WO1992018710A1 - Hydraulic driving system in construction machine - Google Patents

Hydraulic driving system in construction machine Download PDF

Info

Publication number
WO1992018710A1
WO1992018710A1 PCT/JP1992/000463 JP9200463W WO9218710A1 WO 1992018710 A1 WO1992018710 A1 WO 1992018710A1 JP 9200463 W JP9200463 W JP 9200463W WO 9218710 A1 WO9218710 A1 WO 9218710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
hydraulic
pressure
flow rate
value
Prior art date
Application number
PCT/JP1992/000463
Other languages
English (en)
French (fr)
Inventor
Tomohiko Yasuda
Yukio Aoyagi
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP92908529A priority Critical patent/EP0533958B1/en
Priority to US07/930,553 priority patent/US5295795A/en
Priority to KR1019920702591A priority patent/KR970001727B1/ko
Priority to DE69220743T priority patent/DE69220743T2/de
Publication of WO1992018710A1 publication Critical patent/WO1992018710A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves

Definitions

  • the present invention relates to a hydraulic drive device for a construction machine such as a hydraulic shovel, and more particularly to a hydraulic drive device for a construction machine that controls a discharge flow rate of a hydraulic pump according to a control pressure generated by a flow resistance element.
  • a conventional hydraulic drive device for construction machinery includes a variable displacement hydraulic pump, a pump regulator for controlling the discharge flow rate of the hydraulic pump, and A plurality of hydraulic actuators driven by hydraulic oil from the hydraulic pump; a plurality of directional switching valves of a center bypass system for controlling the flow of hydraulic oil supplied from the hydraulic pump to the hydraulic actuators; A center bypass line that connects the center bypasses of a plurality of directional control valves to the tank in series, and a flow resistance element that is provided downstream of the center bypass line and generates control pressure, such as a fixed throttle and a fixed throttle Pressure detection device that detects the control pressure generated by the pressure sensor and outputs a corresponding electric signal; the value of the electric signal output from the pressure detection device and the discharge flow rate of the hydraulic pump Is determined in advance, and a discharge flow rate corresponding to the value of the electric signal output from the pressure detection device is obtained based on the pump flow rate characteristic, and corresponds to the discharge flow rate.
  • a function generator that generate
  • a variable throttle for pre-off is provided at each center bypass of the plurality of directional switching valves, and the variable throttle is fully opened when the corresponding directional switching valve is in the neutral position, and the directional switching valve is fully opened.
  • Manipulation of The opening is reduced as the production increases.
  • the center-by-pass flow rate is maximized, so that the control pressure generated by the fixed throttle is also maximized, and the center-by-pass flow rate decreases as the directional control valve operation amount increases.
  • the control pressure also decreases.
  • the pump flow rate characteristic set in the function generator is set so that the discharge flow rate of the hydraulic pump increases as the control pressure decreases, whereby the discharge flow rate of the hydraulic pump increases. It is controlled to increase according to the operation amount.
  • the control characteristic of the discharge flow rate of the hydraulic pump is uniquely determined according to the setting by the function generator, and the control characteristic of the directional control valve is correspondingly corresponding to this.
  • the control characteristic of the directional control valve is determined as follows in accordance with the setting by the function generator. For example, when one directional control valve is operated, the discharge flow rate of the hydraulic pump is controlled in accordance with the setting of the function generator as described above, and the controlled flow rate is supplied to the directional control valve.
  • the flow rate from the pump discharge flow through the variable throttle for the blade off is determined by the opening area of the variable throttle for the pre-off determined by the manipulated variable (stroke) at that time.
  • the remaining flow after subtracting (center bypass flow) is supplied to the factory.
  • the control characteristics of the discharge flow rate of the hydraulic pump with respect to the valve stroke are constant and pre-off is possible. Since the opening characteristics of the variable throttle with respect to the valve stroke are constant, the control characteristics of the flow rate of the pressure oil supplied to the actuator, such as the metric characteristics of the directional control valve, are also constant.
  • the pump flow rate characteristic set in the function generator is set so as to obtain control characteristics suitable for work with a large amount of work such as excavation work, fine operation such as crane work is required. It is difficult to perform fine operations in such tasks. Conversely, if the pump flow characteristics set in the function generator are set so that control characteristics suitable for work requiring fine operation such as crane work can be obtained, When the work is large, the operation becomes slow, and efficient work cannot be performed.
  • An object of the present invention is to make it possible to change the control characteristics of a directional control valve by making it possible to change the flow characteristics of a hydraulic pump, and to ensure good operability for a plurality of different types of work.
  • the purpose is to provide a hydraulic drive for the machine. Disclosure of the invention
  • a variable displacement hydraulic pump a pump regulator for controlling a discharge flow rate of the hydraulic pump, and a plurality of hydraulic pumps driven by hydraulic oil from the hydraulic pump.
  • a hydraulic actuating unit a plurality of directional control valves for controlling the flow of pressure oil supplied from the hydraulic pump to the plurality of hydraulic actuating units, a low-pressure circuit, and a center bypass of the directional switch valves.
  • a center bypass line connected to the low-pressure circuit in series, and a plurality of throttle-off means provided on the center-by-pass line for changing the opening in conjunction with the corresponding directional control valves, respectively.
  • a flow resistance means provided on the center-bypass line for generating a control pressure; and a pressure detector for detecting the control pressure and outputting a corresponding electric signal.
  • a hydraulic drive device for a construction machine that drives a pump regulator in accordance with the drive signal according to the drive signal.
  • a selection means for outputting a command signal for selecting one of the plurality of pump flow characteristics set in the storage means.
  • a hydraulic drive device for a construction machine comprising:
  • a plurality of pump flow characteristics are preset in the storage means, and one of the pump flow characteristics is selected by a command signal output from the selection means. Since the discharge flow rate of the hydraulic pump is controlled using the flow rate characteristics, the control characteristics of the directional control valve can be changed correspondingly by changing the pump flow rate characteristics, and accordingly By changing the control characteristics of the directional control valve, good operability can be secured for a plurality of different types of work.
  • the storage means and the arithmetic means are constituted by a micro computer, and the selection means is a manual device for outputting the command signal to the microcomputer.
  • the pressure detecting means is means for detecting a pressure on the upstream side of the flow resistance means.
  • the pressure detecting means may be means for detecting a pressure difference across the flow resistance means.
  • the plurality of pump flow characteristics preset in the storage unit include a plurality of set values of a minimum value and a maximum value, and the plurality of set values are set by a command signal output from the selection unit. One set of values is selected.
  • the smaller the minimum value of the pump flow characteristic the more the hydraulic pressure The minimum discharge flow rate of the pump is reduced, enabling economical operation with less energy loss.
  • the larger the maximum value of the pump flow characteristic the larger the maximum discharge flow rate of the hydraulic pump, and it becomes possible to supply a large flow rate to the factory overnight, thereby increasing the amount of work.
  • the smaller the deviation between the maximum value and the minimum value of the pump discharge flow rate the smaller the rate of change in the pump discharge flow rate, the better the metering characteristics of the directional switching valve, and the larger the deviation. The more the rate of change, the greater the rate of change in the pump discharge flow rate, and the better the control characteristics of the rising of the ring in the directional control valve.
  • the flow characteristics of the hydraulic pump 1 can be arbitrarily set, and a desired directional switching valve can be set. Control characteristics can be realized.
  • FIG. 1 is a circuit diagram showing a hydraulic drive device for a construction machine according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an excessive position of the directional control valve shown in FIG. 1
  • FIG. 3 is a diagram illustrating the opening characteristics of the bleed-off variable restrictor, the meter-in variable restrictor, and the meter-out variable restrictor with respect to the stroke of the directional control valve shown in FIG.
