WO1993001287A1 - Rekombinante antikörper an der oberfläche von e.coli - Google Patents

Rekombinante antikörper an der oberfläche von e.coli Download PDF

Info

Publication number
WO1993001287A1
WO1993001287A1 PCT/EP1992/001523 EP9201523W WO9301287A1 WO 1993001287 A1 WO1993001287 A1 WO 1993001287A1 EP 9201523 W EP9201523 W EP 9201523W WO 9301287 A1 WO9301287 A1 WO 9301287A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
pal
coli
dna
papl
Prior art date
Application number
PCT/EP1992/001523
Other languages
English (en)
French (fr)
Inventor
Patrick Fuchs
Melvyn Little
Frank Breitling
Stefan Dübel
Original Assignee
Deutsches Krebsforschungszentrum Stiffung Des Öffentlichen Rechts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum Stiffung Des Öffentlichen Rechts filed Critical Deutsches Krebsforschungszentrum Stiffung Des Öffentlichen Rechts
Priority to EP92914024A priority Critical patent/EP0547200B1/de
Priority to DK92914024T priority patent/DK0547200T3/da
Priority to JP5501963A priority patent/JPH06501395A/ja
Priority to US07/982,744 priority patent/US5591604A/en
Priority to DE59209309T priority patent/DE59209309D1/de
Publication of WO1993001287A1 publication Critical patent/WO1993001287A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Definitions

