten Lagedaten genutzt, um aus der jeweiligen Trajektorie 15 auf die Gleislage rückzuschließen. Uber die bekannte geometrische Anordnung der inertialen Messeinheiten 14 und der Spurmesseinheiten 12 zueinander werden die Koordinaten der jeweiligen Trajektorie 15 auf die jeweilige Schiene 5 transformiert. Daraus ergeben sich in weiterer Folge die relevanten Gleisparameter, insbesondere die Spurweite, die Richtung bzw. Pfeilhöhe, die Längshöhe, die Überhöhung und die Verwindung des Gleises 4. Vorteilhafterweise ist jedem Inertialmesssystem 13 eine eigene Auswerteeinrichtung 21 zugeordnet. In weiterer Folge werden die zweifach ermittelten Gleislagedaten im Computer 17 ausgewertet und deren Integrität überprüft.
[0034] Durch die Zusammenführung der Messdaten wird die Gesamtgenauigkeit erhöht. Fehler werden sofort erkannt und bei der Weiterverarbeitung der Gleislagedaten berücksichtigt. Das geschieht beispielsweise durch stochastische Vergleiche der mit den unterschiedlichen Einzelmesssystemen ermittelten Gleisparameter. Mittels statistischer Auswertungen können Messungenauigkeiten ausgeglichen und punktuelle Messfehler ausgeblendet werden. Die Norm EN 13848-2 definiert die erforderliche Genauigkeit. Für jedes Einzelmesssystem müssen 95% der Messergebnisse innerhalb der vorgegeben Toleranz liegen. Durch die erfindungsgemäße Redundanz der Einzelmesssysteme ergibt sich eine höhere Gesamtgenauigkeit, bei der bis zu 99% der zusammengeführten Messergebnisse innerhalb der Toleranz liegen.

Claims (15)

