WO1993015876A1 - Spindle positioning method - Google Patents

Spindle positioning method Download PDF

Info

Publication number
WO1993015876A1
WO1993015876A1 PCT/JP1993/000092 JP9300092W WO9315876A1 WO 1993015876 A1 WO1993015876 A1 WO 1993015876A1 JP 9300092 W JP9300092 W JP 9300092W WO 9315876 A1 WO9315876 A1 WO 9315876A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
spindle
rotation
command
control
Prior art date
Application number
PCT/JP1993/000092
Other languages
English (en)
French (fr)
Inventor
Shinichi Kono
Masaaki Fukukura
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to DE69309803T priority Critical patent/DE69309803T2/de
Priority to KR1019930703129A priority patent/KR960012701B1/ko
Priority to EP93902532A priority patent/EP0580866B1/en
Priority to US08/133,127 priority patent/US5519297A/en
Publication of WO1993015876A1 publication Critical patent/WO1993015876A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/232Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42104Loop switch, speed loop then position loop, mode switch

Definitions

  • the present invention relates to a spindle positioning method for stably positioning and stopping at a desired position in a short time by making full use of the deceleration capability of the spindle ⁇ overnight.
  • the speed control stage As a technique for positioning and stopping the rotating spindle motor at a desired position, in the speed control stage, the speed is reduced to a base speed for positioning control, and then the spindle motor is moved to the speed control.
  • a method of switching from a state to a state of position control performing a position loop control by setting a difference between a command stop position and a current position as a position deviation.
  • An object of the present invention is to prevent inadvertent overshoot, Another object of the present invention is to provide a spindle positioning method capable of positioning a spindle of a machine tool at a desired stop position in a short time.
  • the present invention when a fixed position stop command is received while driving rotation control of a spindle motor based on speed control, the motor rotation speed is reduced based on the speed control.
  • the speed is reduced to a speed less than or equal to the maximum rotation speed that stipulates the constant torque area, and when the speed is reduced to that speed, the initial position deviation is related to the current position within one rotation of the motor and the command stop position.
  • the drive control of the motor is switched from speed control to position control, and then linear acceleration / deceleration control is performed up to the command stop position.
  • the present invention provides a spindle positioning method for positioning a spindle at a desired rotation position, wherein when the spindle motor speed is lower than a base speed, the rotation speed of the spindle motor and the rotation position within one rotation of the spindle. Is detected, the minimum movement amount for decelerating and stopping along the deceleration straight line set based on the detection speed is obtained, and the movement amount from the detected rotation position to the target stop position is obtained. Is sequentially added to the above-mentioned movement amount until the rotation becomes larger than the above-mentioned minimum movement amount. The movement amount obtained by the addition is set as a position g deviation, and the position is obtained.
  • the speed command is obtained by performing position loop control by multiplying the square root of the deviation by the set position loop gain, and the drive of the main spindle motor is controlled based on the speed command.
  • the minimum movement amount is the square of the detection speed.
  • the position loop gain is obtained by dividing by a preset parameter overnight value determined by a deceleration straight line, and the position loop gain is a value of the square root of the above parameter overnight.
  • the rotation speed of the spindle ⁇ overnight is reduced to a speed N that is equal to or less than the maximum rotation speed N1 that defines a constant torque region
  • (c) The number of forward rotations from the current in-rotation point position of the main spindle that overlaps the stop position of the main spindle is calculated using the output rotation pulse number ⁇ of the position detector, and (d) above (b) The number of pulses P1 calculated in step (c) is compared with the number of pulses ⁇ calculated in step (c).
  • the spindle motor in order to stop the spindle at the predetermined position, first, the spindle motor is decelerated to a region below the base speed at which the torque is constant. In this region, the torque is constant and linear acceleration / deceleration control is possible, so that the spindle motor is position-controlled along the predetermined deceleration straight line and stops at the final position. In the deceleration process up to the stop position, the deceleration capability of the spindle motor is utilized to the maximum, and the positioning time is shortened without causing overshoot.
  • FIG. 1 is a block diagram showing a main part of a spindle control circuit in a machine tool according to an embodiment to which the method of the present invention is applied.
  • FIG. 2 is a functional block diagram showing details of the motor control circuit in the embodiment
  • FIG. 3 is a flowchart showing an outline of a fixed-position stop process by the motor control circuit of the embodiment.
  • Fig. 4 is an operation principle diagram showing the calculation method of the parameters used in the fixed position stop processing.
  • Figure 5 is a conceptual diagram showing the relationship between the current position of the spindle motor and the command stop position of the spindle.
  • FIG. 1 is a block diagram showing a main part of a spindle control circuit in a machine tool according to one embodiment. It is rotationally driven by the spindle motor 4 via a power transmission mechanism 2 such as a gear or timing belt.
  • the main spindle 1 is provided with a position detector 3 that generates Prev position detection pulses per rotation and outputs a rotation signal per rotation.
  • a speed detector 5 for detecting the rotation speed of the main shaft 1 is mounted on the main shaft motor 4 for driving the main shaft 1 to rotate.
  • the position detector 3 and the speed detector 5 are connected to a motor control circuit 7.
  • the spindle motor 4 is connected to a motor control circuit 7 via a power circuit 6, and the motor control circuit 7 itself is connected to a numerical control device 8 for controlling each axis of the machine tool.
  • the motor control circuit 7 includes a speed control unit for controlling the speed of the spindle motor 4 and a position control unit for controlling the positioning stop operation, and a processor and ROM for performing various calculation processes. And a RAM, etc., and drives and controls the spindle motor 4 through a power circuit 6 such as a transistor and a transistor.
  • the motor control circuit 7 counts the position feedback pulse Pf output from the position detector 3 and receives a rotation signal from the position detector 3 every time it receives one rotation signal. And a latch circuit for latching the value of the power supply.
  • the reduction ratio of the power transmission mechanism 2 is 1: 1.
  • Fig. 2 is a functional block diagram of the motor control circuit 7.
  • a is the error counter that stores the position deviation during the positioning stop operation
  • b is the speed on the software.
  • Command calculation means c and d are proportional gains of speed control loop And integral gain.
  • h and f are the terms of the transfer function of the spindle motor 4
  • Kt is the torque constant
  • Jm is the inertia
  • g is the transfer of the integral that determines the position by integrating the speed. This is a function term.
