WO1993001232A1 - Method of regenerating coated plastic wastes - Google Patents

Method of regenerating coated plastic wastes Download PDF

Info

Publication number
WO1993001232A1
WO1993001232A1 PCT/JP1992/000847 JP9200847W WO9301232A1 WO 1993001232 A1 WO1993001232 A1 WO 1993001232A1 JP 9200847 W JP9200847 W JP 9200847W WO 9301232 A1 WO9301232 A1 WO 9301232A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
coating film
plastic
waste
equivalent
Prior art date
Application number
PCT/JP1992/000847
Other languages
English (en)
French (fr)
Inventor
Norio Sato
Shigetoshi Sugiyama
Takashi Ohta
Mitsumasa Matsushita
Shoichi Suzuki
Takeyoshi Nishio
Toshio Yokoi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Kabushiki Kaisha Toyota Chuo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE1992607369 priority Critical patent/DE69207369T2/de
Priority to JP50214593A priority patent/JP2899727B2/ja
Priority to EP19920914570 priority patent/EP0547249B1/en
Publication of WO1993001232A1 publication Critical patent/WO1993001232A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2061/00Use of condensation polymers of aldehydes or ketones or derivatives thereof, as moulding material
    • B29K2061/20Aminoplasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/005Layered products coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for reclaiming waste plastic with a coating film.
  • the above-mentioned ground waste is kneaded as it is using a kneading device such as a multi-screw extruder to obtain a recycled resin for molding.
  • a kneading device such as a multi-screw extruder to obtain a recycled resin for molding.
  • a method for making a composition is being used.
  • the film component does not melt in the kneading apparatus and exists as a foreign matter in the reclaimed resin composition for molding. Therefore, the mechanical properties of the molded article of the recycled resin composition are reduced. This decrease in mechanical properties is particularly noticeable in impact strength, and there is a problem that the use of the recycled resin composition for molding must be limited to those that do not require impact strength.
  • the present invention has been made in view of the above circumstances, and can be used as a recycled resin composition for molding by regenerating a coated plastic waste without scraping off the coated film, and has a small decrease in impact strength. Equivalent to new material An object of the present invention is to provide a recycled resin composition for molding from which a plastic product can be obtained. Disclosure of the invention
  • the method for reclaiming plastic waste with a coating film comprises the steps of: recycling plastic waste with a thermosetting coating film such as a urethane coating film or an amino resin-based coating film; and hydrolyzing the coating film (in the present application, (Meaning hydrolysis and Z or alcoholysis) After the treatment, the mixture is kneaded as it is to obtain a recycled resin composition for molding.
  • a thermosetting coating film such as a urethane coating film or an amino resin-based coating film
  • hydrolyzing the coating film in the present application, (Meaning hydrolysis and Z or alcoholysis) After the treatment, the mixture is kneaded as it is to obtain a recycled resin composition for molding.
  • the hydrolysis treatment of this coating film is performed by pulverizing the coated plastic waste and bringing it into contact with the processing solution. That is, it can be performed by the following multiple methods.
  • the plastic waste with a pulverized coating film is immersed in a treatment liquid and heated at a temperature not higher than the melting temperature of the plastic with a coating film under normal pressure or under pressure.
  • the plastic waste with crushed coating is immersed in the treatment liquid and heated to a temperature higher than the melting temperature of the coated plastic at normal pressure or under pressure.
  • the waste plastic with the coated film is brought into contact with the vapor of the treatment liquid and heated under pressure at a temperature not higher than the melting temperature of the plastic with the coated film.
  • the fourth method involves contacting the plastic waste with the ground coating with the vapor of the processing solution and heating it under pressure to a temperature above the melting temperature of the plastic with the coating.
  • the fifth method is to melt and knead while supplying the treatment liquid and the waste plastic with the coated film into the kneading and melting device while heating it to a temperature exceeding the melting temperature of the plastic and bringing it into contact with the treatment liquid. I do.
  • the coating film is hydrolyzed to lower the molecular weight. Then, the resin can be finely and uniformly dispersed in the resin while being adhered to or separated from the base resin constituting the plastic.
  • Alcohols include methanol, ethanol, propanol, ethylene glycol, and methyl alcohol.
  • Hydrophilic alcohols such as Mouth Solve, Echilse ⁇ Solve, etc. are available * »> 0
  • a catalyst such as an acid or an alkali that promotes the hydrolysis reaction can be added to the treatment liquid.
  • the acid include an inorganic acid such as hydrochloric acid, sulfuric acid, and phosphoric acid, and an organic acid such as acetic acid, oxalic acid, and tartaric acid.
  • inorganic bases such as sodium hydroxide and hydroxyladium
  • organic salts such as sodium methoxide
  • other metal salts such as zinc chloride and titanium chloride
  • activated clay may be used as the alkali metal. Can be done. Appropriate products are selected depending on the type of plastic waste and the use of recycled products.
  • the acid or alkali of the etchant added to the processing solution should be within the range of 0.1 to 10 weights, in the case of metal salts (zinc chloride, titanium chloride, etc.), organic salts (sodium methoxide) and activated clay. If the amount exceeds the above range, the catalyst will remain in the resin composition, deteriorating the properties of the resin, and requiring time for removal. If the amount is less than the above range, the action as a catalyst is not effectively exhibited, which is not preferable.
  • the treatment liquid is usually an aqueous solution containing hot water, steam or an alkali metal hydroxide of a catalyst, an aqueous solution containing an inorganic acid such as hydrochloric acid, or an organic acid such as drunk acid, or a mixed solution of alcohol or alcohol containing the above catalyst. Is used.
  • the plastic waste with a coating film according to the method of the present invention is a plastic waste product in which a thermosetting urethane paint or an amide resin-based paint film is formed on the surface of a mature plastic.
  • the amino resin paint of the coating film is a paint using an alkali resin such as an alkali resin, a polyester resin, or an acrylic resin as a main agent, and using an amino resin such as melamine as a curing agent.
  • the urethane paint is a heat-curable paint composed of a polyisocyanate resin and a boryl resin. These are decomposed by hydrolysis, and the three-dimensional network structure is destroyed. It is a coating film having a molecular weight. Even if the low molecular weight substance formed by hydrolysis is present in the reclaimed resin composition for molding, it is kneaded during molding and is not melted or uniformly finely dispersed in the base resin and becomes a foreign substance. Does not reduce impact strength. In addition, the low molecular weight coating film component has increased compatibility with the base resin and is uniformly finely dispersed.
  • the plastics to which this recycling method can be applied are not particularly limited as long as they are thermoplastic resins.
  • plastics include polypropylene, elastomer-modified polypropylene, polyethylene, ABS resin, AS resin and polyamide resin.
  • plastic waste is immersed in a treatment solution of a mixture of water, alcohol, or rain, or exposed to its vapor, and is heated to a temperature below or equal to the melting temperature of the plastic at normal pressure or under pressure. Heat at a temperature above.
  • the coating film of the plastic waste is hydrolyzed into low molecular substances.
  • a catalyst is added to the treatment liquid, the hydrolysis reaction is promoted.
  • Any reaction vessel that can be heated and pressurized can be used in the hydrolysis step. Of these, considering the operability, a reaction vessel that can be cooled, heated and pressurized, such as an autocrepe with a cooling and heating jacket, is appropriate.
  • a ventor for injecting the processing liquid or special injection and discharge ports are provided in the molten resin zone, and kneading is performed.
  • the coating film can be hydrolyzed and pelletized for direct molding. In either case, a molded product having almost the same impact strength as a regenerated product without a coating film can be obtained.
  • the range is from 110 to 180 and below in the case of polypropylene resin. Since the treatment liquid temperature can be hydrolyzed in a short time compared with the 1 1 0 e C less than if the room temperature processing efficiency is improved, which is preferable.
  • the hydrolysis process will be shorter and the decomposition products will be more dispersed in the resin.
  • the temperature at which the plastic is heated to a temperature above the melting temperature is, for example, 180 to 300 for polypropylene resin. A range of C is preferred.
  • the processing time depends on the temperature and pressure.However, when heating at a temperature exceeding the melting temperature of the plastic, it takes about 5 minutes if a catalyst is present, and 20 minutes or less if no catalyst is contained. Let it proceed. When heating below the melting temperature of the plastic, the processing time is 10 minutes or more and 2 hours or less. If the length is shorter than the above range, the low molecular weight of the coating film is insufficient, and the state of dispersion in the base resin becomes poor.
  • the vessel When the hydrolysis treatment is performed under a pressurized condition, the vessel may be rapidly cooled to a certain temperature after the hydrolysis treatment, and the pressure in the vessel may be reduced. This operation can stop the low-molecular-weight reaction of the coating film at an appropriate stage and promptly move to the next step.
  • the stop temperature may be 100 or less, but is preferably 80 or less. Then, it is preferable to lower the temperature and the pressure in the reaction vessel.
  • the attached catalyst is removed by washing, and the treatment liquid attached to the pulverized resin is removed by drying or the like.
  • the treated product after the hydrolysis treatment is pelletized by a commonly used kneading device such as a single-screw kneader, a twin-screw kneader, or a kneader to obtain a molding resin composition.
  • a commonly used kneading device such as a single-screw kneader, a twin-screw kneader, or a kneader to obtain a molding resin composition.
  • the base resin is heated, softened and melted, and further mechanically agitated to form a uniform low molecular weight coating. And dispersed in the molding resin composition.
  • This low-molecular-weight coating film is no longer a foreign substance, is taken into the resin structure, and is compatibilized to make the entire waste product an integrated composition.
  • this reclaimed resin composition for molding can be used as it is after molding, but it is also possible to mix and use an appropriate amount of the same kind of new material.
  • the coating film having the three-dimensional network structure of the coated plastic waste is reduced in molecular weight by hydrolysis. Therefore, in the obtained reclaimed resin composition for molding, the decomposed coating film has a low molecular weight and is finely dispersed in the regenerated resin composition for molding, and does not act as a foreign substance. Can be. Therefore, the reclaimed resin composition for molding obtained by decomposing a coating film by this method can have mechanical properties equivalent to those of a reclaimed plastic waste product without a coating film. As a result, it can be used in many fields.
  • the strength of the city S does not decrease even if the decomposed coating film is not removed, a treatment step for covering the coating film is not required, and the process can be simplified.
  • the ester bond of the alkyd resin is cleaved to lower the molecular weight.
  • Melamine resin simultaneously hydrolyzes the dimethyl ether bond, which is the cross-linking point, and simultaneously hydrolyzes the N-methylene bond in the molecule to form a methylol group and an amino group. If this is further reduced to molecular weight, water-soluble melamine molecules will eventually be generated and eluted.
  • FIG. 1 is a photomicrograph of the particle structure of a fractured surface of a molded article after hydrolysis treatment of No. 42 after a street test.
  • FIG. 2 is a photomicrograph of the particle structure of a fractured surface of a molded article after hydrolysis treatment of No. 43 after a street impact test.
  • FIG. 3 is a photomicrograph of the particle structure of the fracture surface of the molded article after the hydrolysis treatment of No. 4 after an impact test.
  • FIG. 4 is a micrograph of the particle structure of the fractured surface of the molded article after the hydrolysis treatment of No. 3 after a street-hit test.
  • FIG. 5 is a micrograph of the particle structure of the fracture surface of the molded article (R 1) directly molded without hydrolysis after the impact test.
  • FIG. 6 is a schematic sectional view of a melt kneading apparatus.
  • FIG. 7 is a diagram showing an infrared absorption spectrum of an alkyd resin component in a hydrolyzed alkyd melamine coating film.
  • FIG. 8 is a diagram showing an infrared absorption spectrum of an alkyd resin used as a raw material.
  • Example 1 Water, no catalyst, no more than plastic melting temperature> A waste product of an elastomer-modified poly (vinyl propylene) resin having a polyester-melamine coating film was pulverized into about 5 mm square by a hammer mill. The pulverized product was hydrolyzed under the following conditions.
  • the processed material was melt-kneaded using a NR II type 36 mm, high-speed rotary Bentoni shaft extruder (manufactured by Nakatani Machinery Co., Ltd.) to form a pellet.
  • a rectangular test piece having a size of 63 3 xl 2 X 6 mm was molded by an injection molding machine.
  • the test piece was subjected to an Izod impact test (based on ASTM D256, the same applies hereinafter) by attaching a hook to the test piece.
  • the Izod street impact strength of the obtained recycled resin was 54 kgfccm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film fragments were visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the pulverized resin after this treatment was formed into a rectangular test piece having a size of 63 ⁇ 12 ⁇ 6 mm by the same operation as in N 0.1. A notch was attached to this test piece and an Izod impact test was performed. Aizo' capital city ⁇ of the resulting playback ⁇ has been filed in the 5 6 kgfcm / cm 2. In addition, the moldability of the recycled resin is equivalent to that of the new material, and no coating film fragments are visually observed on the surface of the molded product.
  • a test piece for measuring the equilibrium strength of the pulverized resin after this treatment was prepared in the same manner as in No. 1.
  • the Izod town strength of the obtained recycled resin was 56 kgf cm / cm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the molded product of the new material.
  • Fig. 4 shows a micrograph of the particle structure of the fractured surface after this impact test. In addition, this photograph has a smaller magnification than the other figures 1 to 3, but shows a uniform dispersion state.
  • the Izod striking strength of the obtained recycled resin was 57 kgfcm / cm 2 . Also, the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • Figure 3 shows a micrograph of the particle structure of the fractured surface after the balance test. As shown in the photograph, the resin layer is uniform and free of foreign matter.
  • a test piece for an impact test was prepared from the pulverized resin after the decomposition treatment by the same operation as in No. 1.
  • the Izod street impact strength of the obtained recycled resin was 57 kgfcm / cm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, and no coating film fragments are visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • a test piece for a street attack test was prepared from the pulverized resin after the decomposition treatment in the same manner as in No. 1.
  • the Izod impact strength of the obtained recycled resin was 56 kgf cmZcm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, and no paint film fragments are visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material:
  • the Izod town strength of the obtained recycled resin was 57 kg ⁇ cm / cm 2 . Also, the moldability of the recycled resin is the same as that of the new material, and no coating film fragments are visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • a test piece for an impact test was prepared from the pulverized resin after the decomposition treatment in the same manner as in No. 1.
  • the Izod quart strength of the obtained recycled resin was 55 kgfc mZ cm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, and no coating film fragments are visually observed on the surface of the molded product, and is equivalent to that of the new material. Surface quality.
  • the Izod street impact strength of the obtained recycled resin was 57 kgfcm / cm 2 . Also, the moldability of the recycled resin was equivalent to that of the new material, and no coating film fragments were visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • Example 1 The pulverized product of Example 1 was molded as it was without hydrolysis treatment, and a test piece for street test was prepared in the same operation as in No. 1. The impact strength was 38 kgfcm / cm 2 .
  • Fig. 5 shows a photomicrograph of the particle structure of the fractured surface after this bite test. As shown in the picture, the resin layer is not uniform due to the presence of foreign matter.
  • Example 1 shows the same level of street strength as the regenerated product without the coating film of R2 of the comparative example. Table 1 shows the results.
  • a waste product of the elastomer-modified poly (propylene) resin having a polyester-melamine coating film was pulverized in the same manner as in Example 1. This pulverized product was hydrolyzed using water containing the following catalyst as a treatment liquid.
  • the Izod quart strength of the obtained regenerated resin was 56 kgfcm / cm2.
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film fragments were observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the Izod quart strength of the obtained regenerated resin was 54 kgfcm / cm2. Also, the moldability of the recycled resin was equivalent to that of the new material, and no paint film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the Izod street impact strength of the obtained recycled resin was 55 kgfcm / cm 2 . Also, the moldability of the recycled resin was equivalent to that of the new material, and no coating film fragments were visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the Izod street impact strength of the obtained recycled resin was 56 kgf cm / cm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film fragments were visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the Izod impact strength of the obtained regenerated resin was 57 kgf cmZcm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film fragments were visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the strength of the Izod town on the obtained recycled resin was 57 kgfcm / cm2. Also, the moldability of the recycled resin was equivalent to that of the new material, and no coating film fragments were visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the Izod impact strength of the obtained recycled resin was 54 kgfcm / cm 2 . Also, the moldability of the recycled resin was equivalent to that of the new material, and no paint film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the ground resin after the decomposition treatment was melt-kneaded using an NRII type 36 mm high-speed corotating vent twin-screw extruder (manufactured by Nakata Machine Co., Ltd.) to form a pellet.
  • NRII type 36 mm high-speed corotating vent twin-screw extruder manufactured by Nakata Machine Co., Ltd.
  • a rectangular test piece having a size of 68 ⁇ 126 mm was molded using an injection molding machine. A notch was attached to this test piece, and an Izod Street test was performed.
  • the Izod impact strength of the obtained regenerated resin was 52 kgf cm / cm 2 . Also, the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • a street test piece was prepared from the ground resin after the decomposition treatment in the same manner as in No. 21.
  • the Izod impact strength of the obtained recycled resin was 54 kgfc mZ cm 2 . Also, the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • test pieces were prepared in the same manner as in No. 21.
  • the Izod town strength of the obtained recycled resin was 56 kgfcm / cm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the street strength is 58 kgfcm / cm 2
  • the strength when the molded material is 100% with the new material is 100%. same level ivy and 8 kgfcm / cm 2.
  • impact strength when molded engaged 5 0 by weight ⁇ 3 ⁇ 4 ⁇ recycled resin to elastomer transformed with Helsingborg propylene New material is 5 8 kgfcm / cm 2 5 8 kgfcm // cm 2 the same level t rare in the case of molding by the new material 1 0 0%.
  • test piece was prepared in the same manner as in No. 21 and subjected to a street test.