Ansprüche
1. Schienenfahrzeug (1) mit einem Fahrzeugrahmen (2), der auf Schienenfahrwerken (3) abgestützt auf Schienen (5) eines Gleises (4) verfahrbar ist, umfassend eine Messplattform (9) mit einem ersten Inertialmesssystem (13) zur Erfassung von Gleislagedaten, dadurch gekennzeichnet, dass derselben Messplattform (9) ein zweites Inertialmesssystem (13) zum Messen einer Bewegung der Messplattform (9) zugeordnet ist, dass beide Inertialmesssysteme (13) mit einem Computer (17) gekoppelt sind und dass im Computer (17) ein Algorithmus zum Auswerten von erfassten Gleislagedaten eingerichtet ist.
2. Schienenfahrzeug (1) nach Anspruch 1, dadurch gekennzeichnet, dass jedes Inertialmesssystem (13) zur separaten Erfassung von Gleislagedaten eingerichtet ist.
3. Schienenfahrzeug (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Messplattform (9) an einem der Schienenfahrwerke (3), insbesondere als ein mit Radachsen verbundener Messrahmen, angeordnet ist.
4. Schienenfahrzeug (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass auf der Messplattform (9) zumindest eine Spurmesseinheit (12) zur Erfassung der Lage der Messplattform (9) gegenüber zumindest einer Schiene (5) des Gleises (4) angeordnet ist.
5. Schienenfahrzeug (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass auf der Messplattform (9) ein vorderes Spurweitenmesssystem (11) und ein davon in Fahrzeuglängsrichtung beabstandetes hinteres Spurweitenmesssystem (11) angeordnet sind.
6. Schienenfahrzeug (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass im ersten Inertialmesssystem (13) und im zweiten Inertialmesssystem (13) verschiedene Algorithmen zur Verarbeitung von Bewegungsdaten eingerichtet sind.
7. Schienenfahrzeug (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das erste Inertialmesssystem (13) und das zweite Inertialmesssystem (13) verschiedene Hardwarekomponenten, insbesondere verschiedene inertiale Messeinheiten (14), umfassen.
8. Schienenfahrzeug (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass an einer Radachse des Schienenfahrzeugs (3) ein Odometer (16) zur Erfassung eines Wegs angeordnet ist.
9. Verfahren zum Betreiben eines Schienenfahrzeugs (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mittels beider Inertialmesssysteme (13) eine Bewegung der Messplattform (9) gemessen wird, dass aus der gemessenen Bewegung Gleislagedaten abgeleitet werden und dass die Gleislagedaten mittels des im Computer (17) eingerichteten Algorithmus ausgewertet werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass mittels des ersten Inertialmesssystems (13) erste Gleislagedaten und mittels des zweiten Inertialmesssystems (13) zweite Gleislagedaten erfasst werden und dass insbesondere Längshöhendaten, Pfeilhöhendaten, Verwindungsdaten, Überhöhungsdaten und Spurweitendaten als jeweilige Gleislagedaten erfasst werden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass mittels des Algorithmus zumindest eine Auswahl erster Gleislagedaten mit einer entsprechenden Auswahl zweiter Gleislagedaten verglichen wird und dass eine Fehlermeldung generiert wird, wenn eine Differenz zwischen den verglichenen Gleislagedaten eine Toleranzgrenze erreicht.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Fehlermeldung in einem digitalen Messprotokoll registriert wird.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass mittels einer an der Messplattform (9) angeordneten Spurmesseinheit (12) Lagedaten der Messplattform (9) gegenüber zumindest einer Schiene (5) des Gleises (4) erfasst werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass auf Basis der Lagedaten mittels einer dem ersten Inertialmesssystem (13) zugeordneten Auswerteeinrichtung (21) die ersten Gleislagedaten berechnet werden und mittels einer dem zweiten Inertialmesssystem (13) zugeordneten Auswerteeinrichtung (21) die zweiten Gleislagedaten berechnet werden.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass die Lage der Messplattform (9) mittels eines vorderen Spurweitenmesssystems (11) und eines hinteren Spurweitenmesssystems (11) erfasst wird und dass damit erfasste Spurweitendaten mit Spurweitendaten eines weiteren am Schienenfahrzeug (1) angeordneten Spurweitenmesssystems (11) abgeglichen werden.
Hierzu 2 Blatt Zeichnungen
ATGM8004/2023U 2022-05-24 2022-05-24 Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten AT17971U1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ATGM8004/2023U AT17971U1 (de) 2022-05-24 2022-05-24 Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT503622022 2022-05-24
ATGM8004/2023U AT17971U1 (de) 2022-05-24 2022-05-24 Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten

Publications (1)

Publication Number Publication Date
AT17971U1 true AT17971U1 (de) 2023-09-15

Family

ID=86693012

Family Applications (1)

Application Number Title Priority Date Filing Date
ATGM8004/2023U AT17971U1 (de) 2022-05-24 2022-05-24 Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten

Country Status (2)

Country Link
AT (1) AT17971U1 (de)
WO (1) WO2023227394A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122319A1 (de) * 2007-04-05 2008-10-16 Siemens Transportation Systems Gmbh & Co. Kg Messanordnung zur berührungslosen und kontinuierlichen bestimmung von trassierung und gleislage von bahnschienen
EP3358079A1 (de) * 2017-02-06 2018-08-08 HP3 Real GmbH Verfahren und vorrichtung zur optimierung einer gleislage
US20210114637A1 (en) * 2018-11-15 2021-04-22 Avante International Technology, Inc. Image-based monitoring and detection of track/rail faults
AT523627A4 (de) * 2020-09-16 2021-10-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und System zur Ermittlung eines Soll-Gleisverlaufs für eine Lagekorrektur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520526B1 (de) 2018-02-02 2019-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Schienenfahrzeug und Verfahren zum Vermessen einer Gleisstrecke
EP3722182A1 (de) * 2019-04-12 2020-10-14 Thales Management & Services Deutschland GmbH Verfahren zum sicheren und autonomen bestimmen einer positionsinformation eines zuges auf einem gleis
ES2890457B2 (es) * 2020-07-02 2024-05-16 Virtualmechanics S L Sistema embarcado de auscultación de vías

