WO1994008134A1 - Controlling device for multi-cylinder internal combustion engine - Google Patents

Controlling device for multi-cylinder internal combustion engine Download PDF

Info

Publication number
WO1994008134A1
WO1994008134A1 PCT/JP1993/001386 JP9301386W WO9408134A1 WO 1994008134 A1 WO1994008134 A1 WO 1994008134A1 JP 9301386 W JP9301386 W JP 9301386W WO 9408134 A1 WO9408134 A1 WO 9408134A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition timing
cylinder
timing correction
correction amount
internal combustion
Prior art date
Application number
PCT/JP1993/001386
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Miyamoto
Kazumasa Iida
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP25975392A external-priority patent/JP2697520B2/ja
Priority claimed from JP29027292A external-priority patent/JP2697531B2/ja
Priority claimed from JP29027192A external-priority patent/JP2697530B2/ja
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority to DE69317253T priority Critical patent/DE69317253T2/de
Priority to US08/244,291 priority patent/US5542389A/en
Priority to EP93921082A priority patent/EP0615066B1/en
Priority to KR1019940701730A priority patent/KR0137314B1/ko
Publication of WO1994008134A1 publication Critical patent/WO1994008134A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1508Digital data processing using one central computing unit with particular means during idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a multi-cylinder internal combustion engine mounted on an automobile or the like (hereinafter, the "internal combustion engine” is sometimes referred to as an "engine”).
  • the present invention relates to a control device that focuses on idle operation of an engine that can be stopped to perform a partial cylinder operation. Background technology ''
  • the rotational speed information that is repeatedly detected is smoothed (averaged), and this smoothed rotational speed and the latest
  • a technique has been proposed in which the ignition timing is corrected by comparing the rotation speed information with data based on the difference between the two. At this time, if the latest rotation speed is lower than the smooth value, the ignition timing is advanced, and if the latest rotation speed is higher than the smooth value, the ignition timing is retarded.
  • the engine rotation speed changes (or the idle rotation speed which is optimal for the cylinder-stop operation and the all-cylinder operation can be obtained, respectively).
  • the ignition timing is corrected to the retard side and the rotation is changed. It works to suppress the rise, and it takes time for the rotation speed after switching to approach the original value, and the engine rotation becomes unstable.
  • the idle rotation speed should be set to be higher than that of all cylinder operation from the viewpoint of vibration countermeasures during cylinder deactivated operation (for example, when the idle rotation speed during cylinder deactivated operation is 850 rpm, when operating all cylinders).
  • the problem is that the effect on the vibration countermeasures originally intended cannot be sufficiently exerted immediately after switching.
  • the ratio of the change in the engine speed to the change in the ignition timing during the idle operation is different between the cylinder-stop operation and the all-cylinder operation. That is, during the cylinder-stop operation, the change in the engine speed with respect to the change in the ignition timing is smaller than that during the all-cylinder operation. Particularly, during the cylinder-stop operation, the change in the engine speed in the advance side region e1 is small. It reaches a plateau.
  • the ignition timing correction gain K inj (K i ⁇ j is ⁇ e, where ⁇ 0 is the ignition timing correction amount, and AN e is the rotation deviation) set for the all-cylinder operation is used.
  • the absolute value of the ignition timing correction amount per unit rotation is small, and accuracy is lacking. Variability in idle speed cannot be corrected responsively by adjusting ignition timing.
  • the present invention has been made in view of such a problem, and an aspect of an operation for calculating an ignition timing correction amount at least at the time of switching between all-cylinder operation and cylinder-stop operation or at least one of cylinder-stop operation.
  • a basic ignition timing calculating means for calculating a basic ignition timing based on a load state and a rotational speed of the internal combustion engine; a smoothed rotational speed obtained by performing a smoothing process on the internal combustion engine rotational speed; Deviation rotational speed calculating means for calculating a deviation from the internal combustion engine rotational speed; ignition timing correction amount calculating means for calculating an ignition timing correction amount corresponding to the deviation at least during idle operation; Ignition timing correction control means for controlling the operation mode of the ignition timing correction amount calculating means at least at the time of switching to the operation or at the time of cylinder deactivation, and the above basic ignition timing and ignition timing correction It is characterized by comprising ignition timing calculating means for calculating a target ignition timing based on the amount, and ignition control means for driving ignition driving means for each cylinder of
  • control device for a multi-cylinder internal combustion engine is characterized in that the ignition timing correction control means is configured to change the operation mode during the cylinder-stop operation from the operation mode during the all-cylinder operation. .
  • control device for a multi-cylinder internal combustion engine may further include the ignition timing correction amount.
  • the ignition timing correction control means is configured to control the operation mode of the ignition timing correction amount calculation means so that the ignition timing correction amount is set to be larger during the closed cylinder operation than during the full cylinder operation.
  • the ignition timing correction amount is larger during the closed cylinder operation than during the full cylinder operation, and the advanced ignition timing correction amount during the closed cylinder operation is the retarded ignition timing.
  • the ignition timing correction control means is configured to control the operation of the ignition timing correction amount calculation means so as to be set to be larger in absolute value than the correction amount.
  • control device for a multi-cylinder internal combustion engine includes the ignition timing correction control means for substantially disabling the operation of the ignition timing correction amount calculating means at the time of switching between the full cylinder operation and the closed cylinder operation. ⁇ is composed.
  • control device for a multi-cylinder internal combustion engine of the present invention is set so that the idle speed during idle cylinder operation is higher than the idle speed during full cylinder operation.
  • the operation of the ignition timing correction amount calculating means is substantially invalidated at the time of switching from the all-cylinder operation to the closed-cylinder operation.
  • control device for a multi-cylinder internal combustion engine is characterized in that it has an air intake increasing means for temporarily increasing the intake air amount for the internal combustion engine when switching from all-cylinder operation to closed-cylinder operation. .
  • control device for a multi-cylinder internal combustion engine of the present invention substantially disables the operation of the ignition timing correction amount calculating means at the time of switching between the all-cylinder operation and the closed cylinder operation, It is characterized in that the ignition timing correction control means is configured to control the operation mode of the ignition timing correction amount calculation means so that the ignition timing correction amount calculation means is set to be larger during the cylinder-stop operation than during the cylinder-stop operation.
  • the control device for a multi-cylinder internal combustion engine is characterized in that:
  • the ignition timing correction control means is configured to control the operation mode of the ignition timing correction amount calculation means so that the ignition timing correction amount is set to be larger in absolute value on the advance side than on the retard side. It is characterized by being.
  • the unit when correcting the deviation of the idle speed during the idle operation, the unit is higher in the closed cylinder mode than in the full cylinder mode.
  • the ignition timing correction amount per rotation deviation can be set to a large value, which makes it possible to compensate for the low responsiveness when correcting the variation in idle speed due to the lack of the ignition timing correction amount during cylinder deactivation.
  • the advance-side ignition correction amount during cylinder deactivation is set to be larger in absolute value than the retard-side ignition correction amount, the idle rotation can be raised with good responsiveness when the idle rotation decreases, and engine stall can be prevented. In this regard, idle rotation can be stabilized with good responsiveness.
  • the ignition control device for a multi-cylinder internal combustion engine of the present invention when switching from the all-cylinder state to the closed-cylinder state during the idle operation, the number of rotations is increased by increasing the amount of intake air and increasing the number of rotations. ⁇
  • the ignition timing correction which is performed to suppress torque shock, is prohibited to promote the increase in the rotational speed, and then the cylinder is switched to the cylinder-stop state. It is possible to prevent a sharp drop in the idle speed at the time of switching to.
  • FIG. 1 is an overall configuration diagram of a control device for an internal combustion engine as one embodiment of the present invention
  • FIG. 2 is a block diagram of an ignition drive circuit in the control device of FIG. Fig. 3 (a) to (c) are diagrams showing the operation of the ignition drive circuit in the controller of FI G. 1 over time
  • Figs. 4 (a) and (b) are FI G.
  • FIG. 5 is a characteristic diagram of an operating range calculation map of an internal combustion engine equipped with the control device of FIG. 1, and FIG.
  • FIG. 6 is a characteristic diagram of the dwell angle arithmetic map used by the FI G.1 controller
  • FI G.7 is a flow chart of the main routine performed by the FI G.1 controller. Is a flowchart of the ignition timing calculation routine performed by the controller of FIG. 1
  • FI G. 9 is a flowchart of the ignition control routine performed by the controller of FIG. 1
  • FIG. 10 is all cylinders Z.
  • FIG. 11 is a diagram showing a relationship between a cylinder rest state, a change in boost pressure, and ignition timing adjustment
  • FIG. 11 is a characteristic diagram of an ignition timing and an engine rotation speed when the engine is idle.
  • the engine control device shown in Fig. 1 is installed on an in-line four-cylinder engine (hereinafter simply referred to as engine E) with an operation mode switching mechanism.
  • the intake passage 1 of the engine E is composed of an intake branch pipe 6, a surge tank 9 connected thereto, an intake pipe 7 integrated with the same nozzle, and an air cleaner (not shown).
  • the intake pipe 7 pivotally supports a throttle valve 2 therein, and a shaft 201 of the throttle valve 2 is connected to a slot control lever 3 outside the intake passage 1.
  • the throttle lever 3 is connected to the throttle valve 2 so as to rotate the throttle valve 2 in a counterclockwise direction in FIG. 1 in conjunction with an accelerator pedal (not shown).
  • the tor valve 2 closes when the pulling force of the accelerator cable is reduced by a return spring (not shown) that biases the torsion valve in the closing direction.
  • the throttle valve 2 is provided with a throttle opening sensor 8 for outputting information on the opening of the throttle valve.
  • an intake bypass passage 101 bypassing the throttle valve 2 is provided with an idle speed control (ISC) valve 4 for idle control, and the valve 4 is closed by a spring 401. It is energized and is driven by a stepper motor 5.
  • ISC idle speed control
  • Reference numeral 16 denotes a first idle air valve that automatically performs warm-up correction during idle according to the cooling water temperature.