  • the Izod street strength of the obtained recycled resin was 56 kgf cmZcm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no paint flakes were visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • Table 2 shows the results. This example is also of the same level as the R2 striking strength of the reclaimed elastomer-modified plastic without a coating film.
  • the disintegrated pulverized resin is converted into a belt-like material in the same manner as in No. 21 to form a rectangular test piece with dimensions of 63 x 12 x 6 mm using an injection molding machine. Shaped. A notch was attached to this specimen to perform an Izod impact test.
  • the thickness is 5 5 kgf cmZc m 2 0
  • the moldability of the recycled resin is equivalent to that of the new material, and no coating film fragments are visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • a test piece was prepared from the pulverized resin after the decomposition treatment in the same manner as in No. 21 and subjected to a street hammer test.
  • the Izod impact strength of the obtained recycled resin was 56 kgf cmZcm 2 .
  • the moldability of the reclaimed resin is equivalent to new material, paint chips on the surface of the molded article is not observed by visual, one der equal surface quality and moldings new materials 7C e
  • a test piece was prepared from the pulverized resin after the decomposition treatment in the same manner as in Example 1 and subjected to a street attack test.
  • the Izod impact strength of the obtained recycled resin is
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • test pieces were prepared in the same manner as in No. 21.
  • Aizo' DOO impact strength of the resulting recycled resin is, 5 6 kgf cmZc m 2 C : filed o
  • the moldability of the recycled resin was equivalent to that of the new material, no coating film was observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the resulting regenerated resin has an eye-shoot strength of 55 kgfcm / cm 2 ⁇ 0
  • test piece was prepared in the same manner as in No. 21.
  • the Aizo' DOO Street ⁇ of the obtained recycled resin was 5 6 kgf cmZc m 2 o
  • the moldability of the recycled resin was equivalent to that of the new material, no coating film was observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • Example 8 ⁇ Dipping> treatment, at or above the melting temperature of plastic> (No. 35) After injecting 12 liters of water into a 20 liter autocrepe, polyester-melamine coating was applied. 5 kg of crushed waste elastomeric polypropylene resin with a membrane was charged. After closing the autoclave, the autoclave was heated to 240 and pressurized to 35 kg / cm 2 . After maintaining this pressurized state at 240 at 20 minutes, the pressure in the autoclave was returned to the atmospheric pressure, and the pulverized material was taken out.
  • the resin pulverized material is a high-temperature bolus-like material in which resin particles are fused together, and can be taken out and dried as it is. After drying, it was melt-kneaded using a NRE-type 36 mm, high-speed, rotary-type bentoni extruder (manufactured by Nakata Machine Co., Ltd.) to form a pellet. Using this pellet, a rectangular test piece having a dimension of 63 x 12 x 6 mm was molded by an injection molding machine. A notch was attached to this test piece and an Izod street test was performed.
  • Aizo' DOO impact strength of the resulting recycled resin is rarely at 5 6 kgfc mZ cm 2 0
  • the moldability of the recycled resin was equivalent to that of the new material, no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • This resin pulverized product was a porous material having a high temperature in which resin particles were fused together as in No. 35. After washing with water, it can be left to dry. A test piece was prepared in the same manner as in No. 35.
  • the Izod impact strength of the obtained recycled resin was 57 kgfc mZ cm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • This resin pulverized product is a high-temperature bolus in which resin particles are fused together as in No. 35, and can be dried as it is after being taken out.
  • test piece was prepared in the same manner as in No. 35.
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • This resin ground product was a bolus at a high temperature where resin particles were fused together as in No. 35. After washing with water, it can be left to dry.
  • a test piece was prepared in the same manner as in No. 35, and was subjected to a street attack test.
  • Aizo' DOO ⁇ strength of the resulting recycled resin was 5 6 kgf cmZc m 2 o
  • the moldability of the recycled resin was equivalent to that of the new material, no coating film was observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • This resin ground material is a bolus-like material having a high temperature in which resin particles are fused together as in No. 35, and can be taken out and dried as it is.
  • test piece was prepared in the same manner as in No. 35.
  • the Izod impact strength of the obtained recycled resin was 57 kgf cm / cm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material.
  • No coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • This resin pulverized product is a bolus-like material at a high temperature in which resin particles are fused together as in No. 35, and can be dried as it is after being taken out.
  • test piece was prepared in the same manner as in No. 35.
  • the Izod impact strength of the obtained recycled resin was 57 kgf c mZ cm.o
  • the waste of elastomer-modified polypropylene resin with polyester-melamine coating was ground to about 5 mm square.
  • the pulverized product was hydrolyzed under the following conditions.
  • No. 41 was treated with 13 O'C (pressure 2.8 kgf / cra 2 ) and 100% RH water vapor using auto crepe (PC-211 made by Bayesek). For 1 hour and N 0.42 for 4 hours. Thereafter, the treated pulverized resin was dried with a vacuum dryer to obtain a reclaimed resin composition for molding. In this state, the hydrolyzed decomposition coating adhered to the surface of the plastic. After drying, a rectangular test piece having a size of 63 x 12 x 6 mm was molded by an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed.
  • 13 O'C pressure 2.8 kgf / cra 2
  • PC-211 made by Bayesek
  • No. 43 was obtained by pulverizing waste elastomer-modified polypropylene with an acrylic-melamine coating film as described above.
  • the hydrolysis conditions were 130 (pressure 2.8 kgf / cm 2 ) and 100% RH steam treatment. One hour, No. 4 4 was performed for 4 hours.
  • the treated ground resin was immersed in thinner and subjected to ultrasonic cleaning for 10 minutes.
  • the coating film decomposed by hydrolysis was dissolved in thinner, and the thinner was removed and dried.
  • an elastomer-modified polypropylene waste product with a urethane coating was ground as described above.
  • the hydrolysis conditions were 130 and 100% RH steam treatment was performed for 1 hour.
  • the treated ground resin is melted and kneaded at 230 and 350 rpm with a twin-screw extruder (manufactured by Nakatani Machinery), extruded into a pellet with a diameter of about 3 mm, solidified, and regenerated resin for molding.
  • the composition was used.
  • This beret was injection molded under the same conditions as in No. 1 to produce an Izod street hammer test specimen.
  • FIGS. 1 and 2 Micrographs of the fracture surface after the impact test of No. 42 and No. 43 are shown in FIGS. 1 and 2, respectively. In each case, the resin layer was uniform and there was no foreign matter on the coating film pieces.
  • the Izod impact strength of the obtained recycled resin was 57 kgfcm / cm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • a test piece was prepared from the pulverized resin after the decomposition treatment in the same manner as in No. 46 and subjected to an impact test.
  • the Izod impact strength of the obtained recycled resin was 0.57 kgfc mZ cm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material.
  • No coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • a test piece was prepared from the pulverized resin after the decomposition treatment in the same manner as in No. 46, and subjected to an impact test.
  • the Izod striking strength of the obtained recycled resin was 54 kgf cmZcm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • test pieces were prepared in the same manner as in No. 46 and subjected to a street hammer test.
  • the Izod impact strength of the obtained recycled resin was 57 kgf cmZcm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, and no coating film pieces are visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material. It showed the same level as the striking strength of the reclaimed plastic R2 without crushing.
  • the pulverized resin after the decomposition treatment was melt-kneaded using an NRI [type 36 mm, same-direction high-speed rotary type bentoni-screw extruder (manufactured by Nakayuji Kikai)] to form a pellet.
  • NRI type 36 mm, same-direction high-speed rotary type bentoni-screw extruder (manufactured by Nakayuji Kikai)] to form a pellet.
  • a rectangular test piece having a dimension of 63 x 12 x 6 mm was molded by an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed.
  • the Izod impact strength of the obtained recycled resin was 57 kgfcm / cm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • test piece was prepared in the same manner as in No. 50 and subjected to an impact test.
  • the Izod impact strength of the obtained recycled resin was 0.57 kgf cmZcm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material. No coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • a test piece was prepared in the same manner as in No. 5 (3) and subjected to a striking test.
  • the Izod striking strength of the obtained regenerated resin was 0.57 kgf cm / cm 2. Met.
  • the moldability of the recycled resin is equivalent to that of the new material.
  • No coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • test piece was prepared in the same manner as in No. 50, and then subjected to an impact test.
  • the Izod impact strength of the obtained recycled resin was 56 kgf cm / cm 2 .
  • Example 11 ⁇ Steam> treatment, above the melting temperature of the plastic> (No.54) Elastomer with polyester-melanin coating It was charged into a 20 liter autoclave and sealed. Steam was injected into the autoclave and heated to 240, and the inside of the autoclave was pressurized to 35 kg / cm 2 . After maintaining this pressurized state at 240 for 20 minutes, the pressure in the auto crepe was returned to atmospheric pressure, and the pulverized material was taken out.
  • the pulverized resin material after the decomposition treatment is a high-temperature bolus-like material in which resin particles are fused together, and can be taken out and dried as it is.
  • the resin pulverized product after the decomposition treatment was a bolus at a low temperature where the resin particles were fused together. After washing with water, it can be left to dry.
  • This processed resin is measured by an injection molding machine with dimensions of 6 3 X 1 2 X 6 mm A rectangular specimen was formed. A notch was attached to this test piece and an Izod street hammer test was performed.
  • the Izod impact strength of the obtained recycled resin was 57 kgf cmZcm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the resin pulverized product after the decomposition treatment is taken out with a bolus-like material having a low temperature at which the resin particles are fused, and then left as it is to be dried.
  • This treated resin was formed into a rectangular test piece having a dimension of 63 x 12 x 6 mm using an injection molding machine. A notch is attached to this test piece and an Izod impact test is performed:
  • the Izod impact strength of the obtained recycled resin was 57 kgf cmZcm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • the resin pulverized product after the decomposition treatment was a high-temperature porous material in which resin particles were fused together. After washing with water to remove the acid, it can be left to dry.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 ⁇ 12 ⁇ 6 mm using an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed.
  • Aizo' DOO impact strength of the obtained reclaimed resin was 5 7 kgf cmZc m 2 o
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • the pulverized resin material after the decomposition treatment is a high-temperature bolus-like material in which resin particles are fused together, and can be taken out and dried as it is.
  • a rectangular test piece having a dimension of 63 x 12 x 6 mm was molded from the treated resin using an injection molding machine. A notch was attached to this test piece to perform an Izod impact test.
  • Aizo' DOO impact strength of the obtained reclaimed resin was 5 7 kg ⁇ cmZc m 2 o
  • the moldability of recycled resin is equivalent to that of new materials, and can be applied to the surface of molded products.
  • the film fragments are not observed at all visually and have the same surface quality as the new molded product:
  • the resin pulverized product after the decomposition treatment was a bolus at a low temperature at which the resin particles were fused together. After washing with water to remove the acid, it was left to dry.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 ⁇ 12 ⁇ 6 mm using an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed.
  • Aizo' DOO impact strength of the obtained reclaimed resin was 5 7 kg ⁇ cmZc m 2 o
  • the moldability of the recycled resin is equivalent to that of the new material, and no coating film fragments are visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • the Izod striking value of a test piece which was pulverized without treatment and similarly formed as a regenerated resin composition was 38 kgf cm / cm 2 , which is a higher value.
  • the Izod street value of the same recycled resin composition resin without a coating film was 56 kgfcm / cm 2 .
  • the water vapor does not flow into the part B where the resin is completely melted, and the water vapor after the coating decomposition treatment is released from the vent at the end of the part C.
  • the mixture was extruded by kneading in the D section to form a pellet having a diameter of 3 mm and a length of 5 mm.
  • the processed resin was molded into a rectangular test piece having a size of 63 x 12 x 6 mm using an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed.
  • the Izod impact strength of the obtained recycled resin was 56 kgf cm / cm 2 .
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • Elastomer-modified polypropylene resin with polyester-melamine coating was ground to a size of about 5 mm square.
  • This waste product is supplied from the charging section A of a high-speed rotary screw extruder (screw speed: 350 rpm), heated to 220 C and completely melted in the B section.
  • steam was added from the treatment agent inlet at a temperature of 240 and a pressure of 35 kg / cm 2 and added with 1% by weight of hydrochloric acid.
  • the coating film was decomposed for 5 minutes by screw rotation. The resin is melt-kneaded.
  • This treated resin was molded into a rectangular test piece with dimensions of 6.3 x 12 x 6 mm using an injection molding machine. A notch is attached to this test piece and the Izod street hammer test is conducted.
  • the Izod impact strength of the obtained recycled resin was 56 kgf cm / cm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • the vapor does not flow into the part B where the resin is completely melted, and the vapor after the coating decomposition treatment is released from the vent at the end of the part C. Further, it is kneaded in the D part and extruded to form a pellet with a diameter of 3 mm and a length of 5 mm.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 x 12 x 6 mm using an injection molding machine. When a notch was attached to this test piece, the Izod impact test 3 ⁇ 4r- ⁇ was obtained.
  • the Izod impact strength of the obtained recycled resin was 57 kgfc mZ cm 2 .
  • part C vapor of isopropyl alcohol to which 1 weight of hydrochloric acid of 30 kg / cm 2 was added at a temperature of 200 and a pressure of 30 kg / cm 2 was injected from the processing agent inlet, and the coating film was rotated for 5 minutes by screw rotation Decompose and melt-knead the resin. In this case, the vapor does not flow into the part B where the resin is completely melted, and the vapor after the coating decomposition treatment is released from the vent at the end of the part C. Further extrusion was kneaded in Part D, it was Perez bets like material having a diameter of 3 mm, length 5 m m.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 x 12 x 6 mm using an injection molding machine. Izod impact test with a notch attached to this test piece 3 ⁇ 4: ⁇ > Natsu / n
  • the Izod town strength of the obtained recycled resin was 57 kgf cmZcm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 x 12 x 6 mm using an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed. Also, if Aizo' bets impact strength when molded in 5 0 by weight% blend recycled resin to Elastica Tomah transformed polypropylene Xin material, molded in new material 1 0 0% at 5 7 kgfcm / cm 2 5 It was almost the same level as 8 kgfcm / cm 2.
  • the moldability of the recycled resin was equivalent to that of the new material, and no coating film was visually observed on the surface of the molded product, and the surface quality was equivalent to that of the new material.
  • Elastomer-modified polypropylene resin with a polyester-melamine coating film was ground to about 5 mm square. From the vent of a high-speed rotary screw extruder (temperature of 230, screw rotation speed of 350 rpm), 5% sodium hydroxide was added to 100% ethyl alcohol. While adding the solution in which the weight% was dissolved, this ground material was melt-kneaded for 5 minutes, extruded, and formed into a pellet having a diameter of 3 mm and a length of 5 mm with a pelletizer.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 x 12 x 6 mm using an injection molding machine. A notch is attached to this test piece and an Izod quarting test is performed.
  • the moldability of the recycled resin is equivalent to that of the new material, and no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • the vapor does not flow into the part B where the resin is completely melted, and the vapor after the coating decomposition treatment is released from the vent at the end of the part C.
  • the mixture was kneaded and extruded in section D to form a pellet having a diameter of 3 mm and a length of 5 mm.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 x 12 x 6 mm using an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed.
  • the Izod impact strength of the obtained recycled resin was 57 kgfcm / cm 2 .
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • Waste polyester modified polyester resin with polyester-melamine coating was crushed to about 5 mm square. This waste product is supplied from the input section A of a high-speed rotary screw extruder (screw speed: 350 rpm), heated up to 220 and completely melted in section B. In part C, steam with a 1: 1 weight ratio of water to which 1 wt. Of hydrochloric acid with a pressure of 23 kg / cm 2 was added at a temperature of 200 and a pressure of 23 kg / cm 2 was injected from a treating agent inlet, The resin is melted and kneaded while decomposing the coating film for 5 minutes by rotating the window.
  • the vapor does not flow into the part B where the resin is completely melted, and the vapor after the coating decomposition treatment is released from the vent at the end of the part C. Further, the mixture was kneaded and extruded in section D to form a pellet having a diameter of 3 mm and a length of 5 mm.
  • This treated resin was molded into a rectangular test piece having a dimension of 63 x 12 x 6 mm using an injection molding machine. A notch was attached to this test piece and an Izod impact test was performed.
  • the Izod impact strength of the obtained recycled resin is 57 kgf cm / c It was m 2.
  • the moldability of the recycled resin is equivalent to that of the new material, no coating film is visually observed on the surface of the molded product, and the surface quality is equivalent to that of the new material.
  • Table 4 shows the results of this example.
  • the impact strength is higher than the impact strength of the untreated resin and It was the same as the resin.
  • FIG. 1 to 5 show micrographs of the structure of the fractured surface of the impact test piece obtained by the regeneration treatment method of the present invention after the test.
  • R 1 untreated
  • the coating film pieces exist in the structure with a size of about 200 m, and the interface between the base material and the resin is separated.
  • the coating film fragments become foreign matter, which reduces the impact strength of the plastic.
  • Figs. 1 to 4 after the hydrolysis treatment the presence of coating film fragments was not confirmed in the fractured surface, and it was assumed that they remained low molecular weight and were finely dispersed in the polypropylene resin without removing the decomposed coating film.
  • FIG. 1 shows waste elastomer-modified polypropylene with polyester melamine coating treated in steam for 240 min.
  • FIG. 2 shows waste elastomer-modified polypropylene with acrylmelamine coating.
  • Fig. 3 shows a waste product of an elastomer-modified polypropylene with a polyester melamine coating film treated with water at 150 for 60 minutes and then quenched at 80, and
  • Fig. 4 shows a gradual increase after the hydrolysis treatment of Fig. 3. It is cold.
  • Each of the hydrolysis treatment methods shows a uniform structure and almost the same impact strength.
  • the coating film is reduced in molecular weight by hydrolysis to become fine and dispersed uniformly in the base resin. For this reason, the recycled resin composition for molding has a reduced impact strength. Since it has the same mechanical properties as recycled plastic without paint film, it can be reused alone in various fields or blended with new materials.
  • PM polyester melamine
  • AM acrylic melamine
  • urethane
  • IPA is isopropyl alcohol
  • EA is ethyl alcohol
  • EC e is etilse ⁇ -solve
  • Me ONa is sodium methoxide -45-