  • the present invention relates to vectors that
  • the invention further relates to the use of these vectors for the rapid isolation of specific ones
  • Antibody-producing cells Finally, the invention relates to methods for isolating specific antibody-producing cells.
  • the object of the present invention is therefore to provide a more efficient means for screening antibody libraries in bacteria.
  • variable domains of single chain antibodies coupled to the lipoprotein of E. coli associated with peptidoglycan (PAL, J. Biochem. (1979), 86, 991-1000; Eur. J. Biochem. (1987), 163, 73-77).
  • PAL is a cell envelope component of E. coli which is particularly resistant to SDS digestion (J. Biochem. (1979), 86, 991-1000). Its peptidoglycan-associated protein component has a molecular weight of 16600 (Eur. J. Biochem. (1987), 163, 73-77) and is modified on the amino-terminal cysteine by a lipid part integrated in the outer membrane. Binding of antibodies to the amino terminus of PAL is therefore a way of presenting them for antigen binding on the cell surface.
  • the antibody-PAL fusion protein was on the
  • Antibody domains were readily accessible on the cell surface.
  • a great attraction of the bacterial system according to the invention is that a large number of antibody molecules are available for binding, in contrast to the five antibody fusion molecules which are bound per particle in the phage system.
  • the use of immunofluorescence labeled antigens should therefore be a rapid means of isolating specific antibody-producing cells.
  • screening with a fluorescence cell sorter (FACS) could theoretically mean an enrichment of at least 10 in one step, since several million bacteria can be scanned simultaneously and individual bacteria can be selected.
  • FACS fluorescence cell sorter
  • specific antibody-producing bacteria could be selected by binding to immobilized antigens.
  • advantages include transformation efficiency, ease of replication, and lack of selection pressure to remove antibody DNA during Genbank amplification.
  • a preferred use of the present invention is to rapidly isolate antibodies against tumor-associated antigens by means of different screening tests. For example, after a first depletion of an antibody gene bank on cell surface antigens of normal tissue, the cells of neoplatic tissue should only bind those antibodies that are specific for differences. This method could also be used to reveal antigenic differences between closely related cells or organelles.
  • the PAL vector system according to the invention could also prove useful, other proteins and peptides on the Present the surface of E.coli. This could then facilitate the production of live vaccines. For example, epitopes inserted in cell surface loops of the LamB protein present in the outer membrane of bacterial bacteria have been used to produce antibodies. The apparent lack of an effect on bacterial growth due to the overexpressed PAL fusion protein could prove to be particularly advantageous for this.
  • an antibody-PAL fusion protein For the production of an antibody-PAL fusion protein, a DNA was used which is responsible for the variable domains of the heavy and light chain of a humanized antibody against chicken lysozyme (described in Nature (1988), 332, 323-327), eighteen of which are the epitope of the tubulin monoclonal Antibody YOL1 / 34 (J. Mol. Biol. (1986), 189, 367-370) containing amino acids were encoded. In addition to being provided as a means of identification, the linker sequence was added in order to facilitate the di erization of the two chains and to prevent their disassociation.
  • PAL Flexible association with PAL was achieved by extending the light chain, which included the first six amino acids of the constant domain.
  • a DNA coding for the leader sequence of the enzyme pectate lyase was ligated to the 5 'end of the DNA for the heavy chain (Lei et al., 1987; Better et al., 1988) and PAL DNA amplified in plasmid pRC2 (Chen and Henning, 1987) was then linked to the antibody DNA (Fig. 1).
  • a small difference between the natural and in vitro synthesized PAL was the replacement of the amino-terminal cysteine, which normally carries the lipid part, with glycine.
  • Fusion protein with that of the putative PAL protein indicated that there were about five times more fusion protein than native PAL.
  • Fusion protein released into the medium even at the beginning of the logarythmic phase, where no signs of cell lysis have yet been detected. This could possibly be due to the saturation of PAL binding sites and an easier transport of antibody domains through the outer membrane or at a hole in it.
  • the medium was passed over a column of Lysozy coupled to Sepharose. Gel electrophoresis and Western blot of the unbound material and the fractions obtained after intensive washing and elution with 0.05 M diethylamine showed that the fusion protein was actually specifically retained on the lysozyme column.
  • Membrane and the tendency of antibody domains to cross the membrane may be due, but also based on the effect of PAL on the outer membrane structure.
  • Fusion protein expressed was much more than in the medium of cells that did not express the fusion protein.
  • E.coli cells with pAPl without antibody-PAL-DNA or with pAPl were transformed, incubated with YOLl / 34 and a second fluorescein-labeled antibody or with biotinylated lysozyme and a fluorescein-labeled avidin.
  • Anti-rat IgG-FITC diluted 1: 100, incubated and washed again in PBS.
  • chicken lysozyme was biotinylated, diluted 1:20 in PBS and incubated with the cells for 1 h at 37 ° C. After insensitive washing with PBS, the cells were incubated for 1 h at 37 ° C. with FITC-avidin, diluted 1: 1000, and washed again in PBS.
  • Leader sequence are merged. This could then facilitate the production of live vaccines.
  • the apparent lack of an effect on bacterial growth due to the overexpressed PAL fusion protein could be particularly advantageous for this.
  • Fig. 1 Antibody-PAL expression plasmid pAPl
  • P / O promoter / operator
  • RBS ribosome binding site
  • Leader signal sequence of pectate lyase
  • Tag linker 18 amino acids containing the epitope for the monoclonal tubulin antibody YOLl / 34
  • PAL peptidoglycan-associated protein.
  • DNAs encoding the heavy and light chain variable domains of a humanized chicken lysozyme antibody derived from monoclonal antibody D 1.3 were encoded a DNA coding for 18 amino acids (GSASAPKLEEGEFSEARE) which contained the epitope for YOL1 / 34.
  • the light chain DNA was extended to include nucleotides encoding the first 6 amino acids of the constant domain.
  • Fig. 2 Expression and binding properties of the antibody-PAL fusion protein
  • Cells were cultivated in 125 ml LB medium to an OD of 0.45 at 600 nm, then induced with ImM IPTG and harvested after 1.5 h.
  • SDS extraction the cells were suspended in 3 ml of H-0 and broken up by shaking them in a cell disruptor for 5 min with 5 ml glass beads (diameter 0.13 mm) and 0.5 mg DNase 1. After adjustment to 1% SDS in 10 mm Tris, pH 7.5, the cell lysate was sedimented at 42,000 g for 45 min at 10 ° C.
  • the pellet was resuspended in 1% SDS / lOmM Tris / 10% glycerol, pH 7.8 for 1 h at 30 ° C. and sedimented as before. This step was repeated at 50 ° C. Fusion proteins were detected on Western blots with the monoclonal antibody YOLl / 34. Before antibody staining, the blots for proteins were stained with Ponceau S. Polyacryla idgele were stained blue with Coomassie. For affinity chromatography, chicken lysozy was coupled to cyanogen bromide activated Sepharose according to the manufacturer's instructions.
  • the lysozyme-Sepharose was incubated for 20 min at room temperature with 10 ml of medium and poured into columns, which were subsequently washed twice with 10 bath volumes of PBS before being eluted with 0.05 M diethylamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Vektor, der dadurch gekennzeichnet ist, daß er eine Einzelkette von Antikörper-variablen Domänen gekoppelt an das mit Peptidoglycan-assoziierte Lipoprotein (PAL) von E.coli exprimiert. Ferner betrifft die vorliegende Erfindung die Verwendung dieses Vektors und ein Verfahren zur Isolierung von spezifischen Antikörper produzierenden Zellen.

