WO1993022599A1 - Zwangdurchlaufdampferzeuger - Google Patents

Zwangdurchlaufdampferzeuger Download PDF

Info

Publication number
WO1993022599A1
WO1993022599A1 PCT/DE1993/000344 DE9300344W WO9322599A1 WO 1993022599 A1 WO1993022599 A1 WO 1993022599A1 DE 9300344 W DE9300344 W DE 9300344W WO 9322599 A1 WO9322599 A1 WO 9322599A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
heating surface
evaporator heating
steam generator
setpoint
Prior art date
Application number
PCT/DE1993/000344
Other languages
English (en)
French (fr)
Inventor
Axel Butterlin
Hermann Dörr
Joachim Franke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25915217&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993022599(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19924217626 external-priority patent/DE4217626A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59304751T priority Critical patent/DE59304751D1/de
Priority to EP93908800A priority patent/EP0639253B1/de
Priority to KR1019940703752A priority patent/KR100251011B1/ko
Publication of WO1993022599A1 publication Critical patent/WO1993022599A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type

Definitions

  • the invention relates to a once-through steam generator with an evaporator heating surface and with a device connected upstream of the evaporator heating surface to set the feed water mass flow M into the evaporator heating surface and with a control device associated with this device, the controlled variable of which is the feed water mass flow M. and whose setpoint Ms "for the feed water mass flow is guided as a function of a setpoint L assigned to the steam generator output.
  • a forced-flow steam generator of the type mentioned at the outset is characterized in accordance with the invention in that the control device is provided with a device for forming the size
  • Processing the actual value of the specific enthalpy at the inlet of the evaporator heating surface enables drawing the heat flow flowing into the evaporator heating surface to determine the setpoint for the feed water mass flow, so that the feed water mass flow supplied to the evaporator heating surface can be largely adapted to the heat flow supplied to the evaporator heating surface. This enables targeted guidance of the specific enthalpy at the outlet of the evaporator heating surface.
  • Evaporator heating surface measured pressure temporarily reduced by a correction value and temporarily increased by a correction value when this second power value L2 or the actual value of the pressure measured behind the evaporator heating surface decreases.
  • Enthalpy is switched at the input of the evaporator heating surface and this temporarily reduces the value of the variable formed as the setpoint Ms g 3 when the actual value h .. - the specific enthalpy at the input of the evaporator heating surface by a correction value and when this actual value h decreases. p temporarily increased by a correction value. This takes into account that the effects of changes in mass flow and temperature of the feed water entering the evaporator heating surface in the evaporator heating surface * are not synchronous.
  • Figure 1 shows schematically a once-through steam generator according to the invention.
  • FIG. 2 and 3 show in a diagram the time course of the specific enthalpy at the outlet of the evaporator heating surface of the once-through steam generator according to FIG. 1.
  • the forced flow steam generator according to Figure 1 has a feed water preheating surface (economizer heating surface) 2, which is located in a gas train, not shown. In terms of flow, this feed water preheating surface 2 is preceded by a feed water pump 3 and an evaporator heating surface 4.
  • a measuring device 9 for measuring the actual value h- F of the specific enthalpy of the feed water at the inlet of the evaporator heating surface 4 is provided at the entry of the evaporator heating surface 4 in the connecting line between the feed water preheating heating surface 2 and the evaporator heating surface 4.
  • a drive motor on the feed water pump 3 is assigned a very fast controller, specifically a PI controller 6, at the input of which the control deviation ⁇ as a controlled variable.
  • the controller 6 is assigned a device 8 for forming the setpoint M for the feed water mass flow.
  • This device 8 has, on the one hand, as input variables a setpoint L for the output of the once-through steam generator which is output by a setpoint generator 7 and, on the other hand, the actual value h- F of the specific enthalpy at the inlet of the evaporator heating surface 4 determined by the measuring device 9.
  • the setpoint value L of the power of the once-through steam generator which changes time and again during operation and which is fed directly to the fuel controller in the (not shown) firing control loop, is also fed to the input of a first delay element 13 of the device 8.
  • This delay element 13 which is of higher order, for example of 2nd order, gives a first signal or a delayed first power worth Ll.
  • This first power value L1 is fed to the inputs of function transmitter units 10 and 11 of the function transmitter of the device 8.
  • a value M (L1) for the feed water mass flow appears at the output of the function transmitter unit 10, and a value ⁇ h (Ll) for the difference from the specific enthalpy h appears at the output of the function transmitter unit 11.
  • the output variables M (L1) and ⁇ h (Ll) of the function generator units 10 and 11 are multiplied together in a multiplication element 14 of the function generator of the device 8.
  • the product value Q (L1) obtained corresponds to the heat flow into the evaporator heating surface 4 at the power value Ll.
  • This quantity Q (L1) is entered as a counter in a divider 15.
  • a setpoint h (L2) is taken from a third function generator unit 12 of the function generator of the device 8.
  • the input value of the function generator unit 12 arises at the output of a second delay element 16, in particular a delay element of the first order, the input variable of which is the first power value L1 at the output of the first delay element 13.
  • the input value of the third function generator unit 12 is a second power value L2, which is delayed compared to the first power value L1.
  • the values h "(L2) as a function of L2 are stored in the third function generator unit 12; they are determined from values for h ", which were respectively obtained during a steady-state operation of the continuous steam generator and were entered into the third function generator unit 12.
  • the output of the divider 15 can be the setpoint
  • the output of the second delay element 16 there can advantageously be the input of a differentiating element 17, the output of which is switched negatively to a summing element 18.
  • This summing element 18 corrects the value for the heat flow Q (L1) into the evaporator heating surface 4 by the output signal of the differentiating element 17.
  • the input of the differentiating element 17 can also - as in FIG. 1 only indicated by dashed lines - on a device 30 for measuring the actual value of the pressure p. are located behind the evaporator heating surface 4 (for example also behind a superheater heating surface of the forced-flow steam generator connected downstream in terms of flow).
  • Between the input of the differentiating element 17 and such a device 30 for measuring the actual value of the pressure p. can also be connected to a function generator, for example, as the output signal that the measured pressure p. outputs the corresponding saturated steam temperature to the differentiating member 17.
  • a further differentiating element 24 can advantageously be provided as a functional element with differentiating behavior.
  • This differentiating element 24 has, as an input variable, the actual value h- E of the specific enthalpy at the inlet of the evaporator heating surface 4, determined with the measuring device 9.
  • the output of the differentiating element 24 is also connected negatively to the summing element 18.
  • the once-through steam generator is in a steady state and the setpoint L for the steam generator output is constant.
  • the power values L1 at the output of the delay element 13 and L2 at the output of the delay element 16 are thus also constant; they have the same value as the setpoint L.
  • h- E corresponds to the stationary value for the specific enthalpy at the entrance to the evaporator heating surface 4
  • the value M output by the device 8 corresponds to the stationary setpoint for the feed water flow into the feed water preheating heating surface 2 and thus into the evaporator heating surface 4.
  • ⁇ h (Ll) x M (L1) ⁇ h (L) x M (L) corresponds to a stationary value for the heat flow into the evaporator heating surface 4.
  • the differentiator 17 reduces the setpoint value M for the feed water flow by a corresponding correction value as long as the power value L2 increases in time and the heating of the metal masses of the evaporator heating surface 4 reduces the heat flow which is in the mass flow in the evaporator heating surface 4 arrives, reduced.
  • the Differentiator 17, on the other hand increases the setpoint M by a corresponding correction value as long as the power value L2 drops in time and the cooling of the metal masses of the evaporator heating surface 4 increases the heat flow that enters the mass flow in the evaporator heating surface 4.
  • the output of the differentiating element 17 can also be connected positively to the other summing element 19, possibly via a normalizing element.
  • the differentiator 24 reduces the setpoint Ms for the feed water mass flow into the once-through steam generator by a correction value as long as the actual value h- E of the specific enthalpy at the inlet of the
  • the differentiator 24 increases the desired value M by a correction value as long as the actual value h- E falls in time.
  • the output of the differentiating element 24 can also be connected to the summing element 19 in a positive manner - possibly via a standardization element.
  • the differentiating element 24 can be a pure functional element with differentiating behavior. However, it can also include additional computing elements that modify the differentiating behavior.
  • the curves I in FIGS. 2 and 3 apply in the event that the output value M (L1) of the function generator unit 10 is the uncorrected setpoint M for the controller 6.
  • Curves II apply in the event that differentiators 17 and 24 are not present in the circuit according to FIG. 1, while curves III apply to the circuit corresponding to FIG. 1, but without differentiator 24.
  • Curves IV apply to the circuit according to FIG. 1.
  • the diagrams according to FIGS. 2 and 3 show that the complete circuit according to FIG. 1 with the curves IV is the cheapest, if there is an overshoot of the specific enthalpy h- A at the outlet of the evaporator heating surface 4 Avoid as much as possible.
  • an enthalpy correction controller 20 is also shown in broken lines, the input of which is connected to the output of a summing element 21.
  • This summing element 21 is supplied with the desired value h fl (L2) output at the output of the third function transmitter unit 12 and negatively with the actual value h- A of the specific enthalpy at the outlet of the evaporator heating surface 4.
  • This actual value h- A is measured with a measuring device 22 located in the outlet line of the evaporator heating surface 4.
  • the correction signal at the controller output is fed positively to the summing element 19 of the device 8.
  • This enthalpy correction controller 20 advantageously corrects the setpoint Ms "of the feed water flow in the Forced-flow steam generator when the measured actual value h- ft of the specific enthalpy at the outlet of the evaporator heating surface 4 as a result of external interference, such as fluctuations in the calorific value of the fuel supplied to the continuous-flow steam generator or changes in the fire situation in the combustion chamber of the continuous-flow steam generator, from the setpoint h ft (L2) deviates for the specific enthalpy at the outlet of the evaporator heating surface 4, which is emitted by the third function transmitter unit 12.