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

明 細 塗膜付きブラスチッ ク廃品の再生処理方法 技術分野
本発明は塗膜付きブラスチッ ク廃品の再生処理方法に関する。 背景技術
近年、 環境汚染の観点から塗膜付きプラスチック廃品の再生利用 が必要となっている。 これらのブラスチック廃品に塗装された塗膜 は、 通常 3次元網目状に架橋して硬化されており熱で溶融しないし, 溶媒などにも溶解しない。 これを除去するには機械的に削り とる以 外に方法がなかった。 すなわち、 予め塗膜をサン ドブラス トなどに より機械的に除去した後、 プラスチック廃品を粉碎して成形用再生 榭脂組成物とする方法が考えられるが、 この方法では複雑な立体面 をもつ部品では塗膜の除去に時間がかかるうえに、 完全に除去でき ず工業的には不向きである。
そこで、 従来より熱硬化性塗料で塗装されたプラスチッ ク廃品の 他の再生処理方法として、 粉碎した上記の廃品をそのまま多軸押 ¾ 機等の混練装置を用いて混練して、 成形用再生樹脂組成物とする方 法がおこなわれている。 しかしこの方法では 膜成分は、 混練装置 内で溶融せず成形用再生樹脂組成物中に異物として存在している。 そのため、 再生樹脂組成物の成形品は、 力学的性質が低下する。 こ の力学的性質の低下は、 特に、 衝撃強度に顕著に表れるので、 この 成形用再生樹脂組成物の用途を衝撃強度を要しないものに限定せざ るをえないという問題があった。
本発明は上記の事情に鑑みてなされたもので、 塗膜付きプラスチ Vク廃品を塗膜を削り取ることなく再生して、 成形用再生樹脂組成 物として利用でき、 かつ衝撃強度の低下が少なく、 新材と同等程度 のブラスチック製品が得られる成形用再生樹脂組成物とすることを 目的とする。 発明の開示
本発明の塗膜付きプラスチック廃品の再生処理方法は、 ウレタン 塗膜あるいはァミ ノ榭脂系塗膜等の熱硬化性塗膜付きプラスチック 廃品を、 その塗膜を加水分解 (本出願においては、 加水分解および Zまたはアルコーリ シスを意味する) 処理した後、 そのまま混練し て成形用再生樹脂組成物とすることを特铵とする。
この塗膜の加水分解処理は、 塗膜付きブラスチック廃品を粉碎し て処理液に接触させておこなう。 すなわち、 以下の複数の方法でお こなうことができる。 第 1の方法は、 粉砕塗膜付きブラスチ ク廃 品を処理液に浸潸して、 常圧または加圧下で塗膜付きブラスチック の溶融温度以下の温度で加熱する。 第 2の方法は、 粉砕塗接付きブ ラスチック廃品を処理液に浸潸して、 常圧または加圧下で塗膜付き ブラスチッ クの溶融温度超える温度に加熱する。 第 3の方法は、 粉 碎塗膜付きブラスチック廃品を処理液の蒸気に接触させ、 加圧下で 塗膜付きブラスチックの溶融温度以下の温度で加熱する。 第 4の方 法は、 粉碎塗膜付きプラスチック廃品を処理液の蒸気に接触させ 加圧下で塗膜付きブラスチックの溶融温度を超える温度に加熱する。 第 5の方法は、 混練溶融装置内に処理液と粉碎塗膜付きブラスチツ ク廃品とを供耠しながら、 これをブラスチックの溶融温度を超える 温度に加熱しながら処理液と接触させながら溶融混練する。 これら の方法により塗膜は加水分解されて低分子化される。 そしてブラス チックを構成する母材樹脂に付着したままあるいは樹脂から剝離さ れて、 樹脂中に微細にかつ、 均一に分散させることができる。
この塗膜を加水分解する処理液は、 アルコール、 水などがそれぞ れ単独ないしは混合して用いられる。 アルコールとしては、 メタノ ール、 エタノール、 プロパノール、 エチレングリ コール、 メチルセ 口ソルブ、 ェチルセ Πソルブなどの親水性のアルコールが利用でき *»> 0
この処理液中には、 加水分解反応を促進する酸、 アルカリなどの 触媒を添加することができる。 酸としては、 塩酸、 硫酸、 燐酸など の無機酸あるいは酢酸、 シユウ酸、 酒石酸などの有機酸などが用い られる。 また、 アル力リ としては、 水酸化ナトリウム、 水酸化力リ ゥムなどの無機塩基、 ナト リウムメ トキサイ ドなどの有機塩、 その 他金属塩 (塩化亜鉛、 塩化チタンなど) 、 活性白土を用いることが できる。 これらは、 プラスチッ ク廃品の種類、 再生品の用途により 適当なものが選択される。
処理液に添加される蝕媒の酸あるいはアルカリは 0 . 1〜 1 0重 量 の範囲に、 金属塩 (塩化亜鉛、 塩化チタンなど) 、 有機塩 (ナ トリウムメ トキサイ ド〉 、 活性白土の場合には 1〜 1 0重量%の範 囲で添加する。 添加量が上記の範囲を超えると、 触媒が樹脂組成物 中に残留して、 樹脂の特性を低下させたり、 除去に手数を要するの で好ましくない。 また上記の範囲より少ないと、 触媒としての作用 を有効に示さないので好ましくない。
処理液は、 通常、 熱水、 水蒸気あるいは触媒のアルカリ金属水酸 化物を含む水溶液、 塩酸などの無機酸あるいは醉酸などの有機酸を 含む水溶液、 または上記の触媒を含むアルコールあるいはアルコー ルー水混液が用いられる。
本発明の方法にかかる塗膜付きブラスチック廃品とは、 熟可塑性 ブラスチッ クの表面に熱硬化性のウレタン塗料あるいはァミ ノ榭脂 系塗料の塗膜が形成されているブラスチック廃品である。
塗膜のアミ ノ榭脂系塗料は、 主剤としてアルキツ ド榭脂、 ポリエ ステル樹脂、 アク リル樹脂などを用い、 硬化剤にメラミ ンなどのァ ミ ノ榭脂を用いた塗料である。 また、 ウレタン塗料は、 ボリイソシ ァネー ト榭脂とボリオール樹脂とからなる加熱硬化型の塗料である。 これらは加水分解により分解して三次元の網目構造が破壊されて低 分子量化する塗膜である。 加水分解で形成される低分子量物質は、 成形用再生樹脂組成物中に存在しても、 成形中に混練され母材樹脂 に溶融ないしは均一に微細に分散して異物とならず、 成形品の衝撃 強度を低下させない。 また低分子化した塗膜成分は母材樹脂との相 溶性が増し、 均一に微細分散する。
この再生処理方法が適用できるブラスチックスとしては、 熱可塑 性樹脂であれば特に制限されるものでないが、 たとえば、 ポリプロ ピレン、 エラス トマ一変性ポリプロピレン、 ポリエチレン、 A B S 榭脂、 A S樹脂、 ボリアミ ド樹脂、 ポリエステル樹脂、 ボリカーボ ネート樹脂、 ポリアセタール樹脂、 ボリ フエ二レンォキサイ ド、 変 性ボリ フ X二レンォキサイ ド (スチレン変性ポリ フエ二レンエーテ ルを含む) などが挙げられる。 なお加水分解条件に対して弱い榭脂 は好ましくない。
この再生処理方法では、 プラスチック廃品を水、 アルコールまた は雨者の混合物の処理液に浸漬あるいはその蒸気に接戧させて、 常 圧または加圧下にブラスチックの溶融温度以下の温度または溶融温 度を超える温度で加熱する。 これによりプラスチック廃品の塗膜は、 加水分解されて低分子物質となる。 この際、 処理液に触媒を添加す ると、 加水分解反応が促進される。 - 加水分解工程で用いる反応容器としては、 加熱 ·加圧できるもの であればいずれも利用可能である。 これらの中で、 操作性を考える と、 冷却 ·加熱用ジャケッ ト付きオー トクレープなどの冷却 ·加熱、 加圧可能な反応容器が適当である。
さらに、 押出機のような混練機を用いる場合は、 溶融樹脂ゾーン に、 処理液を注入するベン トロや特製の注入口と排出口を設けて、 混練することにより》圧容器でおこなう場合と同様に塗膜は加水分 解でき、 直接成形用のペレツ ト化をすることが可能となる。 いずれ の場合でも、 塗膜のない再生品とほぼ同程度の衝鼙強度をもつ成形 品が得られる。 加水分解処理でブラスチックの溶融温度以下で加熱する場合は、 たとえば、 ボリプロピレン樹脂では 1 1 0で以上 1 8 0で以下の範 西とするのがより好ましい。 処理液温が室温から 1 1 0 eC未満の場 合に比べ短時間で加水分解処理できるので、 処理効率が向上するの で好ましい。
ブラスチックを溶融温度を超える温度で加熱する場合は、 加水分 解処理がさらに短時間ですみ、 かつ分解物が樹脂中により分散する。 ブラスチックを溶融温度を超える温度に加熱する場合の温度は、 た とえば、 ボリプロピレン樹脂では 1 8 0〜3 0 0。Cの範囲が好まし い。
処理時間は温度と圧力にもよるが、 ブラスチッ クの溶融温度を超 える温度で加熱する場合、 触媒が存在する場合が約 5分程度、 触媒 を含まない場合は 2 0分以下の短時間で進行させることができる。 プラスチックの溶融温度以下で加熱する場合の処理時間は 1 0分以 上 2時間以内である。 これより短いと塗膜の低分子化が不十分で母 材榭脂への分散状態が悪くなる。
加圧条件で加水分解処理をおこなう場合には、 加水分解処理後に、 容器を一定温度まで急冷し、 容器内を減圧してもよい。 この操作は、 塗膜の低分子化反応を適度な段階で停止させさせ、 次工程へ迅速に 移行させることができる。 停止温度は、 1 0 0で以下でよいが、 8 0で以下が好適である。 そして温度を低下させるとともに反応容器 内の圧力も低下させるのが好ましい。
加水分解処理後は、 必要に応じて洗浄により付着触媒を除去した り、 粉砕樹脂に付着した処理液を乾燥などにより除去する。
加水分解処理後の処理物は、 一軸混練機、 二軸混練機あるいは二 ーダ一など通常用いられる混練装置でペレタイズ化され成形用樹脂 組成物とされる。
この混練ペレタイズ化の際に、 母材樹脂が加熱され、 軟化溶融さ れ、 さらに機械的にかき混ぜることにより低分子化した塗膜が均一 に混合して成形用樹脂組成物中に分散する。 この低分子化した塗膜 はもはや異物ではなく、 樹脂の組織中に取り込まれ、 相溶化して廃 品全体が一体的な組成物となる。
さらにこの成形用再生樹脂組成物はそのまま成形して使用できる が、 同種の新材に適当量配合して使用することも可能である。
本発明の再生処理方法においては、 塗膜付ブラスチック廃品の 3 次元網目構造の塗膜が加水分解により低分子量化する。 そのため、 得られる成形用再生樹脂組成物は、 分解塗膜が低分子量で成形用再 生樹脂組成物中に微細に分散し、 異物としては作用しないので再生 榭脂の力学的強度を保持することができる。 したがって、 この方法 で塗膜を分解した成形用再生樹脂組成物は、 塗膜の無いブラスチッ ク廃品の再生物と同等の力学的性質をもつことができる。 その結果、 多分野の使用が可能である。
また本発明の方法によれば、 分解塗膜を除去しなくても街 S強度 が低下しないので、 塗膜を剝雜する処理工程が不要になり工程を簡 素化することができる。
この加水分解処理により塗膜が低分子化することは、 赤外線分光 光度法、 液体クロマ トグラフ法などによって確かめられた。 たとえ ば、 ( 1 ) 式に示すように、 アルキッ ドーメラ ミ ン榭脂の場合、 加 水分解処理によって塗膜の架橋点 (ジメチルエーテル結合) が切断 されて原料であるメラミ ン樹脂とアルキッ ド樹脂に分解して低分子 化する。
これは、 加水分解工程後のアルキッ ドーメラミ ン樹脂からの抽出 成分と、 アルキッ ド樹脂成分の赤外線吸収スぺク トルが同様のバタ ーンを示すこと (図 7、 図 8参照) および、 液体クロマ トグラフ法 によって得られた両者の分子量分布がほぼ同様であることなどから 確認される。
これをさらに加水分解すると、 アルキツ ド樹脂のエステル結合が 切断されて、 より低分子化する。 また、 メラミン榭脂は架橋点であるジメチルエーテル結合の加水 分解と同時に、 分子内の N —メチレン結合が加水分解されてメチロ ール基とアミノ基を生成する。 これをさらに低分子化すると、 最終 的に水に可溶なメラミ ン分子が生成し、 溶出すると考えられる。
本発明の処理をせず塗膜付きブラスチックをそのまま溶融混練し た場合は、 図 5の街擎試験片の破断面の粒子構造写真に示すように, 粗大な異物となって残存しプラスチック廃品の再生成形品の街撃特 性を大きく低下させる。 これに対して、 本発明の方法で処理をおこ なったものは、 図 1〜図 4では粒子構造写真に示すように、 低分子 化した数/ z m程度の塗膜が樹脂中に微細にかつ均一に分散している t これらの観察から、 樹脂にゴムを微細に分散させて街繋特性を改善 したいわゆるゴム変性樹脂の構成と等しく、 低分子化した塗膜は榭 脂の衝撃特性を少なく とも阻害していない。 図面の簡単な説明
【図 1】 この図は N o . 4 2の加水分解処理後の成形品の街擊 試験後の破断面の粒子構造の顕微鏡写真図である。
【図 2】 この図は N o . 4 3の加水分解処理後の成形品の街撃 試験後の破断面の粒子構造の顕微鏡写真図である。
【図 3】 この図は N o . 4の加水分解処理後の成形品の衝撃試 験後の破断面の粒子構造の顕微鏡写真図である。
[図 4】 この図は N o . 3の加水分解処理後の成形品の街撃試 験後の破断面の粒子構造の顕微鏡写真図である。
【図 5】 この図は加水分解をしないで直接成形した成形品 (R 1 ) の衝撃試験後の破断面の粒子構造の顕微鏡写真図である。
【図 6】 この図は溶融混練装置の断面模式図である。
【図 7】 この図は加水分解処理を施したアルキッ ドーメラ ミ ン 塗膜中のアルキク ド榭脂成分の赤外線吸収スぺク トルを示す線図で あ o。 [図 8】 この図は原料として使用したアルキッ ド樹脂の赤外線 吸収スべク トルを示す線図である。 発明を実施するための最良の形態
以下、 本発明の塗膜付プラスチッ ク廃品の再生処理方法を実施例 により具体的に説明する。
〔実施例 1〕 く水、 触媒なし、 プラスチッ クの溶融温度以下〉 ボリエステル一メラミ ン塗膜付のエラス トマ一変性ボリブロピレ ン樹脂の廃品をハンマーミルで約 5 mm角に粉砕した。 この粉砕物 を用いて以下の条件で加水分解をおこなった。
(N o. 1 ) 粉砕物をガラス瓶中で 1 0 0での熱水に浸漬し、 1 0 0でで 1 0時閼浸潸して加水分解処理をおこなった。 この加水分 解処理物を真空乾燥機で乾燥して成形用の再生樹脂組成物とした。 この状態では加水分解された塗膜の一部はブラスチックの表面に付 着していた。
この処理物を NR I I型 3 6 mm同方向高速回転式ベン トニ軸押 出機 (ナカタニ機械製) を用いて溶融混練してペレツ ト状物とした。 このペレツ トを用いて射出成形機で寸法が 6 3 x l 2 X 6mmの矩 形の試験片を成形した。 この試験片にノ 、ツチを付けてアイゾッ ト衝 撃試験 (ASTM D 2 5 6に基づく、 以下同様) をおこなった。 得られた再生樹脂のアイゾッ ト街撃強度は 5 4 k g f c c m 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また成 形品の表面に塗膜片は目視では観察されず、 新材の成形品と同等の 面品質であつた。
(No. 2) 容量 2 1 0 0 リ ッ トル、 攪拌機 (最大 6 0 r pm) 付きのオートクレーブ装置を用い、 これに水を 4 0 0 リ ッ トル注入 して 8 0でに加熱した後、 ポリエステル一メラミ ン塗膜付きのエラ ス トマ一変性ポリプロピレン樹脂廃品の粉砕物 2 0 0 k gを仕込ん だ。 オートクレープを密封した後、 粉砕物を攙拌しながらオー トク レーブの内温を 8 0でから 1 8 0 eCまで昇温させ、 1 1気圧の加圧 状態とした。 1 8 0 Cで 1.0分間この加圧状態を保持し、 徐冷後、 オー トクレーブ中の水蒸気をコンデンサーに流出して大気開放し粉 砕物を取り出した。 この処理後の粉砕樹脂は、 N 0. 1 と同様の 操作で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片を成形した。 この 試験片にノ ツチを付けてアイゾッ ト衝撃試驗をおこなった。 得られ た再生榭脂のアイゾッ ト街撃強度は 5 6 k g f c m/ c m2 であつ た。 また、 再生樹脂の成形性は新材と同等であり、 また成形品の表 面に塗膜片は目視では観察されず、 新材の成形品と同等の面品質で めつに o
(No. 8 ) オー トクレープに水を 4 0 0 リ ッ トル注入して 8 0 •Cに加熱後、 ポリエステル一メラミ ン塗膜付きのエラス トマ一変性 ボリプロピレン樹脂廃品の粉碎物 1 0 0 k gを仕込んだ。 オー トク レーブを密封した後、 粉砕物を攙拌しながらォー トクレーブの内温 を 8 0eCから 1 5 0eCまで昇温させ、 5気圧の加圧状態とした。 1 5 0でで 6 0分間この加圧状態を保持し、 徐冷後、 オー トクレープ 中の水蒸気をコンデンサーに流出して大気開放し粉碎物を取り出し た。
この処理後の粉砕樹脂は、 No. 1 と同様の操作で衡繫強度測定 用の試験片を作製した。 得られた再生樹脂のアイゾッ ト街擊強度は 5 6 k g f cm/cm2 であった。 また、 再生樹脂の成形性は新材 と同等であり、 また成形品の表面に塗膜片は目視では観察されず、 新材の成形品と同等の面品質であった。 この衝撃試験後の破断面の 粒子構造の顕微鏡写真を図 4に示す。 なお、 この写真は他の図 1〜 3より拡大倍率が小さいが、 均一分散状憨を示している。
(No. 4 ) オー トクレープに水を 4 0 0 リ ッ トル注入して 8 0 •Cに加熱後、 ポリエステル一メラミ ン塗膜付きのエラス トマ一変性 ポリプ αピレン樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 オートク レーブを密封した後、 粉砕物を攪拌しながらォー トクレーブ內温を 8 0でから 1 5 0でまで昇温させ、 5気圧の加圧状態とした。 1 5 0でで 6 0分閭この加圧状態を保持した後、 8 0でまで急冷し、 大 気開放することにより加水分解反応を停止させた後、 粉砕物を取り 出した。 この分解処理後の粉砕樹脂を、 N o . 1 と同様の操作によ り街撃試験用の試験片を作製した。 得られた再生樹脂のアイゾッ ト 衢撃強度は 5 7 k g f c m/ c m2 であった。 また、 再生樹脂の成 形性は新材と同等であり、 また成形品の表面に塗膜片は目視では観 察されず、 新材の成形品と同等の面品質であった。 この衡擎試験後 の破断面の粒子構造の顕微鏡写真を図 3に示す。 写真に示すように 榭脂層は、 均一な状態で異物の存在はない。