  • S 1 and S 2 are switches shown for convenience, and are switched depending on the speed control and positioning control of the spindle 1.
  • the spindle motor 4 has a constant torque in a region below a certain rotational speed .N1 (rpm), and linear acceleration / deceleration control is possible in that region.
  • the rotation speed N 1 (rpm) that is, the maximum rotation speed per minute at which the Tonnolek--constant region is given, is referred to as a base speed N 1. If this linear acceleration / deceleration control is illustrated in the graph of Fig. 4 with the horizontal axis representing time and the vertical axis representing rotation speed, the deceleration operation follows the straight line L (deceleration straight line) in the figure. .
  • the stop time required when the spindle motor 4 is stopped at the maximum deceleration operation from the base speed N 1 is defined as T 1, while an arbitrary rotation speed N (rpm) less than the base speed N 1 is set.
  • N arbitrary rotation speed
  • any rotation speed less than base speed N 1 Calculating the number of pulses P 1 to be emitted by the position detector 3 from the point of N until the main shaft ⁇ overnight 4 is rotated along the deceleration straight line L to the command stop position is calculated.
  • Vertical broken line and deceleration line L and horizontal Since the area of a small triangle divided by the time axis, which is the axis, is equal to the number of rotations of the main shaft before stopping, it is expressed by the following equation.
  • Equation (7) the output torque Tm for one night, ⁇ —the inertia Jm, the load inertia JL, and the number of pulses P rev per revolution of the main shaft 1 are known. Therefore, part of equation (7) is parametrized as follows according to the characteristics of the model.
  • equation (7) can be expressed by the following equation.
  • the content of this equation (9) means that, at the current speed N, the position command of the pulse number P 1 is given as the initial value of the position deviation, and from this position deviation, the position feed knock pulse P f is subtracted to obtain the position deviation, and a parameter is added to the square root of the position deviation.
  • -Evening position loop control which calculates the speed command by multiplying the square root of the PRM as the position loop gain, means that the most efficient deceleration operation was performed until the stop. This means that the spindle motor 4 will be stopped along the deceleration line L in Fig. 4.
  • a predetermined position within one rotation of the spindle 1 is commanded as the target position. That is, the target position is instructed in advance as a rotation position at which a predetermined number (P2) of position detection pulses have been issued from the time when the one rotation signal is output.
  • P2 predetermined number
  • the current spindle is It is assumed that the position detection pulse is at the rotational position (“present”) at which P 0 pulses are output from the time (“signal”) is output.
  • the rotation of the spindle The amount is expressed by the number of position detection pulses cr ( ⁇ Prev).
  • the number of pulses P 1 from the current position to the stop position is obtained by performing the calculation of the expression (10) based on the rotation speed N, and as a result, the value P 1 is smaller than the above value ⁇ .
  • ⁇ 1 ⁇ it means that the speed ⁇ at that time is smaller than the speed at which the movement amount of the pulse number ⁇ is stopped in the shortest time.
  • the pulse amount ⁇ instead of the pulse number ⁇ 1 in the error count.
  • the feedback pulse Pf from the position detector is subtracted from the initial position deviation ⁇ , and the speed command is calculated by multiplying the square root by a coefficient determined by the overnight deceleration characteristic.
  • FIG. 3 is a flowchart schematically showing the “fixed-position stop processing” employed in the present embodiment to realize the control method described above.
  • the embodiment will be described with reference to this flowchart. The method of positioning the spindle will be described.
  • the processor of the motor control circuit 7 that receives the stop position of the pulse number P 2 from one rotation signal position as the stop position together with the positioning stop command from the numerical controller 8
  • the processing of the flowchart shown in (1) is performed at predetermined intervals.
  • step S 1 it is determined whether or not the current rotation speed N of the main shaft motor 4 has reached a rotation speed region equal to or lower than the base speed N 1 (step S 1). If the base speed is not lower than N1, the base speed N1 is output as the rotation speed command Vcmd at predetermined intervals until the rotation speed N becomes lower than or equal to the base speed N1. S 2), the rotational speed N of the spindle motor 4 is reduced to the base speed N 1 or less, that is, the switch S 2 in FIG. 2 is turned off and the switch S 1 is turned on. In the state of, the base speed N1 is continuously output as the rotation speed command Vcmd.
  • step S1 When it is detected in step S1 that the current rotational speed N has become equal to or less than the base speed N1, the processor of the motor control circuit 7 sets the movement amount setting completion flag. It is determined whether or not F is set (step S3).
  • the equation (10) is further calculated based on the current rotation speed N, and the deceleration curve is calculated.
  • the spindle motor 4 is stopped along L, the number of pulses P1 of the amount of rotation that rotates until the spindle motor 4 stops is determined and stored in the register (step S4).
  • Prev is added and stored as an initial value in the position deviation storage register R (e) (steps S6 to S8).
  • the current position ⁇ ⁇ in one rotation of the spindle 1 is positioned with respect to the one rotation signal.
  • Fig. 5 (a) shows a state as shown in Fig. 5 (a) where the positioning stop position ⁇ 2 has not been reached, and the current position PO of the spindle motor 4 has passed the positioning stop position P2.
  • the number of rotation pulses P rev of the main shaft 1 corresponding to one rotation of the main shaft 1 is further added.
  • the processor determines the magnitude of the number of pulses P1 obtained in step S4 and the value stored in the position S deviation storage register R (e), that is, the number of pulses ⁇ up to the positioning stop position P2.
  • the register R (e) determines the magnitude of the number of pulses P1 obtained in step S4 and the value stored in the position S deviation storage register R (e), that is, the number of pulses ⁇ up to the positioning stop position P2.
  • Step S ll to start position loop control. That is, the switch S1 in FIG. 2 is turned off, and the switch is switched to the state in which the switch S2 is turned on. Therefore, the position feedback amount Pf in the cycle is subtracted from the position deviation e stored as an initial value in the position deviation storage register R (e) to obtain a new position deviation e.
  • step S12 The value is stored in the lever R (e) (step S12), and the square root of the parameter PRM is multiplied by the value of the square root of the positional deviation e and the parameter PRM stored in the register R (e). Then, the speed command Vcmd is obtained (step S13), passed to the speed loop process, and the process of the cycle ends.
  • the case where the reduction ratio of the power transmission mechanism 2 is 1: 1 (the same applies to the case where the spindle 1 and the spindle motor 4 are directly connected) has been described as one embodiment. Even in a configuration having a reduction ratio, the spindle positioning method of the embodiment can be similarly applied by correcting and using the above-described equations. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