  • Fig. 4 is a circuit diagram showing details of the pump regulation shown in Fig. 1.
  • FIG. 5 is a diagram showing a hard configuration of the control device shown in FIG.
  • FIG. 6 is a diagram showing a plurality of pump flow characteristics stored in advance in R 0M shown in FIG.
  • FIG. 7 is a diagram showing a relationship between a drive signal input to the solenoid valve shown in FIG. 1 and a drive pressure output from the drive signal.
  • FIG. 8 shows the driving pressure acting on the regulator shown in Fig. 1 and the resulting driving pressure.
  • FIG. 6 is a diagram showing a relationship with a controlled pump discharge flow rate.
  • FIG. 9 is a flowchart showing a control program stored in the ROM shown in FIG.
  • FIG. 10 is a diagram showing the relationship between the control pressure of the hydraulic drive device shown in FIG. 1 and the pump discharge flow rate.
  • FIG. 11 is a diagram showing the relationship between the stroke of the directional control valve shown in FIG. 1 and the pump discharge flow rate with respect to the stroke.
  • FIG. 12 is a diagram showing control characteristics of the directional control valve shown in FIG. 1 with respect to the flow rate of hydraulic oil supplied to the actuator.
  • FIG. 13 is a circuit diagram showing a hydraulic drive device according to a second embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In these embodiments, the present invention is applied to a hydraulic drive device of a hydraulic shovel.
  • a hydraulic drive device of the present invention comprises a variable displacement type pressure pump 1 and a discharge pump of the hydraulic pump 1.
  • a plurality of hydraulic actuators including a pump regulator 2 for controlling the flow rate, a boom cylinder 1 driven by hydraulic oil from the hydraulic pump 1 and an actuator 7 such as an arm cylinder 7 and a hydraulic pump.
  • the hydraulic drive device of the present embodiment detects a control pressure PZ generated upstream of the fixed throttle 5 and outputs a corresponding electric signal E (PZ). Assuming various types of work to be performed, etc., a plurality of pump flow characteristics that specify the relationship between the value of the electric signal E (PZ) output from the pressure detection device 8 and the discharge flow Q of the hydraulic pump 1 are set in advance.
  • a control device that determines the discharge flow rate Q corresponding to the value of the electric signal E (PZ) output from the pressure detection device 8 based on the set pump flow characteristic and outputs the drive signal ED corresponding to the discharge flow rate Q 9, a manual operation selecting device 12 that outputs a command signal ES for selecting one of a plurality of pump flow characteristics set by the controller 9, and a drive signal ED output from the controller 9.
  • variable throttles 24a, 24b (referred to below as 24) as shown in FIG. )
  • FIG. 25 represents a variable aperture 26 for a Breedov.
  • FIG. 26 represents a variable aperture 26 for a Breedov.
  • the relationship between the valve stroke S and the opening area A of the variable throttle 24 of the main type and the variable throttle 25 of the meter and the variable throttle 26 for the blade off is shown in FIG. See Figure 3. That is, in the figure, 27 and 28 are the characteristics of the aperture area of the variable aperture 24 of the meter-in and the variable aperture 25 of the meter, and 29 is the variable aperture 26 for the bleed-off.
  • variable throttle 24 of the meter and the variable throttle 25 of the meter are The valve is fully closed and the opening area increases as the valve stroke increases.
  • variable throttle 26 for bleed-off opens fully when the valve stroke is zero, and the valve stroke increases. The relationship is such that the opening area is reduced as time goes by. In this way, the By setting the opening characteristics of the variable throttle 26, for example, when the directional control valve A is in the neutral position, the flow rate flowing through the center bypass (center-by-pass flow rate) is maximized, and the control pressure generated by the fixed throttle 5 is controlled. And the center bypass flow rate decreases and the control pressure decreases as the manipulated variable of the directional control valve 4 A increases.
  • the control characteristic of the directional control valve with respect to the flow rate of the pressure oil supplied to the actuator 7 is determined by the opening characteristics of the variable throttle 26 for pre-off and the flow rate of the hydraulic pump 1.
  • the c- pump regulator 2 having a characteristic determined by the characteristic is, as shown in FIG. 4, a piston-cylinder device 3 1 for driving a variable displacement member of the hydraulic pump 1, for example, a swash plate 30.
  • the control device 9 is composed of a microcomputer, and converts an electric signal E (PZ) output from the pressure detection device 8 and a command signal ES output from the selection device 12 into digital signals as shown in FIG.
  • a / D converter overnight 9a central processing unit (CPU) 9b, read-only memory (ROM) 9c for storing a plurality of pump flow characteristics and control procedure programs, and numerical values in the middle of calculation
  • a random access memory (RAM) 9d for temporarily storing data
  • an IZ0 interface 9e for output
  • an amplifier 9g connected to the solenoid valve 10 described above.
  • the multiple pump flow characteristics set in ROM 9c are the first The second pump flow characteristic 41, the second pump flow characteristic 41, and the third pump flow characteristic 42 are included.
  • the first pump flow characteristic 40 outputs a drive signal ED of the first minimum value EDIa when the control pressure PZ is larger than the limit value PZ2, and outputs the first drive signal ED when the control pressure PZ is smaller than the limit value PZ1.
  • the drive signal ED of the maximum value ED2a is output.
  • E D - ⁇ (E D 2 a-E D l a) / (P Z 2— P Z 1) ⁇
  • ED3a is a first parameter used to calculate a value between the first minimum value EDla and the first maximum value ED2a.
  • the second pump flow characteristic 4 1 When the control pressure PZ is larger than the limit value PZ2, the second pump flow characteristic 4 1 outputs the drive signal ED of the second minimum value ED lb (> ED1a), and the control pressure PZ becomes the limit value PZ1.
  • the drive signal ED having the second maximum value ED2b ( ⁇ ED2a) is output.
  • E D - ⁇ (E D 2 b-E D l b) / (P Z 2— P Z 1) ⁇
  • ED3b is a second function used to calculate a value between the second minimum value EDlb and the second maximum value ED2b.
  • the third pump flow characteristic 4 2 is that when the control pressure PZ is larger than the limit value PZ 2, the drive signal ED of the third minimum value ED lc (> ED 1 b) is output, and the control pressure PZ becomes the limit value PZ 1 When the control pressure PZ is between PZ1 and PZ2, the drive signal ED having the third maximum value ED2c ( ⁇ ED2b) is output.
  • ED3c is a third auxiliary number used to calculate a value between the third minimum value ED1c and the third maximum value ED2c.
  • the first to third pump flow characteristics 40 to 42 are respectively the first minimum value ED1a, the first maximum value ED2a, and the first auxiliary number ED3a.
  • the second minimum ED 1 b and the second maximum ED 2 b and the second parameter ED 3 b, the third minimum ED 1 c and the third maximum ED 2 c and the third parameter It consists of three sets of values, the number ED 3c.
  • the first to third minimum values ED 1 a, ED lb, and ED lc are set values that give the minimum discharge flow rate of the hydraulic pump 1. The smaller this value is, the smaller the minimum discharge flow rate is. It becomes smaller and economical operation with less energy loss becomes possible.
  • the first to third maximum values ED2a, ED2b, and ED2c are set values that give the maximum discharge flow rate of the hydraulic pump 1.As will be described later, the larger this value is, the larger the value becomes. The flow rate can be supplied, and the amount of work can be increased. Further, the deviation between the maximum value and the minimum value is an index for determining the slope of the characteristic line shown in FIG. 6, and the smaller the slope is, the smaller the change rate of the pump discharge flow rate becomes. As will be described later, the performance of the directional switching valve is improved, and the greater the inclination, the greater the rate of change in the pump discharge flow rate, and the better the rise of the metering in the directional switching valve. Control characteristics are obtained.