  • the intake passage 1 has an intake air temperature sensor 14 that outputs intake air temperature Ta information.
  • a knock sensor 21 for outputting knock information is provided.
  • the surge tank 9 is provided with a negative pressure sensor 10 that outputs information on the intake pipe pressure Pb.
  • an intake path and an exhaust path that can be connected to each cylinder are formed in the cylinder head 13 of the engine E, and each flow path is opened and closed by an intake valve and an exhaust valve (not shown). ing.
  • the valve system of FIG. 1 has a valve stop mechanism.
  • This valve stop mechanism selectively drives an unillustrated intake / exhaust valve with a low-speed cam and a high-speed cam (not shown) to operate in a low-speed mode M-1. It is possible to operate in mode M-2, and to always operate in a timely manner.
  • the cylinders (it 4) have their intake and exhaust valves stopped to enable operation in cylinder-stop mode M-3.
  • the valve stop mechanism of the valve train system is provided with a hydraulic low-speed switching mechanism K1 capable of stopping the operation of the low-speed cam of the intake / exhaust valve at a predetermined time in each mouth arm (not shown) and the operation of the high-speed cam of the intake / exhaust valve at a predetermined time.
  • a hydraulic high-speed switching mechanism K2 capable of stopping the operation.
  • Each of the switching mechanisms K 1 and K 2 uses a hydraulic cylinder to switch the engagement pin (not shown) between the rocker arm and the rocking shaft (not shown). It has a well-known configuration in which it can be moved and the engagement and disengagement of the high-speed cam and the mouth arm can be selectively performed.
  • the low-speed switching mechanism K1 is supplied with pressure oil from a hydraulic circuit 22 via a first solenoid valve 26, and the high-speed switching mechanism K2 is supplied from a hydraulic circuit 30 via a second solenoid valve 31. Pressurized oil is supplied.
  • the operation of the low speed motor KM-1 by the low speed motor is achieved by turning off both the first solenoid valve 26 and the second solenoid valve 31 which are three-way valves, and the operation of the high speed mode M-2 by the high speed cam. Is achieved when both the first solenoid valve 26 and the second solenoid valve 31 are on, and operation of the cylinder KM-3 is achieved when the first solenoid valve 26 is on and the second solenoid valve 31 is off. It is supposed to be.
  • These two solenoid valves 26, 31 are driven and controlled by an engine control unit (ECU) 15, which will be described later.
  • Reference numeral 32 denotes a hydraulic pressure source.
  • an injector 17 for injecting fuel into each cylinder is mounted on the cylinder head 13 of FIG. 1 and each injector supplies the fuel whose pressure has been adjusted by the fuel pressure adjusting means 18 to the fuel supply source 1. 9, the injection drive control is performed by the ECU 15.
  • a spark plug 23 is mounted on each cylinder head 13 of FIG. 1 for each cylinder.
  • both plugs 23 of the continuously operating cylinders ⁇ 2 and ⁇ 3 are connected together to form a single ignition plug.
  • the plugs 23 of the cylinders ⁇ 1 and ⁇ 4 are connected together and connected to the igniter 25.
  • the ignition plug 23 and the ignition drive circuit constitute ignition drive means.
  • the ignition drive circuit includes a pair of timing control circuits 36 (only one is shown in FIG. 2) in the ECU 15 and a pair of open / close drive circuits 2 4 and 25.
  • Each of these opening / closing drive circuits 24 1 and 25 1 is connected to a power transistor 38, 38 for controlling the opening / closing timing and energizing time, and each power transistor 38, 38 is connected to each of the power transistors 38, 38.
  • the ignition coils 37 and 37 are connected.
  • the timing control circuit 36 is provided for each of the groups of idle cylinders ⁇ I, ⁇ and the always-on cylinders «2, ff3, respectively, and both receive the reference signal of the crank angle sensor 34 (0 co at crank angle).
  • Unit crank angle sensor 3 It is driven by the crank angle signal (pulse of 1 ° or 2 ° ( ⁇ ⁇ c) unit) of 3 and Fig. 2 has four groups of cylinders tt l and it 4 , And those of the constantly operating cylinders 2 and 3 are omitted.
  • the reference signal 0 c0 is output to the short-circuit circuit 362, and in the normal operation, the one-shot circuit 362 is the reference signal of 0 c0 (for example, 75 °) before the top dead center.
  • the one-shot circuit 361 is triggered by the above-mentioned energization end signal and outputs the energization start signal by counting the determined number of crank angle signals corresponding to the dwell angle (determined using the dwell angle map of FIG. 6) 0 d. It is configured to
  • the flip-flop 363 is set by an energization start signal from the one-shot circuit 361, and is reset by an energization end signal from the one-shot circuit 362. Further, the opening / closing drive circuit 25 1 turns on the power transistor 38 at the time of setting by the flip-flop 36 3, and causes a current to flow to the ignition coil 37.
  • the ignition coil 37 generates a high-voltage current on the secondary side when the power transistor 38 is turned off, and this current is transmitted to the ignition plugs 23 of the cylinders 1 and tt 4 and the cylinders The ignition of the cylinder group is performed.
  • an evening control circuit (not shown) for the continuously rotating cylinders 2 and 3 is also configured, and the ignition coil is set to the target ignition timing 0 adv according to the drive of the open / close drive circuit 24 1 and the power transistor 38.
  • the secondary high-voltage current of 37 is supplied to the spark plug 23 of the always-operating cylinder # 2, it 3, and the group ignition of the always-operated cylinder is performed.
  • the group ignition timing of the cylinders ⁇ 1 and ⁇ 4 and the group ignition of the continuously operating cylinders 2 and ti 3 have a crank angle of approximately 180.
  • the intervals are alternated for each group.
  • the main part of the engine control unit (ECU) 15 is formed by a microcomputer, which executes a main routine described later according to the operation information of the engine E and controls well-known controls such as well-known fuel injection amount control. In addition to the processing, each control in the ignition timing calculation routine and the ignition control routine is performed.
  • the ECU 15 uses a coolant temperature sensor 11, a throttle opening sensor 8, an intake air temperature sensor 14, a battery sensor 20 and a knock sensor 21 to calculate the cooling water temperature Tw and the throttle opening 0 s.
  • the intake air temperature T a, the battery voltage VB, and the knock signal K n are detected and stored in a predetermined data storage area. Further, the ECU 15 calculates a deviation rotation speed ⁇ N e, which is a difference between the smoothed rotation speed 1 e 1 n obtained by smoothing the engine rotation speed and the actual engine rotation speed N en, and calculates the idle operation of the engine.
  • the operation mode signals (M-1, M-2, M-3) are taken in, and the ignition timing correction amount ⁇ S according to the deviation rotation speed ⁇ e is set larger in the closed cylinder mode than in the all cylinder mode, and In the cylinder deactivation mode, the advance-side ignition timing correction amount is set to be larger in absolute value than the retard-side ignition timing correction amount, and is set according to the intake pipe negative pressure Pb and the engine speed Ne that are the engine load signals.
  • the basic ignition timing 0b is calculated, and the basic ignition timing 0b is corrected by the ignition timing correction amount ⁇ 0 according to each operation mode, and the target ignition timing 0 ad
  • the ignition plug 23 and the ignition drive circuit (evening control circuit 36 and each ignition 24, 25) as the ignition drive means for each cylinder of the internal combustion engine are calculated for the target ignition timing ad ⁇ . It has the function of driving.
  • the ECU 15 increases the amount of air in the idle speed control mechanism as shown in FIG. 10.
  • the ignition timing is corrected based on the increase in the air amount. In this case, the retard is prohibited. This is performed to suppress a decrease in the output during the explosion stroke due to the retardation of the ignition timing and to make it easier to increase the rotation speed.
  • the ignition timing correction prohibition period is a period until the increase of air in the idle speed control mechanism is completed, in other words, a period until the idle rotation speed at the time of cylinder deactivation is obtained. Have been.
  • the ECU 15 includes the basic ignition timing calculation means 151, the deviation rotational speed calculation means 152, the ignition timing correction amount calculation means 1553, the ignition timing correction control means 1554, the ignition timing calculation means. It has the function of the ignition control means 155 and 155.
  • the basic ignition timing calculating means 15 1 calculates the basic ignition timing 0 b based on the load state and the rotational speed of the engine, and the deviation rotational speed calculating means 15 2 calculates the engine rotational speed. It calculates the deviation ⁇ ⁇ e between the smoothed rotation speed N e 1 n and the engine rotation speed N en .
  • the ignition timing correction amount calculation means 15 53 is used to calculate the deviation at least during idle operation.
  • the ignition timing correction amount ⁇ 6> according to the difference ⁇ e is calculated.
  • the ignition timing correction control means 154 controls the operation of the ignition timing correction amount calculation means 153 at least when switching between all-cylinder operation and cylinder-stop operation or at least during cylinder-stop operation.
  • the ignition timing calculation means 1 5 5 calculates a target ignition timing 0 ad Y based on the basic ignition timing b and the ignition timing correction amount ⁇ 0.
  • the ignition control means 156 drives the ignition drive means ij of each cylinder of the engine at the target ignition timing 0 adY.
  • the ignition timing correction control means 154 is configured as follows.
  • the operation mode of the ignition timing correction amount calculation means 153 is controlled so that the ignition timing correction amount is set to be larger during the closed cylinder operation than during the all-cylinder operation.
  • the ignition timing correction amount is set to be larger during full cylinder operation than during full cylinder operation, and the advanced ignition timing correction amount during cylinder idle operation is set to be larger in absolute value than the retard ignition timing correction amount.
  • it is configured to control the operation mode of the ignition timing correction amount calculating means 15 3.
  • the operation of the ignition timing correction amount calculation means 153 is substantially invalidated when switching between the all-cylinder operation and the closed-cylinder operation.
  • the operation of the ignition timing correction amount calculation means 15 3 is controlled so that the operation of the ignition timing correction amount is set substantially larger during the closed cylinder operation than during the full cylinder operation while the operation of the ignition timing correction amount is substantially disabled. ing.
  • the ECU 15 enters the main routine shown in FIG. 7 by turning on a main switch (not shown).
  • an initial function set such as a check of each function, an initial value set, etc. is performed.
  • various operation information of the engine is read (step s1), and then the process proceeds to step s2. That is, it is determined whether or not the air-fuel ratio feedback condition is satisfied.
  • the current operation information Pb, Ne
  • the air-fuel ratio correction coefficient KM AP and the warm-up increase correction coefficient Ka corresponding to the cooling water temperature Tw are calculated based on the appropriate warm-up increase correction coefficient calculation map, and these values are stored in the memory area of the addressless KAF. Store and go to step s6.
  • step s2 If the air-fuel ratio feedback condition is satisfied from step s2, the target air-fuel ratio according to the current operation information (Pb, Ne) is calculated. In step s4, the fuel amount correction coefficient K FB that can achieve the air-fuel ratio is calculated. Is calculated. Then, in step s 5, and Suta fuel amount correction coefficient K FB in the storage area of Adoresu KAF, it reaches step s 6.