明 細 書
主 軸 位 置 決 め 方 法
技 術 分 野
本発明は、 主軸乇一夕の減速能力を最大限に活か して 短時間で所望位置に安定的に位置決め停止するための主 軸位置決め方法に関する。
背 景 技 術
回転 して いる主軸モ一夕 を所望位置に位置決め停止す るための技術と しては、 速度制御の段階で、 位置決め制 御するための基底速度まで減速し、 その後主軸モー夕 を 速度制御の状態から位置制御の状態へと切 り替え、 指令 停止位置と現在位置との差を位置偏差と して設定 し位置 ループ制御を行う方法が知 られて いる。
この方法によ り位置決めに要する時間を短く しょ う と するには、 ポ ジシ ョ ンゲイ ンの値を大き く する と いう こ とが考え られるが、 主軸モータの加減速特性を無視 して このよ う な処理を行う と速度指令に対する主軸モータの 追従が困難となって不用意なオーバーシュ一 ト を生 じる 場合がある。 また、 オーバーシュー トの発生を恐れて位 置ループのポジシ ョ ンゲイ ンの値を小さ く 設定 した り す る と位置決めに要する時間も必然的に増大する こ と にな つて、 オーバ一シュー トの防止と高速の位置決め と を同 時に実現させる こ と は困難である。
発 明 の 開 示
本発明の目的は、 不用意なオーバ一シュー ト を防止 し, かつ、 工作機械の主軸を短時間で所望の停止位置に位置 決めする こ とのでき る主軸位置決め方法を提供する こ と にあ 。
上記目的を達成するため、 本発明は、 主軸モ一夕 を速 度制御に基づき駆動転制御 して いる と き に定位置停止指 令を受ける と、 その速度制御に基づきモ一夕回転速度を トルク一定領域を規定する最大回転速度以下の速度にま で低下させ、 その速度にまで低下させた と き、 初期の位 置偏差と してモータ 1 回転内の現在位置及び指令停止位 置に関係 した値を設定 したう えで、 モ一夕の駆動制御を 速度制御から位置制御に切 り 換え、 以後指令停止位置ま で直線加減速制御を実行する。
さ ら に、 本発明は、 主軸を所望回転位置に位置決めす る主軸位置決め方法において、 主軸モ一夕が基底速度以 下になる と、 主軸モータの速度及び主軸 1 回転内にお け る回転位置を検出 し、 前記検出速度に基づいて設定さ れ て いる減速直線に沿って減速停止させる最小移動量を求 める と共に、 検出回転位置から 目標の停止位置までの移 動量を求め、 該移動量が前記最小移動量よ り大き く な る まで順次主軸 1 回転分の移動量を前記移動量に加算 して. 該加算 して得 られた移動量を位 g偏差と して設定 し、 該 位置偏差.の平方根に設定位置ループゲイ ンを乗 じて位置 ループ制御を行ない速度指令を求め、 該速度指令に基づ いて主軸モ一夕 を駆動制御するよ う に して いる。
好ま し く は、 前記最小移動量は検出速度の 2乗を上記 減速直線によって決ま る予め設定されたパラ メ 一夕値で 除 して求め、 前記位置ループゲイ ンは上記パラ メ 一夕の 平方根の値とする。
さ ら に、 本発明は、 ( a ) 定位置停止指令を受ける と、 主軸乇一夕の回転速度を トルク一定領域を規定する最大 回転速度 N 1以下の速度 Nにまで低下させ、 ( b ) その 低下させた回転速度 Nから最終停止位置まで予め決め ら れた一定の傾き (減速度) で回転させる と した と きの位 置検出器の出力回転パルス数 P 1 を算出 し、 ( c ) 主軸 の現在の一回転内点位置から あと どれだけ正転する と主 軸の停止位置に重なるかを上記位置検出器の出力回転パ ルス数 αでも って算出 し、 ( d ) 上記 ( b ) で算出 した パルス数 P 1 と上記 ( c ) で算出 したパルス数 α とを比 較 し、 ( e ) 上記パルス数 Ρ 1 よ り も上記パルス数 αの 方が大き い と き にはそのパルス数 αを初期の位置偏差と して、 ま た、 上記パルス数 Ρ 1が上記パルス数 α と等 し いか或いはそれよ り も大き い と き には、 上記位置検出器 の主軸一回転の出力回転パルス数を P re V と し、 1 また はそれ以上の整数 n に対 して
a + ( n - 1 ) · P rev < Ρ 1 ≤ α + η · Ρ rev が成立する と きの α + η · P rev を初期の位置偏差と し て、 エラ一カ ウ ン夕 に設定 し、 ( f ) 以後、 上記 ( c ) で求めた初期偏差か ら位置検出器か らの帰還パルス数 P f を減算 し、 その減算 した値のパル ス数の平方根にモー 夕の減速特性によ り 決ま るゲイ ンを乗 じて速度指令を得 て、 該速度指令に基づいて主軸モータ を駆動制御する。 上述のよ う に、 本発明によれば、 主軸を所定位置に停 止させるのに、 まず主軸モー夕 を トルクが一定と なる基 底速度以下の領域にまで減速する。 この領域では トルク が一定とな り 直線加減速制御が可能となるか ら、 そ こで 所定の減速直線に沿う よ う 主軸モータは位置制御されて 最終位置に停止する こ と になる。 そ して この停止位置に 至るまでの減速過程では、 主軸モータの減速能力が最大 限に活かされ、 かつ、 オーバシュー ト を生 じる こ とな く 位置決め時間が短く なる。
図 面 の 簡 単 な 説 明
図 1 は本発明の方法を適用 した一実施例の工作機械に お ける主軸制御回路の要部を示すブロ ッ ク図、
図 2 は同実施例におけるモー夕制御回路の詳細を示す 機能ブロ ッ ク図、
図 3 は同実施例のモータ制御回路によ る定位置停止処 理の概略を示すフ ロ ーチャー ト、
図 4 は定位置停止処理で用いるパラメ 一夕の算出方法 を示す作用原理図、 及び、
図 5 は主軸モー夕の現在位置と主軸の指令停止位置と の関係を示す概念図である。