  • the above-described solenoid valve 10 has a characteristic of outputting a drive pressure PP that increases in proportion to the addition of the drive signal ED output from the control device 9.
  • the control function of the displacement capacity variable member 30 by the first servo valve is such that the discharge flow rate Q of the hydraulic pump 1 is increased in accordance with the increase in the driving pressure PP output from the solenoid valve 10. It has the property of increasing proportionally.
  • the operation in the first embodiment configured as described above is as follows. First, assuming that the operator intends to perform the work to be performed in the future, the selector device 12 that operates the selector device 12 to set the control characteristics of the directional switching valve suitable for this operation is transmitted from the c selector device 12 to the command signal corresponding to the operation. ES is output to control device 9. In the controller 9, as shown in FIG.
  • This command signal ES is input in step 1 and a comparison is made in step S12 as to whether the value of this command signal ES is smaller than a first set value ESc stored in advance.
  • the process proceeds to step S17, and the minimum value ED1 is set to the above-described first minimum value ED1a.
  • the maximum value ED 2 is set to the first maximum value ED 2a described above, and set ED 3 to the aforementioned ED 3a. That is, the first pump flow characteristic 40 shown in FIG. 6 described above is set as the pump flow characteristic.
  • step S13 in which the value of the command signal ES is stored in the second set value ESb
  • step S14 when it is determined that the value of the command signal ES is smaller than the second set value ESb, the process proceeds to step S14, where the minimum value ED1 is set to the third minimum value EDIc described above, The maximum value ED2 is set to the third maximum value ED2c described above, and ED3 is set to ED3c described above. That is, the third pump flow characteristic 42 shown in FIG. 6 described above is set as the pump flow characteristic. If the result in step S13 is negative, the process proceeds to step S15 to compare whether the value of the command signal ES is smaller than a third set value ESa (> ESb) stored in advance.
  • ESa third set value ESa
  • step S16 if it is determined that the value of the command signal ES is smaller than the third set value ESa, the process proceeds to step S16, and the minimum value ED1 is set to the second minimum value EDlb described above.
  • the maximum value ED 2 is set to the second maximum value ED 2 b described above, and ED 3 is set to ED 3 b. That is, the second pump flow characteristic 41 shown in FIG. 6 described above is set as the pump flow characteristic. If the result in step S15 is negative, the process proceeds to step S17, and the first pump flow characteristic 40 is set as described above.
  • the pump flow The discharge flow rate of the hydraulic pump 1 is controlled based on the volume characteristics.
  • step S3 a comparison is made as to whether the value P-Z is greater than a preset value PZ2 shown in FIG.
  • step S4 a process of setting the drive signal ED to the minimum value ED1 set as described above is performed, and the process proceeds to step S5.
  • step S3 shown in FIG. 9 described above is no longer satisfied, and the process proceeds from step S3 to step S6.
  • step S6 the following calculation is performed.
  • the drive signal ED obtained by this calculation corresponds to the inclined portions of the characteristic lines 40, 41, and 42 in FIG. That is, if the first pump flow characteristic 40 is selected, the calculation of the above equation (1) is performed. If the second pump flow characteristic 41 is selected, the calculation of the above equation (2) is performed. The calculation is performed, and if the third pump flow rate characteristic 42 is selected, the calculation of the above expression (3) is performed.
  • step S6 the process proceeds to step S5 described above.
  • step S5 a process of outputting the drive signal ED to the solenoid valve 10 is performed.
  • the value of the drive signal ED is a value that gradually increases.
  • the solenoid valve 10 outputs the drive pressure P P shown in FIG. 7 that increases in proportion to the drive signal ED to the regulator 2 as described above.
  • Regula 2 operates in accordance with this driving pressure PP, and as shown in Fig. 8, the flow rate Q discharged from the hydraulic pump 1 becomes a flow rate that gradually increases from the minimum flow rate to the maximum flow rate. Then, the swash plate tilt amount of the hydraulic pump 1 is controlled.
  • step S7 a process of setting the drive signal ED to the maximum value ED2 set as described above is performed, and the process proceeds to step S5.
  • Regula 2 operates in accordance with this driving pressure PP, and controls the amount of tilt of the swash plate of the hydraulic pump 1 so that the flow rate Q discharged from the hydraulic pump 1 becomes the maximum flow rate as shown in FIG. .
  • the relationship between the control pressure PZ, which is the pressure on the upstream side of the fixed throttle 5, and the flow rate Q discharged from the hydraulic pump 1 is determined by the first to third pump flow rate characteristics 40, 4 described above.
  • Figure corresponding to the settings of 1 and 4 2 Relationships such as 4OA, 41A, and 42A shown in FIG.
  • the relationship between the stroke of the directional control valve 7 and the discharge flow rate Q of the hydraulic pump 1 is shown in FIG. 1 corresponding to the settings of the first to third pump flow characteristics 40, 41, and 42. Relationships such as 40B, 41B, and 42B shown in FIG.
  • the characteristic 40 C is obtained with a good rise of the metering and a large flow rate. In this case, the minimum value of the pump discharge flow rate is also small, as indicated by the characteristic 40B, so that efficient operation with small energy loss can be performed.
  • the characteristic 42 C having a good metering characteristic and a small flow rate can be obtained.
  • an intermediate characteristic 41 C is set for both the metering characteristic and the maximum flow rate.
  • the first pump flow characteristic 40 work requiring a large amount of work, such as excavation and loading work, can be performed efficiently with little energy
  • the third pump flow characteristic 4 2 By selecting the second pump flow characteristic 41, it is possible to easily carry out work requiring fine operation, such as crane work, etc. Work that requires moderate metering characteristics and work speed can be easily performed.
  • the first to third pump flow characteristics 40, 41, and 42 are preset in R0M9C of the control device 9 and output from the selection device 9. One of them is selected by the command signal ES, and the discharge flow rate of the hydraulic pump 1 is controlled using the selected pump flow rate characteristic.
  • the control characteristics of the valves 4A to 4D can be changed, thereby changing the control characteristics of the directional control valve according to the work content, and ensuring good operability for multiple work of different types. be able to.
  • the plurality of pump flow characteristics 40 to 42 set in the ROM of the control device 9 are respectively converted into a first minimum value EDla and a first maximum value ED2a, and a second minimum value ED1b. And three second set values including the second maximum value ED 2b, the third minimum value EDI c and the third maximum value ED 2c.
  • the flow characteristic of the hydraulic pump 1 can be arbitrarily set by selecting the signal ES, and a desired directional control valve control characteristic can be realized.
  • FIGS. 1 A second embodiment of the present invention will be described with reference to FIGS.
  • the same members as those shown in FIG. 1 are denoted by the same reference numerals.
  • the pressure PZ on the upstream side of the fixed throttle 5 is used as a pressure detection device.
  • a downstream pressure PT the differential pressure PZ-PT is detected, and an electric signal ⁇ ( ⁇ ⁇ ⁇ ⁇ ) is output to the control device 9 ⁇ .
  • the controller 9A has multiple pump flow characteristics that specify the relationship between the electrical signal E (PZ-PT) output from the differential pressure detector 11 and the discharge flow Q of the hydraulic pump 1, as shown in Fig. 6.
  • the functional relationships shown are set in advance. Other configurations are the same as those of the first embodiment shown in FIG.
  • the relationship between the differential pressure PZ-PT before and after the fixed throttle 5 and the flow rate Q discharged from the hydraulic pump 1 is the same as in the first embodiment.