  • the other fuel injection pulse width correction coefficient KDT and the fuel injection valve dead time correction value TD are set according to the operating conditions, and further, each correction coefficient used for calculating the target ignition timing 0 adv is calculated.
  • the correction value is calculated as follows: the water temperature correction value t to be advanced according to the water temperature drop, the throttle valve opening s is differentiated, and the acceleration value corresponding to the differential value ⁇ ⁇ s acc, the intake air temperature correction value to be advanced according to the intake air temperature drop 0 at, the knock signal K n increases according to the increase of the knock signal K n ⁇
  • the k value is provided, and the battery is energized according to the decrease of the battery voltage VB Battery correction value to increase time t ⁇
  • the dwell angle calculation map of FIG. 6 is calculated so that the dwell angle 0 d corresponding to the ignition energizing time increases in accordance with the engine speed Ne.
  • next step s7 it is determined whether or not all the cylinders are currently operating.
  • the current operation mode is determined from the on / off state of the low / high solenoid valves 26 and 31.
  • step s8 If the vehicle is fully running, it is determined in step s8 whether or not the cylinder stall condition is satisfied. This determination is based on the engine operation information, especially engine rotation speed Ne, shaft torque (calculated by another routine from Pb and Ne). It is determined based on each of the threshold values Ne2 and Te2.
  • step s9 the opening degree P1 for ISS.C all-cylinder operation is set, and in step s10, the idle ignition timing correction inhibition flag is reset.
  • step s11 it is determined whether the mode is the low-speed mode M-1. In this step s 1 1, if the engine speed Ne is smaller than N el (see FIG. 5), it is determined that the mode is the low-speed mode M-1. Otherwise, it is determined that the mode is not the low-speed mode, that is, the high-speed mode KM— 2. I do.
  • both solenoid valves 26 and 31 are turned off in step s12, and all the cylinders are driven in the low-speed mode.
  • both solenoid valves 26 and 31 are turned on to drive all the cylinders in the high-speed mode.
  • step s14 control in other main routines such as fuel supply control processing is performed, and the process returns.
  • the basic fuel pulse width based on the intake air amount is calculated, multiplied by the air-fuel ratio and other correction coefficients to determine the injector driving time, and Tsutsuji (in later mentioned Injector stop order), the well-known cylinders are driven by driving the injectors 17 of only the always-operating cylinders 32 and 3 except for the cylinders that are closed (1, 1 and tf4). Perform injector drive control processing.
  • step s8 if the cylinder stall condition is satisfied, the next step s1
  • step s16 the engine speed Ne is changed to the cylinder-stop switching speed ⁇ (this cylinder-stop switching speed A is It is set to a value slightly lower than the target rotation speed during cylinder deactivation.) Judge if it is higher. If the engine speed Ne is equal to or less than the cylinder-stop switching judgment speed A, it is necessary to perform a transition process for switching from the all-cylinder operation state to the cylinder-stop operation.
  • step s17 the opening P2 for increasing the ISC opening is set, and in step s18, the idle ignition timing correction prohibition flag is set.
  • a command to increase the opening of the ISC valve 4 to increase the amount of air is output to the idle speed control mechanism, and the distribution is made in accordance with the increase in the opening of the ISC valve 4.
  • the target rotational speed during idle idle cylinder is set higher than the target rotational speed during idle all cylinders.
  • the opening P2 for increasing the ISC opening is set so that the idle speed rapidly approaches the target speed for the deactivated cylinder when switching from all cylinders to the deactivated cylinder.
  • the process of steps s12 and s14 is continued. If the mode is the high-speed mode M-2, the process of steps s13 and s14 is continued. Do.
  • the cylinder performing the combustion stroke has the same ignition timing as during normal operation.
  • the explosion stroke is performed with the air volume increased, and the output increases rapidly, so that the rotation speed also increases rapidly.
  • step s16 the YES route is set in step s16 and the opening P3 for the ISC cylinder-stop operation is set in step s19.
  • step s20 the idle ignition timing correction prohibition flag is reset, and in step s21, only the first solenoid valve 26 is turned on, and the first and fourth cylinders ⁇ 1, ⁇ 4 The cylinder switching process is performed. As a result, the operation shifts to the cylinder-stop operation state. At this time, the prohibition of the correction of the idle ignition timing is also released.
  • the magnitude relationship between the opening degrees Pl, ⁇ 2, and ⁇ 3 is ⁇ 2> ⁇ 1> ⁇ 3.
  • step s9 the opening degree P1 for ISC all-cylinder operation is set, and in step s10, the idle ignition timing correction prohibition flag is reset. Then, the solenoid valve is set according to the low-speed mode or the high-speed mode, control is performed on other main routines such as fuel supply control processing, and the process returns (steps s11 to s14).
  • each detection signal of the negative pressure sensor 10 and the engine rotation sensor 12 is The intake pipe negative pressure Pb and the engine speed Ne are calculated on the basis of the above, and in step P2, the current intake pipe negative pressure Pb and the engine speed are calculated based on a preset basic ignition timing calculation map.
  • the basic ignition timing 0 b corresponding to Ne is calculated ⁇ _ ⁇ J.
  • step ⁇ 3 it is determined whether the engine speed N e ⁇ is lower than the set value of the idle determination value N ea.
  • Set the gain Kinj to the set value (for example, here "0") and proceed to step ⁇ 11.
  • step p3 it is determined at step p3-2 whether the idle ignition timing correction inhibition flag is set. If the transition from the all-cylinder operation state to the cylinder-stop operation is in transition, the idle ignition timing correction prohibition flag is set, so that the process of step P4 is still executed. As a result, the correction of the idle ignition timing is prohibited during the above-mentioned switching transition.
  • step p3-2 a NO route is taken in step p3-2, and the process in step p5 is performed. That is, when this step ⁇ 5 is reached, first, the current engine speed N en is taken into the smoothed speed N e 1 (n ⁇ 1) up to the previous time by the predetermined take-in ratio, and the current smoothing speed N e 1 (n ⁇ 1) is newly obtained.
  • Calculated rotational speed N e 1 n and then calculate deviation rotational speed AN e, which is the difference between smoothed rotational speed N e 1 n and current engine rotational speed N en, according to equation (2) [ See FI G. 4 (a) and (b)].
  • N e 1 n N e 1 (n- ⁇ ) x a + ( ⁇ -a) N en (1) AN e ⁇ N e 1 n -N en-(2)
  • step p6 After that, proceed to step p6, where it is determined whether or not the cylinder is in the cylinder deactivation mode M-3, and in step S8 in the low-speed and high-speed modes (M— and M—2) when the cylinder is not in the cylinder deactivation mode. Proceed to select the all-cylinder correction gain K inja (set value), Proceed to step p1 1.
  • step p6 if it is determined in step p6 that the cylinder is at rest, the process reaches step p7.
  • the positive / negative of the current rotational deviation ⁇ e is determined, and if the rotational deviation ⁇ e is positive, the rotation decreases (FIG. Advance to step p10 to select the advance-side correction gain Kinjb assuming that it is (the B range shown by the solid line), and increase the rotation if the rotation deviation ANe is negative (R shown by the two-dot chain line in FIG. 4).
  • step P9 select the delay-side correction gain Kinjr, and then proceeds to step p11.
  • the all-cylinder correction gain K inja, the advance correction gain K injb and the retard correction gain K injr are set according to the driving data of each engine.
  • the ignition timing at the time of idle rotation of 1 is set appropriately based on the characteristic diagram of the engine speed versus engine speed.
  • the correction width of the ignition timing for the rotation deviation during the closed cylinder is made relatively larger than that for all the cylinders, and the range of ignition timing is advanced or retarded.
  • the advance-side correction range during cylinder deactivation is set to be larger than the retard-side correction range, and the idle rotation is raised with good responsiveness when the idle rotation is reduced to prevent engine stall.
  • step pi1 the currently selected correction gains K inja, K injb, and K injr are taken as the current correction gain K inj, and this K i
  • the ignition timing correction amount ⁇ 0 is calculated by multiplying nj by the rotation deviation ⁇ e, and the process proceeds to Step P12.
  • step p12 the basic ignition timing 0b, the water temperature correction value 0wt, the acceleration retarder 0acc; the intake temperature compensation to be advanced according to the intake temperature decrease ⁇ > the positive value 0at, the ignition timing correction amount ⁇
  • the target ignition timing ⁇ adv is calculated by the following equation (3).
  • step ⁇ 13 the target ignition timing 0 adv is retarded by the knock value 0 ⁇ k value according to the increase of the knock signal Kn, and in step p14, The storage area of the smoothed rotation speed Ne 1 (n-1) is rewritten with the current smoothed rotation speed Ne In and the process returns to the main routine. Note that the no-clear map is set in advance.
  • the ignition control routine of FIG. 9 is 575 before top dead center in the middle of the main routine. Every time (75 ° BTDC) is reached (crank angle 180), the main routine is interrupted and executed based on the change of the reference signal 0c0 from off to on. In step q1, predetermined data is fetched. In step q2, the latest target ignition timing 0 adv and the latest dwell angle 0 d are set in the evening control circuit 36, and the main Return to routine.
  • the group ignition of the always-operating cylinders ⁇ 2, tf 3 and the group ignition of the cylinders if 1, H 4 are performed by the driving of the ignition cylinders 24 and 25, and each ignition of the ignition cylinder is performed at 180 ° of the crank angle.
  • the ignition process is performed alternately near one of the compression top dead centers and one near the exhaust top dead center of each group.
  • the absolute value of the ⁇ ⁇ period correction amount per unit rotation deviation can be set to be greater in the cylinder-stop mode than in the all-cylinder mode. It is possible to compensate for the low responsiveness at the time of variation correction of the idle speed due to the insufficient amount of timing correction.
  • the advance correction width at cylinder closing is set larger than the retard angle / correction width, the idle When the rotation decreases, the idle rotation is raised with good responsiveness to prevent engine stall. In this regard, the idle rotation can be stabilized with good responsiveness.
  • the intake air amount is increased to increase the rotation speed, and is executed to suppress the torque shock due to the increase in the rotation speed.
  • the switching to the cylinder-stop state is performed after the ignition timing correction is prohibited and the rotation speed is increased, so that the idle rotation speed at the point of switching to the cylinder-stop state can be reduced sharply. Can be prevented.
  • the present invention controls the operation mode of calculating the ignition timing correction amount at least at the time of switching between the all-cylinder operation and the closed-cylinder operation or at least one of the closed-cylinder operations.
  • the engine speed can be quickly stabilized after switching between cylinder operation and cylinder-stop operation, and the idle speed can be stabilized with good responsiveness by adjusting the ignition timing. It is suitable for use in a control device that focuses on idle operation, especially for engines that can perform part-cylinder operation by stopping fuel supply to the cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