発 明 を 実施 す る た め の 最 良 の 形態 図 1 は一実施例の工作機械にお ける主軸制御回路の要 部を示すブロ ッ ク図である。 ギアやタ イ ミ ングベル ト 等 の動力伝達機構 2 を介 して主軸モータ 4 で回転駆動さ れ る主軸 1 には、 1 回転当 り P r e v 個の位置検出パルス を 発生する と共に 1 回転毎に 1 回転信号を出力する位置検 出器 3が取り 付けられている。 ま た、 主軸 1 を回転駆動 する主軸モ一夕 4 には、 該乇一夕 4の回転速度を検出す るための速度検出器 5 が取 り付け られて いる。
上記位置検出器 3 および速度検出器 5 はモータ制御回 路 7 に接続されている。 主軸モータ 4 はパワー回路 6 を 介 してモータ制御回路 7 に接続される と共に、 モータ制 御回路 7 自体は、 工作機械の各軸を制御する数値制御装 置 8 に接続されている。 上記モ一夕制御回路 7 は主軸モ —夕 4 を速度制御するための速度制御部や位置決め停止 動作を制御するための位置制御部、 更に、 各種滇算処理 を行う ためのプロセ ヅサや R O Mおよび R A M等を有 し、 ト ラ ンジス夕ィ ンバ一夕等のパワー回路 6 を介 して主軸 モー夕 4 を駆動制御する。
モー夕制御回路 7 は、 位置検出器 3 か ら出力される位 置フ ィ 一 ドバッ クパルス P f をカ ウ ン 卜 するカ ウ ンタお よび位置検出器 3か ら 1 回転信号を受信する毎に前記力 ゥ ン夕の値をラ ッチするラ ッチ回路を備える。
なお、 本実施例における動力伝達機構 2 の減速比は 1 : 1 あ
図 2 は、 モ一夕制御回路 7 の機能ブロ ッ ク図で、 図中、 aは位置決め停止動作の時の位置偏差を記憶する'エラ一 カ ウ ンタ、 b は ソ フ ト ウヱァ上の速度指令計算処理を行 う手段、 c お よび d は速度制御ループの比例ゲイ ンお よ び積分ゲイ ンである。 さ ら に、 hお よび f は主軸モータ 4 の伝達関数の項で、 K t は トルク定数, J m はイ ナ一 シャであ り、 gは速度を積分 して位置を求める積分の伝 達関数の項である。 ま た、 S 1 , S 2 は便宜的に図示 し たスィ ッチで、 主軸 1 の速度制御や位置決め制御の別に よ り切 り 替え られる。
そこでまず、 本実施例の動作の概要を説明する と、 通 常はス イ ッチ S 2 をオフ と し、 ス イ ッチ S 1 をオン と し て、 従来と同様、 数値制御装置 8 か ら送られる回転速度 指令 V c iD d に基 ぐ速度制御が行われる。 すなわち、 速度 検出器 5 から出力される速度フ ィ - ドバ ヅ ク信号 V f を 回転速度指令 V cm d か ら減 じて速度偏差を求め、 この速 度偏差に速度ループ比例ゲイ ン c を乗 じた値と該速度偏 差を積算 した値に速度ループ積分ゲイ ン d を乗 じた値と を加算 して トルク指令を求め、 パヮ一回路 6 を介 して主 軸モータ 4 を駆動制御する処理が行われる。
一方、 位置決め停止指令と主軸停止位置 ( 1 回転内に おける回転位置) とが数値制御装置 8 よ り 出力さ れる と. モー夕制御回路 7 のプロセ ッサは、 図 3 フ ローチャー ト に示すよ うな 「定位置停止処理」 (詳細は後述 ) を開始 し、 オーバー シュー ト を防止 しなが ら主車由モ一夕 4の減 速能力を最大限に活か した状態でモー夕 4 を駆動制御 し. 主軸を指令停止位置に位置決めする こ と となる
そ こで、 ま ず図 4 の作用原理図を用 いて、 上記のモー 夕の減速能力を最大限に活か した状態で定位置停止制御 を行う際に必要となるパラ メ 一夕 を求める方法について 説明する。
まず、 主軸モータ 4 はある一定の回転速度. N 1 ( rpm ) 以下の領域では トルクが一定になって、 その領域内では 直線加減速制御が可能となる。 以下、 その回転速度 N 1 ( rpm )、 すなわち、 トノレク - -定領域を与える こ と になる と ころの毎分最大回転速度を基底速度 N 1 と いう。 そ して この直線加減速制御を横軸を時間、 縦軸を回転速度に と つた図 4 のグラ フで例示する と、 図中の直線 L (減速直 線) に沿っての減速動作になる。
この図 4 において、 基底速度 N 1 から最大の減速動作 で主軸モータ 4 を停止させた時に必要となる停止時間を T 1 と し、 一方、 基底速度 N 1以下の任意の回転速度 N ( rpm ) から減速直線 L に沿つて主軸モ一夕 4 を停止させ る時に必要となる時間を T とすれば、 減速直線 Lの傾き (減速度) が一定であるこ とから、 以下の関係が得られ
O
T 1
T = N … ( 1 )
N
そ こで、 軸 1 の 1 回転で位置検出器 3 から出力され る位置フ ィ ー ドノ 'ヅ ク パルスの数を P r e v (個) と して、 基底速度 N 1 以下の任意の回転速度 Nの と ころか ら減速 直線 L に沿って主軸乇一夕 4 を指令停止位置まで回転さ せる までに位置検出器 3 の発すべきパルス の数 P 1 を算 出する と、 図 4 にお ける縦の破線と減速直線 Lおよび横 軸である時間軸で区切 られる小さな三角形の面積が主軸 が停止するまでに回転する数に等 しいこ とから、 次式で 表わされ Ν Τる。
1 N
P 1 = T P rev ( 2
2 6 0
そ して、 上記 式と ( 2 ) 式によ り 次式が得られ る,
P rev T
P 1 = N 3
1 2 0 N 1
そ こで上記 ( 3 ) 式を回転速度 N について解 く と、 次 式が得られる。
Figure imgf000010_0001
4 こ こで、 トルク一定領域でのモ一夕の出力 トルク を T m、 モ一タイ ナ一シャ を J m、 負荷イ ナ一シャ を J L と する と トルク と加速度の一般式よ り次式が成 り 立つ。
J m + J L 2 π
Τ 1 = Ν 1
Τ m 6 0
5 そ して、 上記 ( 5 ) 式よ り、 次式が得られる。
T m 6 0
J m -r J L 2 π … ( 6 ) さ ら に、 上記 ( 6 ) 式を左辺を ( 4 ) 式の右辺に代入 して、
2 0 T m 6 0
N = P
P rev J m + J L 2 π