Description

Rekombinante Antikörper an der Oberfläche von E.coli
Die vorliegende Erfindung betrifft Vektoren, die
Einzelketten-Antikörper exprimieren, die mit der Oberfläche von Antikörper-produzierenden Zellen gekoppelt sind. Ferner betrifft die Erfindung die Verwendung dieser Vektoren zur raschen Isolierung einzelner spezifischer
Antikörper-produzierender Zellen. Schließlich betrifft die Erfindung Verfahren zur Isolierung von spezifischen Antikörper-produzierenden Zellen.
Frühere Verfahren zum Screenen von rekombinanten Antikörpern haben ELISA-Tests von bakteriellen überständen (Nature (1989), 341, 544-546) oder radioaktiv markierte Immunogene zum Screenen von auf Nitrocellulose übertragenen Plaques von mit Phagen-Expressionsvektoren infizierten, bakteriellen Kolonien vorgesehen (Science (1989), 246, 1275-1281; Proc. Natl. Acad. Sei. USA (1990), 87, 6450-6454; Proc. Natl. Acad. Sei. USA (1990), 87, 8095-8099). Zur Selektion von spezifischen Antikörpern aus Genbanken willkürlich kombinierter, leichter und schwerer Ketten, die kein Obergewicht von Antikörpern für ein bestimmtes Antigen haben, würde das Screenen von Millionen von Antikörperklonen jedoch stark erleichtert werden, wenn Antikörper gezielt auf die Oberfläche von Bakterien oder Viren gebracht werden. Immobilisierte Antigene könnten dann zur Selektion von spezifischen Antikörpern verwendet werden.
Ein virales System für die Oberflächenpräsentation von Antikörpern wurde kürzlich in Nature (1990), 348, 552-554 beschrieben. Variable Domänen von Einzelketten (Vorläufer des Antikδrperkonstruktes der Anmelderin) wurden mit dem Anheftungsprotein (Protein p III) von Phagenpartikeln fusioniert. Phagen, die das Fusionsprotein trugen, konnten an Antigen-Säulen angereichert werden. Es zeigte sich jedoch, daß diese Fusionsphagen hauptsächlich für relativ kleine Inserts geeignet sind, da wahrscheinlich die größeren Inserts einen negativen Effekt auf die Infektivität von p III haben. Genbanken von "Phagen-Antikδrpern" beinhalten daher die Gefahr, daß
Deletionsmutanten rasch dominant werden. Ferner scheint eine relativ große Anzahl von Phagenpartikeln unspezifisch an Säulen immobilisierten Antigens zu binden.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein effizienteres Mittel zum Screenen von Antikδrper-Genbanken in Bakterien bereitzustellen.
Erfindungsgemäß wird dies durch einen Vektor erreicht, der variable Domänen von Einzelketten-Antikδrpern, gekoppelt an das mit Peptidoglycan assoziierte Lipoprotein von E.coli (PAL, J. Biochem. (1979), 86, 991-1000; Eur. J. Biochem. (1987), 163, 73-77), exprimiert.
PAL ist eine Zellhüllen-Komponente von E.coli, die besonders resistent gegen SDS-AufSchluß ist (J. Biochem. (1979), 86, 991-1000). Ihre Peptidoglycan assoziierte Protein-Komponente hat ein Molekulargewicht von 16600 (Eur. J. Biochem. (1987), 163, 73-77) und ist am Amino-terminalen Cystein durch einen in der äußeren Membran integrierten Lipidteil modifiziert. Die Bindung von Antikörpern an den Amino-Terminus von PAL ist daher eine Möglichkeit, sie zur Antigen-Bindung an der Zelloberfläche zu präsentieren.
Das Antikörper-PAL-Fusionsprotein wurde auf der
Zelloberfläche durch einen onoklonalen Antikörper identifiziert, der gegen ein Epitop in der Linker-Sequenz zwischen den schweren und leichten Ketten gerichtet ist. Es konnte Antigen binden und war fest an die Mureinschicht der zeilhülle gebunden. Immunfluoreszenzstudien an nicht-fixierten Zellen zeigten, daß funktioneile
Antikörper-Domänen gut an der Zelloberfläche zugänglich waren.
Ein großer Reiz des erfindungsgemäßen bakteriellen Systems liegt darin, daß ein Menge von Antikδrpermolekülen zur Bindung verfügbar sind, im Gegensatz zu den fünf Antikδrper-Fusionsmolekülen, die pro Partikel im Phagensystem gebunden werden. Die Verwendung von Immunfluoreszenz markierten Antigenen sollte deshalb ein rasches Mittel zur Isolierung von spezifische Antikörper-produzierenden Zellen darstellen. Beispielsweise könnte Screenen mit einem Fluoreszenz-Zellsorter (FACS) theoretisch eine Anreicherung von mindestens 10 in einem schritt bedeuten, da mehrere Millionen Bakterien gleichzeitig abgetastet und einzelne Bakterien selektiert werden können. Andererseits könnten spezifische Antikörper-produzierende Bakterien durch Bindung an immobilisierte Antigene selektiert werden. weitere Vorteile umfassen die Transformations-Effizienz, die Leichtigkeit der Vermehrung und das Fehlen eines Selektionsdrucks auf die Entfernung von Antikörper-DNA während der Genbank-Amplifikation.