明 細 書 多気筒内燃機関の制御装置 技術分野
本発明は、 自動車などに搭載される多気筒内燃機関 (以下、 「内燃機 関」 を 「エンジン」 ということがある) に関し、 さらに詳しくは、 特定 運転状態で一部気筒への混合気の供給を停止させて一部気筒作動運転を 行ないうるエンジンの特にアイ ドル運転に着目した制御装置に関する。 背景技術 '
従来より、 自動車用エンジンにおいては、 アイ ドル運転時などの回転 速度の安定化を図るために、 繰り返し検出される回転速度情報を平滑化 (平均化) 処理し、 この平滑化回転速度と最新の回転速度情報とを比較 して、 両者の偏差に基づくデータで点火時期を補正する技術が提案され ている。 このとき、 最新回転速度が平滑値より低い場合は、 点火時期を 進角させ、 逆に最新回転速度が平滑値より高い場合は、 点火時期を遅角 させ O。
一方、 自動車用エンジンにおいては、 低負荷時などの要求出力トルク の少ない特定運転時 (こ、 一部気筒の吸排気弁を閉状態で保持したり、 あ るいは一部気筒へ燃料供給を行なうインジ ク夕の作動を停止するなど して、 エンジンの燃焼作動の一部を実質的に停止せしめ、 燃費の向上を 図ろうとする技術、 すなわち休筒エンジン (variabl e di splacement en gine) に関する提案がなされている。
ところで、 上述した点火時期補正に基づくアイ ドル安定化技術を、 上 述の休筒エンジンに適用した例は現在見当たらず、 仮に従来公知のアイ ドル安定化技術を休筒ェンジンに単に適用したとしても、 以下に示すよ うな課題がある。
まず、 休筒運転と全筒運転とをアイ ドル運転時に切り替えるときには- 通常、 エンジン回転速度が変化するため (または休筒運転と全筒運転と でそれぞれ好適となるアイ ドル回転速度を得られるように積極的に変化 させるため) 、 この切替時、 特に回転速度が上昇方向に変化する切替時 に (あるいは回転速度を上昇方向に変化させる切替時に) 、 点火時期が 遅角側に補正されて回転上昇を抑えようと作用し、 これにより切替後の 回転速度が本来の値に近づくのに時間がかかりエンジン回転が不安定と なる。
特に休筒運転時に振動対策の観点から全筒運転時に比べアイ ドル回転 速度を積極的に高く しょうとするもの (例えば、 休筒運転時のアイ ドル 回転速度を 8 5 0 r p m、 全筒運転時のアイ ドル回転速度を 7 5 0 r p mとするもの) においては、 切り替え直後に、 本来目的としている振動 対策に対する効果を十分に発揮しえないという課題がある。
また、 休筒運転と全筒運転とでは、 F I G . 1 1に示すように、 アイ ドル運転時における点火時期の変化量に対するエンジン回転速度の変化 割合が異なる。 即ち、 休筒運転中は全筒運転中より点火時期の変化に対 するエンジン回転数の変化量が小さく、 特に休筒運転中においては、 進 角側領域 e 1でエンジン回転数の変化量が頭打ちとなる。
このため、 全筒運転用に設定した点火時期補正ゲイン K i n j ( K i η jは Δ eである。 ここで Δ 0は点火時期補正量、 A N eは回 転偏差である。 ) を用いて、 休筒運転中のアイ ドル安定化補正を行なお うとすると、 単位回転当たりの点火時期補正量の絶対値が小さい等、 的 確さに欠けるため、 十分な回転ずれの補正ができず、 結果としてアイ ド ル回転数のバラツキを点火時期調整によって応答よく修正できないとい う課題がある。
本発明は、 このような課題に鑑みて創案されたもので、 全筒運転と休 筒運転との切替時または休筒運転時の少なく とも一方において、 点火時 期補正量を算出させる作動の態様を制御することにより、 全筒運転と休 筒運転との間の切替後のエンジン回転を速やかに安定させるとともに、 アイ ドル回転数を点火時期補正によって応答性良く安定化させることが できるようにした、 多気筒内燃機関の制御装置を提供するを目的とする 発明の開示
このため、 本発明の多気筒内燃機関の制御装置は、 少なく ともアイ ド ル運転時に全気筒が作動する全筒運転と一部気筒の作動が停止状態とな る休筒運転との切り替えが行なわれる多気筒内燃機関において、 上記内 燃機関の負荷状態と回転速度とに基づいて基本点火時期を算出する基本 点火時期算出手段と、 上記内燃機関回転速度を平滑化処理した平滑化済 回転速度と上記内燃機関回転速度との偏差を算出する偏差回転速度算出 手段と、 少なく ともアイ ドル運転時に上記偏差に応じた点火時期補正量 を算出する点火時期補正量算出手段と、 全筒運転と休筒運転との切替時 または休筒運転時の少なく とも一方において上記点火時期補正量算出手 段の作動態様を制御する点火時期補正制御手段と、 上記の基本点火時期 と点火時期補正量に基づき目標点火時期を算出する点火時期算出手段と、 上記目標点火時期に上記内燃機関の各気筒の点火駆動手段を駆動する点 火制御手段とをそなえて構成されたことを特徴としている。
また、 本発明の多気筒内燃機関の制御装置は、 休筒運転時の作動態様 を全筒時の作動態様から変更するように、 上記点火時期補正制御手段が 構成されていることを特徴としている。
さらに、 本発明の多気筒内燃機関の制御装置は、 上記点火時期補正量 が全筒運転時よりも休筒運転時に大きく設定されるように上記点火時期 補正量算出手段の作動態様を制御すべく、 上記点火時期補正制御手段が 構成されていることを特徴としている。
また、 本発明の多気筒内燃機関の制御装置は、 上記点火時期補正量が 全筒運転時よりも休筒運転時に大きく且つ休筒運転時の進角側点火時期 補正量が遅角側点火時期補正量よりも絶対値において大きく設定される ように上記点火時期補正量算出手段の作動態様を制御すベく、 上記点火 時期補正制御手段が構成されていることを特徴としている。
さらに、 本発明の多気筒内燃機関の制御装置は、 全筒運転と休筒運転 との切替時に上記点火時期補正量算出手段の作動を実質的に無効化させ るべく、 上記点火時期補正制御手崁が構成されていることを特徴として いる。
また、 本発明の多気筒内燃機関の制御装置は、 全筒運転時のアイ ドル 回転速度より休筒運転時のアイ ドル回転速度の方が高くなるように設定 され、 上記点火時期補正制御手段が、 全筒運転時から休筒運転時への切 替時に上記点火時期補正量算出手段の作動を実質的に無効化させるべく 構成されていることを特徴としている。
さらに、 本発明の多気筒内燃機関の制御装置は、 全筒運転時から休筒 運転時の切替時に上記内燃機関め吸入空気量を一時的に増量せしめる吸 気増量手段を有することを特徴としている。
また、 本発明の多気筒内燃機関の制御装置は、 全筒運転と休筒運転と の切替時に上記点火時期補正量算出手段の作動を実質的に無効化させる とともに、 上記点火時期補正量が全筒運転時より休筒運転時に大きく設 定されるように上記点火時期補正量算出手段の作動態様を制御すベく、 上記点火時期補正制御手段が構成されていることを特徵としている。
さらに、 本発明の多気筒内燃機関の制御装置は、 休筒運転時の上記点 火時期補正量が遅角側よりも進角側の方が絶対値において大きく設定さ れるように、 上記点火時期補正量算出手段の作動態様を制御すべく、 上 記点火時期補正制御手段が構成されていることを特徴としている。
これにより、 本発明の多気筒内燃機関の点火制御装置によれば、 アイ ドル運転時において、 アイ ドル回転数の偏差を修正する際に、 全筒モ— ド時と比べて休筒モード時には単位回転偏差当たりの点火時期補正量を 大きく設定することができ、 これによつて、 休筒時の点火時期補正量不 足によるアイ ドル回転数のバラツキ補正時の応答性の低さを補うことが でき、 特に、 休筒時の進角側点火補正量を遅角側点火補正量よりも絶対 値において大きく設定したので、 アイ ドル回転低下時に応答性良くアイ ドル回転を引き上げ、 エンスト防止を図れ、 この点でも応答性良くアイ ドル回転を安定化させることができる。
また、 本発明の多気筒内燃機関の点火制御装置では、 アイ ドル運転時 で全筒状態から休筒状態に切り換える際に、 吸入空気量を増加させて回 転数を上昇させると共に、 この回転数の上昇によ ¾ トルクショックを抑 えるために実行される点火時期補正を禁止させて回転数の上昇を促進さ せた上で休筒状態への切り換えを実行するようにしたので、 休筒状態に 切り換えられた時点でのアイ ドル回転数の急激な落ち込みを防止するこ とが可能になる。 図面の簡単な説明
F I G. 1は本発明の一実施例としての内燃機関の制御装置の全体構 成図であり、 F I G. 2は F I G. 1の制御装置内の点火駆動回路のブ 口ック図であり、 F I G. 3 (a) 〜 (c) は F I G. 1の制御装置内 の点火駆動回路の経時的作動を表す線図であり、 F I G. 4 (a) , ( b) は F I G. 1の制御装置の行なうアイ ドル回転数のバラツキとその 際の点火時期の補正量の変化を経時的に表す線図であり、 F I G. 5は F I G. 1の制御装置が装着された内燃機関の運転域算出マップの特性 線図であり、 F I G. 6は F I G. 1の制御装置が用いる ドエル角算視 マップの特性線図であり、 F I G. 7は F I G. 1の制御装置が行なう メインルーチンのフローチャー ト、 F I G. 8は F I G. 1の制御装置 が行なう点火時期算出ルーチンのフローチャー ト、 F I G. 9は F I G. 1の制御装置が行なう点火制御ルーチンのフローチャー ト、 F I G. 1 0は全筒 Z休筒状態とブースト圧の変化と点火時期調整との関係を示す 図であり、 F I G. 1 1はエンジンのアイ ドル時における点火時期ーェ ンジン回転数の特性線図である。 発明を実施するための最良の形態
以下、 図面を参照しながら、 本発明の実施例について説明する。