Abstract

Ein Zwangdurchlaufdampferzeuger mit einer Verdampferheizfläche (4) besitzt eine Regelvorrichtung für die Feuerung, die von einem der Dampferzeugerleistung zugeordneten Sollwert L geführt ist, sowie eine Regelvorrichtung (6) für den Speisewassermassenstrom M in die Verdampferheizfläche (4). Zum Vermeiden eines Überschwingens der spezifischen Enthalpie am Austritt der Verdampferheizfläche (4) ist der Speisewasser-Regelvorrichtung (6) eine Vorrichtung (8) überlagert, die zur Bildung der Größe Q(L1)/(hsA(L2) - hiE) als Sollwert Ms für den Speisewassermassenstrom dient. Dabei ist hiE die spezifische Enthalpie am Eingang der Verdampferheizfläche (4), Q(L1) der mit einem ersten Leistungswert L1 aus einem Funktionsgeber (10 bis 14) entnommene Wert für den Wärmestrom in die Verdampferheizfläche (4) und hsA(L2) der mit einem zweiten Leistungswert L2 aus dem Funktionsgeber (10 bis 14) entnommene Sollwert für die spezifische Enthalpie am Austritt der Verdampferheizfläche (4). L1 ist ein erster Leistungswert, der gegenüber dem der Dampferzeugerleistung zugeordneten Sollwert L verzögert ist, und L2 ist ein zweiter Leistungswert, der gegenüber dem ersten Leistungswert L1 verzögert ist.