(N o . 5 ) オートクレープに、 ポリエステル一メラミ ン塗膜付 きのエラス トマ一変性ボリプロビレン樹脂廃品の粉碎物 1 0 0 k g を仕込んだ後、 8 0での湯を 4 0 0 リ ツ トル注入して 3 0分間放置 し廃品を十分に予熱した。 オー トクレーブを密封した後、 粉砕物を 攙拌しながらォー トクレーブの内温を 8 0でから 1 5 0でまで昇温 させ、 5気圧の加圧状態とした。 1 5 0でで 6 0分間この加圧状態 を保持し、 徐冷後、 オー トクレープ中の水蒸気をコンデンサーに流 出して大気開放し粉碎物を取り出した。 この分解処理後の粉砕樹脂 を、 N o . 1 と同様の操作により衝擎試験用の試験片を作製した。 得られた再生樹脂のアイゾッ ト街撃強度は 5 7 k g f c m/ c m2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また成形 品の表面に塗膜片は目視では観察されず、 新材の成形品と同等の面 質であつ 7 0
(N o . 6 ) オー トクレープに水 4 0 0 リ ッ トル注入して 8 0 °C に加熱後、 アク リル一メラミ ン塗膜付きのエラス トマ一変性ポリプ 口ピレン樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 オートクレーブ を密封した後、 粉碎物を攪拌しながォー トクレーブの内温を 8 0 eC から 1 5 0でまで昇温させ、 5気圧の加圧状態とした。 1 5 0でで 6 0分閭この加圧状態を保持し、 徐冷後、 オー トクレーブ中の水蒸 気をコンデンサーに流出して大気開放し粉砕物を取り出した。 この 分解処理後の粉砕樹脂を、 N o. 1 と同様の操作により街撃試験用 の試験片を作製した。 得られた再生樹脂のアイゾッ ト衝撃強度は 5 6 k g f cmZcm2 であった。 また、 再生樹脂の成形性は新材と 同等であり、 また成形品の表面に塗膜片は目視では観察されず、 新 材の成形品と同等の面品質であつ す:。
(N o. 7) オー トクレープに水 4 0 0 リ ッ トル注入して 8 0 °C に加熱後、 アクリル一メラ ミ ン塗膜付きのエラス トマ一変性ポリブ 口ビレン樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 ォー ドクレーブ を密封した後、 粉砕物を攪拌しながらォートクレーブの内温を 8 0 でから 1 5 0eCまで昇温させ、 5気圧の加圧状態とした。 1 5 0で で 6 0分間この加圧状態を保持した後、 8 0eCまで急冷し、 大気開 放することにより反応を俘止させた後、 粉砕物を取出した。 この分 解処理後の粉砕樹脂を、 N o. 1 と同様の操作により銜擎試験用の 試験片を作製した。 得られた再生樹脂のアイゾッ ト街擎強度は 5 7 k g ί cm/cm2 であった。 また、 再生樹脂の成形性は新材と同 等であり、 また成形品の表面に塗膜片は目視では観察されず、 新材 の成形品と同等の面品質であつ す乙。
( o . 8 ) オートクレーブに水 4 0 0 リ ツ トル注入して 8 0 eC に加熱後、 アクリル一メラミ ン塗膜付きのエラス トマ一変性ポリプ πピレン樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 オー トクレープ を密封した後、 粉碎物を攙拌しながらォー トクレープの内温を 8 0 でから 1 3 0 'Cまで昇温させ、 3気圧の加圧状態とした。 1 3 0で で 6 0分間この加圧状態を保持し、 徐冷後、 大気開放することによ り反応を停止させた後、 粉碎物を取出した。 この分解処理後の粉砕 樹脂を、 No. 1 と同様の操作により衝擎試験用の試験片を作製し た。 得られた再生樹脂のアイゾッ ト衢擊強度は 5 5 k g f c mZ c m2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また 成形品の表面に塗膜片は目視では観察されず、 新材の成形品と同等 の面品質であつた。
(N o . 9 ) オー トクレーブに水 4 0 0 リ ッ トル注入して 8 0で に加熱後、 ウレタン塗膜付きのポリプロピレン樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 オー トクレーブを密封した後、 粉砕物を攪拌 しながらオートクレープの内温を 8 0でから 1 5 0でまで昇温させ、 5気圧の加圧状態とした。 1 5 0でで 6 0分間この加圧状態を保持 し、 徐冷後、 大気開放することにより反応を停止させた後、 粉砕物 を取出した。 この分解処理後の粉碎榭脂を、 N o . 1 と同様の操作 により衝撃試験用の試験片を作製した。 得られた再生樹脂のアイゾ ッ ト街撃強度は 5 6 k g ί c mZ c m2 であった。 また、 再生樹脂 の成形性は新材と同等であり、 また成形品の表面に塗膜片は観察さ れず、 新材の成形品と同等の面品質であった。
(N o. 1 0 ) オートクレープに水 4 0 0 リ ツ トル注入して 8 0 •Cに加熱後、 ウレタン塗膜付きのエラス トマ一変性ボリプロピレン 樹脂廃品の粉碎物 1 0 0 k gを仕込んだ。 オートクレーブを密封し た後、 粉砕物を攙拌しながら熱水浴中で 8 0でから 1 5 0でまで加 熱し、 5気圧の加圧状態とした。 1 5 0でで 6 0分間この加圧状態 を保持した後、 8 0でまで急冷し、 大気開放することにより反応を 停止させた後、 粉碎物を取出した。 この分解処理後の粉砕榭脂を、- N 0. 1 と同様の操作により衝擎試験用の試験片を作製した。
得られた再生樹脂のアイゾッ ト街撃強度は 5 7 k g f c m/ c m 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また成 形品の表面に塗膜片は目視では観察されず、 新材の成形品と同等の 面品質であつた。
( o. 1 1 ) オー トクレープに水 4 0 0 リ ッ トル注入して 8 0 でに加熱後、 ウレタン塗膜付きのエラス トマ一変性ポリブロピレン 樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 オートクレーブを密封し た後、 廃品粉碎物を攙拌しながら熱水浴中で 8 0でから 1 3 0でま で加熱し、 3気圧の加圧状態とした。 1 3 0でで 6 0分間この加圧 状態を保持し、 徐冷後、 大気開放し、 粉砕物を取出した。 この分解 処理後の粉砕樹脂を、 N o. 1 と同様の操作により衝撃試験用の試 験片を作製した。 得られた再生樹脂のアイゾッ ト衝擎強度は 5 7 k g f cmZcm2 であった。 また、 再生樹脂の成形性は新材と同 等であり、 また成形品の表面に塗膜片は目視では観察されず、 新材 の成形品と同等の面品質であった。
〔比較例〕
(R 1 ) 実施例 1の粉砕物を加水分解処理しないで、 そのまま成 形して No. 1 と同様の操作で街擎試験の試験片を作製した。 衝擊 強度は 3 8 k g f c m/ c m2 であった。 この銜擎試験後の破断面 の粒子構造の顕微鏡写真を図 5に示す。 写真に示すように樹脂層に は、 異物が存在して均一な状態ではない。
R 2) 塗膜を形成していないエラストマ一変性ボリプロピレン 榭脂廃品を実施例 1 と同様に粉砕して、 そのまま成形して No. 1 と同様の操作で銜撃試験の試験片を作製した。 街擎強度は 5 6 k f cmZcm2 であった。
(R 3) R 1の粉砕物を加水分解処理しないで、 押出機を用いて ペレツ ト化した後成形して No. 1 と同様の操作で街擎試験の試験 片を作製した。 街整強度は 3 8 k g f cm/cm2 であった。
実施例 1の各例は、 比較例の R 2の塗膜のない再生品と同程度の 街擎強度を示している。 結果を表 1に示す。
〔実施例 2〕 く水、 触媒あり、 ブラスチックの溶融温度以下〉
ボリエステル一メラミン塗膜付きのエラストマ一変性ボリブロピ レン樹脂の廃品を実施例 1 と同様に粉砕した。 この粉砕物を以下の 触媒を含む水を処理液として加水分解をおこなつた。
(No. 1 2) 上記の粉砕物を室温で氷齚酸中に 6時間浸潰した後、 水洗、 真空乾燥し加水分解処理物とした。 この処理物を No. 1 と 同様にペレツ ト化して射出成形で試験片を作製し街整試験をおこな 7 0 得られた再生樹脂のアイゾッ ト衝撃強度は 5 5 k g f cm/cm 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であつた。
(No. 1 3) 粉碎物を氷酢酸中に 8 0でで 2時間浸漬した後、 水 洗、 真空乾燥し成形用再生樹脂組成物とした。 この組成物を No. 1 と同様にべレツ ト化して射出成形で試験片を作製し街擎試験をお なつ G
得られた再生榭脂のアイゾッ ト衢轚強度は 5 6 k g f cm/cm 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また成 形品の表面に塗膜片は観察されず、 新材の成形品と同等の面品質で めった O
(No. 1 ) 粉碎物を室温で 5 %の塩酸水溶液中に 6時間浸潢し た後、 水洗、 真空乾燥し成形用再生榭脂組成物とした。 この組成物 を No. 1 と同様にペレツ ト化して射出成形で試騃片を作製し衝擎 試験をおこなった。
得られた再生榭脂のアイゾッ ト衢擎強度は 5 4 k g f cm/cm 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であつた。
(No. 1 5) 粉砕物を 5 %の塩酸水溶液中に 8 0でで 2時間浸漬 した後、 水洗、 真空乾燥し成形用再生榭脂組成物とした。 この組成 物を No. 1 と同様にペレツ ト化して射出成形で試験片を作製し衡 擎試験をおこなった。
得られた再生樹脂のアイゾッ ト街撃強度は 5 5 k g f c m/ c m 2 であった。 また、 再生榭脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であつた。
( o. 1 6 ) 粉砕物を 5 水酸化ナトリゥム水溶液に 8 0でで 2 時間浸漬した後、 水洗、 真空乾燥し成形用再生樹脂組成物とした。 この組成物を No. 2と同様にペレツ ト化して射出成形で試験片を 作製し衝擎試験をおこなった。
得られた再生樹脂のアイゾッ ト街撃強度は 5 6 k g f cm/cm 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であった。
結果を表 1に示した。 加水分解処理をした塗膜付きエラス トマ一 変性プラスチック廃品からの再生樹脂組成物の街擎強度は加水分解 処理をしていない再生樹脂の R 1 , 3の 3 8 (k g f cmZcm2 ) より高くなつている。 また塗膜のない再生樹脂の R 2の衝整強度 の 5 6 (k g f cm/cm2 ) とほぽ同じである。 これは加水分解 された塗膜片が榭脂中に微細に分散しているためと考えられる。 〔実施例 3〕 く水加圧、 触媒あり、 プラスチックの溶融温度以下〉 (N o. 1 7) オートクレープに 5重量 の塩酸水溶液を 4 0 0 リ ッ トル注入して 8 0でに加熱後、 ポリエステル一メラミ ン塗膜付 きのエラス トマ一変性ボリブ πピレン榭脂廃品の粉砕物 1 0 0 k g を仕込んだ。 ォー トクレーブを密封した後、 廃品粉砕物を攙拌しな がら熱水浴中で 8 0eCから 1 5 0でまで加熱し、 5気圧の加圧状憨 とした。 1 5 0でで 3 0分間この加圧状態を保持した後、 8 0でま で急冷し、 大気開放することにより反応を停止させた後、 粉砕物を 取出した。 この分解処理後の粉砕樹脂を、 N o. 1 と同様の試験片 として衝擎試験に供した。
得られた再生榭脂のアイゾッ ト衝擊強度は 5 7 k g f cmZcm 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であった。
(No. 1 8) オー トクレープに活性白土を 4重量%含有した水 を 4 0 0 リ ツ トル注入して 8 0でに加熱後、 ポリエステルーメラミ ン塗膜付きのエラス トマ一変性ポリブロピレン榭脂廃品の粉碎物 1 0 0 k gを仕込んだ。 オー トクレーブを密封した後、 廃品粉砕物を 攪拌しながら熱水浴中で 8 0でから 1 5 0でまで加熱し、 5気圧の 加圧状態とした。 1 5 0でで 3 0分間この加圧状態を保持し、 徐冷 後、 大気開放し、 粉碎物を取出した。 この分解処理後の粉碎樹脂を、 N o . 1 と同様の試験片として衝撃試験に供した。
得られた再生樹脂のアイゾッ ト街擎強度は 5 7 k g f c m/ c m 2 であった。 また、 再生榭脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であつた。
(N o . 1 9 ) オートクレープに塩化亜鉛を 5重量%含有した水 を 4 0 0 リ ツ トル注入して 8 ひでに加熱後、 ボリエステル一メラミ ン塗腠付きのエラストマ一変性ボリプロピレン榭脂廃品の粉砕物 1 0 0 k gを仕込んだ。 オー トクレーブを密封した後、 廃品粉砕物を 攬拌しながら熱水浴中で 8 0でから 1 5 0でまで加熱し、 5気圧の 加圧状態とした。 1 5 0でで 3 0分間この加圧状態を保持し、 徐冷 後、 大気開放し、 粉碎物を取出した。 この分解処理後の粉砕樹脂を、 N o . 1 と同様の試験片として街擎試験に供した。
得られた再生樹脂のアイゾッ ト衝擎強度は 5 4 k g f c m/ c m 2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であつた。
(N o . 2 0 ) オー トクレープにナトリウムメ トキサイ ドを 5重 量%含有した水 4 0 0 リ ツ トル注入して 8 0でに加熱後、 ボリエス テル一メラミ ン塗膜付きのエラス トマ一変性ポリブロピレン榭脂廃 品の粉砕物 1 0 0 k gを仕込んだ。 オー トクレーブを密封した後、 廃品粉砕物を攙拌しながら熱水浴中で 8 0 'Cから 1 3 0でまで加熱 し、 3気圧の加圧状態とした。 1 3 0でで 6 0分間この加圧状憨を 保持し、 徐冷後、 大気開放し、 粉碎物を取出した。 この分解処理後 の粉砕樹脂を、 No. 1 と同様の試験片として衝擎試験に供した。 得られた再生樹脂のアイ.ゾッ ト衝撃強度は 5 6 k g f c m/ c m
2 であった。 また、 再生樹脂の成形性は新材と同等であり、 また目 視では成形品の表面に塗膜片は観察されず、 新材の成形品と同等の 面品質であつた。
この実施例においても塗膜の無いエラス トマ一変性ブラスチック の再生品とほぼ周じ衝撃強度を有する。
〔実施例 4〕 くアルコール、 触媒なし、 ブラスチックの溶融温度以 下〉
(No. 2 1〉 容量 2 1 0 0 リ ッ トルの攢拌機付き容器にイソブ 口ピルアルコールを 4 0 0 リ トル注入後、 ポリエステル一メラミ ン塗膜付きのエラス トマ一変性ポリブ σピレン樹脂廃品をハンマー ミルなどで約 5 mm角に粉砕した粉砕物 1 0 0 k gを装置に仕込ん だ。 攙拌しながら 8 0でまで加熱した。 8 0でで 1 2 0分閼この状 態を保持た後、 粉砕物を取出した。
この分解処理後の粉碎榭脂は、 NRII型 3 6 mm同方向高速回転 式ベント二軸押出機 (ナカタ二機械製) を用いて溶融混練してペレ ッ ト状物とした。 射出成形機で寸法が 6 8 X 1 2 6 mmの矩形の 轼験片を成形した。 この試験片にノ ッチを付けてアイゾツ ト街擎試 験をおこなった。
得られた再生榭脂のアイゾッ ト衝蓽強度は、 5 2 k g f cm/c m2 であった。 また、 再生樹脂の成形性は新材と同等であり、 成形 品の表面に塗膜片は目視では全く観察されず、 新材の成形品と同等 の面品質であった。
(No. 2 2) 容量 2 1 0 0 リ ッ トル、 攪拌機付きのオー トクレ ーブにイソプロビルアルコールを 4 0 0 リ ッ トル注入後、 No. 2
1のボリエステル一メラミ ン塗膜付きのエラストマ一変性ポリブ π ビレン樹脂廃品の粉碎物 1 0 0 k gを装置に仕込んだ。 オー トクレ ーブを密閉した後、 廃品粉砕物をィソプロピルアルコール浴中で攪 捽しながら、 約 2分間で室温から 1 3 0でまで加熱し、 5 k c m2 の加圧状態とした。 1 3 0でで 6 0分間この加圧状態を保持し た後、 オートクレープ中の圧力を約 2分間で大気圧に戻し、 粉砕物 を取出した。
この分解処理後の粉碎樹脂は、 N o . 2 1 と同様にして街搫試験 片を作製した。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 4 k g f c mZ c m2 であった。 また、 再生樹脂の成形性は新材と同等であり、 成形 品の表面に塗膜片は目視では全く観察されず、 新材の成形品と同等 の面品質であった。
〔実施例 5〕 くアルコール、 触媒あり、 ブラスチックの溶融温度以 下)