F I G. 1に示したエンジンの制御装置は、 作動モード切り換え機構 付きの直列 4気筒エンジン (以後単にエンジン Eと記す) に装着される。 このエンジン Eの吸気通路 1は、 吸気分岐管 6と、 それに連結される サージタンク 9及び同夕ンクと一体の吸気管 7と、 図示しないエアクリ ーナによって構成されている。 吸気管 7はその内部にスロッ トル弁 2を 枢支し、 このスロッ トル弁 2の軸 20 1は吸気通路 1の外部でスロッ ト ノレレバー 3に連結されている。
このスロッ トルレバー 3は、 アクセルペダル (図示せず) に連動して スロッ トル弁 2を第 1図中反時計回りの方向へ回動させるように、 スロ ッ トル弁 2に連結されており、 スロッ トル弁 2はこれを閉方向に付勢す る戻しばね (図示せず) により、 アクセルケーブルの引張力を弱めると 閉じてゆくようになつている。 なお、 スロッ トル弁 2には同弁の開度情 報を出力するスロッ トル開度センサ 8が装着されている。 他方、 スロッ トル弁 2を迂回する吸気バイパス路 1 0 1には、 アイ ド ル制御用のアイ ドル回転数制御 ( I S C ) バルブ 4が装備され、 同バル ブ 4はバネ 4 0 1 によって閉弁付勢され、 ステツパモータ 5によって駆 動されるようになっている。 なお、 符号 1 6はアイ ドル時の暖機補正を 冷却水温に応じて自動的に行なうファーストアイ ドルエアバルブを示す c 更に、 吸気路 1 には吸気温度 T a情報を出力する吸気温センサ 1 4が 設けられ、 エンジンの暖機温度としての冷却水温を検出する水温センサ 1 1が設けられ、 エンジン回転数を点火パルスで検出するエンジン回転 センサ 1 2が設けられ、 バッテリー電圧 V Bを検出するバッテリーセン サ 2 0が設けられ、 ノック情報を出力するノックセンサ 2 1が設けられ ている。 更に又、 サージタンク 9には吸気管圧 P b情報を出力する負圧 センサ 1 0が装着されている。
また、 エンジン Eのシリンダへッ ド 1 3には、 各気筒に連結可能な吸 気路及び排気路がそれぞれ形成され、 各流路は図示しない吸気弁及び排 気弁によって開閉されるようになっている。
F I G . 1 の動弁系は弁停止機構を備え、 この弁停止機構は図示しな い吸排気弁を図示しない低速カムと高速カムで選択的に駆動して低速モ —ド M— 1 と高速モード M— 2での運転ができ、 しかも適時に常時運転 気筒としての第 2気筒 2 ) 及び第 3気筒 (《 3 ) 以外の休筒気筒と しての第 1気筒 (《 1 ) と第 4気筒 (it 4 ) の各吸排弁を停止させて休 筒モード M— 3での運転を可能としている。 即ち、 この動弁系の弁停止 機構は図示しない各口ッカアームに所定時に吸排気弁の低速カムの作動 を停止可能な油圧式の低速切り換え機構 K 1 と、 所定時に吸排弁の高速 カムの作動を停止可能な油圧式の高速切り換え機構 K 2とで構成される。 ここでの各切り換え機構 K 1, K 2は図示しないロッカアームとロッ 力軸の係合離脱を図示しない係合ピンを油圧シリンダによって切り換え 移動させ、 高速カムと口ッカアームの係合離脱を選択的に行なえるとい う周知の構成を採る。
なお、 低速切り換え機構 K 1には油圧回路 2 2より第 1電磁弁 2 6を 介して圧油が供給され、 高速切り換え機構 K 2には油圧回路 3 0より第 2電磁弁 3 1を介して圧油が供給されるようになっている。 ここで、 低 速力厶による低速モー KM— 1の運転は 3方弁である第 1電磁弁 2 6と 第 2電磁弁 3 1が共にオフで達成され、 高速カムによる高速モード M - 2の運転は第 1電磁弁 2 6と第 2電磁弁 3 1が共にオンで達成され、 休 筒モ一 KM— 3の運転は第 1電磁弁 2 6がオン、 第 2電磁弁 3 1がオフ で達成されるようになっている。 そして、 これら両電磁弁 2 6, 3 1は、 後述のエンジンコントロールユニッ ト (E CU) 1 5によって駆動制御 される。 なお、 符号 3 2は油圧源である。
更に、 F I G. 1のシリ ンダヘッ ド 1 3には、 各気筒に燃料を噴射す るインジェクタ 1 7が装着され、 各インジヱクタは燃圧調整手段 1 8に よって定圧調整された燃料を燃料供給源 1 9より受け、 その噴射駆動制 御は、 E CU 1 5によって成される。
更に、 F I G. 1のシリンダヘッ ド 1 3には各気筒毎に点火プラグ 2 3が装着され、 特に、 常時運転気筒 ίί 2, ίί 3の両プラグ 2 3は共に結 線されて単一の点火駆動回路内のィグナイ夕 24に接続され、 休筒気筒 ϋ 1 , ίί 4の両プラグ 2 3は共に結線されてィグナイ夕 2 5に接続され る。 ここで、 点火プラグ 2 3及び点火駆動回路が点火駆動手段を構成す る。 更に、 点火駆動回路は E CU 1 5内の一対のタイ ミ ング制御回路 3 6 (F I G. 2には一方のみを示した) 及び一対のィグナイ夕 2 4 , 2 5側の開閉駆動回路 2 4 1 , 2 5 1で構成される。 これら各開閉駆動回 路 2 4 1, 2 5 1 には開閉時期及び通電時間を制御する各パワー トラン ジス夕 3 8, 3 8が接続され、 各パワートランジスタ 3 8, 3 8に各ィ グニッシヨンコイル 3 7 , 3 7が接続されている。
タイ ミ ング制御回路 3 6は休筒気筒《 I , ϋ グループと常時運転気 筒 « 2, ff 3グループとにそれぞれ設けられ、 共にクランク角センサ 3 4の基準信号 (クランク角で 0 c o) と単位クランク角センサ 3 3のク ランク角信号 ( 1 ° 又は 2 ° (Δ Θ c ) の単位のパルス) によって駆動 するもので、 F I G. 2には休筒気筒 tt l, it 4グループのものを示し、 常時運転気筒 2, « 3のものを略した。 ここで、 基準信号 0 c 0はヮ ンショ ッ ト回路 3 6 2に出力され、 定常運転時において、 ワンショ ッ ト 回路 3 6 2は上死点前 0 c 0 (例えば 7 5° ) の基準信号 (オフ一オン ) により トリガされ、 クランク角信号 ( 1 ° 又は 2° の単位のパルス) を決められた数 (点火時期 0 c 0— S a d vに相当するディ レイタイム t 1 ) だけ数えた後に点火時期信号 (通電終了信号) を出力するように 構成される 〔F I G. 3 (a) 〜 (c) 参照〕 。 この場合、 目標点火時 期 0 a d vは後述する F I G. 8のフローチヤ一卜のステップ p 1 2で 求められたものである。
ワンショッ ト回路 3 6 1 は上記通電終了信号により トリガされ、 ドエ ル角 (F I G. 6のドエル角マップで求める) 0 dに相当するクランク 角信号を決められた数だけ数え通電開始信号を出力するよう構成される。 フリ ップフロップ 3 6 3はワンショッ ト回路 3 6 1からの通電開始信 号によりセッ トされて、 ワンショッ ト回路 3 6 2からの通電終了信号に より リセッ トされる。 更に、 開閉駆動回路 2 5 1はフリ ップフロップ 3 6 3によるセッ ト時にパワー トランジスタ 3 8をオンさせて、 ィグニッ シヨンコイル 3 7への電流を流させる。 ィグニッシヨンコイル 3 7はパ ワートランジス夕 3 8がオフした時に二次側に高圧電流を生じさせ、 こ の電流が休筒気筒 1, tt 4の両点火プラグ 2 3に伝えられ、 休筒気筒 グループの点火が行なわれるようになっている。 同時に、 常時連転気筒 2 , ίί 3の夕イ ミ ング制御回路 (図示せず) も構成され、 開閉駆動回路 2 4 1及びパワー トランジスタ 3 8の駆動に 応じて目標点火時期 0 a d vにィグニッシヨ ンコイル 3 7の二次側高圧 電流が常時運転気筒 ίί 2, it 3の点火プラグ 2 3に供給され、 常時運転 気筒のグループ点火が行なわれるようになっている。
なお、 休筒気筒 ίί 1 , ϋ 4のグループ点火時期及び常時運転気筒お 2, ti 3のグループ点火はほぼクランク角 1 8 0。 の間隔を保ってグループ 毎に交互に行なわれている。
エンジンコン トロールュニッ ト (E CU) 1 5はマイクロコンピュー 夕によってその要部が形成され、 エンジン Eの運転情報に応じて後述の メインルーチンを実行すると共に周知の燃料噴射量制御等の周知の制御 処理に加え、 点火時期算出ルーチン及び点火制御ルーチンでの各制御を 行なう。
ここでの E CU 1 5は、 水温センサ 1 1 とスロッ トル開度センサ 8 と 吸気温センサ 1 4 とバッテリーセンサ 2 0 とノ ッ クセンサ 2 1 とより、 冷却水温 Twとスロッ トル開度 0 s と吸気温度 T a とバッテリー電圧 V Bとノ ック信号 K nとを検出し所定のデータ記憶エリアにストァする。 更に、 E CU 1 5は、 エンジン回転数を平滑化した平滑化済回転数 Ν e 1 nと実エンジン回転数 N e nの差分である偏差回転数 Δ N eを算出 し、 エンジンのアイ ドル運転時において運転モード信号 (M— 1, M- 2, M- 3 ) を取り込み、 偏差回転数 ΔΝ eに応じた点火時期補正量 Δ Sを全筒モード時より休筒モー ド時に大きく設定すると共に休筒モード 時の進角側点火時期補正量を遅角側点火時期補正量よりも絶対値におい て大きく設定し、 エンジンの負荷信号である吸気管負圧 P bとエンジン 回転数 N eに応じた基本点火時期 0 bを算出し、 基本点火時期 0 bを各 運転モー ドに応じた点火時期補正量 Δ 0で補正して目標点火時期 0 a d vを算出し、 目標点火時期 a d γに内燃機関の各気筒の点火駆動手段 としての点火プラグ 2 3及び点火駆動回路 (夕イミ ング制御回路 3 6及 び各ィグナイ夕 2 4 , 2 5 ) を駆動するという機能を有する。