Description

Zwangdurchlaufdampferzeuger
Die Erfindung betrifft einen Zwangdurchlaufdampferzeuger mit einer Verdampferheizfläche sowie mit einer der Ver- dampferheizfläche durchflußmäßig vorgeschalteten Vorrich- tuπg zum Einstellen des Speisewassermassenstroms M in die Verdampferheizfläche und mit einer dieser Vorrichtung zu¬ geordneten Regelvor •richtung, deren Regelgröß•e der Speise- wassermassenstrom M ist und deren Sollwert Ms„ für den Speisewassermassenstrom abhängig von einem der Dampferzeu¬ gerleistung zugeordneten Sollwert L geführt ist.
Ein derartiger Zwangdurchlaufdampferzeuger ist aus "VGB Kraftwerkstechnik 65", Heft 1, Januar 1985, Seite 29, Bild 6, bekannt. Bei diesem bekannten Zwangdurchlaufdampf¬ erzeuger wird zur Synchronisierung des Wärmestroms in die Verdampferheizfläche mit dem Speisewassermassenstrom der Sollwert für den Speisewassermassenstrom von dem Sollwert der Dampferzeugerleistung oder von einem der Da pferzeu- gerleistung zugeordneten Sollwert über ein Verzögerungs¬ glied geführt. Andere Maßnahmen sind für diese Synchroni¬ sierung nicht vorgesehen.
Es hat sich herausgestellt, daß bei diesem bekannten Zwangdurchlaufdampferzeuger ein Überschwingeπ der spezi¬ fischen Enthalpie am Austritt der Verdampferheizfläche bei Änderungen der Dampferzeugerleistung infolge von Lastände¬ rungen nicht zu vermeiden ist. Ein solches Überschwingen kann nicht nur die Lebensdauer des Durchlaufdampferzeugers verringern, sondern auch die Regelung der Temperatur des vom Durchlaufdampferzeuger abgegebenen Frischdampfes er¬ schweren. Der Erfindung liegt die Aufgabe zugrunde, dieses nachtei¬ lige Überschwingen der spezifischen Enthalpie am Austritt der Verdampferheizfläche wesentlich herabzusetzen oder gar ganz zu vermeiden.
Zur Lösung dieser Aufgabe ist ein Zwangdurchlaufdampfer¬ zeuger der eingangs erwähnten Art erfindungsgemäß dadurch gekennzeichnet, daß der Regelvorrichtung eine Vorrichtung zur Bildung der Größe
Ö(Ll) / (hsft(L2) - hiE)
als Sollwert M für den Speisewassermassenstrom zugeordnet ist, und daß dieser Vorrichtung als Eingangsgrößen der Ist- wert h.^ der spezifischen Enthalpie am Eingang der Verdamp¬ ferheizfläche und der der Dampferzeugerleistung zugeordne¬ te Sollwert L zuführbar sind, wobei Q(L1) der mit einem ersten Leistungswert Ll aus ei¬ nem Funktionsgeber nach einer fest vorgebbaren Funktion entnommene Wert für den Wärmestrom in die Verdampferheiz¬ fläche, wobei h „(L2) der mit einem zweiten Leistungswert L2 aus dem Funktionsgeber nach einer fest vorgebbaren Funktion entnommene Sollwert für die spezifische Enthalpie am Austritt der Verdampferheizfläche, wobei der erste Leistungswert Ll ein über ein erstes Ver¬ zögerungsglied gegenüber dem der Dampferzeugerleistung zugeordneten Sollwert L verzögerter Leistungswert und wobei der zweite Leistungswert L2 ein gegenüber dem ersten Leistungswert Ll durch ein zweites Verzögerungsglied ver¬ zögerter Leistungswert ist.
Das Verarbeiten des Istwerts der spezifischen Enthalpie am Eintritt der Verdampferheizfläche ermöglicht das Heran- ziehen des in die Verdampferheizfläche fließenden Wärme¬ stroms zur Bestimmung des Sollwerts für den Speisewasser¬ massenstrom, so daß der der Verdampferheizfläche zuge¬ führte Speisewassermassenstrom dem der Verdampferheizflä- ehe zugeführten Wärmestrom weitgehend angepaßt werden kann. Damit ist gezieltes Führen der spezifischen Enthal¬ pie am Ausgang der Verdampferheizfläche ermöglicht.
Eine vorteilhafte Weiterbildung ist darauf gerichtet, daß die Vorrichtung zur Bildung der Größe
Q(Ll)/(hsft(L2) - h.E) = Ms
ein Differenzierglied aufweist, das mit seinem Eingang auf den zweiten Leistungswert L2 am Ausgang des zweiten Verzö¬ gerungsglieds oder auf den Istwert eines hinter der Ver¬ dampferheizfläche gemessenen Drucks geschaltet ist und das den Wert der als Sollwert Ms q3ebildeten Größe bei einem An- steigen des zweiten Leistungswerts L2 am Ausgang des zwei- ten Verzögerungsglieds bzw. des Istwerts des hinter der
Verdampferheizfläche gemessenen Drucks um einen Korrektur¬ wert vorübergehend verringert und bei einem Absinken die¬ ses zweiten Leistungswerts L2 bzw. des Istwerts des hinter der Verdampferheizfläche gemessenen Drucks um einen Korrek- turwert vorübergehend erhöht. Dadurch findet die Energie- speicherung in den Metallmassen der Verdampferheizfläche Berücksichtigung, so daß eine noch bessere Anpassung des der Verdampferheizfläche zugeführten Speisewassermassen- stroms an den dieser Verdampferheizfläche zugeführten Wärmestrom erfolgt.
Eine weitere vorteilhafte Ausbildung ist dadurch gekenn¬ zeichnet, daß die Vorrichtung zur Bildung der Größe