(N o . 2 3 ) 容量 2 1 0 0 リ ッ トルの攙拌機付き装置に、 イソ プロピルアルコールに塩酸の濃度 5 %を添加した溶液を 4 0 0 リ ツ トル注入後、 ポリエステル一メラミ ン塗膜付きのエラス トマ一変性 ボリプロピレン樹脂廃品の粉碎物 1 0 0 k gを装置に仕込んだ。 攙 捽しながら 8 0でまで加熱した。 8 0でで 1 2 0分間この状態を保 持した後、 粉碎物を取出した。
この分解処理後の粉碎樹脂は、 水で洗浄した後、 N o . 2 1 と周 様に試験片を作製した。 得られた再生樹脂のアイゾッ ト街擎強度は、 5 6 k g f c m/ c m2 であった。 また、 再生樹脂の成形性は新材 と同等であり、 成形品の表面に塗膜片は目視では全く観察されず、 新材の成形品と同等の面品質であった。
(N o . 2 4 ) ポリエステル一メラミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂の粉碎物を、 9 9. 5 %のェチルアルコー ルに 3 5 %塩酸を 5重量%溶解した溶液中で室温で 6時間浸漬して 塗膜を分解した。 溶媒を除去した後、 この処理樹脂を真空乾燥機で 乾燥して再生樹脂組成物とした。 この状憨では、 分解された塗膜の —部はブラスチッ クの表面に付着していた。 この加水分解処理樹脂 を押出機でペレツ ト化し、 射出成形機で寸法が 6 3 X 1 2 X 6 mm の矩形の試験片に成形した。 この試験片にノ ツチを付けてアイゾッ ト衢撃試験をおこなった。 得られた再生樹脂のアイゾッ ト街撃強度 は、 5 4 k g f c m/ c m あった。
(N o . 2 5 ) ポリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂の廃品の粉碎物を、 塩酸を 0. 1 %含むェ チルアルコール溶液中に 8 (TCで 2時閬浸漬して塗膜の分解処理を おこなった。 溶媒を除去した後、 この処理樹脂を真空乾燥機で乾燥 した。 この状態では、 分解された塗膜の一部は粉碎ブラスチ、タ クの 表面に付着していた。 この処理樹脂を押出機でペレツ ト化して再生 用樹脂組成物とし、 射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形 の試験片に成形した。 この試験片にノ ツチを付けてアイゾッ ト街擎 試験をおこなった。 街孳強度は 5 6 k g f c m/ c m2 であった。
また、 再生樹脂をエラス トマ一変性ボリプロピレン新材に 5 0重 量%配合して成形した場合の街擎強さは 5 8 k g f c m/ c m2 で 新材 1 0 0 %で成形した場合の 5 8 k g f c m/ c m2 と同じ水準 つた。
(N o . 2 6 ) ボリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ボリプロピレン樹脂の粉砕物を、 1 0 0 %ィソブロピルアルコ ールに水酸化ナトリウムを 5重量%溶解した溶液中に 8 0でで 2時 間浸瀵して、 塗膜の加水分解処理をおこなった。 溶媒を除去した後、 この処理樹脂を真空乾燥機で乾燥した。 この状態では、 分解された 塗膜の一部はブラスチックの表面に付着していた。 この処理樹脂を 押出機でペレツ ト化して再生樹脂組成物とし射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片に成形した。 この試験片にノ ツチ を付けてアイゾッ ト衝擎試験をおこなった。 衝整強度は 5 6 k g f c m/ c m2 であった。
また、 再生樹脂をエラストマ一変性ボリプロピレン新材に 5 0重 量 ί¾Κ合して成形した場合の衝撃強さは 5 8 k g f c m/ cm2 で 新材 1 0 0 %で成形した場合の 5 8 k g f c m// c m2 と同じ水準 t めった。
(N o. 2 7 ) 容量 2 1 0 0 リ ッ トル、 攪拌機付きのオー トクレ ーブに、 イソプロピルアルコールに塩酸の濃度 5 %を添加した溶液
4 0 0 リ ツ トル注入後、 ポリエステルーメラミ ン塗膜付きのエラス トマ一変性ボリプロピレン樹脂廃品の粉碎物 1 0 0 k gを仕込んだ。 オートクレーブを密閉した後、 廃品粉碎物を塩酸添加ィソブロピル アルコール浴中で攙拌しながら、 約 2分間で室温から 1 3 0 eCまで 加熱し、 5 k gZcm2 の加圧状態とした。 1 3 0でで 6 0分まこ の加圧状態を保持した後、 オー トクレーブ中の圧力を約 2分間で大 気圧に戻し、 粉碎物を取出した。
この分解処理後の粉碎榭脂は、 水で洗浄した後、 N o. 2 1 と同 様に試睽片を作製して街搫試験に供した。
得られた再生樹脂のアイゾッ ト街擎強度は、 5 6 k g f cmZc m2 であった。 また、 再生樹脂の成形性は新材と同等であり、 成形 品の表面に塗腠片は目視では全く観察されず、 新材の成形品と同等 の面品質であつた。
結果を表 2に示す。 この実施例も塗膜の無いエラス トマ一変性ブ ラスチックの再生品の R 2の衢撃強度とほぼ同じ水準である。
〔実施例 6〕 く水 +アルコール、 触媒なし、 ブラスチッ クの溶融温 度以下〉
(N o . 2 8 ) 容量 2 1 0 0 リ ッ トルの攙拌機付き容器にイソブ πピルアルコールと水の重量比が 1 : 1の溶液 4 0 0 リ ツ トルを注 入後、 ポリエステル一メラ ミ ン塗膜付きのエラス トマ一変性ポリプ 口ピレン樹脂廃品の粉碎物 1 0 0 k gを仕込んだ。 攙拌しながら 8 0でまで加熱し、 8 0でで 6 0分間この状態を保持した後、 粉砕物 を取出した。
この分解処理後の粉砕樹脂を N o . 2 1 と同様にべレツ ト状物と して、 射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片を成 形した。 この試験片にノ ツチを付けてアイゾッ ト衝擎試験をおこな つ 0
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 5 k g f cmZc m 2 であつ 0
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗膜 片は目視では全く観察されず、 新材の成形品と同等の面品質であつ
(No. 2 9) 容量 2 1 0 0 リ ッ トルの攙拌機付きオートクレー ブに、 イソブ πピルアルコールと氷の重量比が 1 : 1の溶液 4 0 0 リ ッ トルを注入後、 ボリエステル一メラミ ン塗膜付きのエラス トマ 一変性ボリプロピレン樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 ォ 一トクレープを密閉した後、 廃品粉碎物を水とイソブ πビルアルコ ールの混合溶液中で攪拌しながら、 約 2分間で室温から 1 8 0でま で加熱し、 4 k g/cm2 の加圧状態とした。 1 3 0でで 3 0分間 この加圧状態を保持した後、 オートクレープ中の圧力を約 2分間で 大気圧に戻し、 粉砕物を取出した。
この分解処理後の粉砕樹脂は、 No. 2 1 と同様に試験片を作製 して街撃試験に供した。 得られた再生樹脂のアイゾッ ト衝擎強度は、 5 6 k g f cmZcm2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ 7Ce
(N o. 3 0) オー トクレープにイソプロピルアルコールと水を 等量混合した溶液を 4 0 0 リ ツ トル注入して 8 0でに加熱後、 ウレ タン塗膜付きのエラス トマ一変性ポリプロピレン樹脂廃品の粉砕物
1 0 0 k gを仕込んだ。 オートクレーブを密閉した後、 廃品粉砕物 を水とイソプロピルアルコールの混合溶液中で攙拌しながら、 8 0 でから 1 3 0でまで加熱し、 4 k gZ cm2 の加圧状態とした。 1
3 0'Cで 3 0分間この加圧状憨を保持した後、 徐冷後、 大気開放し、 粉砕物を取出した。
この分解処理後の粉砕樹脂は、 実施例 1 と同様に試験片を作製し て街撃試験に供した。 得られた再生樹脂のアイゾッ ト衝撃強度は、
5 6 k g f cm/cm2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ 0
〔実施例 7〕 <水+アルコール、 触媒あり、 ブラスチックの溶融温 度以下 >
( o. 3 1 ) 容量 2 1 0 0 リ ッ トルの攪拌機付き容器に、 イソ ブロピルアルコ -ルと水の重量比が 1 : 1の溶液に活性白土 4 %を 添加した溶液 4 0 0 リ ツ トルを注入後、 ボリエステル一メラ ミ ン塗 膜付きのエラス トマ一変性ポリプロピレン樹脂廃品の粉碎物 1 0 0 k gを仕込んだ。 攙拌しながら 8 0でまで加熱し、 8 0でで 6 0分 間この状態を保持した後、 粉碎物を取出した。
この分解処理後の粉碎樹脂は、 水で洗浄した後、 No. 2 1 と同 様に試験片を作製した。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f cmZc m 2 C:あつ o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は全く観察されず、 新材の成形品と同等の面品質であった。
( o. 3 2) 容量 2 1 0 0 リ ッ トルの攙拌機付き容器に、 1 N の塩酸を含むィソブロピルアルコール水溶液 4 0 0 リ ツ トルを注入 後、 ボリエステル一メラミ ン塗膜付きのエラス トマ一変性ボリプロ ピレン樹脂廃品の粉砕物 1 0 0 k gを仕込んだ。 攪拌しながら 8 5 でで 3 0分浸漬処理した。 溶媒を除去した後、 真空乾燥機で乾燥し た。 この状態では分解塗膜はィソプロピルアルコールに完全に溶解 せず一部はブラスチッ クの表面に付着している。 この処理樹脂を押 出機でペレツ ト化して射出成形により衝擎強度測定用の試験片を作 製した。
得られた再生樹脂のアイ.ゾッ ト街撃強度は、 5 5 k g f c m/ c m 2 で ゥ 0
(N o , 3 3 ) 容量 2 1 0 0 リ ッ トル攙拌機付きのオー トクレー ブにイソプロビルアルコールと水の重量比が 1 : 1の溶液に、 ナト リウムメ トキサイ ド 5 %を添加した溶液 4 0 0 リ ツ トルを注入後、 ボリエステル一メラミ ン塗膜付きのエラス トマ一変性ポリプロピレ ン锊脂廃品の粉砕物 1 0 0 k gを仕込んだ。 オー トクレーブを密閉 した後、 廃品粉砕物を浴中で攙拌しながら、 約 2分間で室温から 1 3 0 eCまで加熱し、 4 k c m2 の加圧状態とした。 1 3 0でで 3 0分間この加圧状態を保持した後、 オートクレーブ中の圧力を約 2分間で大気圧に戻し、 粉碎物を取出した。
この分解処理後の粉碎榭脂は、 水で洗浄した後、 N o. 2 1 と同 様に試験片を作製した。
得られた再生樹脂のアイゾッ ト街鼕強度は、 5 6 k g f cmZc m 2 であった o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は全く観察されず、 新材の成形品と同等の面品質であった。
(N o . 3 4 ) 容量 2 1 0 0 リ ッ トル攪拌機付きのオー トクレー ブにェチルセ πソルブと水の重量比が 1 : 1の溶液に、 塩酸を 1重 量 添加した溶液 4 0 0 リ ツ トルを注入後、 この溶液を 8 0 eCに加 熱後、 ポリエステルーメラ ミ ン塗膜付きのエラス トマ一変性ポリブ πピレン樹脂廃品の粉碎物 1 0 0 k gを仕込んだ。 オー トクレーブ を密閉した後、 廃品粉砕物を浴中で攪拌しながら、 8 0でから 1 1 0でまで加熱し、 1. 5気圧の加圧状態とした。 1 1 0でで 3 0分 間この加圧状態を保持した後、 徐冷後、 大気圧に戻し、 粉砕物を取 出しに o
この分解処理後の粉砕榭脂は、 水で洗浄した後、 N o . 2 1 と同 様に試験片を作製して衝擎試験に供した。 得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f c mZ c m2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は全く観察されず、 新材の成形品と同等の面品質であった。 結果を表 2に示す。 いずれも塗膜の無い再生品 R 2 と同じ水準の 衝撃強度を示す。
〔実施例 8〕 < く浸漬>処理、 プラスチックの溶融温度以上〉 (N o . 3 5 ) 容量 2 0 リ ッ トルのオー トクレープに水を 1 2 リ ッ トル注入後、 ポリエステル一メラ ミ ン塗膜付きのエラス トマ一変 性ポリプロピレン樹脂廃品の粉砕物 5 k gを仕込んだ。 オー トクレ ーブを密閉した後、 2 4 0でまで加熱し、 3 5 k g/ c m2 の加圧 状態とした。 2 4 0でで 2 0分間この加圧状態を保持した後、 ォー トクレーブ中の圧力を大気圧に戻し、 粉砕物を取出した。
この樹脂粉砕物は、 樹脂粒同士が融着した高温度のボーラス状物 で、 取出した後そのまま放置して乾燥できる。 乾燥後、 NR E型 3 6 mm同方向高速回転式ベン トニ軸押出機 (ナカタ二機械製) を用 いて溶融混練してペレツ ト状物とした。 このペレツ トを用いて射出 成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片を成形した。 こ の試験片にノ ツチを付けてアイゾッ ト街擎試験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f c mZ c m 2 でめった 0
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つた o
(N o . 3 6 ) 容量 2 0 リ ッ トルのオー トクレープに活性白土 4 %を添加し水を 1 2 リ ッ トル注入後、 ポリエステル一メラミ ン塗膜 付きのエラス トマ一変性ポリプロピレン樹脂廃品の粉砕物 5 k gを 仕込んだ。 オートクレープを密閉した後、 2 4 CTCまで加熱し、 3 5 k gZ c m2 の加圧状態とした。 2 4 0でで 5分間この加圧状態 を保持した後、 オー トクレープ中の圧力を大気圧に戻し、 粉砕物を 取出した。
この樹脂粉砕物は、 N o . 3 5 と同様に樹脂粒同士が融着した髙 温度のポーラス状物となっていた。 水で洗浄した後、 そのまま放置 して乾燥できる。 N o . 3 5 と同様に試験片を作製した。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f c mZ c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つた。
(N o . 3 7 ) 容量 2 0 リ ッ トルのオー トクレープにイソプロピ ルアルコールを 1 2 リ ッ トル注入後、 ボリエステルーメラミ ン塗膜 付きのエラス トマ一変性ボリプロピレン樹脂廃品の粉砕物 5 k gを 装置に仕込んだ。 オー トクレーブを密閉した後、 2 0 0でまで加熱 し、 3 0 k gZcm2 の加圧状態とした。 2 0 0でで 2 0分間この 加圧状態を保持した後、 オー トクレーブ中の圧力を大気圧に戻し、 粉砕物を取出した。
この樹脂粉砕物は、 N o . 3 5 と同様に樹脂粒同士が融着した高 温度のボーラス状物で、 取出した後そのまま放置して乾燥できる。
N o. 3 5 と同様に試験片を作製した。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f cm/c m z でめつ 7i o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ o
(N o . 3 8 ) 容量 2 0 リ ッ トルのオー トクレープに活性白土 4 を添加したィソプロピルアルコ—ル 1 2 リ ッ トルを注入後、 ボリ エステル一メラミ ン塗膜付きのエラス トマ一変性ポリブロピレン樹 脂廃品の粉砕物 5 k gを仕込んだ。 オー トクレーブを密閉した後、 2 0 0でまで加熱し、 3 0 k g/ c m2 の加圧状態とした。 2 0 0 でで 5分間この加圧状態を保持した後、 オー トクレープ中の圧力を 大気圧に戻し、 粉碎物を取出した。
この樹脂粉碎物は、 N o. 3 5と同様に樹脂粒同士が融着した髙 温度のボーラス状物となっていた。 水で洗浄した後、 そのまま放置 して乾燥できる。 No. 3 5 と同様に試験片を作製して街撃試験に 供した。
得られた再生樹脂のアイゾッ ト衢撃強度は、 5 6 k g f cmZc m 2 であった o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は全く観察されず、 新材の成形品と同等の面品質であった。
(No. 3 9) 容量 2 0 リ ッ トルのオー トクレープにイソプロピ ルアルコールと水の重量比が 1 : 1の溶液 1 2 リ ツ トルを注入後、 ボリエステル一メラミ ン塗膜付きのエラス トマ一変性ボリプロピレ ン榭脂廃品の粉砕物 5 k gを装置に仕込んだ。 オー トクレーブを密 閉した後、 2 0 0でまで加熱し、 2 3 k g/cm2 の加圧状態とし た。 2 0 0でで 2 0分閭この加圧状態を保持した後、 オー トクレー ブ中の圧力を大気圧に戻し、 粉砕物を供した。
この樹脂粉碎物は、 No. 3 5と同様に樹脂粒同士が融着した髙 温度のボーラス状物で、 取出した後そのまま放置して乾燥できる。
No. 3 5と同様に試験片を作製した。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f cm/c m2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ丁:。