  • the relationship between the stroke of the directional control valve 7 and the discharge flow rate Q of the hydraulic pump 1 also becomes as shown in FIG. 11 as in the first embodiment.
  • the same operation and effect as the example can be obtained.
  • the pressure difference before and after the fixed throttle 5 is detected as the control pressure, it is assumed that the pressure of the low pressure circuit 22 which is the back pressure of the fixed throttle 5 fluctuates.
  • the pressure difference before and after that is not affected the influence of the back pressure of the fixed throttle 5 can be eliminated, and the control accuracy can be improved.
  • the fixed throttle 5 is provided as a means for generating the control pressure, but instead of the fixed throttle 5, a relief valve having an override characteristic is provided. You may.
  • the regulator 2 is driven via the solenoid valve 10.However, the drive signal ED output from the controller 9 or 9A is directly transmitted to the regulator. In this case, the regulator may be driven.
  • the control characteristics of the directional control valve can be changed by changing the flow characteristics of the hydraulic pump. Depending on the work content By changing the control characteristics of the directional control valve, favorable operability can be ensured for a plurality of different types of work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

明 細 書 -建設機械の油圧駆動装置 技術分野
本発明は油圧シ ョベル等の建設機械の油圧駆動装置に係り、 特に 流れ抵抗要素により発生した制御圧力に応じて油圧ポンプの吐出流 量を制御する建設機械の油圧駆動装置に関する。 背景技術
従来の建設機械の油圧駆動装置は、 特公平 1 一 2 5 9 2 1号公報 に記載のように、 可変容量型の油圧ポンプと、 この油圧ポンプの吐 出流量を制御するポンプレギュレー夕と、 油圧ポンプからの圧油に より駆動される複数の油圧ァクチユエ一夕と、 油圧ポンプから複数 の油圧ァクチユエ一夕に供給される圧油の流れを制御するセンター バイパス方式の複数の方向切換弁と、 複数の方向切換弁のセンター バイパスを直列にタ ンク に接続するセンターバイパスライ ンと、 セ ンターバイパスライ ンの下流側に設けられ、 制御圧力を発生させる 流れ抵抗要素、 例えば固定絞り と、 固定絞りにより発生した制御圧 力を検出し、 対応する電気信号を出力する圧力検出装置と、 圧力検 出装置から出力される電気信号の値と油圧ポンプの吐出流量との関 係を特定する 1つのポンプ流量特性が予め設定され、 そのポンプ流 量特性に基づき圧力検出装置から出力される電気信号の値に対応す る吐出流量を求め、 その吐出流量に相当する信号を駆動信号と して 岀カする関数発生器とを備え、 この駆動信号により ポンプレギユ レ 一夕を駆動する構成となつている。
以上の従来技術において、 複数の方向切換弁の各センターバイパ スにはプリ一 ドオフ用の可変絞りが設けられ、 この可変絞り は対応 する方向切換弁が中立位置にあるときには全開し、 方向切換弁の操 作量が増加するにしたがって開度を減少させる。 これにより方向切 換弁が中立位置にあるときにはセンタ一バイパス流量が最大となる で、 固定絞りにより発生する制御圧力も最大となり、 方向切換弁の 操作量が增加するに伴ってセンタ一バイパス流量は減少し、 制御圧 力も減少する。 関数発生器に設定されたポンプ流量特性は、 この制 御圧力が小さ く なるにしたがつて油圧ポンプの吐出流量を大きくす るように設定され、 これにより油圧ポンプの吐出流量は方向切換弁 の操作量に応じて增加するよう制御される。
ところで、 油圧ショベル等の建設機械で実施される作業には種々 の作業があり、 作業の種類によつて方向切換弁に要求される制御特 性が異なる。 例えばク レーン作業等の微操作を要求される作業では、 メ一夕 リ ング特性に優れた制御特性が要求され、 掘削作業等、 作業 量の要求される作業ではメ一夕 リ ングの立ち上がりの良い、 大流量 を出しゃすい制御特性が要求される。
しかしながら、 上記従来の油圧駆動装置では、 関数発生器での設 定に対応して油圧ポンプの吐出流量の制御特性が一義的に決まつて しまい、 これに対応して方向切換弁の制御特性も一義的に決まつて しまうので、 特定種類以外の作業では良好な操作性を確保できない という問題があつた。
すなわち、 上記従来の油圧駆動装置では関数発生器での設定に対 応して次のように方向切換弁の制御特性が決まる。 例えば、 1つの 方向切換弁を操作したとき、 油圧ポンプの吐出流量は上記のように 関数発生器での設定に対応して制御され、 この制御された流量が方 向切換弁に供給される。 方向切換弁では、 そのときの操作量 (ス ト ローク) により決まるプリ 一 ドオフ用の可変絞りの開口面積に対応 して、 ポンプ吐出流量からそのブリ ー ドオフ用の可変絞りを通つて 流出する流量 (センターバイパス流量) を差し引いた残りの流量が ァクチユエ一夕に供給される。 このとき、 油圧ポンプの吐 流量の 弁ス トロークに対する制御特性は一定で、 かつプリ一ドオフ の可 変絞りの弁ス ト ロークに対する開度特性も一定なので、 方向切換弁 のメ 一タ リ ング特性等のァクチユエ一夕に供給される圧油の流量に 関する制御特性も一定となる。
したがって、 関数発生器に設定されるポンプ流量特性を、 例えば 掘削作業等、 作業量の大きい作業に適した制御特性が得られるよう 設定した場合には、 例えばク レーン作業等の微操作を要求される作 業では微操作を行うのが困難となる。 反対に、 関数発生器に設定さ れるポンプ流量特性を、 例えばク レーン作業等の微操作を要求され る作業に適した制御特性が得られるよう設定した場合は、 例えば掘 削作業等、 作業量の大きい作業では動作が緩慢となり、 効率の良い 作業を行う ことができない。