Q(Ll)/(hsA(L2) - h.E) = Ms ein Funktionsglied mit Differenzierverhalten aufweist, das mit seinem Eingang auf den Istwert h-E der spezifischen
Enthalpie am Eingang der Verdampferheizfläche geschaltet ist und das den Wert der als Sollwert Ms g3ebildeten Größe bei einem Ansteigen des Istwerts h..- der spezifischen Enthalpie am Eingang der Verdampferheizfläche um einen Korrekturwert vorübergehend verringert und bei einem Ab¬ sinken dieses Istwerts h.p um einen Korrekturwert vor¬ übergehend erhöht. Dadurch ist berücksichtigt, daß die Auswirkungen von Massenstrom- und Temperaturänderungen des in die Verdampferheizfläche eintretenden Speisewassers in der Verdampferheizfläche* nicht synchron verlaufen.
Weitere Ausgestaltungen sind in den Unteransprüchen ge- kennzeichnet.
Die Erfindung und ihre Vorteile seien anhand der Zeichnung an Ausführungsbeispielen näher erläutert.
Figur 1 zeigt schematisch einen Zwangdurchlaufdampferzeu¬ ger entsprechend der Erfindung.
Figur 2 und 3 zeigen in einem Diagramm den zeitlichen Ver¬ lauf der spezifischen Enthalpie am Austritt der Verdampfer- heizfläche des Zwangdurchlaufdampferzeugers nach Figur 1.
In Figur 1 ist eine Speisewasser-Regelung dargestellt. Die zugehörige Regelung der Feuerung ergibt sich aus Figur 6 der eingangs genannten Literaturstelle "VGB Kraftwerks- technik 65".
Der Zwangdurchlaufdampferzeuger nach Figur 1 weist eine Speisewasservorwär heizfläche (Economizerheizfläche) 2 auf, die sich in einem nicht dargestellten Gaszug befindet. Dieser Speisewasservorwarmheizflache 2 ist durchflußmäßig eine Speisewasserpumpe 3 vor- und eine Verdampferheizflä¬ che 4 nachgeschaltet. In der von der Speisewasserpumpe 3 zur Speisewasservorwarmheizflache 2 geführten Speisewas- serleitung ist eine Meßvorrichtung 5 zum Messen des Spei- sewassermasseπstroms M. (= zeitliche Ableitung der Masse) durch die Speisewasserleitung angeordnet. Weiter ist am Eintritt der Verdampferheizfläche 4 in der Verbindungslei¬ tung zwischen der Speisewasservorwarmheizflache 2 und der Verdampferheizfläche 4 eine Meßvorrichtung 9 zum Messen des Istwerts h-F der spezifischen Enthalpie des Speisewas¬ sers am Eintritt der Verdampferheizfläche 4 vorgesehen.
Einem Antriebsmotor an der Speisewasserpumpe 3 ist ein sehr schneller Regler, und zwar ein PI-Regler 6, zuge¬ ordnet, an dessen Eingang als Regelgröße die Regelabwei¬ chung^. M des mit der Meßvorrichtung 5 gemessenen Speise- wassermassenstroms M. liegt. Dem Regler 6 ist eine Vor- richtung 8 zur Bildung des Sollwerts M für den Speise- wassermassenstrom zugeordnet. Diese Vorrichtung 8 hat als Eingangsgrößen einerseits einen von einem Sollwertgeber 7 abgegebenen Sollwert L für die Leistung des Zwangdurch¬ laufdampferzeugers und andererseits den von der Meßvor¬ richtung 9 bestimmten Istwert h-F der spezifischen Ent- halpie am Eintritt der Verdampferheizfläche 4.
Der Sollwert L der Leistung des Zwangdurchlaufdampferzeu- gers, der sich im Betrieb immer wieder zeitlich verändert und der im (nicht gezeigten) Feueruπgsregelkreis direkt auf den Brennstoff-Regler gegeben wird, wird auch dem Eingang eines ersten Verzögerungsgliedes 13 der Vorrich¬ tung 8 zugeführt. Dieses Verzögerungsglied 13, das von höherer Ordnung, zum Beispiel von 2. Ordnung, ist, gibt ein erstes Signal oder einen verzögerten ersten Leistungs- wert Ll ab. Dieser erste Leistungswert Ll wird den Ein¬ gängen von Funktionsgebereinheiten 10 und 11 des Funk¬ tionsgebers der Vorrichtung 8 zugeführt. Am Ausgang der Funktionsgebereinheit 10 erscheint ein Wert M(L1) für den Speisewassermassenstrom, und am Ausgang der Funktionsge¬ bereinheit 11 erscheint ein Wert Δh(Ll) für die Differenz aus der spezifischen Enthalpie h.fl am Austritt der Ver¬ dampferheizfläche 4 und der spezifischen Enthalpie h.F am Eintritt dieser Verdampferheizfläche 4. Die Werte M und Δh als Funktionen von Ll sind in den Funktionsgeberein¬ heiten 10 bzw. 11 hinterlegt. Sie sind aus stationären Werten für M und Δh ermittelt, die jeweils bei einem sta¬ tionären Betrieb des Zwangdurchlaufdampferzeugers gemessen und in die Funktionsgebereinheiten 10 und 11 eingegeben wurden. Mögliche Funktionen sind in den Kästchen der Ein¬ heiten 10 und 11 eingezeichnet. Danach ist jeweils im Be¬ reich von 35 % bis 100 % (= Vollast) des Lastwerts L ein im wesentlichen proportional ansteigender bzw. abfallender Funktionsverlauf vorgesehen.
Die Ausgangsgrößen M(L1) und Δh(Ll) der Funktionsgeber¬ einheiten 10 und 11 werden in einem Multiplikationsglied 14 des Funktionsgebers der Vorrichtung 8 miteinander mul- tipliziert. Der gewonnene Produktwert Q(L1) entspricht dem Wärmestrom in die Verdampferheizfläche 4 beim Leistungs- wert Ll. Diese Größe Q(L1) wird als Zähler in ein Divi¬ dierglied 15 eingegeben.