Eine bevorzugte Verwendung der vorliegenden Erfindung liegt darin, Antikörper gegen Tumor-assoziierte Antigene rasch durch unterschiedliche Screening-Tests zu isolieren. Beispielsweise sollten nach einer ersten Abreicherung einer Antikörper-Genbank auf Zelloberflächen-Antigenen normalen Gewebes die Zellen neoplatischen Gewebes nur jene Antikörper binden, die für unterschiede spezifisch sind. Dieses Verfahren könnte ebenfalls zum Aufdecken antigener unterschiede zwischen nah verwandten Zellen oder Organellen herangezogen werden. -as erfindungsgemäße PAL-Vektorsyste könnte sich ebenfalls als nützlich erweisen, andere Proteine und Peptide an der Oberfläche von E.coli zu präsentieren. Dies könnte dann die Produktion von Lebendvakzinen erleichtern. Beispielsweise wurden Epitope, die in Zelloberflächen-Loops des in der äußeren Membran grammnegativer Bakterien vorliegenden LamB-Proteins inseriert waren, zur Herstellung von Antikörpern verwendet. Hierfür könnte sich das offensichtliche Fehlen eines Effekts auf das bakterielle Wachstum durch das überexprimierte PAL-Fusionsprotein als besonders vorteilhaft erweisen.
Die nachfolgenden Beispiele erläutern die Erfindung.
Beispiel 1
Zur Herstellung eines Antikörper-PAL-Fusionsproteins wurde eine DNA verwendet, die für die variablen Domänen der schweren und leichten Kette eines humanisierten Antikörpers gegen Hühnerlysozym (beschrieben in Nature (1988), 332, 323-327), woran achtzehn das Epitop des Tubulin monoklonalen Antikörpers YOL1/34 (J. Mol. Biol. (1986), 189, 367-370) enthaltende Aminosäuren gebunden waren, kodierte. Neben der Bereitstellung als Identifikationsmittel wurde die Linker-Sequenz zugegeben, um die Di erisierung der zwei Ketten zu erleichtern und ihre Disassoziierung zu verhindern.
Eine flexible Verbindung mit PAL wurde erreicht, indem die leichte Kette verlängert wurde, wodurch sie die ersten sechs Aminosäuren der konstanten Domäne umfaßte. Zur Erleichterung des Transports durch die cytoplasmatische Membran wurde eine für die Leader-Sequenz des Enzyms Pectat Lyase kodierende DNA mit dem 5'-Ende der DNA für die schwere Kette (Lei et al., 1987; Better et al., 1988) ligiert und PAL-DNA, die im Plasmid pRC2 (Chen and Henning, 1987) amplifiziert worden war, wurde dann mit der Antikörper-DNA (Fig. 1) verbunden. Ein kleiner Unterschied zwischen dem natürlichen und in vitro synthetisierten PAL lag im Austausch des amino-terminalen, normalerweise den Lipidteil tragende Cystein durch Glycin.
Beispiel 2
Zur Prüfung, ob das Fusionsprotein in voller Länge exprimiert werden konnte, wurde 1 mM IPTG einer sich in Log-Phase befindlichen, mit pAPl transformierten E.coli-Kultur zugegeben. In Western Blots von SDS-Polyacrylamidgelen wurde das Antikörper-PAL- Fusionsprotein durch einen monoklonalen Antikörper identifiziert, der gegen das Marker-Peptid in der
Linker-Sequenz zwischen den schweren und leichten Ketten (Fig. 2a) gerichtet war. Sein offensichtliches Molekulargewicht von etwa 48 kd war etwas höher als das vorhergesagte von Mr 45000, was wahrscheinlich an der abweichenden elektrophoretischen Beweglichkeit von PAL lag. Das Vorliegen einer schwächeren Bande niedrigeren Molekulargewichts deutete auf einen geringen Grad an Proteolyse hin. Eine cytoplasmatische E.coli-Komponente höheren Molekulargewichts, die mit YOLl/34 kreuzreagierte, wurde in allen Zellen gefunden. Vergleiche der
Wachstumsraten von E.coli, die mit pAPl und pAPl ohne Antikδrper-PAL-DNA transformiert waren, zeigten nach Zugabe von IPTG kleine Unterschiede innerhalb eines Zeitraums von 5 h. Im Gegensatz dazu begann eine identische, mit pAPl ohne PAL-DNA transformierte E.coli Kultur, die nur einen