… ( 7 ) 上記 ( 7 ) 式において、 乇一夕の出力 卜ノレク T m、 乇 —夕イ ナ一シャ J m、 負荷イ ナ一シャ J L、 主軸 1 の 1 回転パルス数 P rev は既知であるか ら、 ( 7 ) 式の一部 をモ一夕の特性に応じ次式のよう にパラメ 一夕化する。
Figure imgf000011_0001
( 8 この ( 8 ) 式のパラメータ P R Mの値はモータ制御回 路 7の R O Mに予め書き込んでお く。
そこで、 上記 ( 8 ) 式を用いる こ と によ り、 ( 7 ) 式 は次式で表せる。
Figure imgf000011_0002
この ( 9 ) 式が意味する内容は、 現在速度 Nの と き、 パルス数 P 1 の位置指令を位置偏差の初期値と して与え 以後この位置偏差か ら位置フ ィ ー ドノ ッ クパルス P f を 減 じて位置偏差を求め、 その位置偏差の平方根にパラ メ —夕 P R Mの平方根を位置ループゲイ ン と して乗 じて速 度指令を算出する と い う位置ループ制御を行なえば、 停 止まで最も効率の良い減速動作を実行 した こ と になる、 すなわち、 図 4の減速直線 L に沿って主軸モー夕 4 を停 止させる こ と になる、 と い う こ とである。
また、 ( 9 ) 式を停止までの移動距離のパルス数 P 1 について解 く と次式が得られる。
P 1 = N ' N / P R M - ( 1- 0 ) この ( 1 0 ) 式が意味する内容は、 主軸乇一夕 4の回 転速度が Nである時に、 位置偏差の初期値は ( 1 0 ) 式 によ り算出されるパルス数 P 1である と い う こ とである ( したがって、 主軸モータ 4の減速能力を最大限に生か した状態で短時間で主軸 1 を停止するためには、 まず主 軸モータ 4の回転速度を基底速度 N 1以下の回転速度 N にまで減速させ、 そ してその時点において ( 1 0 ) 式で 求め られるパルス数 P 1 を位置偏差の初期値と して設定 して位置ループ制御を行なえば、 その時点よ り パルス数 P 1 の位置に最短時間で位置決めする こ とができ るこ と になる。
と ころで、 主軸モータ 4 を位置決め停止指令によって 停止させる場合には、 主軸 1 の 1 回転内の所定位置が目 標位置と して指令される。 すなわち、 目標位置は 1 回転 信号が出力さ れた時点から位置検出パルスが所定数 ( P 2個) 発せられた回転位置と して予め指令される。
こ こ で、 図 5 に示すよ う に、 現在の主軸が 1 回転信号 が出力された時点 ( " 信号 " ) から位置検出パルスが P 0個発せられた回転位置 ( " 現在 " ) にある とする場合 を考える。 この主軸がこの現在位置から正転方向 (図 5 の例では時計回転方法) に回転 してその 1 回転内の位置 が上記の停止位置 ( " 停止 " ) に重なる には、 その主軸 の回転移動量は位置検出パルスの数 cr ( < P rev ) でみ る と、
図 5 ( a ) のよ う に、 P 2 ≥ P 0の場合には
α = Ρ 2 — P 0であ り、 また、
図 5 ( b ) のよ う に、 P 2 く P Oの場合には
a = P 2 - P 0 + P rev である。
そこで、 上記回転数 Nに基づいて ( 1 0 ) 式の演算を 行なって現位置在から停止位置までのパルス数 P 1 を求 めた結果、 その値 P 1が上記の値 αよ り 小さ い と きには ( Ρ 1 < α ) , このパルス数 αの移動量を最短時間で停 止させる速度よ り も当該時点の速度 Νの方が小さ いこ と を意味するので、 かかる場合には初期値と して与える位 置偏差にはパルス数 Ρ 1ではな く パルス量 αの方をエラ —カウ ン夕 に設定する。 そう して、 この初期位置偏差 α か ら位置検出器からのフ ィ ー ドバッ クパルス P f を差引 き、 その平方根に乇一夕減速特性によ り決ま る係数を乗 じて速度指令を計算 し (上記 ( 9 ) 式参照) 、 位置ルー ブ制御 (図 2でスイ ッ チ S 1 をオフ, スィ ッチ S 2 をォ ン) を行なう。 そう すれば、 一旦その時点よ り 速度が上 昇するが、 その後、 減速直線 L に沿って最短時間で位置 決めでき る こ と になる。
一方、 現位置在か ら停止位置までのパルス数の値 P 1 が上記の値 α に等 しいかそれよ り大き い と き には ( P 1 ≥ ) , 1 ま たはそれ以上の整数 n に対 して、
+ ( n — 1 ) · P rev < P 1 ≤ α + η · P rev
-•• ( 1 1 ) が成立する と きの nの値によ る 「 ct 十 n · P rev 」 を位 置偏差の初期値 cr ' と して設定する。 そ う して、 この初 期位置偏差ひ ' から位置検出器からのフ ィ 一 ド ノマッ ク ノ、' ルス P f を差引 き、 その平方根にモ一夕減速特性によ り 決ま る係数を乗 じて速度指令を計算 し (上記 ( 9 ) 式参 照) 、 位置ループ制御 (図 2でスイ ッチ S 1 をオフ, ス イ ッチ S 2 をオン) を行なう。 そう すれば、 この初期値 と して与え られた値 α ' は P I に等 しいか或いはそれよ り もやや大き いので、 一旦その時点よ り 速度がやや上昇 する こ と もあるが、 その後直ちに減速直線 L にの り 以後 その減速直線 L に沿って最終停止位置にオーバシュ一 ト を起こすこ と もな く 最短時間で到達する こ と になる。
図 3 は前述の制御方法を実現するために本実施例が採 用 した 「定位置停止処理」 の概略を示すフ ローチヤ一 ト であ り、 以下、 このフ ローチヤ— ト を参照 して実施例の 主軸位置決め方法を説明する。
数値制御装置 8 か らの位置決め停止指令と共に、 停止 位置と しての 1 回転信号位置からのパルス数 P 2 の停止 位置を受信 したモータ制御回路 7 のプロセ ッサは、 図 3 に示すフ ローチヤ一 卜 の処理を所定周期毎実施する。