本発明の目的は、 油圧ポンプの流量特性を変更可能とするこ とに より方向切換弁の制御特性を変更可能と し、 異なる種類の複数の作 業に対して良好な操作性を確保できる建設機械の油圧駆動装置を提 供する こ とである。 発明の開示
上記目的を達成するため、 本発明によれば、 可変容量型の油圧ポ ンプと、 この油圧ポンプの吐出流量を制御するポンプレギユ レ一夕 と、 前記油圧ポンプからの圧油により駆動される複数の油圧ァクチ ユエ一夕と、 前記油圧ポンプから前記複数の油圧ァクチユエ一夕に 供給される圧油の流れを制御する複数の方向切換弁と、 低圧回路と、 前記複数の方向切換弁のセンターバイパスを直列に前記低圧回路に 接続するセンターバイパスライ ンと、 前記センタ一バイパスライ ン に設けられ、 それぞれ対応する方向切換弁に連動して開度を変化さ せるブリ ー ドオフ用の複数の絞り手段と、 前記センタ一バイパスラ イ ンに設けられ、 制御圧力を発生させる流れ抵抗手段と、 前記制御 圧力を検出し、.対応する電気信号を出力する圧力検出手段とを備え、 この圧力検出手段から出力される電気信号により前記ポンプレギュ レー夕の駆動信号を与え、 この駆動信号に応じてポンプレギュ レー 夕を駆動する建設機械の油圧駆動装置において、 ( a ) 前記圧力検 出手段から出力される電気信号の値と前記油圧ポンプの吐出流量と の関係を特定する複数のポンプ流量特性を予め設定した記憶手段と : ( b ) 前記記憶手段に設定された複数のポンプ流量特性のうちの 1 つを選択する指令信号を出力する選択手段と ; ( c ) 前記指令信号 で選択されたポンプ流量特性に基づき前記圧力検出手段から出力さ れる電気信号の値に対応する吐出流量を求め、 その吐出流量に相当 する信号を前記駆動信号と して出力する演算手段と ; を備える こと を特徵とする建設機械の油圧駆動装置が提供される。
以上のように構成した本発明の油圧駆動装置においては、 記憶手 段に複数のポンプ流量特性を予め設定し、 選択手段から出力される 指令信号によりそのうちの 1つを選択し、 この選択したポンプ流量 特性を用いて油圧ポンプの吐出流量を制御するので、 ポンプ流量特 性を変更することにより これに対応して方向切換弁の制御特性を変 更するこ とができ、 これにより作業内容に応じて方向切換弁の制御 特性を変更し、 異なる種類の複数の作業に対して良好な操作性を確 保することができる。
好ま しく は、 前記記憶手段及び演算手段はマイク ロコンピュー夕 で構成され、 前記選択手段は前記指令信号を前記マイク ロ コ ンピュ 一夕に出力する手動装置である。
また、 好ま しく は、 前記圧力検出手段は前記流れ抵抗手段の上流 側の圧力を検出する手段である。 この圧力検出手段は前記流れ抵抗 手段の前後差圧を検出する手段であつても良い。
また、 好ま しく は、 前記記憶手段に予め設定された複数のポンプ 流量特性は、 最小値及び最大値の複数組の設定値を含み、 前記選択 手段から出力された指令信号により これら複数組の設定値のうちの 1組が選択される。
こ こで、 ポンプ流量特性の最小値を小さ くすればするほど、 油圧 ポンプの最小吐出流量が小さ く なり、 エネルギロスの少ない経済的 な運転が可能となる。 また、 ポンプ流量特性の最大値を大き く すれ ばするほど、 油圧ポンプの最大吐出流量が大き く なり、 ァクチユエ 一夕に大流量を供給することが可能となり、 作業量を増大すること ができる。 更に、 ポンプ吐出流量の最大値と最小値との偏差を小さ くすればするほどポンプ吐出流量の変化割合は小さ く なり、 方向切 換弁でのメ ータ リ ング特性が良好となり、 偏差を大き く すればする ほどポンプ吐出流量の変化割合は大き くなり、 方向切換弁でのメ一 夕 リ ングの立ち上がりの良い制御特性が得られる。 したがって、 ポ ンプ流量特性の最小値及び最大値を複数組用意し、 その う ちの 1組 を適宜選択するこ とによ り、 油圧ポンプ 1の流量特性を任意に設定 し、 所望の方向切換弁の制御特性を実現するこ とができる。 図面の簡単な説明
図 1 は、 本発明の第 1の実施例による建設機械の油圧駆動装置を 示す回路図である。
図 2は、 図 1 に示す方向切換弁の過度的な位置を示す説明図であ る
図 3は、 図 1 に示す方向切換弁のス ト ロークに対するブリ ー ドォ フ用可変絞り、 メ ータイ ンの可変絞り、 メ ータアウ トの可変絞りの それぞれの開度特性を示す図である。
図 4は、 図 1 に示すポンプレギュ レー夕の詳細を示す回路図であ る
図 5 は、 図 1 に示す制御装置のハー ド構成を示す図である。
図 6は、 図 5 に示す R 0 Mに予め記憶してある複数のポンプ流量 特性を示す図である。
図 7は、 図 1 に示す電磁弁に入力される駆動信号とこれから出力 される駆動圧力との関係を示す図である。
図 8は、 図 1 に示すレギユ レ一夕に作用する駆動圧力とこれによ り制御されるポンプ吐出流量との関係を示す図である。
図 9 は、 図 5に示す R O Mに格納されている制御プログラムを示 すフローチャー トである。
図 1 0は、 図 1 に示す油圧駆動装置の制御圧力とポンプ吐出流量 との関係を示す図である。
図 1 1は、 図 1 に示す方向切換弁のス トロークに対するポンプ吐 出流量との関係を示す図である。
図 1 2は、 図 1 に示す方向切換弁のァクチユエ一夕に供給される 圧油の流量に関する制御特性を示す図である。
図 1 3は、 本発明の第 2の実施例による油圧駆動装置を示す回路 図である。 発明を実施するための最良の形態 以下、 本発明の実施例を図面により説明する。 これら実施例は本 発明を油圧ショベルの油圧駆動装置に適用したものである。
まず、 本発明の第 1の実施例を図 1〜図 1 2により説明する- 図 1において、 本発明の油圧駆動装置は、 可変容量型の ¾圧ボン プ 1 と、 この油圧ポンプ 1の吐出流量を制御するポンプレギユ レ一 夕 2 と、 油圧ポンプ 1からの圧油により駆動されるブームシ リ ンダ 一、 アームシリ ンダー等のァクチユエ一夕 7を含む複数の油圧ァク チユエ一夕と、 油圧ポンプから油圧ァクチユエ一夕に供給される圧 油の流れを制御するセンターバイパス方式の複数の方向切換弁 4 A , 4 B , 4 C , 4 Dと、 油圧ポンプ 1 の吐出管路 2 0 に接続されかつ 複数の方向切換弁 4 A , 4 B , 4 C, 4 Dのセンターバイパスを直 列にタンク 2 1を含む低圧回路 2 2に接続するセンターバイパスラ イ ン 2 3 と、 センターバイパスライ ン 2 3 の最下流に設けられ、 制 御圧力を発生させる固定絞り 5 と、 吐出管路 2 0の最大圧力を制街 するメイ ンリ リーフ弁 3 と、 センターバイパスライ ン 2 3に大流量 が流れたとき作動するサージ力 ッ ト リ リーフ弁 6 とを備えている: また、 本実施例の油圧駆動装置は、 固定絞り 5の上流側に発生し た制御圧力 P Zを検出し、 対応する電気信号 E ( P Z ) を出力する 圧力検出装置 8—と、 ァクチユエ一夕 7等で実施される各種の作業を 想定して、 圧力検出装置 8から出力される電気信号 E ( P Z ) の値 と油圧ポンプ 1の吐出流量 Qとの関係を特定する複数のボンプ流量 特性が予め設定され、 そのポンプ流量特性に基づき圧力検出装置 8 から出力される電気信号 E ( P Z ) の値に対応する吐出流量 Qを求 め、 その吐出流量 Qに相当する駆動信号 E Dを出力する制御装置 9 と、 この制御装置 9で設定された複数のポンプ流量特性のうちの 1 つを選択する指令信号 E Sを出力する手動操作の選択装置 1 2 と、 制御装置 9から出力される駆動信号 E Dに応じて駆動する電磁弁 1