Einzelketten-Antikδrper expri ierte, nach 2 h zu lysieren (Fig. 2b). Beispiel 3
Zur Prüfung der Bindung des Fusionsproteins an die Zellwand wurden Bakterien durch Schütteln mit Glasperlen in einem Zellzerkleinerer aufgebrochen und mit 1% SDS bei 10°C extrahiert. Das restliche Material wurde 1 h bei 30°C mit 1% SDS und dann 1 h bei 50°C mit 1% SDS inkubiert. Eine Western Blot-Analyse und angefärbte Polyacrylamidgele zeigten, daß zwar etwas von dem Fusionsprotein bei 30°C entfernt wurde, daß aber der Hauptanteil höhere Temperaturen benötigte, um freigesetzt zu werden. Diese Bindungseigenschaften waren sehr ähnlich jenen, die für PAL alleine beschrieben wurden (J. Biochem. (1979), 86, 991-1000; J. Biochem. (1979), 86, 979-989) und ermöglichten das Herstellen hoch angereicherter Proben in wenigen Verfahrensschritten. Natives PAL-Protein wandert mit einem offensichtlichen Molekulargewicht von etwa 20 kd und entspricht wahrscheinlich einem Protein diesen Molekulargewichts, das mit dem Fusionsprotein co-gereinigt wurde. Densitometrischer Vergleich der Mengen des
Fusionsproteins mit denen des vermeintlichen PAL-Proteins wiesen daraufhin, daß etwa fünfmal mehr Fusionsprotein als natives PAL vorlagen.
überraschenderweise wurde ein kleiner Teil des
Fusionsproteins in das Medium freigesetzt, sogar schon zu Beginn der logarythmischen Phase, wo noch keine Zeichen von Zelllyse entdeckt werden konnten. Dies könnte möglicherweise an der Sättigung von PAL-Bindungsstellen und an einem erleichterten Transport von Antikörper-Domänen durch die äußere Membran oder an einem Loch in dieser liegen. Zur Bestimmung, ob das Fusionsprotein Antigen binden konnte, wurde das Medium über eine Säule von an Sepharose gekoppeltem Lysozy gegeben. Gelelektrophorese und Western Blot des ungebundenen Materials und der nach intensivem Waschen und Eluieren mit 0,05 M Diethylamin erhaltenen Fraktionen zeigte, daß das Fusionsprotein tatsächlich spezifisch an der Lysozymsäule zurückgehalten wurde. Beispiel 4
Die Zugänglichkeit des gebundenenAntikδrpers für extrazelluläre Proteine an der Oberfläche nicht-fixierter Zellen wurde getestet, indem E.coli-Zellen mit dem monoklonalen Antikörper YOL1/34 und dann mit einem fluoreszenzmarkierten Anti-Rattenserum inkubiert wurden. E.coli-Zellen, die das Antikδrper-PAL Fusionsprotein exprimierten, zeigten eine starke Fluoreszenz, die am Rand und an den Verbindungen innerhalb kurzer Ketten besonders stark war. Im Gegensatz dazu zeigten E.coli-Zellen, die das Fusionsprotein nicht exprimierten, keine Fluoreszenz. Experimente mit fixierten Zellen ergaben die gleichen Resultate. Die gute Zugänglichkeit an der Zelloberfläche mag nicht nur das gezielte Anbringen von PAL auf der äußeren
Membran und der Neigung von Antikörper-Domänen, die Membran zu durchqueren, bedingt sein, sondern auch auf dem Effekt von PAL auf die äußere Membranstruktur beruhen. Messungen von ß-Lactamase, einem löslichen periplasmatischen Protein, ergaben, daß hiervon im Medium von Zellen, die das
Fusionsprotein exprimierten, weitaus mehr vorlag, als im Medium von Zellen, die das Fusionsprotein nicht exprimierten.
Inkubationen von nicht-fixierten Zellen mit dem biotinylierten Antigen, nämlich Hühner-Lysozym, was etwas schädlich für die zelluläre Integrität ist, demonstrierten die Fähigkeit des Fusionsproteins, Antigen in situ zu binden. Nach intensivem Waschen und Inkubation mit fluoreszierendem Avidin, zeigten E.coli-pAPl eine bezeichnende Fluoreszenz. Im Gegensatz dazu zeigten E.coli, die mit pAPl ohne Antikδrper-PAL-DNA transformiert waren, keine Fluoreszenz.
Hinsichtlich der Zugänglichkeit funktioneller Antikörper-Domänen an der Zelloberfläche wurden
E.coli-Zellen, die mit pAPl ohne Antikδrper-PAL-DNA bzw. mit pAPl transformiert waren, mit YOLl/34 und einem zweiten Fluorescein-markierten Antikörper oder mit biotinyliertem Lysozym und einem Fluorescein-markierten Avidin inkubiert.
Durchführung:
Zellen wurden in PBS gewaschen und zum Absetzen auf Poly-L-Lysin-beschichtete Objektträger 20 min bei 4°C inkubiert. Sie wurden dann 1 h bei 37°C mit dem monoklonalen Antikörper YOL1/34, verdünnt 1:100 in PBS, inkubiert. Nach Waschen in PBS wurden sie 1 h bei 37°C mit
Anti-Ratten-IgG-FITC, verdünnt 1:100, inkubiert und erneut in PBS gewaschen. Zur Antigenbindung wurde Hühnerlysozym biotinyliert, 1:20 in PBS verdünnt und mit den Zellen 1 h bei 37°C inkubiert. Nach insentivem Waschen mit PBS wurden die Zellen 1 h bei 37°C mit FITC-Avidin, verdünnt 1:1000, inkubiert und erneut in PBS gewaschen.
Es sollte auch möglich sein, andere Proteine und Peptide an die Zellwand zu binden, mit der Maßgabe, daß sie sekretiert werden können, wenn sie mit einer bakteriellen
Leader-Sequenz fusioniert werden. Dies könnte dann die Produktion von Lebendvakzinen erleichtern. Hierfür könnte das offensichtliche Fehlen eines Effekts auf das bakterielle Wachstum durch das überexprimierte PAL-Fusionsprotein besonders vorteilhaft sein.
Beschreibung der Figuren
Fig. 1: Antikδrper-PAL Expressionsplasmid pAPl
P/O: Promoter/Operator; RBS: Ribosomenbindungsstelle; Leader: Signalsequenz der Pectatlyase; Tag-Linker: 18 Aminosäuren, die das Epitop für den monoklonalen Tubulin-Antikδrper YOLl/34 enthalten; PAL: Peptidoglycan-assoziiertes Protein. Konstruktion:
DNAs, die für die variablen Domänen der schweren und leichen Kette eines humanisierten Hühner-Lysozym-Antikörpers, der von dem monoklonalen Antikörper D 1.3 (Amit et al., Science (1986), 233, 747-754) abstammte, codierten, wurden durch eine für 18 Aminosäuren (GSASAPKLEEGEFSEARE) codierende DNA, die das Epitop für YOL1/34 enthielt, verbunden. Die DNA für die leichte Kette wurde verlängert, um Nucleotide zu umfassen, die für die ersten 6 Aminosäuren der konstante Domäne codieren. Diese wurde dann mit dem 3'-Ende der für die Signalsequenz des Enzyms Pectatlyase codierenden DNA ligiert, die in die Ncol-Stelle des geringfügig modifizierten Expressionsplasmids pKK233-2 (Clontech, Palo Alto, Ca, USA) inseriert worden war. PAL-DNA, die unter Verwendung von Primern wie in Fig. 1 gezeigt, in dem Plasmid pRC2 a plifiziert worden war, wurde dann mit der Antikörper-DNA verbunden. Die Sequenz des inserierten PALs war identisch mit dem nativen PAL, außer, daß das aminoterminale Cystein durch Glycin ersetzt worden war.
Fig. 2: Expression und Bindungseigenschaften des Antikδrper-PAL Fusionsproteins
(a) Western Blots von induziertem Fusionsprotein nach Zugabe von ImM IPTG. 1, pAPl ohne Antikδrper-PAl DNA (+IPTG); 2, pAPl ohne PAL DNA (-IPTG); 3, pAPl ohne PAL DNA (+ IPTG); 4, pAPl (-IPTG); 5, pAPl (+IPTG). (b) Wachstumskurve von E.coli, transformiert mit pAPl, pAPl ohne PAL DNA und pAPl ohne Antikδrper-PAL DNA (Kontrolle) und nach Induktion mit ImM IPTG. Induktion und Extraktion von Antikδrper-PAL:
Der pDMI-tragende E.coli-Stamm BMH71/18, der den lac-Repressor exprimiert, wurde mit pAPl und pAPl-Vorläufern transformiert. Zellen wurden in 125 ml LB-Medium bis zu einer OD von 0,45 bei 600 nm kultiviert, dann mit ImM IPTG induziert und nach 1,5 h geerntet. Zur SDS-Extraktion wurden die Zellen in 3 ml H-0 suspendiert und aufgebrochen, indem sie in einem Zellzerstδrer 5 min mit 5 ml Glasperlen (Durchmesser 0,13 mm) und 0,5 mg DNase 1 geschüttelt wurden. Nach Einstellen auf 1% SDS in lOmM Tris, pH 7,5, wurde das Zelllysat bei 42000 g 45 min bei 10°C sedimentiert. Das Pellet wurde in 1% SDS/lOmM Tris/10% Glycerin, pH 7,8 1 h bei 30°C resuspendiert und wie vorher sedimentiert. Dieser Schritt wurde bei 50°C wiederholt. Fusionsproteine wurden auf Western Blots mit dem monoklonalen Antikörper YOLl/34 nachgewiesen. Vor der Antikörper-Anfarbung wurden die Blots für Proteine mit Ponceau S. angefärbt. Polyacryla idgele wurden mit Coomassie blau angefärbt. Zur Affinitäts-Chromatographie wurde Hühner-Lysozy an Cyanogenbromid-aktivierte Sepharose gemäß den Vorschriften des Herstellers gekoppelt. Die Lysozym-Sepharose wurde 20 min bei Raumtemperatur mit 10 ml Medium inkubiert und in Säulen gegossen, die nachfolgend zweimal mit 10 Badvolumina PBS gewaschen wurden, bevor sie mit 0,05 M Diethylamin eluiert wurden.