(N o. 4 0) 容量 2 0 リ ッ トルのオー トクレーブにイソプロピ ルアルコールと水の重量比が 1 : 1の溶液 1 2 リ ッ トルを注入後、 ポリエステルーメラ ミ ン塗膜付きのエラス トマ一変性ボリプロピレ ン樹脂廃品の粉砕した粉砕物 5 k gを装置に仕込んだ。 オー トクレ ーブを密閉した後、 2 0 0でまで加熱し、 2 3 k c m2 の加圧 状態とした。 2 0 0でで 2 0分間この加圧状態を保持した後、 ォー トクレーブ中の圧力を大気圧に戻し、 粉砕物を取出した。
この樹脂粉砕物は、 N o . 3 5 と同様に樹脂粒同士が融着した髙 温度のボーラス状物で、 取出した後そのまま放置して乾燥できる。
N o . 3 5 と同様に試験片を作製した。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f c mZ c m であった o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ この実施例も比較例 R 2の塗膜の無い再生品と同じレベルの衝撃 強度を示した。 結果を表 3に示す。
〔実施例 9〕 〈水蒸気、 プラスチッ クの溶融温度以下〉
ポリエステル一メラミ ン塗膜付のエラストマ一変性ポリプロビレ ン樹脂の廃品を約 5 mm角に粉砕した。 この粉砕物を以下の条件で 加水分解をおこなった。
N o . 4 1 はオー トクレープ (夕バイェスぺック社製 P C - 2 1 1 ) を用いて、 1 3 O 'C (圧力 2. 8 kgf/cra2 ) 、 1 0 0 %RH水 蒸気処理を 1時間、 N 0. 4 2は 4時間の処理をおこなった。 その 後、 この処理粉砕樹脂を真空乾燥機で乾燥して成形用再生樹脂組成 物とした。 この状態では、 加水分解された分解塗膜はプラスチッ ク スの表面に付着していた。 乾燥した後、 射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片を成形した。 この試験片にノ ツチを付 けてアイゾッ ト衝撃試験をおこなった。
N o . 4 3は、 アク リル一メラミ ン塗膜付きのエラス トマ一変性 ポリプロピレンの廃品を、 前記のとおりに粉砕した。 加水分解条件 は、 1 3 0で (圧力 2. 8 kgf /cm2 ) 、 1 0 0 %RH水蒸気処理を 1時間、 No. 4 4は 4時間おこなった。 この処理粉砕樹脂をシン ナ -中に浸漬して超音波洗浄を 1 0分閭おこない、 加水分解で分解 した塗膜をシンナーに溶解させ、 シンナーを除去して乾燥した。
この乾燥して射出成形機で寸法が 6 3 x i 2 x 6 mmの矩形の試 験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試験 こ 7よつ 0
No. 4 5は、 ウレタン塗膜付きのエラス トマ一変性ポリブロピ レン廃品を、 前記とおりに粉碎した。 加水分解条件は、 1 3 0て、 1 0 0 %RH水蒸気処理を 1時間おこなった。 加水分解後、 処理粉 碎樹脂を 2軸押出機 (ナカタニ機械製) にて 2 3 0て、 3 5 0 r p mで溶融混練し、 直径約 3mmのペレツ ト状に押し出し固化させて 成形用再生樹脂組成物とした。
このべレツ トを No. 1 と同様の条件で射出成形して、 アイゾ ッ ト街撃試験片を作製した。
得られたアイゾッ ト衝撃強度は、 No. 4 1が 5 6 k g f cmZ cm2 o. 4 2が 5 6 k g f cm/cm2 、 No. 4 3が 5 6 k g f cmZcm2 、 No. 4 4が 5 6 k g f cmZcm2 、 N o. 4 5が 5 6 k g f cm/cm2 であった。
No. 4 2、 N o. 4 3の衝撃試験後の破断面の顕微鏡写真を図 1、 図 2にそれぞれ示す。 いずれも樹脂層は均一で、 塗膜片の異物 は存在していない。
(No. 4 6) 容量 2 2 リ ッ トルの回転式円筒形 (攪拌用板付 き) のオートクレープに、 ポリエステル一メラ ミ ン塗膜付きのエラ ス トマ一変性ポリプロピレン樹脂廃品の粉碎物 1 6. 5 リ ッ トル
( 7 k ) をオー トクレープ装置に仕込んで密閉した。 オー トクレ ーブを回転させながら水蒸気を注入して約 3分間で室温から 1 8 0 でまで加熱し、 1 1 k c m2 の加圧状態とした。 1 8 0でで 1 0分閭この加圧状態を保持した後、 オー トクレープ中の圧力を約 4 分間で大気圧に戻し、 粉砕物を取出した。 この分解処理後の粉砕樹脂は、 NR E型 3 6 mm同方向高速回転 式ベン ト二軸押出機 (ナガ夕二機械製) を用いて溶融混練してペレ ッ ト状物とした。 射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝擎試 験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f c m/ c m2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ O
(N o . 4 7 ) ボリエステル一メラ ミ ン塗膜付きのエラストマ一 変性ポリプロピレン樹脂廃品の粉砕物 1 6. 5 リ ッ トル ( 7 k g) をオー トクレーブに仕込んで密閉した。 オー トクレープを回転させ ながら水蒸気を注入して約 2分間で室温から 1 5 O 'Cまで加熱し、 5 k g/ c m2 の加圧状態とした。 1 5 0 Cで 6 0分間この加圧状 態を保持した後、 オートクレーブ中の圧力を約 4分間で大気圧に戻 し、 粉砕物を取出した。
この分解処理後の粉砕樹脂は、 N o . 4 6 と同様に試験片を作製 して衝撃試験に供した。 得られた再生樹脂のアイゾツ ト衝撃強度は. 5 7 k g f c mZ c m2 であった。
また. 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ τ 。
(N o . 4 8 ) ポリエステル一メラ ミ ン塗膜付きのエラストマ一 変性ポリプロビレン樹脂廃品の粉砕物 1 6. 5 リ ッ トル ( 7 k g) をオー トクレーブに仕込んで密閉した。 オー トクレープを回転させ ながら水蒸気を注入して約 2分間で室温から 1 1 0でまで加熱し、
1. 5 k gZ c m2 の加圧状態とした。 1 1 0でで 6 0分間この加 圧状態を保持した後、 オー トクレーブ中の圧力を約 3分間で大気圧 に戻し、 粉碎物を取出した。
この分解処理後の粉砕樹脂は、 No. 4 6 と同様に試験片を作製 して衝撃試験に拱した。 得られた再生樹脂のアイゾッ ト衢撃強度は、 5 4 k g f cmZcm2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つた。
(No. 4 9 ) ポリエステル一メラミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂廃品の粉碎物 1 6. 5 リ ッ トル ( 7 k g) をオー トクレーブに仕込んで密閉した。 オー トクレーブを回転させ ながら、 粉砕物に接する塩酸濃度が約 1 %になるように塩酸を滴下 しながら水蒸気を注入し、 約 2分閭で室温から 1 5 0でまで加熱し、 5 k g/cm2 の加圧状態とした。 1 5 0でで 3 0分間この加圧状 態を保持した後、 オー トクレーブ中の圧力を約 3分間で大気圧に戻 し、 粉碎物を取出した。
この分解処理後の粉碎樹脂は、 水で洗浄した後、 No. 4 6と同 様に試驗片を作製して街撃試験に供した。 得られた再生樹脂のアイ ゾッ ト衝撃強度は、 5 7 k g f cmZcm2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ この実施例においても塗膜の無いブラスチック再生品 R 2の衢撃 強度と同じ水準を示した。
〔実施例 1 0〕 〈く蒸気 >処理、 プラスチックの溶融温度以下〉
(No. 5 0) 容量 2 2 リ ッ トルの回転式円筒形 (攪拌用扳付 き) のオー トクレープに、 ポリエステル一メラミ ン塗膜付きのエラ ス トマ一変性ボリプロピレン榭脂廃品の粉砕物 7 k g ( 1 6. 5 リ ッ トル) を仕込んで密閉した。 オー トクレープを回転させながらィ ソプロピルアルコールの蒸気を注入して約 2分間で室温から 1 3 0 でまで加熱し、 5 k gZ c m2 の加圧状態とした。 1 3 0でで 6 0 分間この加圧状態を保持した後、 オー トクレーブ中の圧力を約 3分 間で大気圧に戻し、 粉砕物を取出した。
この分解処理後の粉砕樹脂は、 NR I [型 3 6 mm同方向高速回転 式ベン トニ軸押出機 (ナカ夕二機械製) を用いて溶融混練してペレ ッ ト状物とした。 射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試 験をおこなった。
得られた再生樹脂のアイゾツ ト衝撃強度は、 5 7 k g f c m/ c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗膜 片は目視では全く観察されず、 新材の成形品と同等の面品質であつ た。
(No. 5 1 ) ボリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂廃品の粉砕物 7 k g ( 1 6. 5 リ ッ トル) をオー トクレーブに仕込んで密閉した。 オー トクレーブを回転させ ながら、 粉砕物に接する塩酸濃度が約 1 %になるように塩酸を滴下 しながらイソプ oピルアルコールの蒸気を注入して約 2分間で室温 から 1 3 (TCまで加熱し、 5 k gZ c m2 の加圧状態とした。 1 3 0でで 3 0分間この加圧状態を保持した後、 オー トクレープ中の圧 力を約 3分間で大気圧に戻し、 粉砕物を取出した。
この分解処理後の粉砕樹脂は、 水で洗净した後、 N o. 5 0と同 様に試験片を作製して衝撃試験に供した。
得られた再生樹脂のアイゾッ ト衝撃強度は. 5 7 k g f cmZc m 2 であった。
また. 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ / ν· O
(N o. 5 2〉 ボリエステル一メラ ミ ン塗膜付きのエラストマ一 変性ポリプロピレン樹脂廃品の粉碎物 1 6. 5 リ ッ トル ( 7 k g) をオートクレーブに仕込んで密閉した。 オー トク レープを回転させ ながらィソプロピルアルコールと水の重量比がほぼ同量となるよう に、 イソプロピルアルコ―ルを滴下しながら水蒸気を注入して約 2 分間で室温から 1 3 0でまで加熱し、 4 k g / c m2 の加圧状態と した。 1 3 (TCで 3 0分間この加圧状態を保持した後、 オー トクレ ーブ中の圧力を約 2分間で大気圧に戻し、 粉砕物を取出した。
この分解処理後の粉砕樹脂は、 No. 5 (3と同様に試験片を作製 して衢撃試験に供した。 得られた再生樹脂のアイゾッ ト衢撃強度は. 5 7 k g f cm/ cm2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ τこ。
( o . 5 3) ポリエステル一メラミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂廃品の粉碎物 1 6. 5 リ ッ トル ( 7 k g) をオートクレーブに仕込んで密閉した。 オー トクレープを回転させ ながら、 ェチルセ口ソルブと水の重量比がほぽ同量となるようにェ チルセ口ソルブを滴下し、 さらに塩酸濃度が約 1 %となるように塩 酸を滴下しながら水蒸気を注入した。 約 2分間で室温から 1 1 0で まで加熱し、 2 k g / c m2 の加圧状態とした。 1 1 0でで 3 0分 間この加圧状態を保持した後、 オー トクレーブ中の圧力を約 1分間 で大気圧に戻し、 粉砕物を取出した。
この分解処理後の粉砕樹脂は、 水で洗浄した後、 No. 5 0と同 様に試験片を作製して衝撃試験に洪した。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f cm/c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ 7こ o 結果を表 3に示す。
〔実施例 1 1〕 〈く蒸気 >処理、 ブラスチッ クの溶融温度以上〉 (N o. 5 4 ) ポリエステル一メ ラ ミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂廃品の粉砕物 7 k gを容量 2 0 リ ツ トルの オー トクレーブに仕込んで密閉した。 オー トクレーブに水蒸気を注 入して 2 4 0でまで加熱し、 オー トクレープ内を 3 5 k g/ c m2 の加圧状態とした。 2 4 0でで 2 0分間この加圧状態を保持した後、 オー トクレープ中の圧力を大気圧に戻し、 粉砕物を取出した。
この分解処理後の樹脂粉砕物は、 樹脂粒同士が融着した高温度の ボーラス状物で、 取り出した後そのまま放置して乾燥できる。
次いで、 NR II型 3 6 mm同方向高速回転式ベン トニ軸押出機 (ナカタ二機械製) を用いて溶融混練してペレツ ト状物とした。 次 いでこのペレツ トを射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形 の試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト街撃 試験をおこなった。 得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f cmZcm2 であった。
この再生樹脂の成形性は新材と同等であり、 成形品の表面に塗膜 片は目視では全く観察されず、 新材の成形品と同等の面品質であつ
,し 0
( o. 5 5) 5 mm角に粉砕したボリエステル一メラミ ン塗膜 付きのポリプロピレン樹脂廃品の粉砕物 7 k gを、 容量 2 0 リ ッ ト ルのォ一トクレーブに仕込んで密閉した。 この粉砕物に接する塩酸 濃度が約 1 になるように塩酸を滴下しながら水蒸気を注入して、 2 4 0でまで加熱し、 オー トクレープ内を 3 5 k g/ c m2 の加圧 状態とした。 2 4 0でで 5分間この加圧状態を保持した後、 ォー ト クレープ中の圧力を大気圧に苠し、 粉砕物を取出した。
この分解処理後の樹脂粉砕物は、 樹脂粒同士が融着した髙温度の ボーラス状物となっていた。 水で洗浄した後、 そのまま放置して乾 燥できる。 この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6mm の矩形の試騃片を成形した。 この試験片にノ ツチを付けてアイゾッ ト街撃試験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f cmZc m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つた o
(N o . 5 6 ) 5 mm角に粉碎したポリエステル一メラミ ン塗膜 付きのエラス トマ一変性ボリプロピレン樹脂廃品の粉碎物 7 k gを、 容量 2 0 リ ッ トルのォー トクレーブに仕込んで密閉した。 ィソプロ ピルアルコ—ルの蒸気を注入して 2 0 0 "Cまで加熱し、 オー トク レ 一ブ内を 3 0 k g c m2 の加圧状態とした。 2 0 0でで 2 0分間 この加圧状態を保持した後、 オートクレーブ中の圧力を大気圧に戻 し、 粉碎物を取出した。
この分解処理後の樹脂粉砕物は、 樹脂粒同士が融着した髙温度の ボーラス状物で取出した後そのまま放置して乾燥できる。 この処理 樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片を成 形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試験をおこな つす:。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f cmZc m2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ / α
(N o . 5 7 ) 5 mm角に粉碎したポリエステル一メラミ ン塗膜 付きのエラス トマ一変性ポリプロピレン樹脂廃品の粉砕物 7 k gを、 容量 2 0 リ ッ トルのォー トクレーブに仕込んで密閉した。 オー トク レーブ内の粉碎物に接する塩酸濃度が約 1 %となるように塩酸を滴 下しながらイソプロピルアルコールの蒸気を注入して 2 0 0でまで 加熱し、 オー トクレープ内を S O k gZ c m2 の加圧状態とした。
2 0 0でで 5分間この加圧状態を保持した後、 オー トクレープ中の 圧力を大気圧に戻し、 粉砕物を取出した。
この分解処理後の樹脂粉砕物は、 樹脂粒同士が融着した高温度の ポーラス状物となっていた。 水で洗浄して酸を除去した後、 そのま ま放置して乾燥できる。 この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片を成形した。 この試験片にノ ツチを付 けてアイゾッ ト衝撃試験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f cmZc m 2 であった o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つた 0