0 とを備えており、 上述したレギュ レー夕 2 は、 電磁弁 1 0から出 力される駆動圧力 P Pに応じて駆動するようになつている。
以上の構成において、 複数の方向切換弁 4 A, 4 B , 4 C , 4 D には、 図 2 に示すようにメ ータイ ンの可変絞り 2 4 a, 2 4 b (以 下 2 4で代表する) 及びメ ータアウ トの可変絞り 2 5 a, 2 5 b
(以下 2 5で代表する) が形成されていると共に、 そのセ ンタ一バ ィパスにはブリ ー ドォフ用の可変絞り 2 6が設けられている。 これ らメ一タイ ンの可変絞り 2 4及びメ 一タァゥ トの可変絞り 2 5 とブ リ ー ドオフ用の可変絞り 2 6の弁ス ト ロ一ク S と開口面積 Aとの関 係は図 3に示すようである。 すなわち、 図中、 2 7, 2 8がメ ータ イ ンの可変絞り 2 4及びメ ータァゥ 卜の可変絞り 2 5の開口面積の 特性であり、 2 9がブリ ー ドオフ用の可変絞り 2 6の開口面積の特 性であり、 メ ータィ ンの可変絞り 2 4及びメ ータァゥ トの可変絞り 2 5は弁ス ト ロークが 0のとき (方向切換弁が中立位置にある と-き) には全閉し、 弁ス ト ロークが増加するにしたがって開口面積を増加 させるのに対して、 ブリ ー ドオフ用の可変絞り 2 6 は弁ス ト ローク が零のときには全開し、 弁ス ト ロークが増加するにしたがって開口 面積を減少させる関係となっている。 このよ う にブリ ー ドオフ用の 可変絞り 2 6の開度特性を設定することにより、 例えば方向切換弁 Aが中立位置にあるときにはセンターバイパスを流れる流量 (セ ンタ一バイパス流量) は最大となり、 固定絞り 5 により発生する制 御圧力も最大となり、 方向切換弁 4 Aの操作量が増加するにしたが いセンターバイパス流量は減少し、 制御圧力も減少する。 一方、 ァ クチユエ一夕 7に圧油を供給して駆動する通常の動作時、 ァクチュ エータ 7にはポンプ吐出流量からプリ一ドオフ用の可変絞り 2 6を 通って流出する流量 (センターバイパス流量) を差し引いた残りの 流量が供給されるので、 ァクチユエータ 7に供給される圧油の流量 に関する方向切換弁の制御特性は、 プリ一ドオフ用の可変絞り 2 6 の開度特性と油圧ポンプ 1の流量特性によつて決まる特性となる c ポンプレギユレ一夕 2は、 図 4に示すように、 油圧ポンプ 1の押 しのけ容積可変部材例えば斜板 3 0を駆動する ピス ト ン · シリ ンダ 装置 3 1 と、 前述の電磁弁 1 0から出力される駆動圧力 P Pに応答 してピス ト ン · シリ ンダ装置 3 1へ供給される圧油の流量を調整し、 油圧ポンプ 1の斜板傾転量を制御する第 1のサーボ弁 3 2 と、 ボン プ吐出圧力に応答してピス ト ン · シリ ンダ装置 3 1へ供給される圧 油の流量を調整し、 油圧ポンプ 1 の斜板傾転量を制御する入力 トル ク制限用の第 2のサーボ弁 3 3 とを備えている。
制御装置 9 はマイクロコンピュータで構成され、 図 5 に示すよう に、 圧力検出装置 8から出力される電気信号 E ( P Z ) と選択装置 1 2から出力される指令信号 E S とをデジタル信号に変換する A / Dコンバ一夕 9 a と、 中央演算装置 ( C P U ) 9 b と、 上記複数の ポンプ流量特性及び制御手順のプログラムを格納する リ一ドオンリ 一メモリ (R O M ) 9 c と、 演算途中の数値を一時記憶するラ ンダ ムアクセスメモリ (R A M ) 9 d と、 出力用の I Z 0イ ンタフヱイ ス 9 e と、 上述の電磁弁 1 0 に接続される増幅器 9 g とを備えてい る o
R O M 9 cに設定された複数のポンプ流量特¾は図 6 に示す第 1 のボンプ流量特性 4 0、 第 2のボンプ流量特性 4 1及び第 3のボン プ流量特性 4 2を含んでいる。
第 1のボンプ流量特性 4 0は、 制御圧力 P Zが限界値 P Z 2より 大きいときには第 1の最小値 E D I aの駆動信号 E Dを出力し、 制 御圧力 P Zが限界値 P Z 1より小さいときには第 1の最大値 E D 2 aの駆動信号 E Dを出力し、 制御圧力 P Zが P Z 1 と P Z 2の間に あるときには、
E D = - { (E D 2 a - E D l a) / (P Z 2— P Z 1 ) }
• P Z + E D 3 a - ( 1 ) の演算で得られる駆動信号 E Dを出力する特性となっている。 なお、
( 1 ) 式で E D 3 aは第 1の最小値 E D l a と第 1の最大値 E D 2 a との間の値を演算するのに使用する第 1の助数である。
第 2のボンプ流量特性 4 1は、 制御圧力 P Zが限界値 P Z 2より 大きいときには第 2の最小値 E D l b (> E D 1 a ) の駆動信号 E Dを出力し、 制御圧力 P Zが限界値 P Z 1より小さいときには第 2 の最大値 E D 2 b (< E D 2 a ) の駆動信号 E Dを出力し、 制御圧 力 P Zが P Z 1 と P Z 2の間にある ときには、
E D = - { (E D 2 b - E D l b) / (P Z 2— P Z 1 ) }
• P Z + E D 3 b - ( 2 ) の演算で得られる駆動信号 E Dを出力する特性となっている。 なお、
(2) 式で E D 3 bは第 2の最小値 E D l b と第 2の最大値 E D 2 bとの間の値を演算するのに使用する第 2の助数である。
第 3のボンプ流量特性 4 2は、 制御圧力 P Zが限界値 P Z 2より 大きいときには第 3の最小値 E D l c (> E D 1 b ) の駆動信号 E Dを出力し、 制御圧力 P Zが限界値 P Z 1より小さいときには第 3 の最大値 E D 2 c (< E D 2 b ) の駆動信号 E Dを出力し、 制御圧 力 P Zが P Z 1 と P Z 2の間にあるときには、
' E D = - { (E D 2 c - E D l c ) / ( P Z 2 - P Z 1 ) }
• P Z + E D 3 c ·'· ( 3 ) の演算で得られる駆動信号 E Dを出力する特性となっている。 なお、 (3) 式で E D 3 cは第 3の最小値 E D 1 c と第 3の最大値 E D 2 cとの間の値を演算するのに使用する第 3の助数である。
以上のように、 第 1〜第 3のポンプ流量特性 4 0〜 4 2は、 それ ぞれ第 1の最小値 E D 1 aと第 1の最大値 E D 2 a と第 1の助数 E D 3 a、 第 2の最小値 E D 1 bと第 2の最大値 E D 2 bと第 2の助 数 E D 3 b、 第 3の最小値 E D 1 cと第 3の最大値 E D 2 cと第 3 の助数 E D 3 cからなる 3組の設定値で構成されている。
ここで、 第 1〜第 3の最小値 E D 1 a , E D l b, E D l cは油 圧ポンプ 1の最小吐出流量を与える設定値であり、 この値を小さ く すればするほど、 最小吐出流量が小さ く なり、 エネルギロスの少な い経済的な運転が可能となる。 また、 第 1〜第 3の最大値 E D 2 a E D 2 b E D 2 cは油圧ポンプ 1の最大吐出流量を与える設定値で あり、 後述するようにこの値が大きく なればなるほどァクチユエ一 夕に大流量を供給することが可能となり、 作業量を増大することが できる。 更に、 最大値と最小値とのそれぞれの偏差は図 6に示す特 性線の傾きを決定する指標であり、 その傾きが小さ く なればなるほ どポンプ吐出流量の変化割合は小さ く なり、 後述するように方向切 換弁でのメ一夕 リ ング特性が良好となり、 当該傾きが大き く なれば なるほどポンプ吐出流量の変化割合は大き く なり、 方向切換弁での メータ リ ングの立ち上がりの良い制御特性が得られる。