Claims

Patentansprüche
1. Vektor, dadurch gekennzeichnet, daß er eine Einzelkette von Antikörper-variablen Domänen gekoppelt an das mit Peptidoglycan assoziierte Lipoprotein (PAL) von E.coli exprimiert.
2. Vektor nach Anspruch 1, dadurch gekennzeichnet, daß er das Plasmid pAPl von Figur 1 ist.
3. Verwendung des Vektors nach Anspruch 1 oder 2 zur raschen Isolierung einzelner spezifischerAntikδrper- produzierender Zellen.
4. Verfahren zur Isolierung von spezifischenAntikörper- produzierenden Zellen, bei dem man
(a) Bakterien mit einem Vektor nach Anspruch 1 oder 2 transformiert,
(b) Bakterien, die spezifische Antikörper an der Zelloberfläche exprimieren, durch fluoreszenzvermitteltes Zellsorten oder durch Bindung an immobilisierte Antigene selektiert.
5. Verwendung des Expressionsvektors nach Anspruch 1 oder 2 zur Präsentation anderer Proteine oder Peptide auf der
Oberfläche von Bakterien, indem die Antikörper-DNA durch DNA des gewünschten Polypeptids ersetzt wird.
PCT/EP1992/001523 1991-07-08 1992-07-06 Rekombinante antikörper an der oberfläche von e.coli WO1993001287A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP92914024A EP0547200B1 (de) 1991-07-08 1992-07-06 Rekombinante antikörper an der oberfläche von e.coli
DK92914024T DK0547200T3 (da) 1991-07-08 1992-07-06 Rekombinante antistoffer på overfladen af E. coli
JP5501963A JPH06501395A (ja) 1991-07-08 1992-07-06 大腸菌の表面上の組換え抗体
US07/982,744 US5591604A (en) 1991-07-08 1992-07-06 Recombinant antibodies at the surface of E. coli
DE59209309T DE59209309D1 (de) 1991-07-08 1992-07-06 Rekombinante antikörper an der oberfläche von e.coli

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4122598.8 1991-07-08
DE4122598A DE4122598C1 (de) 1991-07-08 1991-07-08

Publications (1)

Publication Number Publication Date
WO1993001287A1 true WO1993001287A1 (de) 1993-01-21

Family

ID=6435697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/001523 WO1993001287A1 (de) 1991-07-08 1992-07-06 Rekombinante antikörper an der oberfläche von e.coli

Country Status (8)

Country Link
US (1) US5591604A (de)
EP (1) EP0547200B1 (de)
JP (1) JPH06501395A (de)
AT (1) ATE165619T1 (de)
DE (2) DE4122598C1 (de)
DK (1) DK0547200T3 (de)
ES (1) ES2118822T3 (de)
WO (1) WO1993001287A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017509A1 (de) * 1993-12-23 1995-06-29 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Bakterien zur herstellung stabiler fusionsproteine und verfahren zu deren nachweis
EP0732404A1 (de) * 1993-12-03 1996-09-18 Asahi Kasei Kogyo Kabushiki Kaisha Vektor zur expression und detektion

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708622B1 (fr) * 1993-08-02 1997-04-18 Raymond Hamers Vecteur recombinant contenant une séquence d'un gène de lipoprotéine de structure pour l'expression de séquences de nucléotides.
US5516637A (en) * 1994-06-10 1996-05-14 Dade International Inc. Method involving display of protein binding pairs on the surface of bacterial pili and bacteriophage
WO1997032017A1 (en) * 1996-02-26 1997-09-04 Morphosys Gesellschaft Für Proteinoptimierung Mbh Novel method for the identification of nucleic acid sequences encoding two or more interacting (poly)peptides
US8349602B1 (en) 1996-04-19 2013-01-08 Xenogen Corporation Biodetectors targeted to specific ligands
US7094579B2 (en) * 2002-02-13 2006-08-22 Xoma Technology Ltd. Eukaryotic signal sequences for prokaryotic expression
US8066777B2 (en) * 2002-10-24 2011-11-29 Biomet Manufacturing Corp. Method and apparatus for wrist arthroplasty
EP1623996A1 (de) * 2004-08-06 2006-02-08 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Verbessertes Verfahren zur Auswahl eines Proteins von einer Bibliothek
US8353965B2 (en) * 2004-09-03 2013-01-15 Seitz Jr William H Small joint orthopedic implants and their manufacture
EP2516702B1 (de) 2009-12-23 2018-03-21 Affinity Biosciences Pty Ltd Proteinanzeige
ES2609313T3 (es) 2011-06-29 2017-04-19 Affinity Biosciences Pty Ltd Método de expresión de proteínas