(No . 5 8 ) 5 mm角に粉砕したポリエステル一メラ ミ ン塗膜 付きのエラス トマ一変性ポリプロピレン樹脂廃品の粉砕物 7 k gを、 容量 2 0 リ ッ トルのォー トクレーブに仕込んで密閉した。 ィソプロ ピルアルコ—ルと水の重量比がほぼ同量となるように、 イソブ πビ ルアルコールを滴下しながら水蒸気を注入して 2 0 0でまで加熱し、 オー トクレープ内を 2 3 k g c m2 の加圧状態とした。 2 0 0で で 1 0分閭この加圧状態を保持した後、 オー トクレープ中の圧力を 大気圧に戻し、 粉碎物を取り出した。
この分解処理後の樹脂粉砕物は、 樹脂粒同士が融着した高温度の ボーラス状物で、 取り出した後そのまま放置して乾燥できる。 この 処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片 を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試験をお つ 。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g ί cmZc m 2 であった o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つす:。
(No. 5 9) 5 mm角に粉砕したポリエステル一メラミ ン塗膜 付きのエラス トマ一変性ポリブロピレン樹脂廃品の粉碎物 7 k gを、 容量 2 0 リ ッ トルのオー トクレーブに仕込んで密閉した。 イソプロ ピルアルコ—ルと水の重量比がほぼ同量となるようにィソプ口ピル アルコ―ルを滴下し、 さらに塩酸濃度が約 1 %になるように塩酸を 滴下しながら水蒸気を注入した。 2 0 0でまで加熱しォ一 トクレー ブ内を 2 3 k gZcm2 の加圧伏態とした。 2 0 0でで 5分間この 加圧状態を保持した後、 オートクレーブ中の圧力を大気圧に戻し、 粉碎物を取出した。
この分解処理後の樹脂粉砕物は、 樹脂粒同士が融着した髙温度の ボーラス状物となっていた。 水で洗浄して酸を除去した後、 そのま ま放置して乾燥した。 この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の試験片を成形した。 この試験片にノ ツチを付け てアイゾッ ト衝撃試験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g ί cmZc m 2 であった o
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ 比較として塗膜の加水分解処理しないでそのまま粉碎して再生樹 脂組成物として同様に成形した試験片のアイゾッ ト衢撃値は、 3 8 k g f cmノ cm2 でありこれよりは高い値である。 また、 塗膜無 しの同じ再生樹脂組成物樹脂のアイゾッ ト街撃値は、 5 6 k g f c m/ cm2 であった。
したがって、 本実施例の各試験片の衝撃強度は、 表 4に示すよう に、 塗膜無しの再生樹脂とほぼ同じレベルの値を示し強度の低下が ない。 〔実施例 1 3〕 〈混練機、 プラスチッ クの溶融温度以上〉
(N o. 6 0 ) ポリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂の廃品を約 5 mm角に粉砕した。 この廃品 粉砕物を図 5の断面模式図に示す高速回転式スク リ ュウ押出機 (ス ク リ ユウ回転数 3 5 0 r pm) の投入部 Aより供給し、 2 2 0でま で加熱して B部で完全に溶融する。 C部では、 処理剤注入口から温 度 2 4 0で、 圧力 3 5 k gZ cm2 の水蒸気を注入し、 スクリ ュウ 回転によって 1 0分間塗膜を分解するとともに樹脂を溶融混練する。 この場合、 水蒸気は樹脂が完全に溶融した B部へは流入せず、 塗膜 分解処理後の水蒸気は C部の末端のベン トから放出する。 さらに D 部で混練して押出し、 直径 3mm、 長さ 5 mmのペレツ ト状物とし この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試 験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f cm/ c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つた 0
(N o. 6 1 ) ポリエステル一メラ ミ ン塗腠付きのエラス トマ一 変性ボリプロピレン樹脂の廃品を約 5 mm角に粉砕した。 この廃品 粉砕物を高速回転式スク リ ュウ押出機 (スク リ ユウ回転数 3 5 0 r pm) の投入部 Aより供給し、 2 2 0 Cまで加熱して B部で完全に 溶融する。 C部では、 処理剤注入口から、 温度 2 4 0で、 圧力 3 5 k g/cm2 の塩酸を 1重量%添加した水蒸気を注入し、 スク リ ュ ゥ回転によって 5分間塗膜を分解するとともに樹脂を溶融混練する。 この場合、 水蒸気は樹脂が完全に溶融した B部へは流入せず、 塗膜 分解処理後の水蒸気は C部の末端のベン トから放出する。 さらに D 部で混練して押出し、 直径 3mm、 長さ 5mmのペレツ ト状物とし o
この処理樹脂を射出成形機で寸法が 6.3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト街撃試 験 ¾■ こなつ "こ。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 6 k g f cm/c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ 0
(No. 6 2) ポリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ボリプロピレン樹脂の廃品を約 5 mm角に粉碎した。 この廃品 粉碎物を高速回転式スクリ ュウ押出機 (スクリ ユウ回転数 3 5 0 r pm) の投入部 Aより供給し、 2 2 0でまで加熱して B部で完全に 溶融する。 C部では、 処理剤注入口から、 温度 2 4 0で、 圧力 3 0 k gZcm2 のイソプロピルアルコールの蒸気を注入し、 スクリ ュ ゥ回転によって 1 0分間塗膜を分解するとともに樹脂を溶融混練す る。 この場合、 蒸気は樹脂が完全に溶融した B部へは流入せず、 塗 膜分解処理後の蒸気は C部の末端のベン トから放出する。 さらに D 部で混練して押出し、 直径 3mm、 長さ 5mmのペレツ ト状物とし o
この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試 験 ¾r - <~なった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f c mZ c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ 丁こ o (N o . 6 3) ポリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂の.廃品を約 5 mm角に粉砕した。 この廃品 粉砕物を高速回転式スク リ ュウ押出機 (スク リ ユウ回転数 3 5 0 r pm) の投入部 Aより供給し、 2 2 0でまで加熱して B部で完全に 溶融する。 C部では、 処理剤注入口から、 温度 2 0 0で、 圧力 3 0 k g/ c m2 の塩酸を 1重量 添加したィソプロピルアルコールの 蒸気を注入し、 スク リ ユウ回転によって 5分間塗膜を分解するとと もに樹脂を溶融混練する。 この場合、 蒸気は樹脂が完全に溶融した B部へは流入せず、 塗膜分解処理後の蒸気は C部の末端のベン トか ら放出する。 さらに D部で混練して押出し、 直径 3mm、 長さ 5m mのペレツ ト状物とした。
この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試 験 ¾: 《■>なつ/ n
得られた再生樹脂のアイゾッ ト街擎強度は、 5 7 k g f cmZc m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ
O 0
(N o. 6 4 ) ポリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ボリプロピレン樹脂の廃品を約 5 mm角に粉砕した。 この廃品 粉砕物を高速回転式スク リ ュウ押出機 (温度 2 3 0で、 スク リ ュウ 回転数 3 5 O r pm) のベン ト部より 1 0 0 %イソプロピルアルコ ールに 3 5 %塩酸を 5重量%溶解した溶液を添加しながら、 この粉 碎物を 5分間溶融混練して押し出し、 ペレタイザ一で直径 3 mm、 長さ 5mmのペレツ ト状にした。
この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試 験をおこなつた。 また、 再生樹脂をエラス トマ一変性ポリプロピレン新材に 5 0重 量%配合して成形した場合のアイゾッ ト衝撃強度は、 5 7 k g f c m/ c m2 で新材 1 0 0 %で成形した場合の 5 8 k g f c m/ c m 2 とほぼ同水準であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つた。
(N o . 6 5 ) ポリエステル一メラ ミ ン塗膜付きのエラス トマ一 変性ポリプロピレン樹脂の廃品を約 5 mm角に粉碎した。 この廃品 粉砕物.を高速回転式スク リ ユウ押出機 (温度 2 3 0で、 スク リ ュウ 回転数 3 5 0 r p m) のベン ト部より 1 0 0 %エチルアルコールに 5 水酸化ナトリウムを 5重量%溶解した溶液を添加しながら、 こ の粉碎物を 5分間溶融混練して押し出し、 ペレタイザ一で直径 3 m m、 長さ 5 mmのペレツ ト状にした。
この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衢撃試 験をおこなつ 。
また、 再生樹脂をエラス トマ一変性ポリプロピレン新材に 5 0重 量%配合して成形した場合のアイゾッ ト衢撃強度は、 5 7 k g f c m/ c m2 で新材 1 0 0 %で成形した場合の 5 8 k g f c m/ c m 2 とほぼ同水準であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ 。
( o . 6 6 ) ポリエステル一メラ ミ ン塗膜付きのエラスマー変 性ポリプロピレン樹脂の廃品を約 5 mm角に粉砕した。 この廃品粉 碎物を髙速回転式スク リ ュウ押出機 (スク リ ユウ回転数 3 5 0 r p m) の投入部 Aより洪耠し、 2 2 0 まで加熱して B部で完全に溶 融する。 C部では、 処理剤注入口から、 温度 2 0 (TC、 圧力 2 3 k g/ c m2 の水とイソプロピルアルコ―ルの重量比が 1 : 1の蒸気 を注入し、 スク リ ユウ回転.によって 1 0分間塗膜を分解するととも に樹脂を溶融混練する。 この場合、 蒸気は樹脂が完全に溶融した B 部へは流入せず、 塗膜分解処理後の蒸気は C部の末端のベン トから 放出する。 さらに D部で混練して押出し、 直径 3mm、 長さ 5 mm のペレツ ト状物とした。
この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試 験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f c m/ c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ 7 0
(N o. 6 7) ポリエステル一メラ ミ ン塗膜付きのえラス ト魔一 変性ボリプロピレン樹脂の廃品を約 5 mm角に粉砕した。 この廃品 粉砕物を高速回転式スク リ ュウ押出機 (スク リ ユウ回転数 3 5 0 r pm) の投入部 Aより供給し、 2 2 0でまで加熱して B部で完全に 溶融する。 C部では、 処理剤注入口から、 温度 2 0 0で、 圧力 2 3 k g/ c m2 の塩酸を 1重量 添加した水とィソプ πピルアルコー ルの重量比が 1 : 1の蒸気を注入し、 スクリ ュウ回転によって 5分 間塗膜を分解するとともに樹脂を溶融混練する。 この場合、 蒸気は 樹脂が完全に溶融した B部へは流入せず、 塗膜分解処理後の蒸気は C部の末端のベン トから放出する。 さらに D部で混練して押出し、 直径 3mm、 長さ 5mmのペレツ ト状物とした。
この処理樹脂を射出成形機で寸法が 6 3 X 1 2 X 6 mmの矩形の 試験片を成形した。 この試験片にノ ツチを付けてアイゾッ ト衝撃試 験をおこなった。
得られた再生樹脂のアイゾッ ト衝撃強度は、 5 7 k g f cm/c m 2 であった。
また、 再生樹脂の成形性は新材と同等であり、 成形品の表面に塗 膜片は目視では全く観察されず、 新材の成形品と同等の面品質であ つ 7こ 0
本実施例の結果を表 4に示す。 この成形用樹脂組成物は、 加水分 解された塗膜が樹脂中に微細に分散しているので、 その衝撃強さは、 未処理の樹脂の衝撃強さより高く、 また、 塗膜のない再生樹脂と比 ベても同等であった。
図 1〜図 5に本発明の再生処理方法で得た衝撃試験片の試験後の 破断面の組織の顕微鏡写真を示す。 図 5の加水分解未処理 (R 1 ) のものは塗膜片が組織中に約 2 0 0 mの大きさで存在しており、 母材の樹脂との界面は剝離している。 このため未処理品では、 塗膜 片が異物となってプラスチックの衝撃強度を低下させている。 一方、 加水分解処理した図 1 〜 4は破断面では塗膜片の存在は確認されず、 分解塗膜を除去しなく とも低分子物となってポリプロピレン樹脂中 に微細に分散しているものと推定され衝撃強度の低下はなかった。 図 1 はポリエステルメラ ミ ン塗膜付きのエラス 卜マー変性ポリプロ ピレン廃品を水蒸気中で 2 4 0分間処理したもので、 図 2はァク リ ルメラ ミ ン塗膜付きのエラス トマ一変性ポリプロピレン廃品を水蒸 気中で 6 0分間処理したものである。 図 3はポリエステルメラ ミ ン 塗膜付きのエラス トマ一変性ポリプロピレン廃品を水と共に 1 5 0 でで 6 0分間処理後 8 0でに急冷したもの、 図 4は図 3の加水分解 処理後、 徐冷したものである。 いずれの加水分解処理方法によって も均一な組織を示し、 ほぼ同程度の衝撃強度を示す。 産業上の利用可能性
本発明の塗膜付きプラスチック廃品の再生処理方法では、 塗膜が 加水分解処理により低分子化して微細となり母材樹脂中に均一に分 散する。 このためこの成形用再生樹脂組成物は、 衝撃強度の低下が なく塗膜のない再生プラスチッ クと同程度の機械的特性を有するの で、 多分野に単独あるいは新材に配合して再使用することができる。
【表 1】
Figure imgf000046_0001
注: PMはポリエステルメラミン、 AMはアクリルメラミン、 ϋはウレタン 【表 2】
Figure imgf000047_0001
注: I PAはイソプロピルアルコール、 E Aはエチルアルコール、 EC eはェチルセ αソルブ、 Me ONaはナトリウムメトキサイド -45-
【表 3】 の顧 励 ^^鍍
No. E V kgf/cm2 間 分 kgfcm anz ϋ u Y 水 無し 2 4 0 3 5 2 0 5 6
3 6 PM 水 雞白土 2 4 0 3 5 5 5 7
3 7 P I PA 無し 2 0 0 3 0 2 0 5 6
3 8 PM I PA 勝 十 2 0 0 3 0 5 5 6
3 9 PM I PA—水 無し 2 0 0 2 3 2 0 5 7
4 0 PM I PA -水 餅 A十 2 0 0 2 3 5 5 7
4 1 PM 無し 1 3 0 2. 8 6 0 5 6
4 2 PM フ 無し 1 3 0 2. 8 2 4 0 5 6
4 3 AM 無し 1 3 0 2. 8 6 0 5 6
4 A A M k ^気 無し 1 3 0 2. 8 2 4 0 5 6
4 5 U フ 無し 1 3 0 2. 8 6 0 5 6
4 6 PM 無し 1 8 0 1 1 1 0 5 7
4 7 PM フ 無し 1 5 0 5 6 0 5 7
4 8 PM 無し 1 1 0 1. 5 6 0 5 4
4 9 PM フ m 1 5 0 5 3 0 5 7
5 0 PM I PA 無し 1 3 0 5 6 0 5 7
5 1 PM I PA 1 3 0 5 3 0 5 7
5 2 PM I PA -水 無し 1 3 0 4 3 0 5 7
5 3 PM EC e—水 1 1 0 2 3 0 5 6
【表 4】 髓
. 贜 °c kgf/cm2 間 分 kgfcnycra2 PM 無し 240 35 20 56 PM m 240 35 5 57 PM I PA 無し 200 30 20 57 PM I PA 繊 200 30 5 57 PM I PA -水 無し 200 23 10 57 PM I PA -水 驗 200 23 5 57 PM 無し 240 35 10 56 PM 繊 240 35 5 56 PM I PA 無し 240 30 10 57 PM I PA m 200 30 5 57 PM I PA 230 40 5 57 PM EA NaOH 230 40 5 57 PM I PA -水 無し 200 23 10 57 PM I PA -水 m 200 23 5 57
NH N NH-CH2-0-CH2-CH- CH2- ヽ / "
C C ジメチルエーテル 0
Figure imgf000050_0001
I I
N N c=
結合 I
\ /
C R
I
N
H0H2C CH20C4H9
Figure imgf000050_0002