上記した電磁弁 1 0は、 図 7に示すように、 制御装置 9から出力 される駆動信号 E Dの增加に比例して増加する駆動圧力 P Pを出力 する特性を有し、 上記したレギュレー夕 2の第 1のサ一ボ弁による 押しのけ容積可変部材 3 0の制御機能は、 図 8に示すように、 電磁 弁 1 0から出力される駆動圧力 P Pの増加に応じて油圧ポンプ 1の 吐出流量 Qが比例的に増加する特性を有している。
上述のように構成した第 1の実施例における動作は、 以下の通り である。 まず、 オペレータがこれから行おう とする作業を想定し、 これに 適した方向切換弁の制御特性を設定すベく選択装置 1 2を操作する c 選択装置 1 2からはその操作により対応する指令信号 E Sが制御装 置 9に出力される。 制御装置 9では、 図 9 に示すよ う に、 手順 S 1
1でこの指令信号 E Sを入力し、 手順 S 1 2で、 この指令信号 E S の値が予め記憶させた第 1の設定値 E S c より小さいかどうかの比 較を行う。 こ こで、 指令信号 E Sの値が第 1の設定値 E S c よ り小 さいと判定されると、 手順 S 1 7に進み、 最小値 E D 1を前述した 第 1の最小値 E D 1 a に設定し、 最大値 E D 2を前述した第 1 の最 大値 E D 2 aに設定し、 E D 3を前述した E D 3 aに設定する。 す なわち、 ポンプ流量特性と して上記した図 6に示す第 1のポンプ流 量特性 4 0を設定する。 一方、 手順 S 1 2で否定されると手順 S 1 3に進み、 指令信号 E Sの値が予め記憶させた第 2の設定値 E S b
(〉 E S c ) より小さいかどうかの比較を行う。 こ こで、 指令信号 E Sの値が第 2の設定値 E S b より小さいと判定されると、 手順 S 1 4に進み、 最小値 E D 1を前述した第 3の最小値 E D I c に設定 し、 最大値 E D 2を前述した第 3の最大値 E D 2 c に設定し、 E D 3を前述した E D 3 c に設定する。 すなわち、 ポンプ流量特性と し て上記した図 6 に示す第 3のポンプ流量特性 4 2を設定する。 手順 S 1 3で否定されると手順 S 1 5に進み、 指令信号 E Sの値が予め 記憶させた第 3の設定値 E S a ( > E S b ) より小さいかどうかの 比較を行う。 こ こで、 指令信号 E Sの値が第 3の設定値 E S a より 小さいと判定されると、 手順 S 1 6に進み、 最小値 E D 1 を前述し た第 2の最小値 E D l bに設定し、 最大値 E D 2を前述した第 2の 最大値 E D 2 bに設定し、 E D 3を E D 3 bに設定する。 すなわち、 ポンプ流量特性と して上記した図 6 に示す第 2のポンプ流量特性 4 1を設定する。 手順 S 1 5で否定されると手順 S 1 7 に進み、 上記 のように第 1のボンプ流量特性 4 0を設定する。
以上のようにしてボンプ流量特性が決定されると、 そのポンプ流 量特性に基づく 油圧ポンプ 1の吐出流量の制御が行われる。
すなわち、 まず、 図 1 に示すよう に方向切換弁 4等がいずれも操 作されていないときには、 固定絞り 5に流れるセンタ一バイパス流 量が最大となるため固定絞り 5の上流側の圧力、 すなわち制御圧力 P Zが高圧となり、 この高圧の制御圧力 P Zが圧力検出装置 8で検 出され、 高圧の制御圧力 P Zに相応する大きな値の電気信号 E ( P Z ) が制御装置 9 に出力される。 制御装置 9では、 図 9 に示すよう に、 まず手順 S 1 1で電気信号 E ( P Z ) を入力し、 手順 S 2で、 この電気信号 E ( P Z ) の値 P Zが、 予め記憶させた図 6 に示す設 定値 P Z 1 より小さいかどうかの比較を行なう。 今、 値 P Zは十分 に大きな値であることから、 この判別は満足されず、 手順 S 3 に移 る。 この手順 S 3では、 値 P -Zが予め記憶させた図 6に示す設定値 P Z 2より大きいかどうかの比較を行なう。 今、 値 P Zは十分に大 きな値であることから、 この判別は満足され、 手順 S 4に移る。 こ の手順 S 4では、 駆動信号 E Dを上記の如く設定された最小値 E D 1 に設定する処理を行ない、 手順 S 5に移る。 この手順 S 5では、 駆動信号 E D ( = E D 1 ) を電磁弁 1 0に出力する処理を行なう - 電磁弁 1 0は、 この駆動信号 E D ( = E D 1 ) に応じて図 7に示す ように小さな駆動圧力 P Pをレギユ レ一夕 2に出力する。 レギユ レ 一夕 2は、 この駆動圧力 P Pに応じて作動し、 図 8に示すように油 圧ポンプ 1から吐出される流量 Qが最小流量となるように当該油圧 ポンプ 1の斜扳傾転量を制御する。
このような状態から例えば方向切換弁 4が切換えられると、 その 切換え動作に伴つてセンタ一バイパス流量が徐々に減少し、 圧力検 出装置 8で検出される固定絞り 5の上流側の圧力である制御圧力 P Zは次第に小さ く なる。 これにより、 上述した図 9に示す手順 S 3 の判別が満足されなく なり、 この手順 S 3から手順 S 6に移る。 手 S 6でば、 下記の演算が実施される。
E D = - { ( E D 2— E D I ) Z ( P Z 2 - P Z 1 ) } • P Z + E D 3
この演算によつて得られる駆動信号 E Dは、 図 6の特性線 4 0 , 4 1 , 4 2の傾斜部分に相当する。 すなわち、 第 1のポンプ流量特性 4 0が選択されていれば、 上記 ( 1 ) 式の演算が行われ、 第 2のポ ンプ流量特性 4 1が選択されていれば、 上記 ( 2 ) 式の演算が行わ れ、 第 3のポンプ流量特性 4 2が選択されていれば、 上記 ( 3 ) 式 の演算が行われる。
手順 S 6の次は前述した手順 S 5に移る。 この手順 S 5では前述 したように、 駆動信号 E Dを電磁弁 1 0に出力する処理を行なう。 ここで駆動信号 E Dの値は、 徐々に大き く なる値である。 電磁弁 1 0は、 前述したように駆動信号 E Dに応じて比例的に増加する図 7 に示す駆動圧力 P Pをレギユ レ一夕 2に出力する。 レギユ レ一夕 2 は、 この駆動圧力 P Pに応じて作動し、 図 8 に示すよ うに油圧ボン プ 1から吐出される流量 Qが最小流量から最大流量に向かつて次第 に増加する流量となるように当該油圧ポンプ 1 の斜板傾転量を制御 する。
そして、 方向切換弁 4が完全に切り換えられ、 制御圧力 P Zが図 6に示す設定値 P Z 1 より も小さ く なると、 上述した図 6 の手順 S 2の判別が満足され、 手順 S 7 に移る。 この手順 S 7では、 駆動信 号 E Dを上記の如く設定された最大値 E D 2 に設定する処理を行な い、 手順 S 5 に移る。 この手順 S 5では前述したよ う に、 駆動信号 E D ( = E D 2 ) を電磁弁 1 0 に出力する。 電磁弁 1 0 は、 この駆 動信号 E D ( = E D 2 ) に応じて図 7に示す最大の駆動圧力 P Pを レギユ レ一夕 2に出力する。 レギユ レ一夕 2 はこの駆動圧力 P Pに 応じて作動し、 図 8に示すように油圧ポンプ 1から吐出される流量 Qが最大流量となるように油圧ポンプ 1の斜板傾転量を制御する。