まず、 主軸モ一夕 4 の現在の回転速度 Nが基底速度 N 1 以下の回転速度領域に達 しているか否かを判別するが (ステ ップ S 1 ) 、 主軸モータ 4の回転速度 Nが基底速 度 N 1 以下となって いなければ、 以下、 回転速度 Nが基 底速度 N 1 以下となるまで所定周期毎に基底速度 N 1 を 回転速度指令 V cmd と して出力 し ( ステ ップ S 2 ) 、 主 軸モ一夕 4の回転速度 N を基底速度 N 1 以下に減速する, すなわち、 図 2 におけるスイ ッチ S 2 をオフ と し、 スィ ヅチ S 1 をオン と したま まの状態で、 基底速度 N 1 を回 転速度指令 V cm dと して出力 し続ける。
そ して、 現在の回転速度 Nが基底速度 N 1以下となつ た こ とがステ ヅプ S 1 の判別処理で検出される と、 モー 夕制御回路 7 のプロセ ッサは移動量設定完了フラグ Fが セッ ト されているか否かを判別する (ステップ S 3 ) 。
しか し この段階では移動量設定完了フラグ F は初期設定 によ り リ セッ ト されたま まであるので、 更に、 現在の回 転速度 Nの値に基づき ( 1 0 ) 式の演算を行なって減速 曲線 L に沿って主軸モータ 4 の停止操作を行った時に主 軸モー夕 4が停止する までに回転する移動量のパルス数 P 1 を求め、 レ ジス夕 に記憶する (ステ ヅプ S 4 ) 。
次いで、 モー夕制御回路 7 のプロセッサは、 位置フ ィ ― ドノ ッ クパルス を計数するカウ ンタの値から、 ラ ッチ 回路にラ ッチされて いる 1 回転信号検出時の前記カウ ン 夕の値を減 じて該時点の 1 回転信号位置からの主軸回耘 位置 P O を求め、 主軸 1 回転以内の位置決め停止位置 P 2か ら現在位置 P 0 を減じて現時点か ら停止位置までの 移動パルス量 α ( = Ρ 2 - Ρ 0 ) を求め (ステ ヅブ S 5 ) この値ひ が 0若 し く は正であれば位置偏差記憶レ ジス タ R ( e ) に初期値と して記憶 し、 負であれば、 この値ひ に主軸 1 回転分のパルス数 P rev を加算 して位置偏差記 憶レ ジス 夕 R ( e ) に初期値と して記憶する ( ステップ S 6 〜ステ ップ S 8 ) 。 なお、 ステ ップ S 5の処理で得 られるパルス数 α = P 2 — P 0の値が正の と きは主軸 1 の 1 回転内の現在位置 Ρ Οが 1 回転信号を基準と して位 置決め停止位置 Ρ 2 に達 して いない図 5 ( a ) のよ う な 状態を示すものであ り、 主軸モータ 4の現在位置 P Oが 位置決め停止位置 P 2 を通 り 越して いる図 5 ( b ) のよ う な状態、 即ち、 P 0 〉 P 2で αく 0の状態では (ステ ッブ S 6 ) 、 更に主軸 1 の 1 回転に対応する主軸 1 の 1 回転パルス数 P rev を加算 して 〔 P 2 — P 0 + P rev = α + P rev 〕 を位置偏差の初期値と して、 この値を位置 偏差記憶レ ジス夕 R ( e ) に初期値と して記憶する もの である。
次いで、 ブロセ ヅサはステ ップ S 4で求めたパルス数 P 1 と、 位 S偏差記憶レジスタ R ( e ) に記憶 した値ひ すなわち位置決め停止位置 P 2 ま でのパルス数 α との大 小関係を比較 して、 レ ジスタ R ( e ) に記憶されて いる 値が求めたパルス数 P 1 に等 しいか或いはそれよ り 小さ ければ ( ステ ップ S 9 ) 、 レ ジス タ R ( e ) に記憶 した 値 αに主軸 1 回転分のパルス量 P rev を加算した値を新 たな値と して このレ ジス夕 R ( e ) に格納 して ( ステ ツ ブ S 1 0 ) ステ ップ S 9 にも ど り、 再度パルス数 P 1 と 位置偏差記憶レジス夕 R ( e ) に新たに格納 した値 α と の大小関係を比較する。 こ う して、 ステップ S 9 とステ ヅブ S 1 0 との間を繰 り返 して レ ジス タ R ( e ) に格納 される値が徐徐に増加 して行き、 ついに レジスタ R ( e ) に格納されている値がパルス数 P 1 よ り大き く なつた と き には、 すなわち、 ( 1 1 ) 式を成 り立たせる整数 nの 値が見い出されたと きは、 フラグ F をセ ッ ト し (ステ ツ プ S l l ) 、 位置ループ制御を開始する。 すなわち、 図 2 におけるスィ ッチ S 1 をオフ と し、 スィ ッチ S 2 をォ ン に した状態に切 り換える。 そこで、 位置偏差記憶レジ ス夕 R ( e ) に初期値と して記憶されている位置偏差 e から当該周期の位置フ ィ ー ドバッ ク量 P f を減 じて新 し い位置偏差 e と して このレ ジス夕 R ( e ) に記憶 し ( ス テ ツプ S 1 2 ) 、 該レ ジス夕 R ( e ) に記憶する位置偏 差 eの平方根の値とパラメ 一夕 P R Mの平方根を乗 じて 速度指令 V cmd を求め (ステ ップ S 1 3 ) 、 速度ループ 処理に引 き渡 し当該周期の処理を終了する。
次の周期か らは、 移動量設定完了フラ グ Fがセ ッ ト さ れて いるから、 ステ ヅブ S 1 およびステ ップ S 3の判別 処理からステ ップ S 1 2およびステ ップ S 1 3へ移行す る処理を繰 り返 し実行 し、 位置ループ処理を実行する こ と になる。 そ して、 位置偏差記憶レ ジスタ R ( e ) に記 憶する値が 「 0 」 となれば、 すなわち、 位置偏差が 「 0 となれば、 速度指令は 「 0 」 とな り 主軸 1 を停止する こ と になる。
以上、 一実施例と して動力伝達機構 2 の減速比が 1 : 1 である場合 (主軸 1 と主軸モータ 4 とが直結されて い る場合も同様である ) について説明 したが、 これ以外の 減速比を有する構成であって も、 前述の各数式を補正 し て用いる こ と によ り、 実施例の主軸位置決め方法を同様 に して適用する こ とができ る。.