Claims

-4.9- 請求 の 範 囲
( 1 ) ウレタン塗膜あるいはァミ ノ樹脂系塗膜付きブラスチッ ク 廃品を、 その塗膜を加水分解処理した後、 そのまま混練して成形用 再生樹脂組成物とすることを特徵とする塗膜付きプラスチッ ク廃品 の再生処理方法。
( 2 ) 加水分解処理は、 塗膜付きブラスチッ ク廃品を処理液に浸 潰してブラスチツクの溶融温度以下の温度に加熱しておこなうこと を特徵とする範囲第 1記載の塗膜付きプラスチッ ク廃品の再生処理 方法。
( 3 ) 加水分解処理は、 塗膜付きプラスチック廃品を処理液に浸 潰してブラスチッ クの溶融温度を超える温度に加熱しておこなうこ とを特徴とする範囲第 1記載の塗膜付きブラスチッ ク廃品の再生処 理方法。
( 4 ) 加水分解処理は、 塗膜付きブラスチック廃品を処理液の蒸 気の存在下にプラスチックの溶融温度以下の温度に加熱しておこな うことを特徴とする範囲第 1記載の塗膜付きプラスチッ ク廃品の再 生処理方法。
( 5 ) 加水分解処理は、 塗膜付きブラスチック廃品を処理液の蒸 気の存在下にプラスチックの溶融温度を超える温度に加熱しておこ なうことを特徵とする範囲第 1記載の塗膜付きブラスチック廃品の 再生処理方法。
( 6 ) 加水分解処理は、 塗膜付きブラスチック廃品を処理液を添 加しながらブラスチッ クの溶融温度を超える温度で溶融混練するこ とを特徵とする範囲第 1記載の塗膜付きブラスチック廃品の再生処 理方法。
( 7 ) 処理液は、 水、 アルコールまたは両者の混合物からなるこ とを特徵とする範囲第 1記載の塗膜付きブラスチック廃品の再生処 理方法。
( 8 ) 処理液は、 酸、 アルカリなどの触媒を含むことを特徵とす る範囲第 7記載の塗膜付きプラスチッ ク廃品の再生処理方法。
( 9 ) 処理液は、 酸あるいはアルカリを 0. 1〜 1 0重量%含む ことを特徵とする範囲第 8記載の塗膜付きブラスチッ ク廃品の再生 処理方法。
( 1 0) 加水分解処理は、 常圧または加圧下でおこなうことを特 徴とする範囲第 1〜9のいずれかに記載の塗膜付きブラスチック廃 品の再生処理方法。
PCT/JP1992/000847 1991-07-05 1992-07-03 Method of regenerating coated plastic wastes WO1993001232A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1992607369 DE69207369T2 (de) 1991-07-05 1992-07-03 Verfahren zur regenerierung beschichteter plastikabfällen
JP50214593A JP2899727B2 (ja) 1991-07-05 1992-07-03 塗膜付きプラスチック廃品の再生処理方法
EP19920914570 EP0547249B1 (en) 1991-07-05 1992-07-03 Method of regenerating coated plastic wastes

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP3/192431 1991-07-05
JP19243191 1991-07-05
JP35784391 1991-12-25
JP3/357844 1991-12-25
JP35784491 1991-12-25
JP3/357843 1991-12-25
JP4800092 1992-02-03
JP4/48000 1992-02-03
JP10553692 1992-03-30
JP4/105536 1992-03-30

Publications (1)

Publication Number Publication Date
WO1993001232A1 true WO1993001232A1 (en) 1993-01-21

Family

ID=27522679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000847 WO1993001232A1 (en) 1991-07-05 1992-07-03 Method of regenerating coated plastic wastes

Country Status (4)

Country Link
EP (1) EP0547249B1 (ja)
JP (1) JP2899727B2 (ja)
DE (1) DE69207369T2 (ja)
WO (1) WO1993001232A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618254A1 (en) * 1993-03-29 1994-10-05 Isuzu Motors Limited Method for recycling painted plastic materials
US5443772A (en) * 1992-07-09 1995-08-22 The Japan Steel Works, Ltd. Method of reclaiming plastic product with paint film

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458829A (en) * 1992-08-06 1995-10-17 Toyota Jidosha Kabushiki Kaisha Method for continuously recycling waste parts having a coating thereon
JPH06155471A (ja) * 1992-08-10 1994-06-03 Asahi Chem Ind Co Ltd 発泡粒子の回収方法
DE4323558C2 (de) * 1993-07-14 2001-02-15 Gore & Ass Verfahren zur Isolierung und Wiederverwertung von Textilmaterialien aus polyurethanverklebten Textilverbundlaminaten
US5424013A (en) * 1993-08-09 1995-06-13 Lieberman; Mark Thermoplastic closed loop recycling process
JP2909577B2 (ja) * 1993-10-29 1999-06-23 トヨタ自動車株式会社 樹脂廃材の再生方法及び装置
JP3081132B2 (ja) * 1995-04-28 2000-08-28 トヨタ自動車株式会社 塗膜付き樹脂の再生処理方法
US6262133B1 (en) 1998-03-16 2001-07-17 American Commodities, Inc. Process for removing deleterious surface material from polymeric regrind particles
EP1844917A3 (de) 2006-03-24 2008-12-03 Entex Rust &amp; Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
FR2910877B1 (fr) 2006-12-28 2009-09-25 Eurocopter France Amelioration aux rotors de giravions equipes d'amortisseurs interpales
DE102007059299A1 (de) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Vorrichtung zur Verarbeitung von zu entgasenden Produkten
DE102011112081A1 (de) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten
EP2906406B1 (de) 2012-10-11 2019-07-17 Entex Rust & Mitschke GmbH Extruder zur verarbeitung von kunststoffen, die zum verkleben neigen
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
DE102017001093A1 (de) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall
DE102015008406A1 (de) 2015-07-02 2017-04-13 Entex Rust & Mitschke Gmbh Verfahren zur Bearbeitung von Produkten im Extruder
EP3184274B8 (en) 2015-12-21 2019-08-14 Faurecia Intérieur Industrie Method for recycling a paint-coated plastic article
DE102016002143A1 (de) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102017006638A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350663B2 (ja) * 1982-09-08 1988-10-11 Toyota Motor Co Ltd

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136967A (en) * 1974-09-04 1979-01-30 Bayer Aktiengesellschaft Screw machine for the continuous degradation of plastics
DE3939810A1 (de) * 1989-12-01 1991-06-06 Hoechst Ag Verfahren zur herstellung von rieselfaehigen mischungen von mit klebstoff beschichteten kunststoffabfaellen und derartige mischungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350663B2 (ja) * 1982-09-08 1988-10-11 Toyota Motor Co Ltd

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0547249A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443772A (en) * 1992-07-09 1995-08-22 The Japan Steel Works, Ltd. Method of reclaiming plastic product with paint film
EP0618254A1 (en) * 1993-03-29 1994-10-05 Isuzu Motors Limited Method for recycling painted plastic materials

Also Published As

Publication number Publication date
DE69207369T2 (de) 1996-06-13
EP0547249A4 (ja) 1994-02-02
JP2899727B2 (ja) 1999-06-02
EP0547249A1 (en) 1993-06-23
EP0547249B1 (en) 1996-01-03
DE69207369D1 (de) 1996-02-15

Similar Documents

Publication Publication Date Title
WO1993001232A1 (en) Method of regenerating coated plastic wastes
JP3025774B2 (ja) 塗装膜を有するプラスチック製品の再生方法
KR100193334B1 (ko) 도료 필름으로 도장된 수지의 재생처리 방법
JPH071450A (ja) 固体状態せん断押出し微粉砕
US6262133B1 (en) Process for removing deleterious surface material from polymeric regrind particles
JP2003507164A (ja) ポリマー材料からの塗料除去方法
US5476624A (en) Process for reclaiming waste plastics having a paint film
WO2003068452A1 (fr) Materiaux explosifs et procede de dynamitage
KR100401724B1 (ko) 이소프로필알코올을 이용한 열경화성 도막의 박리방법
US5958988A (en) Cross-linked polyurethane resin powder and process for producing the same
KR100368022B1 (ko) 도막분해용액조성물과이를이용한도막제거방법
JP2001030237A (ja) ゴム−熱可塑性樹脂複合材の製造方法
JPH11300741A (ja) 廃フッ素樹脂成形品の再生処理方法
JP2006520415A (ja) 溶液中のビニルアルコールポリマーを回収する方法
JP2001179739A (ja) 塗膜付き樹脂材の再生処理方法
JP2009149744A (ja) Frp粉体を含有する熱可塑性樹脂組成物の製造方法
KR101428545B1 (ko) 도장된 폐 플라스틱 성형품의 리사이클 방법
JPH11349726A (ja) 塗装を施したプラスチックのリサイクル方法
JP3433629B2 (ja) 樹脂用塗料を塗布した樹脂成形品及びその再生方法
JP2007070383A (ja) 塩化ビニル系樹脂製品の処理方法及び前記処理方法により得られる塩化ビニル系樹脂組成物
JP2001206951A (ja) 複合樹脂
JP3845945B2 (ja) 塗膜付き樹脂材の再生処理方法
TW202126610A (zh) 用於再處理的方法、裝置和用途
JPH07205152A (ja) 塗装プラスチック成形体の処理方法及び再生方法
JP2001131290A (ja) 塗料粕硬化物を含有した熱可塑性樹脂組成物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB NL

WWE Wipo information: entry into national phase

Ref document number: 1992914570

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992914570

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992914570

Country of ref document: EP