また、 E C U 1 5は、 アイ ドル運転時で全筒状態から休筒状態に切り 換えるための条件が整った場合、 F I G . 1 0に示すように、 アイ ドル スピードコントロール機構での空気量を増加させる一方、 この空気量の 増加に基づく点火時期の補正、 この場合には、 リタードを禁止するよう になっている。 これは、 点火時期のリタードによる爆発行程での出力が 低下するのを抑えて、 回転数を上昇させやすくするために実行される。 なお、 点火時期の補正禁止期間は、 アイ ドルスピードコントロール機 構での空気の増量が終了するまでの間とされ、 換言すれば、 休筒時での アイ ドル回転数が得られた時点までとされている。
これにより、 E C U 1 5は、 基本点火時期算出手段 1 5 1, 偏差回転 速度算出手段 1 5 2 , 点火時期補正量算出手段 1 5 3 , 点火時期補正制 御手段 1 5 4, 点火時期算出手段 1 5 5, 点火制御手段 1 5 6の機能を 有することになる。
ここで、 基本点火時期算出手段 1 5 1は、 エンジンの負荷状態と回転 速度とに基づいて基本点火時期 0 bを算出するもので、 偏差回転速度算 出手段 1 5 2は、 エンジン回転速度を平滑化処理した平滑化済回転速度 N e 1 nとエンジン回転速度 N e nとの偏差 Δ Ν eを算出するもので、 点火時期補正量算出手段 1 5 3は、 少なく ともアイ ドル運転時に上記偏 差 Δ Ν eに応じた点火時期補正量 Δ 6>を算出するものである。
また、 点火時期補正制御手段 1 5 4は、 全筒運転と休筒運転との切替 時または休筒運転時の少なく とも一方において点火時期補正量算出手段 1 5 3の作動態様を制御するもので、 点火時期算出手段 1 5 5は、 基本 点火時期 bと点火時期補正量 Δ 0に基づき目標点火時期 0 a d Yを算 出するもので、 点火制御手段 1 5 6は、 目標点火時期 0 a d Yにェンジ ンの各気筒の点火駆動手段を i jを駆動するものである。
特に、 点火時期補正制御手段 1 5 4について更に詳述すると、 この点 火時期補正制御手段 1 5 4は次のように構成されている。
( 1 ) 休筒運転時の作動態様を全筒時の作動態様から変更するように 構成されている。
( 2 ) 点火時期補正量が全筒運転時よりも休筒運転時に大きく設定さ れるように、 点火時期補正量算出手段 1 5 3の作動態様を制御するよう に構成されている。
( 3 ) 点火時期補正量が全筒運転時よりも休筒運転時に大きく且つ休 筒運転時の進角側点火時期補正量が遅角側点火時期補正量よりも絶対値 において大きく設定されるように点火時期補正量算出手段 1 5 3の作動 態様を制御すべく構成されている。
( 4 ) 全筒運転と休筒運転との切替時に点火時期補正量算出手段 1 5 3の作動を実質的に無効化させるように構成されている。
( 5 ) 全筒運転時のアイ ドル回転速度より休筒運転時のアイ ドル回転 速度の方が高くなるように設定されている場合には、 全茼運転時から休 筒運転時への切替時に点火時期補正量算出手段 1 5 3の作動を実質的に 無効化させるように構成されている。
( 6 ) 全筒運転と休筒運転との切替時に点火時期補正量算出手段 1 5
3の作動を実質的に無効化させるとともに、 点火時期補正量が全筒運転 時より休筒運転時に大きく設定されるように点火時期補正量算出手段 1 5 3の作動態様を制御すべく構成されている。
( 7 ) 休筒運転時の点火時期補正量が遅角側よりも進角側の方が絶対 値において大きく設定されるように、 点火時期補正量算出手段 1 5 3の 作動態様を制御すべく構成されている。 次に、 本発明の一実施例の動作を F I G. 7乃至 F I G. 9の制御プ ログラム (フローチャート) に沿って説明する。
E CU 1 5は図示しないメインスイッチのキーオンにより F I G. 7 に示すメィンル一チンでの制御に入る。
ここではまず、 各機能のチ ック、 初期値セッ ト等の初期機能セッ ト がなされ、 続いて、 エンジンの各種運転情報を読み取り (ステップ s 1 ) 、 その上でステップ s 2に進む。 即ち、 空燃比フィードバック条件 を満たしているか否かを判定し、 パワー運転域のような過渡運転域の時 点ゃ暖機完了前の時点ではステップ s 3において、 現運転情報 (Pb, Ne) に応じた空燃比補正係数 KM A Pや、 冷却水温 Twに応じた暖機 増量補正係数 K aを適宜の暖機増量補正係数算出マップょり算出し、 こ れらの値をァドレス K A Fの記憶エリァにストアし、 ステップ s 6に進 む。
ステップ s 2より空燃比フィ―ドバック条件を満たしていると現運転 情報 (Pb, Ne) に応じた目標空燃比を算出し、 ステップ s 4で、 同 空燃比を達成できる燃料量補正係数 KFBを算出する。 そして、 ステップ s 5で、 ァドレス K A Fの記憶エリアに燃料量補正係数 KFBをストァし、 ステップ s 6に達する。
ここでは、 その他の燃料噴射パルス幅補正係数 KDTや、 燃料噴射弁 のデッ ドタイムの補正値 TDを運転条件に応じて設定し、 更に、 目標点 火時期 0 a d v算出に用いる各補正係数を算出する。 ここで補正値とし て算出されるのは、 水温低下に応じて進角させる水温補正値 t、 ス 口ッ トル弁開度 sを微分しその微分値 Δ Θ s相当の加速リ夕一ドー Θ a c c、 吸気温低下に応じて進角させる吸気温補正値 0 a t、 ノ ック信 号 K nの増加に応じてノックリタ一ドー Θ k値があり、 更にバッテリ一 電圧 VBの低下に応じて通電時間を増加させるバッテリ一補正値 t ゃ 点火通電時間相当のドエル角 0 dがエンジン回転数 N eに応じて増加す るように、 F I G. 6のドエル角算出マップによって算出される。
更に、 次のステップ s 7で、 現在全筒運転中であるかどうかを判定す る。 かかる判定は、 例えば現作動モー ドを低高電磁弁 2 6, 3 1のオン オフ状態より判定する。
もし、 全茼運転中であるなら、 ステップ s 8で、 休筒条件が成立して いるかどうかを判定する。 この判定は、 エンジン運転情報、 特にェンジ ン回転数 N e, 軸トルク (Pb, Neより別ルーチンで算出しておく) T eより F I G. 5に示すような休筒運転域 A 1にあるか否かを各閾値 N e 2, T e 2に基づき判定する。
もし、 休筒条件が成立していない場合は、 全筒運転を続行するための 処理が施される。 すなわち、 ステップ s 9で、 I S.C全筒運転用開度 P 1を設定し、 ステップ s 1 0で、 アイ ドル点火時期補正禁止フラグをリ セッ トする。 そして、 その後は、 低速モード M— 1かどうかをステップ s 1 1で判定する。 このステップ s 1 1では、 エンジン回転数 Neが N e l (F I G. 5参照) より小さいと低速モード M— 1であると判定し、 そうでないと低速モー ドでない即ち高速モー KM— 2と判定する。
そして、 もし低速モー KM— 1であると判定されると、 ステツプ s 1 2で、 両電磁弁 2 6, 3 1をオフして、 全筒を低速モー ドで駆動する。 一方、 高速モー KM— 2と判定されると、 ステップ s 1 3で、 両電磁弁 2 6, 3 1をオンして、 全筒を高速モードで駆動させる。
この後は、 ステップ s 1 4で、 燃料供給制御処理等のその他のメイン ルーチンでの制御を行なってリターンする。
ここで、 メイ ンルーチンの途中で行なう燃料供給制御は、 たとえば、 吸入空気量に基づく基本燃料パルス幅を算出し、 これに空燃比その他の 補正係数を掛けてイ ンジエタ夕駆動時間を決定し、 休筒時 (後述のイン ジェクタ停止措令) には休筒気筒《 1 , tf 4を除く常時運転気筒 ίί 2, 3のみのィンジェクタ 1 7を駆動させ、 全気筒運転時には全気筒のィ ンジ クタ 1 7を駆動するという周知のインジェクタ駆動制御処理を行 なう。
その後、 ステップ s 8で、 休筒条件が成立すると、 次のステップ s 1
5で、 アイ ドル運転中かどうかが判定され、 もしそうであるなら、 ステ ップ s 1 6で、 エンジン回転数 N eが休筒切換判定回転数 Α (この休筒 切換判定回転数 Aは休筒時の目標回転数より若干低い値に設定されてい る。 ) より高いかどうかを判定する。 エンジン回転数 N eが休筒切換判 定回転数 A以下の場合は、 全筒運転状態から休筒運転への切り換え過渡 処理を施す必要があり、 以下の処理を施す。
すなわち、 ステップ s 1 7で、 I S C開度増大用開度 P 2を設定し、 ステップ s 1 8で、 アイ ドル点火時期補正禁止フラグをセッ 卜する。 こ れにより、 アイ ドルスピードコントロール機構に対して I S Cバルブ 4 の開度を大きく して空気量を増量する指令を出力し、 そして、 この I S Cバルブ 4の開度を大きくするのに併せてディストリ ビュー夕に対して 点火時期の補正禁止指令を出力する。 ここでは、 休筒アイ ドル時の振動 対策と全筒アイ ドル時の燃費対策との両立を考え、'休筒アイ ドル時の目 標回転数が全筒アイ ドル時の目標回転数より高く設定されており、 全筒 から休筒への切り換え時には、 アイ ドル回転数が休筒用目標回転数まで 急速に近づくように、 I S C開度増大用開度 P 2を設定している。
そして、 低速モー KM— 1であった場合は、 ステップ s 1 2, s 1 4 の処理を引続き行ない、 高速モード M— 2であった場合は、 ステップ s 1 3 , s 1 4の処理を引続き行なう。
これにより、 全筒運転状態から休筒運転への切り換え過渡時において は、 燃焼行程を実行する気筒で、 通常運転時と同様な点火時期により、 空気量を増加された状態での爆発行程が実行されて、 速やかな出力の上 昇を来すことにより、 回転数も速やかに上昇する。