Als Nenner wird in das Dividierglied 15 die mit einem Sum- mierglied 19 gebildete Differenz zwischen dem Sollwert h ή(L2) der spezifischen Enthalpie am Austritt der Ver¬ dampferheizfläche 4 und dem Istwert h-F der spezifischen Enthalpie am Eintritt der Verdampferheizfläche 4, der mit Hilfe der Meßvorrichtung 9 gemessen wird, eingegeben. Ein Sollwert h .(L2) wird einer dritten Funktionsgeber¬ einheit 12 des Funktionsgebers der Vorrichtung 8 entnom¬ men. Der Eingangswert der Funktionsgebereinheit 12 ent¬ steht am Ausgang eines zweiten Verzögerungsglieds 16, ins¬ besondere eines Verzögerungsglieds 1. Ordnung, dessen Eingangsgröße der erste Leistungswert Ll am Ausgang des ersten Verzögerungsglieds 13 ist. Dementsprechend ist der Eingangswert der dritten Funktionsgebereinheit 12 ein zweiter Leistungswert L2, der gegenüber dem ersten Lei¬ stungswert Ll verzögert ist. Die Werte h „(L2) als Funk¬ tion von L2 sind in der dritten Funktionsgebereinheit 12 hinterlegt; sie sind aus Werten für h „ ermittelt, die jeweils bei einem stationären Betrieb des Durchlaufdampf¬ erzeugers gewonnen und in die dritte Funktionsgebereinheit 12 eingegeben wurden. Eine mögliche Funktion ist im Käst¬ chen der Einheit 12 eingezeichnet. Danach ist im Bereich von 35 % bis 100 % (= Voll-Last) des Lastwerts L ein im wesentlichen linear abfallender Funktionsverlauf vorgesehen,
Dem Ausgang des Dividiergliedes 15 kann der Sollwert
Ms = Q(Ll)/(hsA(L2)-hiE) =Δh(Ll) x M(Ll)/(hsA(L2) - h-E) für den Speisewassermassenstrom für die in einem Summier¬ glied 23 stattfindende Bildung der dem Regler 6 zugeführ- ten Regelabweichung Δ M des mit der Vorrichtung 5 gemesse- nen Istwerts für den Speisewassermassenstrom in die Spei¬ sewasservorwarmheizflache 2 entnommen werden.
Am Ausgang des zweiten Verzögerungsglieds 16 kann vorteil¬ hafterweise der Eingang eines Differenzierglieds 17 lie- gen, dessen Ausgang negativ auf ein Summierglied 18 ge¬ schaltet ist. Dieses Summierglied 18 korrigiert den Wert für den Wärmestrom Q(L1) in die Verdampferheizfläche 4 um das Ausgangssignal des Differenzierglieds 17. Der Eingang des Differenzierglieds 17 kann auch - wie in Figur 1 nur gestrichelt angedeutet - an einer Vorrichtung 30 zum Mes¬ sen des Istwerts des Drucks p. hinter der Verdampfer¬ heizfläche 4 (z.B. auch hinter einer dieser Verdampfer¬ heizfläche 4 durchflußmäßig nachgeschalteten Überhitzer- heizfläche des Zwangdurchlaufdampferzeugers) liegen. Zwi¬ schen dem Eingang des Differenzierglieds 17 und einer solchen Vorrichtung 30 zum Messen des Istwerts des Drucks p. kann auch noch ein Funktionsgeber geschaltet sein, der beispielsweise als Ausgangssignal die dem gemessenen Druck p. entsprechende Sattdampftemperatur an das Differenzier¬ glied 17 abgibt.
Vorteilhafterweise kann ein weiteres Differenzierglied 24 als Funktionsglied mit Differenzierverhalten vorgesehen sein. Dieses Differenzierglied 24 hat als Eingangsgröße den mit der Meßvorrichtung 9 bestimmten Istwert h-E der spezifischen Enthalpie am Eintritt der Verdampferheiz¬ fläche 4. Der Ausgang des Differenzierglieds 24 ist eben¬ falls negativ auf das Summierglied 18 geschaltet.
In einem normalen stationären Lastbetrieb sei der Zwang¬ durchlaufdampferzeuger in -einem Beharrungszustand, und der Sollwert L für die Dampferzeugerleistung ist konstant. Damit sind auch die Leistungswerte Ll am Ausgang des Ver- zögerungsglieds 13 und L2 am Ausgang des Verzögerungs¬ glieds 16 konstant; sie haben den gleichen Wert wie der Sollwert L.
In diesem stationären Betrieb im Beharrungszustand des Durchlaufdampferzeugers entspricht h-E dem Stationärwert für die spezifische Enthalpie am Eintritt in die Ver¬ dampferheizfläche 4, und der von der Vorrichtung 8 abge- gebene Wert M entspricht dem stationären Sollwert für den Speisewasserstrom in die Speisewasservorwarmheizfl che 2 und damit in die Verdampferheizfläche 4. Das im Multiplikationsglied 14 gebildete Produkt
Δh(Ll) x M(L1) =Λh(L) x M(L) entspricht einem Stationär¬ wert für den Wärmestrom in die Verdampferheizfläche 4.
Bei einer Änderung des Sollwerts L für die Dampferzeuger¬ leistung am Sollwertgeber 7 stellt sich ein neuer Statio- närwert Q(L) für den Wärmestrom in die Verdampferheizflä¬ che 4 nur verzögert ein, da die Feuerung des Zwangdurch¬ laufdampferzeugers einer Änderung des Sollwerts L der Dampferzeugerleistung nur verzögert folgt. Dies ist durch das erste Verzögerungsglied 13 der Vorrichtung 8 berück¬ sichtigt (Synchronisierung).