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIO/TECHNOLOGY Bd. 9, Nr. 12, Dezember 1991, NATURE AMERICA, INC., NEW YORK, US Seiten 1369 - 1372 P. FUCHS ET AL. 'Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein' *
EUR. J. BIOCHEM. Bd. 163, Nr. 1, Februar 1987, SPRINGER VERLAG, BERLIN, BRD; Seiten 73 - 77 R.CHEN AND U.HENNING 'Nucleotide sequence of the gene for the peptidoglycan-associated lipoprotein of Escherichia coli K12' in der Anmeldung erwähnt *
NATURE Bd. 349, 24. Januar 1991, MACMILLAN JOURNALS LTD., LONDON, UK; Seiten 293 - 299 G.WINTER AND C. MILSTEIN 'Man-made antibodies' *
PROTEINS: STRUCTURE, FUNCTION AND GENETICS Bd. 8, Nr. 4, 1990, WILEY-PRESS,NY,US; Seiten 309 - 314 S. BASS ET AL. 'Hormone phage: An enrichment method for variant proteins with altered binding properties' *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732404A1 (de) * 1993-12-03 1996-09-18 Asahi Kasei Kogyo Kabushiki Kaisha Vektor zur expression und detektion
EP0732404A4 (de) * 1993-12-03 1997-07-30 Asahi Chemical Ind Vektor zur expression und detektion
US6214613B1 (en) 1993-12-03 2001-04-10 Ashai Kasei Kogyo Kabushiki Kaisha Expression screening vector
WO1995017509A1 (de) * 1993-12-23 1995-06-29 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Bakterien zur herstellung stabiler fusionsproteine und verfahren zu deren nachweis

Also Published As

Publication number Publication date
DE4122598C1 (de) 1992-07-30
ATE165619T1 (de) 1998-05-15
US5591604A (en) 1997-01-07
EP0547200A1 (de) 1993-06-23
EP0547200B1 (de) 1998-04-29
DE59209309D1 (de) 1998-06-04
JPH06501395A (ja) 1994-02-17
DK0547200T3 (da) 1999-03-15
ES2118822T3 (es) 1998-10-01

Similar Documents

Publication Publication Date Title
DE4122599C2 (de) Phagemid zum Screenen von Antikörpern
Roth et al. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription.
DE112006003608T5 (de) Verfahren zur Präsentation von Zielproteinen an der Zelloberfläche unter Verwendung von Bacillus Anthracis-Exosporium
DE69533644T2 (de) Rezeptorstrukturen aus bakterien
DE69930164T2 (de) Intein-vermittelte cyclisierung von peptiden
US5849576A (en) Tetracycline promoter for the stringently regulated production of recombinant proteins in prokaryotic cells
EP0547200B1 (de) Rekombinante antikörper an der oberfläche von e.coli
CH621147A5 (en) Process for obtaining a cell culture which produces a desired polypeptide by genetic modification of microorganisms
Wery et al. HU-GFP and DAPI co-localize on the Escherichia coli nucleoid
DE60021188T2 (de) Modifizierter humaner granulozyten-kolonie stimulierenderfaktor sowie verfahren zur herstellung desselben
Wurtz et al. Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles
AT412400B (de) Minicircle-herstellung
DE60123819T2 (de) Methode zur in vivo identifizierung von intrazellularen epitopen
JPH03501801A (ja) クローン化プロテインg変異体遺伝子及びそれから発現されたプロテインg変異体
JPS61264000A (ja) 標識ペプチドによるタンパク質の合成
EP0882129B1 (de) Rekombinante expression von s-layer-proteinen
EP1307490B1 (de) Fv-konstrukte mit beeinflussbarer affinitat zu einer zu bindenden substanz
DE4344350C2 (de) Bakterien zur Herstellung stabiler Fusionsproteine und Verfahren zu deren Nachweis
Kato et al. Isolation of the major basic nuclear protein and its localization on chromosomes of the dinoflagellate, Oxyrrhis marina
Muesing et al. High-level expression in Escherichia coli of calcium-binding domains of an embryonic sea urchin protein
DE69432963T2 (de) Plasmid und damit transformierte E. Coli Stämme
CH693031A5 (de) Nucleinsäure, die einen Nervengewebe-Natriumkanal kodiert.
EP2816355A2 (de) Detektionsverfahren zur Detektion von Bakterien, Verfahren zur Herstellung von Fusionsproteinen und Fusionsprotein
KR102138153B1 (ko) 세포 투과성 펩타이드 및 이의 고속 대량 스크리닝 방법
DE602004003835T2 (de) Peptid-inhibitor der proteintranslation und dessen verwendung bei der steuerung der proteintranslation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992914024

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992914024

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992914024

Country of ref document: EP