その結果、 ェンジン回転数 N eが休筒切換判定回転数 Aより高くなる と、 ステップ s 1 6で、 YESルートをとつて、 ステップ s 1 9で、 I S C休筒運転用開度 P 3を設定し、 ステップ s 20で、 アイ ドル点火時 期補正禁止フラグをリセッ トし、 更にステップ s 2 1で、 第 1電磁弁 2 6のみをオンさせて、 第 1、 第 4気筒 ίί 1, ίί 4の休筒切り換え処理を 成す。 これにより、 休筒運転状態へ移行する。 そして、 このとき、 アイ ドル点火時期の補正禁止も解除される。 なお、 上記の開度 P l, Ρ 2, Ρ 3の大小関係は Ρ 2 > Ρ 1 > Ρ 3となっている。
その後は、 休筒運転が継続されている間は、 ステップ s 7, s 22で NOルートをとり、 更にはステップ s 1 9〜 s 2 し s 1 4の処理を行 なう。
その後、 この休筒運転中に、 全筒条件が成立すると、 全筒運転を行な うための処理が施される。 すなわち、 ステップ s 22で YE Sルートを とったあと、 ステップ s 9で、 I SC全筒運転用開度 P 1を設定し、 ス テツプ s 1 0で、 アイ ドル点火時期補正禁止フラグをリセッ 卜し、 低速 モードまたは高速モードに応じた電磁弁設定が行なわれ、 燃料供給制御 処理等のその他のメインル一チンでの制御を行なってリターンする (ス テツプ s 1 l〜s 1 4) 。
そして、 このようなメインルーチンの実行途中において F I G. 8の 点火時期算出ルーチンや F I G. 9の点火制御が実行される。
即ち、 F I G. 8の点火時期算出ルーチンは、 各気筒が上死点前 75 ° (75° BTDC) に達する毎 (クランク角 1 8 0° .) にオフよりォ ンに基準信号 0 c 0が変化するのに基づき実行される。 ここでのステツ プ p 1では、 負圧センサ 1 0及びエンジン回転センサ 1 2の各検出信号 に基づき吸気管負圧 P bとエンジン回転数 N eとが算出され、 更に、 ス テツプ P 2で、 予め設定されている基本点火時期算出マップで現在の吸 気管負圧 P bとエンジン回転数 N eとに相当する基本点火時期 0 bが算 ι_ΰ Jし 。
その後、 ステップ ρ 3に進み、 ここではエンジン回転数 N e ηが設定 値であるアイ ドル判定値 N e aより低いか否か判断され、 高いとステツ プ P 4に達して非アイ ドル時の補正ゲイン K i n jを設定値 (例えばこ こで「まゼロ) にセッ トし、 ステップ ρ 1 1に進む。
他方、 ステップ p 3でアイ ドル時にある場合は、 ステップ p 3— 2で、 アイ ドル点火時期補正禁止フラグがセッ トされているかどうかを判定す る。 もし全筒運転状態から休筒運転への切り換え過渡時である場合は、 アイ ドル点火時期補正禁止フラグがセッ 卜されているから、 依然として ステップ P 4の処理を実行する。 これにより、 上記の切り換え過渡時に は、 アイ ドル点火時期の補正が禁止される。
その後、 切り換え過渡処理が終了すると、 ステップ p 3— 2で NOル ートをとり、 ステップ p 5の処理を施す。 すなわち、 このステップ ρ 5 に達すると、 まず、 前回までの平滑化済回転数 N e 1 (n— 1 ) に今回 のエンジン回転数 N e nを所定の取り込み比率ひで取り込んで新たに今 回の平滑化済回転数 N e 1 nを算出し、 続いて平滑化済回転数 N e 1 n と今回エンジン回転数 N e nの差分である偏差回転数 AN eを ( 2) 式 に沿って算出する 〔F I G. 4 (a) , (b) 参照〕 。
N e 1 n =N e 1 (n - \ ) x a + ( \ - a) N e n · · ( 1 ) AN e ^N e 1 n -N e n - · ( 2)
その後は、 ステップ p 6に進み、 ここでは休筒モー ド M— 3か否か判 断し、 非休筒時である低速、 高速モード時 (M— し M— 2) 時にはス テツプ P 8に進んで、 全筒時補正ゲイン K i n j a (設定値) を選択し、 ステップ p 1 1に進む。
他方、 ステップ p 6で休筒時と判断されると、 ステップ p 7に達する < ここでは現在の回転偏差 ΔΝ eの正負を判断し、 回転偏差 ΔΝ eが正で は回転低下 (F I G. に実線で示した B域) であるとしてステツプ p 1 0に進んで進角側補正ゲイン K i n j bを選択し、 回転偏差 AN eが 負では回転上昇 (F I G. 4に二点鎖線で示した R域) であるとしてス テツプ P 9に進んで遅角側補正ゲイン K i n j rを選択し、 それぞれス テツプ p 1 1に進む。
なお、 ここでの全筒時補正ゲイン K i n j aや進角側補正ゲイン K i n j b及び遅角側補正ゲイン K i n j rは各エンジンの駆動データに応 じて設定されるもので、 例えば、 F I G. 1 1のアイ ドル回転時の点火 時期一エンジン回転数特性線図に'基づき、 適宜設定される。 ここでは特 に全筒時補正ゲイン K i n j a ( = Α Θ a/ΔΝ θ) より休筒時の進角 側補正ゲイン K i n j b ( = A 9 b/AN e ) 及び遅角側補正ゲイン— K i n j rの絶対値が十分に大きく設定される。 その上で、 休筒時には 進角側補正ゲイン K i n j b ( = Δ Θ h/AN e ) を遅角側補正ゲイン K i n j rよりも絶対値において大きく設定する。
これによつて、 アイ ドル運転時のエンジン回転数のずれ修正において、 全筒時に比べて休筒時における回転偏差に対する点火時期の補正幅を比 較的大きく して進角側あるいは遅角側に修正し、 点火時期補正によるァ ィ ドル回転数の補正の応答性の低下を防止し、 休筒時のアイ ドル回転数 のバラツキ補正を応答性良く補正することができる。 特に、 休筒時の進 角側補正幅を遅角側補正幅より大きく設定しておき、 アイ ド儿回転低下 時に応答性良くアイ ドル回転を引き上げ、 エンスト防止を図っている。 ステップ p i 1では現在の補正ゲイン K i n j として今回選択された 補正ゲイン K i n j a, K i n j b, K i n j rを取り込み、 この K i n jに回転偏差 ΔΝ eを乗算して、 点火時期補正量 Δ 0を算出し、 ステ ップ P 1 2に進む。
そしてステップ p 1 2において、 基本点火時期 0b、 水温補正値 0w t、 加速リタ一ドー 0 a c c;、 吸気温低下に応じて進角させる吸気温補 Γ> 正値 0 a t、 点火時期補正量 Δ 0を取り込み、 その上で、 目標点火時期 Θ a d vの算出を下記 ( 3 ) 式で実行する。
0 a d v = 6'b + 6'wt +0 a t +K i n j ANe- ^ a c c
- - (3) その後、 ステップ ρ 1 3ではノ ック信号 Knの増加に応じてノ ック リ0 タード— Θ k値だけ目標点火時期 0 a d vを遅角処理し、 ステップ p 1 4では前回平滑化済回転数 Ne 1 ( n - 1 ) の記憶エリアを現平滑化済 回転数 Ne I nで書替え、 メインルーチンにリターンする。 なお、 ノ ッ クリタ一ドマップは予め設定しておく。
F I G. 9の点火制御ルーチンは、 メインルーチンの途中で上死点前5 75。 (75° BTDC) に達する毎 (クランク角 1 80。 ) にオフよ りオンに基準信号 0 c 0が変化するのに基づきメインルーチンに割込み をかけて実行される。 ここでのステップ q 1では所定のデータが取り込 まれ、 ステップ q 2では最新の目標点火時期 0 a d v及び最新のドエ儿 角 0 dを各夕イ ミ ング制御回路 3 6にセッ トし、 メインルーチンにリ夕0 ーンする。
ここでは常時運転気筒《 2, tf 3のグループ点火及び休筒気筒 if 1 , H 4のグループ点火がィグナイ夕 24, 25の駆動によって行なわれ、 クランク角 1 8 0 ° 経過毎に各ィグナイ夕が駆動すると各グループの一 方が圧縮上死点近傍で、 他方が排気上死点近傍で点火処理が交互に成さΓ れる。
以上のように、 アイ ドル運転時において、 アイ ドル回転数の偏差を修 正する際に、 全筒モード時と比べて休筒モード時には単位回転偏差当た りの点火 Βφ期補正量の絶対値を大きく設定することができ、 これによつ て、 休筒時の点火時期補正量不足によるアイ ドル回転数のバラツキ補正 時の応答性の低さを補うことができ、 特に、 休筒時の進角側補正幅を遅 角则補正幅より大きく設定したので、 アイ ドル回転低下時に応答性良く アイ ドル回転を引き上げ、 エンスト防止を図れ、 この点でも応答性良く アイ ドル回転を安定化させることができる。
また、 アイ ドル運転時で全筒状態から休筒状態に切り換える際に、 吸 入空気量を増加させて回転数を上昇させると共に、 この回転数の上昇に よるトルクショックを抑えるために実行される点火時期補正を禁止させ て回転数の上昇を促進させた上で休筒状態への切り換えを実行するよう にしたので、 休筒状態に切り換えられた時点でのアイ ドル回転数の急激 な落ち込みを防止することが可能になる。 産業上の利用可能性
以上のように、 本発明は、 全筒運転と休筒運転との切替時または休筒 運転時の少なく とも一方において、 点火時期補正量を算出させる作動の 態様を制御することにより、 全筒運転と休筒運転との間切替後のェンジ ン回転を速やかに安定させるとともに、 アイ ドル回転数を点火時期補正 によって応答性良く安定化させることができるので、 自動車などに搭載 され特定運転状態で一部気筒への燃料供給を停止させて一部気筒作動運 転を行ないうるエンジンの特にアイ ドル運転に着目した制御装置に用い るのに適している。