Schon weil ein Massenstrom zum Durchströmen der Verdamp- ferheizflache 4 einen endlichen Zeitraum benötigt, ändert sich die spezifische Enthalpie h.ft am Austritt der Ver¬ dampferheizfläche 4 bei einer Änderung des Wärmestroms in diese Verdampferheizfläche 4 mit einer weiteren Ver¬ zögerung, was durch das zweite Verzögerungsglied 16 der Vorrichtung 8 berücksichtigt ist.
Die Berücksichtigung der am Eintritt in die Verdampfer¬ heizfläche 4 gemessenen spezifischen Enthalpie h-E bei der Bildung des Sollwerts M für den Speisewassermassen- ström trägt insbesondere dem zeitlichen Verhalten der Erwärmung des Speisewassers außerhalb des Zwangdurch¬ laufdampferzeugers Rechnung.
Das Differenzierglied 17 verringert einerseits den Soll- wert M für den Speisewasserstrom so lange um einen ent¬ sprechenden Korrekturwert, wie der Leistungswert L2 zeit¬ lich ansteigt und das Erwärmen der Metallmassen der Ver¬ dampferheizfläche 4 den Wärmestrom, der in den Massenstrom in der Verdampferheizfläche 4 gelangt, verringert. Das Differenzierglied 17 vergrößert andererseits den Sollwert M so lange um einen entsprechenden Korrekturwert, wie der Leistungswert L2 zeitlich abfällt und das Abkühlen der Me¬ tallmassen der Verdampferheizfläche 4 den Wärmestrom, der in den Massenstrom in der Verdampferheizfläche 4 gelangt, vergrößert.
Der Ausgang des Differenzierglieds 17 kann auch positiv - gegebenenfalls über ein Normierungsglied - auf das an- dere Summierglied 19 geschaltet sein.
Das Differenzierglied 24 verringert einerseits den Soll- wert Ms für den Sp^eisewassermassenstrom in den Durchlauf- dampferzeuger so lange um einen Korrekturwert, wie der Istwert h-E der spezifischen Enthalpie am Eingang der
Verdampferheizflache 4 ansteigt. Andererseits vergrößert das Differenzierglied 24 den Sollwert M so lange um einen Korrekturwert, wie der Istwert h-E zeitlich abfällt. Der Ausgang des Differenzierglieds 24 kann auch positiv - ge- gebenenfalls über ein Normierungsglied - auf das Summier¬ glied 19 geschaltet sein.
Das Differenzierglied 24 kann ein reines Funktionsglied mit Differenzierverhalten sein. Es kann aber auch zusätzliche Rechenglieder umfassen, die das Differenzierverhalten mo¬ difizieren.
Der in Figur 2 gezeigte Verlauf (Kurvenzüge I bis IV) der vier spezifischen Enthalpien h.fl in kJ/kg am Austritt der Verdampferheizfläche 4 in Abhängigkeit von der Zeit t wur¬ de für einen Zwangdurchlaufdampferzeuger bei einer rampen- förmigen Änderung des Sollwerts L für die Leistung dieses Dampferzeugers von 50 % auf 100 % innerhalb von 200 Sek. ermittelt. Entsprechendes gilt für den in Figur 3 gezeigten zeitlichen Verlauf (Kurvenzüge I bis IV) der vier spezi¬ fischen Enthalpien h.ft in kJ/kg, denen eine rampenför ige Änderung des Sollwerts L der Leistung des Zwangdurchlauf¬ dampferzeugers von 100 % auf 50 % innerhalb von 200 Sek. zugrundeliegt.
Die Kurvenzüge I in den Figuren 2 und 3 gelten für den Fall, daß der Ausgangswert M(L1) der Funktionsgebereinheit 10 der unkorrigierte Sollwert M für den Regler 6 ist. Die Kurvenzüge II gelten für den Fall, daß die Differenzier¬ glieder 17 und 24 in der Schaltung nach Figur 1 nicht vorhanden sind, während die Kurvenzüge III für die Schal¬ tung entsprechend Figur 1 gelten, jedoch ohne Differen¬ zierglied 24. Die Kurvenzüge IV gelten für die Schal- tung entsprechend Figur 1. Die Diagramme nach Figur 2 und 3 zeigen, daß die komplette Schaltung nach Figur 1 mit den Kurvenzügen IV am günstigsten ist, wenn es gilt, ein Überschwingen der spezifischen Enthalpie h-A am Austritt der Verdampferheizfläche 4 möglichst ganz zu vermeiden.
In Figur 1 ist gestrichelt noch ein Enthalpie-Korrektur¬ regler 20 eingezeichnet, dessen Eingang mit dem Ausgang eines Summiergliedes 21 verbunden ist. Diesem Summierglied 21 ist positiv der am Ausgang der dritten Funktionsgeber- einheit 12 abgegebene Sollwert h fl(L2) und negativ der Istwert h-A der spezifischen Enthalpie am Austritt der Verdampferheizfläche 4 zugeführt. Dieser Istwert h-A wird mit einer in der Austrittsleitung der Verdampferheizfläche 4 befindlichen Meßvorrichtung 22 gemessen. Das Korrektur- signal am Reglerausgang ist positiv dem Summierglied 19 der Vorrichtung 8 zugeführt.
Dieser Enthalpie-Korrekturregler 20 korrigiert in vorteil¬ hafter Weise den Sollwert Ms„ des Speisewasserstroms in den Zwangdurchlaufdampferzeuger, wenn der gemessene Istwert h-ft der spezifischen Enthalpie am Austritt der Verdampfer¬ heizfläche 4 infolge äußerer Störeinflüsse, wie zum Bei¬ spiel Heizwertschwankungen des dem Durchlaufdampferzeuger zugeführten Brennstoffs oder Veränderungen der Feuerlage im Brennraum des Durchlaufdampferzeugers, vom Sollwert h ft(L2) für die spezifische Enthalpie am Austritt der Ver¬ dampferheizfläche 4 abweicht, der von der dritten Funk¬ tionsgebereinheit 12 abgegeben wird.