Claims

請 求 の 範 囲
1 . 主軸モ一夕 を速度制御に基づき駆動転制御 して いる と き に定位置停止指令を受ける と、 その速度制御に基づ きモー夕回転速度を トルク一定領域を規定する最大回転 速度の基底速度以下の速度にまで低下させ、
その速度にまで低下させた とき、 初期の位置偏差と し てモー夕 1 回転内の現在位置及び指令停止位置に関係 し た値を設定した う えで、 モー夕の駆動制御を速度制御か ら位置制御に切 り換え、
以後指令停止位置まで直線加減速制御を実行する、 こ とを特徴する主軸位置決め方法。
2 . 主軸を所望回転位置に位置決めする主軸位置決め方 法において、 主軸モータが トルク一定領域を規定する最 大回転速度の基底速度以下になる と、 主軸モータの速度 及び主軸 1 回転内における回転位置を検出 し、 前記検出 速度に基づいて設定されて いる減速直線に沿って減速停 止させる最小移動量を求める と共に、 検出回転位置か ら 目標の停止位置までの移動量を求め、 該移動量が前記最 小移動量よ り大き く なるまで順次主軸 1 回転分の移動量 を前記移動 ITに加算 して、 該加算 して得られた移動量を 位置偏差と して設定 し、 該位置偏差の平方根に設定位置 ループゲイ ンを乗 じて位置ループ制御を行ない速度指令 を求め、 該速度指令に基づいて主軸モー夕 を駆動制御す るよ う に した こ と を特徴とする主軸位置決め方法。
3 . 前記最小移動量は検出速度の 2乗を上記減速直線に よって決ま る予め設定されたパラ メ 一夕値で除 して求め、 前記位置ループゲイ ンは上記パラ メ ータの平方根の値で ある こ と を特徴とする請求項 1記載の主軸位置決め方法。
4. 以下の工程よ り なる主軸位置決め方法
( a ) 定位置停止指令を受ける と、 主軸モータの回 転速度を トルク一定領域を規定する最大回転速度 N 1以 下の速度 N にまで低下させ、
( ) その低下させた回転速度 Nか ら最終停止位置 まで予め決め られた一定の減速度で回転させる と した と きの位置検出器の出力回転パルス数 P 1 を算出 し、
( c ) 主軸の現在の一回転内点位置から主軸の指令 停止位置に達するまでの上記位置検出器の出力回転パル ス数 αを算出 し、
( d ) 上記 ( b ) で算出 したパルス数 P 1 と上記 ( c ) で算出 したパルス数 α と を比較し、
( e ) 上記パルス数 P 1 よ り も上記パルス数 orの方 が大き い と き には のパルス数 αを初期の位置偏差と し て、 ま た、 上記パルス数 Ρ 1 が上記パルス数 α と等 しい か或いはそれよ り も大きい と きには、 上記位置検出器の 主軸一回転の出力回転パルス数を P rev と し、 1 ま たは それ以上の整数 nに対 して
+ ( n— 1 ) ' P rev < Ρ 1 ≤ α 十 η · Ρ rev が成立する と きの ひ + η · P rev を初期の位置偏差と し て、 エラ 一カ ウ ンタ に設定 し、
( f ) 以後、 上記 ( c ) で求めた初期偏差か ら位置 検出器か らの帰還パルス数 P f を減算し、 その減算 した 値のパルス数の平方根に乇一夕の減速特性によ り決ま る ゲイ ンを乗 じて速度指令を得て、 該速度指令に基づいて 主軸モータ を駆動制御する.
PCT/JP1993/000092 1992-02-14 1993-01-26 Spindle positioning method WO1993015876A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69309803T DE69309803T2 (de) 1992-02-14 1993-01-26 Verfahren zur regelung der lage einer spindel
KR1019930703129A KR960012701B1 (ko) 1992-02-14 1993-01-26 주축 위치 결정 방법
EP93902532A EP0580866B1 (en) 1992-02-14 1993-01-26 Spindle positioning method
US08/133,127 US5519297A (en) 1992-02-14 1993-01-26 Spindle positioning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4059114A JPH05228794A (ja) 1992-02-14 1992-02-14 主軸位置決め方式
JP4/59114 1992-02-14