Claims

請 求 の 範 囲 1. 少なく ともアイ ドル運転時に全気筒が作動する全筒運転と一部気筒 の作動が停止状態となる休筒運転との切り替えが行なわれる多気筒内燃 機関 (E) において、
上記内燃機関 (E) の負荷状態と回転速度とに基づいて基本点火時期 を算出する基本点火時期算出手段 ( 1 5 1 ) と、
上記内燃機関回転速度を平滑化処理した平滑化済回転速度と上記内燃 機関回転速度との偏差を算出する偏差回転速度算出手段 ( 1 5 2) と、 少なく ともアイ ドル運転時に上記偏差に応じた点火時期補正量を算出 する点火時期補正量算出手段 ( 1 5'3) と、
全筒運転と休筒運転との切替時または休筒運転時の少なく とも一方に おいて上記点火時期補正量算出手段 ( 1 5 3) の作動態様を制御する点 火時期補正制御手段 ( 1 5 4 ) と、
上記の基本点火時期と点火時期補正量に基づき目標点火時期を算出す る点火時期算出手段 ( 1 5 5) と、
上記目標点火時期に上記内燃機関 (E) の各気筒の点火駆動手段 ( 2 3, 3 6, 2 4 1 , 2 5 1 ) を駆動する点火制御手段 ( 1 5 6) とをそ なえて構成されたことを特徴とする、 多気筒内燃機関の制御装置。
2. 休筒運転時の作動態様を全筒時の作動態様から変更するように、 上 記点火時期補正制御手段 ( 1 5 4 ) が構成されていることを特徴とする 請求の範囲第 1項記載の多気筒内燃機関の制御装置。
3. 上記点火時期補正量が全筒運転時よりも休筒運転時に大きく設定さ れるように上記点火時期補正量算出手段 ( 1 5 3) の作動態様を制御す ベく、 上記点火時期補正制御手段 ( 1 5 4 ) が構成されていることを特 徵とする請求の範囲第 2項記載の多気筒内燃機関の制御装置。
4. 上記点火時期補正量が全茼運転時よりも休筒運転時に大きく且つ休 筒運転時の進角側点火時期補正量が遅角側点火時期補正量よりも絶対値 において大 く設定されるように上記点火時期補正量算出手段 ( 1 5 3 ) の作動態様を制御すべく、 上記点火時期補正制御手段 ( 1 5 4 ) が構 成されていることを特徵とする請求の範囲第 2項記載の多気筒内燃機関 の制御装置。
5. 全筒運転と休筒運転との切替時に上記点火時期補正量算出手段 ( 1
5 3) の作動を実質的に無効化させるべく、 上記点火時期補正制御手段 ( 1 5 4 ) が構成されていることを特徴とする請求の範囲第 1項記載の 多気筒内燃機関の制御装置。
6. 全筒運転時のアイ ドル回転速度より休筒運転時のアイ ドル回転速度 の方が高くなるように設定され、 上記点火時期補正制御手段 ( 1 5 4 ) 力^ 全筒運転時から休筒運転時への切替時に上記点火時期補正量算出手 段 ( 1 5 3) の作動を実質的に無効化させるべく構成されていることを 特徴とする請求の範囲第 5項記載の多気筒内燃機関の制御装置。
7. 全筒運転時から休筒運転時の切替時に上記内燃機関 (E) の吸入空 気量を一時的に増量せしめる吸気増量手段 ( 4 ) を有することを特徴と する請求の範囲第 6項記載の多気筒内燃機関の制御装置。
8. 全筒運転と休筒運転との切替時に上記点火時期補正量算出手段 ( 1 5 3 ) の作動を実質的に無効化させるとともに、 上記点火時期補正量が 全筒運転時より休筒運転時に大きく設定されるように上記点火時期補正 量算出手段 ( 1 5 3 ) の作動態様を制御すべく、 上記点火時期補正制御 手段 ( 1 5 4 ) が構成されていることを特徴とする請求の範囲第 1項記 載の多気筒内燃機関の制御装置。
9. 休筒運転時の上記点火時期補正量が遅角側よりも進角側の方が絶対 値において大きく設定されるように、 上記点火時期補正量算出手段 ( 1 5 3 ) の作動態様を制御すべく、 上記点火時期補正制御手段 ( 1 5 4 ) が構成されていることを特徴とする請求の範囲第 1項記載の多気筒内燃 機関の制御装置。
PCT/JP1993/001386 1992-09-29 1993-09-29 Controlling device for multi-cylinder internal combustion engine WO1994008134A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69317253T DE69317253T2 (de) 1992-09-29 1993-09-29 Steuerungsvorrichtung für eine mehrzylindrige innere brennkraftmaschine
US08/244,291 US5542389A (en) 1992-09-29 1993-09-29 Control system for multi-cylinder internal combustion engine
EP93921082A EP0615066B1 (en) 1992-09-29 1993-09-29 Controlling device for multi-cylinder internal combustion engine
KR1019940701730A KR0137314B1 (ko) 1992-09-29 1993-09-29 다기통 내연기관의 제어장치

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP4/259753 1992-09-29
JP25975392A JP2697520B2 (ja) 1992-09-29 1992-09-29 自動車用エンジン
JP4/290272 1992-10-28
JP29027292A JP2697531B2 (ja) 1992-10-28 1992-10-28 弁停止機構付き内燃機関の点火制御装置
JP4/290271 1992-10-28
JP29027192A JP2697530B2 (ja) 1992-10-28 1992-10-28 弁停止機構付き内燃機関の点火制御装置

Publications (1)

Publication Number Publication Date
WO1994008134A1 true WO1994008134A1 (en) 1994-04-14

Family

ID=27334841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001386 WO1994008134A1 (en) 1992-09-29 1993-09-29 Controlling device for multi-cylinder internal combustion engine

Country Status (5)

Country Link
US (1) US5542389A (ja)
EP (1) EP0615066B1 (ja)
KR (1) KR0137314B1 (ja)
DE (1) DE69317253T2 (ja)
WO (1) WO1994008134A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19517673A1 (de) * 1995-05-13 1996-11-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung des Drehmoments einer Brennkraftmaschine
US6152105A (en) * 1998-03-31 2000-11-28 Mazda Motor Corporation Idle speed control device for engine
JP3702777B2 (ja) * 2000-11-22 2005-10-05 国産電機株式会社 多気筒内燃機関用吸気負圧検出装置及び吸気負圧検出用切換バルブ
DE10139880C1 (de) * 2001-08-20 2003-04-30 Dolmar Gmbh Verfahren zur Regelung der Kraftstoffzufuhr zu einer Verbrennungskraftmaschine
KR100471217B1 (ko) * 2002-02-08 2005-03-08 현대자동차주식회사 엔진 점화시기 제어 방법 및 시스템
JP4066971B2 (ja) * 2004-03-29 2008-03-26 トヨタ自動車株式会社 内燃機関の制御装置
US7174879B1 (en) * 2006-02-10 2007-02-13 Ford Global Technologies, Llc Vibration-based NVH control during idle operation of an automobile powertrain
JP6088397B2 (ja) * 2013-10-15 2017-03-01 日本特殊陶業株式会社 点火時期制御装置および点火時期制御システム
JP7327356B2 (ja) * 2020-11-06 2023-08-16 トヨタ自動車株式会社 多気筒内燃機関の点火時期制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206633A (ja) * 1983-04-12 1984-11-22 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 遮断可能な気筒を備えた多気筒内燃機関
JPS6043173A (ja) * 1983-08-19 1985-03-07 Nissan Motor Co Ltd 気筒数制御エンジン
JPS61132774A (ja) * 1984-11-30 1986-06-20 Nippon Denso Co Ltd エンジンの点火時期制御装置
JPS631759A (ja) * 1986-06-20 1988-01-06 Mazda Motor Corp 気筒数制御エンジンの点火時期制御装置
JPH02291475A (ja) * 1989-05-01 1990-12-03 Mitsubishi Electric Corp 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3923757A1 (de) * 1988-07-20 1990-01-25 Mitsubishi Electric Corp Kraftstoffregler fuer brennkraftmaschinen
JPH0494432A (ja) * 1990-08-08 1992-03-26 Nissan Motor Co Ltd エンジンの異常検出装置
JP2551928B2 (ja) * 1990-12-28 1996-11-06 本田技研工業株式会社 内燃エンジンの点火時期制御装置
JPH0586956A (ja) * 1991-09-27 1993-04-06 Mitsubishi Electric Corp 内燃機関の失火検出装置
US5320077A (en) * 1992-03-05 1994-06-14 Nippondenso Co., Ltd. Fuel control system for internal combustion engine
JP2983375B2 (ja) * 1992-04-10 1999-11-29 三菱電機株式会社 車両用電子制御装置
US5375574A (en) * 1993-08-18 1994-12-27 Unisia Jecs Corporation Engine idling speed control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206633A (ja) * 1983-04-12 1984-11-22 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 遮断可能な気筒を備えた多気筒内燃機関
JPS6043173A (ja) * 1983-08-19 1985-03-07 Nissan Motor Co Ltd 気筒数制御エンジン
JPS61132774A (ja) * 1984-11-30 1986-06-20 Nippon Denso Co Ltd エンジンの点火時期制御装置
JPS631759A (ja) * 1986-06-20 1988-01-06 Mazda Motor Corp 気筒数制御エンジンの点火時期制御装置
JPH02291475A (ja) * 1989-05-01 1990-12-03 Mitsubishi Electric Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0615066A4 *

Also Published As

Publication number Publication date
EP0615066A1 (en) 1994-09-14
US5542389A (en) 1996-08-06
DE69317253D1 (de) 1998-04-09
EP0615066B1 (en) 1998-03-04
DE69317253T2 (de) 1998-10-08
KR0137314B1 (ko) 1998-04-25
EP0615066A4 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JP2697458B2 (ja) エンジンの点火時期制御装置
JP3478318B2 (ja) 筒内噴射型火花点火式内燃エンジンの制御装置
US7886712B2 (en) Method and device for operating an internal combustion engine
JP2002322934A (ja) 内燃機関の吸気制御装置
WO2008029212A1 (en) Control device for internal combustion engine, control method, program for performing control method
JP2755018B2 (ja) 吸排気弁停止機構付きエンジンの吸気量算出装置
US6662551B2 (en) Apparatus for controlling catalyst temperature and method for controlling catalyst temperature
GB2400689A (en) A fuel injection control system for an engine
JP3731025B2 (ja) 内燃機関の空気量制御装置
JP3175601B2 (ja) 希薄燃焼エンジンの吸気量制御装置
WO1994008134A1 (en) Controlling device for multi-cylinder internal combustion engine
JP3209112B2 (ja) 成層燃焼エンジンのアイドル回転数制御装置
JP3491019B2 (ja) 電制スロットル式内燃機関のアイドル回転学習制御装置
JP2697530B2 (ja) 弁停止機構付き内燃機関の点火制御装置
JP3307306B2 (ja) 内燃機関の燃焼方式制御装置
JP3114352B2 (ja) 内燃機関の空燃比制御装置
JP4160745B2 (ja) 内燃機関の制御方法
JP4092579B2 (ja) 内燃エンジンの制御装置
JP3089907B2 (ja) 内燃機関のアイドル回転数制御装置
JP2697531B2 (ja) 弁停止機構付き内燃機関の点火制御装置
JP5361806B2 (ja) ハイブリッド車用のエンジン制御装置
JP2782651B2 (ja) エンジンの制御装置
JP4133288B2 (ja) 内燃機関の可変バルブタイミング制御方法
JPH04353267A (ja) エンジンの点火時期制御装置
JP2004100530A (ja) 内燃機関のアイドル回転数制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019940701730

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08244291

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1993921082

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993921082

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993921082

Country of ref document: EP