Claims

Patentansprüche
1. Zwangdurchlaufdampferzeuger mit einer Verdampferheiz¬ fläche (4) sowie mit einer der Verdampferheizfläche (4) durchflußmäßig vorgeschalteten Vorrichtung (3) zum Ein- stellen des Speisewassermasseπstroms M in die Verdamp¬ ferheizfläche (4) und mit einer dieser Vorrichtung (3) zugeordneten Regelvorrichtung (6), deren Regelgröße der Speisewassermassenstrom M ist und deren Sollwert M für den Speisewassermassenstrom abhängig von einem der Dampf¬ erzeugerleistung zugeordneten Sollwert L geführt ist, d a d u r c h g e k e n n z e i c h n e t , daß der Re¬ gelvorrichtung (6) eine Vorrichtung (8) zur Bildung der Größe
Q(L1) / ( sft(L2) - hiE)
als Sollwert M für den Speisewassermassenstrom zugeordnet ist, und daß dieser Vorrichtung (8) als Eingangsgrößen der Istwert h.E der spezifischen Enthalpie am Eingang der Ver¬ dampferheizfläche (4) und der der Dampferzeugerleistung zu¬ geordnete Sollwert L zuführbar sind, wobei Q(L1) der mit einem ersten Leistungswert Ll aus ei¬ nem Funktionsgeber (10, 11, 12, 14) nach einer fest vor- gebbaren Funktion entnommene Wert für den Wärmestrom in die Verdampferheizfläche (4), wobei h fl(L2) der mit einem zweiten Leistungswert L2 aus dem Funktionsgeber (10, 11, 12, 14) nach einer fest vor¬ gebbaren Funktion entnommene Sollwert für die spezifische Enthalpie am Austritt der Verdampferheizfläche (4), wobei der erste Leistungswert Ll ein über ein erstes Ver¬ zögerungsglied (13) gegenüber dem der Dampferzeugerlei¬ stung zugeordneten Sollwert L verzögerter Leistungswert und wobei der zweite Leistungswert L2 ein gegenüber dem ersten Leistungswert Ll durch ein zweites Verzögerungsglied (16) verzögerter Leistungswert ist.
2. Zwangdurchlaufdampferzeuger nach Anspruch 1, d a ¬ d u r c h g e k e n n z e i c h n e t , daß die Vorrich¬ tung (8) zur Bildung der Größe
Q(Ll)/(hsA(L2) - hiE) = s
ein Differenzierglied (17) aufweist, das mit seinem Ein¬ gang auf den zweiten Leistungswert L2 am Ausgang des zwei¬ ten Verzögerungsglieds (16) oder auf den Istwert eines hinter der Verdampferheizfläche (4) gemessenen Drucks ge- schaltet ist und das den Wert der als Sollwert M gebilde¬ ten Größe bei einem Ansteigen des zweiten Leistungswerts L2 am Ausgang des zweiten Verzögerungsglieds (16) bzw. des Istwerts des hinter der Verdampferheizfläche (4) gemesse¬ nen Drucks um einen Korrekturwert vorübergehend verringert und bei einem Absinken dieses zweiten Leistungswerts L2 bzw. des Istwerts des hinter der Verdampferheizfläche (4) gemessenen Drucks um einen Korrekturwert vorübergehend erhöht.
3. Zwangdurchlaufdampferzeuger nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Vorrichtung (8) zur Bildung der Größe
Q(Ll)/(hsft(L2) - hlE) = Ms
ein Funktionsglied (24) mit Differenzierverhalten auf¬ weist, das mit seinem Eingang auf den Istwert h.E der spezifischen Enthalpie am Eingang der Verdampferheizfläche (4) geschaltet ist und das den Wert der als Sollwert gebildeten Größe bei einem Ansteigen des Istwerts h-E der spezifischen Enthalpie am Eingang der Verdampferheizfläche (4) um einen Korrekturwert vorübergehend verringert und bei einem Absinken dieses Istwerts h.E um einen Korrektur- wert vorübergehend erhöht.
4. Zwangdurchlaufdampferzeuger nach Anspruch 1, 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß ein Enthalpie-Korrekturregler (20) vorgesehen ist, an dessen Reglereingang die Größe (h fl(L2) - h.fl) als Regelabwei¬ chung liegt und an dessen Reglerausgang ein Korrekturwert abgebbar ist, der zu der Differenz (h ft(L2) - hiE) addiert wird, wobei h.fl der Istwert der spezifischen Enthalpie am Austritt der Verdampferheizfläche (4) ist.
5. Zwangdurchlaufdampferzeuger nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß der Funktionsgeber (10, 11, 12, 14) eine vom ersten Leistungswert Ll beaufschlagte erste und zweite Funktions- gebereinheit (10, 11) umfaßt, deren Ausgangssignale (M(L1), Δh(Ll)) einem Multiplikationsglied (14) zugeführt sind.
6. Zwangdurchlaufdampferzeuger nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß der Funktionsgeber (10, 11, 12, 14) eine vom zweiten Leistungswert L2 beaufschlagte dritte Funktionsgeberein¬ heit (12) umfaßt, deren Ausgangssignal (h »(L2)) einem Summierglied (12) zuführbar ist.
7. Zwangdurchlaufdampferzeuger nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die Vorrichtung (8) ein Dividierglied (15) zur Bil- düngs der Größe
Figure imgf000017_0001
umfaßt.
8. Zwangdurchlaufdampferzeuger nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß zur Erfassung des Istwerts der spezifischen Enthalpie am Eingang und/oder am Ausgang der Verdampferheizfläche (4) eine Meßvorrichtung (5, 9) vorgesehen ist.
PCT/DE1993/000344 1992-05-04 1993-04-21 Zwangdurchlaufdampferzeuger WO1993022599A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59304751T DE59304751D1 (de) 1992-05-04 1993-04-21 Zwangdurchlaufdampferzeuger
EP93908800A EP0639253B1 (de) 1992-05-04 1993-04-21 Zwangdurchlaufdampferzeuger
KR1019940703752A KR100251011B1 (ko) 1992-05-04 1993-04-21 관류 증기 발생기

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP92107500 1992-05-04
EP92107500.8 1992-05-04
DEP4217626.3 1992-05-27
DE19924217626 DE4217626A1 (de) 1992-05-27 1992-05-27 Zwangdurchlaufdampferzeuger

Publications (1)

Publication Number Publication Date
WO1993022599A1 true WO1993022599A1 (de) 1993-11-11

Family

ID=25915217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000344 WO1993022599A1 (de) 1992-05-04 1993-04-21 Zwangdurchlaufdampferzeuger

Country Status (8)

Country Link
US (1) US5529021A (de)
EP (1) EP0639253B1 (de)
JP (1) JP2563099B2 (de)
KR (1) KR100251011B1 (de)
CN (1) CN1044404C (de)
DE (1) DE59304751D1 (de)
DK (1) DK0639253T3 (de)
WO (1) WO1993022599A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624708B2 (en) 2004-07-09 2009-12-01 Siemens Aktiengesellschaft Process for operating a continuous steam generator
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
WO2012110344A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum betrieb eines solarthermischen parabolrinnenkraftwerks