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122319A1 (de) * 2007-04-05 2008-10-16 Siemens Transportation Systems Gmbh & Co. Kg Messanordnung zur berührungslosen und kontinuierlichen bestimmung von trassierung und gleislage von bahnschienen
EP3358079A1 (de) * 2017-02-06 2018-08-08 HP3 Real GmbH Verfahren und vorrichtung zur optimierung einer gleislage
US20210114637A1 (en) * 2018-11-15 2021-04-22 Avante International Technology, Inc. Image-based monitoring and detection of track/rail faults
AT523627A4 (de) * 2020-09-16 2021-10-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und System zur Ermittlung eines Soll-Gleisverlaufs für eine Lagekorrektur

Also Published As

Publication number Publication date
WO2023227394A1 (de) 2023-11-30

Similar Documents

Publication Publication Date Title
AT520526B1 (de) Schienenfahrzeug und Verfahren zum Vermessen einer Gleisstrecke
EP2755869B1 (de) Ausrichtungsmodell für ein sensorsystem
EP2771714B1 (de) Sensorsystem zur eigenständigen bewertung der integrität seiner daten
DE10040139B4 (de) Verfahren zur Messung von Schienenprofilen und Gleislagestörungen sowie Vorrichtung zur Durchführung des Verfahrens
EP0378781A1 (de) Verfahren sowie Vorrichtung zur berührungslosen Messung der Deformation und des Verschleisses von Schienen; Verfahren zur Messung der Spurweite an Schienen
EP3554919A1 (de) Gleismessfahrzeug und verfahren zum erfassen einer gleisgeometrie
DE102005047021B3 (de) Anordnung zur Bestimmung eines absoluten Neigungswinkels gegenüber der Horizontalen
EP0289803A2 (de) Verfahren und Vorrichtung zur Kursbestimmung eines Landfahrzeugs
AT519316B1 (de) Gleisbaumaschine mit Gleislagemesssystem
EP4021778B1 (de) Verfahren und messfahrzeug zur ermittlung einer ist-lage eines gleises
EP3475876A1 (de) Steuergerät, system mit solch einem steuergerät und verfahren zum betrieb solch eines systems
DE102016223435A1 (de) Wegstrecken- und Geschwindigkeitsmessung mit Hilfe von Bildaufnahmen
EP3583012A1 (de) Gleismessfahrzeug und verfahren zur erfassung einer vertikalen gleislage
DE102018004057A1 (de) Verfahren und System zum Bestimmen des Versatzes eines Lenkradwinkelsensors
EP3310637A1 (de) Prüfeinrichtung und verfahren zur überprüfung eines definierten profils von einem zugverband aus fahrzeugen, insbesondere schienenfahrzeugen
DE68907403T2 (de) Fahrzeugnavigationssystem.
AT17971U1 (de) Schienenfahrzeug und Verfahren zur Erfassung von Gleislagedaten
DE102004055069A1 (de) Mehrdimensionale Fahrbahnvermessung
WO2023102585A1 (de) Verfahren zur bestimmung der geschwindigkeit und/oder bewegungsrichtung eines fahrzeugs
DE19921437A1 (de) Verfahren und Vorrichtung zur Ermittlung der Position eines Fahrzeuges auf einer Straße
DE10256123B4 (de) Verfahren und Vorrichtung zur Ermittlung einer Zustandsgröße, insbesondere des Laufflächenprofils, einer Schiene
EP0936472A2 (de) Verfahren und Einrichtung zur Prüfung der Funktionsweise einer Abstandsregeleinrichtung eines Kraftfahrzeuges
DE102004048637A1 (de) 3D-Fahrbahnmessung mit redundanten Messdaten
DE4133533A1 (de) Verfahren zur ist-lage-erfassung von landgebundenen fahrzeugen, insbesondere von mobilen autonomen robotern, von gabelstaplern und dergleichen, und lageerfassungssystem zur durchfuehrung eines solchen verfahrens
WO2023227435A1 (de) Schienenfahrzeug und verfahren zum erfassen eines spurweitenverlaufs