Publications (1)

Publication Number Publication Date
WO1993015876A1 true WO1993015876A1 (en) 1993-08-19

Family

ID=13103967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000092 WO1993015876A1 (en) 1992-02-14 1993-01-26 Spindle positioning method

Country Status (6)

Country Link
US (1) US5519297A (ja)
EP (1) EP0580866B1 (ja)
JP (1) JPH05228794A (ja)
KR (1) KR960012701B1 (ja)
DE (1) DE69309803T2 (ja)
WO (1) WO1993015876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394718A (zh) * 2013-08-21 2013-11-20 苏州罗兰机电设备有限公司 一种可随时调节主轴转速的普通车床

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219228B2 (ja) * 1994-07-25 2001-10-15 船井電機株式会社 モータのサーボ制御装置
DE19708894C2 (de) * 1997-03-05 2003-04-30 Pfauter Hermann Gmbh Co Verfahren zur Lage- und/oder Geschwindigkeitsregelung von Achsen an einer Werkzeugmaschine sowie Vorrichtung zur Durchführung eines solchen Verfahrens
US6069464A (en) * 1998-10-01 2000-05-30 Umax Data Systems Inc. Driving apparatus for an image processing system
JP3628199B2 (ja) * 1999-01-22 2005-03-09 ファナック株式会社 サーボモータの制御装置
US6510019B1 (en) 1999-11-12 2003-01-21 Maxtor Corporation Acceleration tracking position controller
DE10305396A1 (de) 2003-02-11 2004-08-19 Dr. Johannes Heidenhain Gmbh Verfahren zur Spindelorientierung
JP4099503B2 (ja) * 2005-12-19 2008-06-11 ファナック株式会社 回転軸の定位置停止制御装置
JP4382123B2 (ja) * 2007-12-13 2009-12-09 ファナック株式会社 制御モード切り換え機能を有する数値制御装置
JP5484949B2 (ja) 2010-02-23 2014-05-07 山洋電気株式会社 モータの制御方法及び装置
JP5878794B2 (ja) * 2012-03-06 2016-03-08 オークマ株式会社 主軸位置決め装置
CN110543138B (zh) * 2019-09-11 2022-07-15 上海金自天正信息技术有限公司 一种主轴定位方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154661A (en) * 1979-05-18 1980-12-02 Matsushita Electric Ind Co Ltd Data collector
JPS63273114A (ja) * 1987-05-01 1988-11-10 Mitsubishi Electric Corp 定位置停止制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170865A (en) * 1978-03-10 1979-10-16 J. P. Stevens & Co., Inc. Yarn slubbing device
JPS55154611A (en) * 1979-05-23 1980-12-02 Mitsubishi Electric Corp Control unit for positioning stop
JPS59231615A (ja) * 1983-06-13 1984-12-26 Fanuc Ltd 位置ル−プゲイン制御方法
JPH0736131B2 (ja) * 1989-01-10 1995-04-19 富士通株式会社 サーボ回路
JPH0736130B2 (ja) * 1989-01-10 1995-04-19 富士通株式会社 サーボ位置決め回路
JP2613937B2 (ja) * 1989-01-30 1997-05-28 富士通株式会社 サーボ回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154661A (en) * 1979-05-18 1980-12-02 Matsushita Electric Ind Co Ltd Data collector
JPS63273114A (ja) * 1987-05-01 1988-11-10 Mitsubishi Electric Corp 定位置停止制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0580866A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394718A (zh) * 2013-08-21 2013-11-20 苏州罗兰机电设备有限公司 一种可随时调节主轴转速的普通车床

Also Published As

Publication number Publication date
KR960012701B1 (ko) 1996-09-24
JPH05228794A (ja) 1993-09-07
EP0580866B1 (en) 1997-04-16
US5519297A (en) 1996-05-21
EP0580866A4 (en) 1994-07-27
DE69309803D1 (de) 1997-05-22
DE69309803T2 (de) 1997-07-24
EP0580866A1 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
WO1993015876A1 (en) Spindle positioning method
CN103973202B (zh) 马达控制装置及马达控制方法
JPH09191679A (ja) モータ制御装置
CN108121201A (zh) 一种内部位置伺服控制方法
JPH08182366A (ja) サーボモータの駆動制御装置
CN112713817A (zh) 电动机的控制装置
JPH09282020A (ja) サーボモータ駆動装置
WO1994025910A1 (en) Method for controlling servomotor
JPS6337597B2 (ja)
JP2001157476A (ja) モータ制御装置
JP3403628B2 (ja) 数値制御における送り軸の加減速制御方法および装置
JP2748191B2 (ja) 主軸位置決め装置
JP2819411B2 (ja) 定位置停止制御装置
JPH0869326A (ja) 位置決め制御器
JPH05161371A (ja) 電動機の制御装置及び制御方法
JPH07110715A (ja) ロボットシステムの位置制御装置及びその制御方法
JPH0293713A (ja) 位置決め装置
JPS6052919B2 (ja) ロ−タリ−カツタ−の制御装置
JP2551590B2 (ja) 複写機光学系の速度制御方法
JPH0553631A (ja) ロボツト制御装置
JPH05333933A (ja) ステッピングモータ駆動制御装置
JPH06195118A (ja) 定位置停止制御装置
JPH01222679A (ja) モータの速度制御方法
JPH08185226A (ja) 外乱追従式位置決め制御方法
JP3327298B2 (ja) サーボシステムの同調位相制御における速度指令の生成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993902532

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993902532

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993902532

Country of ref document: EP