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2152556C1 (ru) * 1995-03-16 2000-07-10 Сименс АГ Способ и устройство для контроля подачи питательной воды к парогенератору
EP2065641A3 (de) 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betrieben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2180250A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP2182278A1 (de) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102010040210A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Durchlaufdampferzeugers sowie solarthermischer Durchlaufdampferzeuger
DE102010042458A1 (de) * 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Verfahren zum Betreiben einer kombinierten Gas- und Dampfturbinenanlage sowie zur Durchführung des Verfahrens hergerichtete Gas- und Dampfturbinenanlage und entsprechende Regelvorrichtung
DE102011004263A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Abhitzedampferzeugers sowie solarthermischer Abhitzedampferzeuger
DE102011004277A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betrieb eines direkt beheizten, solarthermischen Dampferzeugers
EP2655811B1 (de) * 2011-02-25 2015-10-14 Siemens Aktiengesellschaft Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
FR2975797B1 (fr) * 2011-05-26 2020-01-24 Electricite De France Systeme de commande pour regulation multivariable de centrale thermique a flamme
DE102011076968A1 (de) * 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
CN109780523B (zh) * 2016-08-31 2020-06-30 青岛科技大学 一种壁面喷水的智能控制蒸汽干燥机
CN109780522B (zh) * 2016-08-31 2020-03-24 青岛科技大学 一种管束间距控制加热均匀性的蒸汽干燥机
CN109780526B (zh) * 2016-08-31 2020-06-23 青岛科技大学 一种干燥机管箱加热功率的控制方法
CN109780525B (zh) * 2016-08-31 2020-06-23 青岛科技大学 一种干燥机管束管径的控制方法
EP3647657A1 (de) * 2018-10-29 2020-05-06 Siemens Aktiengesellschaft Speisewasserregelung für zwangdurchlauf-abhitzedampferzeuger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2133672A1 (de) * 1971-04-14 1972-12-01 Siemens Ag
DE3242968A1 (de) * 1982-11-20 1984-01-12 Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart Speisewasserregelung und verdampferschutz
EP0439765A1 (de) * 1990-01-31 1991-08-07 Siemens Aktiengesellschaft Dampferzeuger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2133672A1 (de) * 1971-04-14 1972-12-01 Siemens Ag
DE3242968A1 (de) * 1982-11-20 1984-01-12 Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart Speisewasserregelung und verdampferschutz
EP0439765A1 (de) * 1990-01-31 1991-08-07 Siemens Aktiengesellschaft Dampferzeuger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624708B2 (en) 2004-07-09 2009-12-01 Siemens Aktiengesellschaft Process for operating a continuous steam generator
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
WO2009150055A3 (de) * 2008-06-12 2010-06-17 Siemens Aktiengesellschaft Verfahren zum betreiben eines durchlaufdampferzeugers sowie zwangdurchlaufdampferzeuger
CN102057218A (zh) * 2008-06-12 2011-05-11 西门子公司 直流式锅炉的运行方法和强制直流式锅炉
US9291345B2 (en) 2008-06-12 2016-03-22 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator
WO2012110344A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum betrieb eines solarthermischen parabolrinnenkraftwerks

Also Published As

Publication number Publication date
EP0639253B1 (de) 1996-12-11
DE59304751D1 (de) 1997-01-23
CN1044404C (zh) 1999-07-28
KR100251011B1 (ko) 2000-04-15
US5529021A (en) 1996-06-25
EP0639253A1 (de) 1995-02-22
JPH07502803A (ja) 1995-03-23
JP2563099B2 (ja) 1996-12-11
DK0639253T3 (da) 1997-06-16
KR950701420A (ko) 1995-03-23
CN1086299A (zh) 1994-05-04

Similar Documents

Publication Publication Date Title
WO1993022599A1 (de) Zwangdurchlaufdampferzeuger
DE3126331C2 (de)
EP1766288B1 (de) Verfahren zum betrieb eines durchlaufdampferzeugers
EP2297518B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers sowie zwangdurchlaufdampferzeuger
EP2212618B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers sowie zwangdurchlaufdampferzeuger
EP2510198A2 (de) Verfahren und vorrichtung zum regeln einer dampferzeugung in einer dampfkraftanlage
DE3304292C2 (de)
DE102011076968A1 (de) Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
EP2874039A1 (de) Steuerverfahren für ein Wärmeübertragungssystem sowie ein solches Wärmeübertragungssystem
EP2411735A2 (de) Verfahren und vorrichtung zum regeln der temperatur von dampf für eine dampfkraftanlage
DE2620734C3 (de) Überwachungsanordnung für einen Durchlauf-Dampferreuger zur Ermittlung der Abweichungen zwischen der vom Speisewasser aufgenommenen und der von der Feuerung abgegebenen Wärmemenge
EP3161378B1 (de) Regelungsverfahren zum betreiben eines abhitzedampferzeugers
EP1426564B1 (de) Verfahren und Vorrichtung zur Regelung der Leistung eines kraft-wärme-gekoppelten Kraftwerks
DE102010040210A1 (de) Verfahren zum Betreiben eines solarbeheizten Durchlaufdampferzeugers sowie solarthermischer Durchlaufdampferzeuger
EP2780557B1 (de) Verfahren und vorrichtung zum regeln einer temperatur von dampf für eine dampfkraftanlage
DE2023748C3 (de) Speisewasse rvorwärm-Einrichtung in einer kombinierten Gas-Dampfkraftanlage mit nachgeschaltetem Dampferzeuger
AT406096B (de) Verfahren und vorrichtung zur erzeugung präziser, kontinuierlicher mischgasströme
DE4334625A1 (de) Verfahren zum Konstanthalten der Leistung eines Wassererwärmers
DE2142787B2 (de) Brennstoffregelanlage für Gasturbinen
EP0308596B1 (de) Verfahren zur Regelung der Speisewassermenge einer Dampferzeugeranlage
DE4217626A1 (de) Zwangdurchlaufdampferzeuger
EP3827200B1 (de) Speisewasserregelung für zwangdurchlauf-abhitzedampferzeuger
DE2730415C2 (de) Verfahren zur pendelungsfreien Regelung eines Kraftwerksblocks im gesteuerten Gleitdruck
EP0507730B1 (de) Einrichtung zum lastabhängigen Regeln der Speisewassermenge eines Zwanglaufdampferzeugers
DE19819973C2 (de) Regler-Schaltung für einen Dampfkraftwerksblock

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1993908800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019940703752

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08334421

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993908800

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993908800

Country of ref document: EP