このような制御により、 固定絞り 5の上流側の圧力である制御圧 力 P Z と油圧ポンプ 1から吐出される流量 Qとの関係を、 上述した 第 1〜第 3のボンプ流量特性 4 0 , 4 1 , 4 2の設定に対応して図 1 0に示す 4 O A, 4 1 A, 42 Aのような関係とすることができ る。 また、 例えば方向切換弁 7のス トロ一ク と油圧ポンプ 1の吐出 流量 Qとの関係を、 第 1〜第 3のポンプ流量特性 4 0, 4 1, 4 2 の設定に対応して図 1 1に示す 4 0 B, 4 1 B, 4 2 Bのような関 係とすることができる。
そして、 前述したように、 例えばァクチユエ一夕 7に圧油を供給 して駆動する通常の駆動時、 ァクチユエ一タ 7にはポンプ吐出流量 Qからプリ 一 ドオフ用の可変絞り 2 6を通って流出するセンターバ ィパス流量を差し引いた残りの流量が供給されるが、 ここで、 ァク チユエ一夕 7の負荷圧力を一定と仮定した場合、 ブリー ドオフ用の 可変絞り 2 6を通つて流出可能なセンタ一バイパス流量の弁ス ト口 ークに対する特性は、 図 3に示す開度特性 2 9に対応して図 1 2に 2 9 Aで示すようになるので、 このときのァクチユエ一夕 7に供給 される圧油の流量に関する方向切換弁 4 Aの制御特性は、 図 1 1に 示すポンプ流量特性 4 0 B, 4 1 B, 42 Bに対応してそれぞれ図 1 2に 40 C, 4 1 C, 42 Cで示すようになる。 すなわち、 選択 装置 1 2の操作で第 1のポンプ流量特性 4 0を選択したときには、 メータ リ ングの立ち上がりが良く、 大流量が得られる特性 4 0 C力く 得られる。 またこのときは、 特性 4 0 Bのようにボンプ吐出流量の 最小値も小さいので、 エネルギーロスの小さな効率的な運転が可能 となる。 また、 選択装置 1 2の操作で第 3のボンプ流量特性 4 2を 選択したときには、 メータ リ ング特性が良く、 流量の小さな特性 4 2 Cが得られる。 更に、 選択装置 1 2の操作で第 2のポンプ流量特 性 4 1を選択したときには、 メ ータ リ ング特性及び最大流量共に中 間の特性 4 1 Cが設定される。
なお、 以上の説明では方向切換弁 4 Aを単独で操作した場合につ いて説明したが、 複数の方向切換弁を操作した場合には、 その複数 の方向切換弁の操作量の合計が増加するにしたがってセンターバイ パス流量が減少し、 このセンタ一バイパス流量の減少に応じて固定 絞り 5の上流側に発生する制御圧力は減少するので、 複数の方向切 換弁の操作量の合計に対するポンプ吐出流量の関係は図 1 1 に示す のと同様な関係となり、 方向切換弁の制御特性に関して上記と同様 の作用が得られる。
したがって、 第 1のポンプ流量特性 4 0を選択することにより、 掘削積込み作業等、 作業量を要求される作業を少ないエネルギで効 率良く実施するこ とができ、 第 3のボンプ流量特性 4 2を選択する ことにより、 ク レーン作業等、 微操作を要求される作業を容易に実 施することが可能となり、 第 2のボンプ流量特性 4 1 を選択する こ とによ り、 整形作業等、 そこそこのメ ータ リ ング特性と作業速度を 要求される作業を容易に実施するこ とができる。
以上のように本実施例によれば、 制御装置 9の R 0 M 9 Cに第 1 〜第 3のポンプ流量特性 4 0, 4 1, 4 2を予め設定し、 選択装置 9から出力される指令信号 E S によ り その う ちの 1つを選択し、 こ の選択したポンプ流量特性を用いて油圧ポンプ 1 の吐出流量を制御 するので、 油圧ポンプ 1の流量特性を任意に変更して方向切換弁 4 A〜 4 Dの制御特性を変更する こ とができ、 これにより作業内容に 応じて方向切換弁の制御特性を変更し、 異なる種類の複数の作業に 対して良好な操作性を確保するこ とができる。
また、 制御装置 9.の R O Mに設定される複数のポンプ流量特性 4 0〜 4 2を、 それぞれ第 1 の最小値 E D l a と第 1 の最大値 E D 2 a、 第 2の最小値 E D 1 b と第 2の最大値 E D 2 b、 第 3の最小値 E D I c と第 3の最大値 E D 2 cを含む 3組の設定値で構成するの で、 そのうちの 1-組を選択手段からの指令信号 E Sで選択するこ と により油圧ポンプ 1 の流量特性を任意に設定し、 所望の方向切換弁 の制御特性を実現するこ とができる。
本発明の第 2の実施例を図 1 3 によ り説明する。 図中、 図 1 に示 す部材 同等の部材には同じ符号を付している。
本実施例は、 圧力検出装置と して固定絞り 5の上流側の圧力 P Z と下流側の圧力 P Tとの差圧 P Z— P Tを検出し、 電気信号 Ε ( Ρ Ζ— Ρ Τ ) を制御装置 9 Αに出力する差圧検出装置 1 1を設けた構 成にしてあり、 制御装置 9 Aには差圧検出装置 1 1から出力される 電気信号 E ( P Z— P T ) と油圧ポンプ 1 の吐出流量 Q との関係を 特定する複数のポンプ流量特性と して、 図 6に示す関数関係が予め 設定してある。 その他の構成は図 1 に示す第 1の実施例と同等.であ る。
このように構成した第 2の実施例にあつては、 固定絞り 5の前後 差圧 P Z— P Tと油圧ポンプ 1から吐出される流量 Qとの関係は第 1の実施例と同様に図 1 0に示すようになり、 その結果例えば方向 切換弁 7のス トローク と油圧ポンプ 1 の吐出流量 Qとの関係も第 1 の実施例と同様に図 1 1に示すようになるので、 第 1の実施例と同 等の作用効果を奏することができる。 また、 第 2の実施例にあって は、 固定絞り 5の前後差圧を制御圧力と して検出するので、 固定絞 り 5の背圧である低圧回路 2 2の圧力が変動したと してもその前後 差圧は影響されないため、 固定絞り 5の背圧の影響を除く こ とがで き、 制御精度を向上できる効果がある。
なお、 上記各実施例にあつては、 制御圧力を発生させる手段と し て固定絞り 5を設けたが、 この固定絞り 5の代わり にオーバーライ ド特性を持たせたリ リーフ弁を設ける構成にしてもよい。
また、 上記各実施例にあっては、 電磁弁 1 0を介してレギユ レ一 夕 2を駆動する構成にしてあるが、 制御装置 9又は 9 Aから出力さ れる駆動信号 E Dを直接レギュレー夕に与えて、 このレギユレータ を駆動させるように構成してもよい。 産業上の利用可能性
本発明の建設機械の油圧駆動装置は、 以上のように構成してある こ とから、 油圧ポンプの流量特性を変更する こ とにより方向切換弁 の制御特性を変更するこ とができ、 これにより作業内容に応じて方 向切換弁の制御特性を変更し、 異なる種類の複数の作業に対して良 好な操作性を確保する ことができる。

Claims

請求の範囲
1. 可変容量型の油圧ポンプ(1: と、 この油圧ポンプの吐岀流量 を制御するポンプレギユレ一夕 (2:! と、 前記油圧ポンプからの圧油 により駆動される複数の油圧ァクチユエ一夕 Π:: と、 前記油圧ポン プから前記複数の油圧ァクチユエ一夕に供給される圧油の流れを制 御する複数の方向切換弁(4A-4D) と、 低圧回路 2) と、 前記複数の 方向切換弁のセンターバイパスを直列に前記低圧回路に接続するセ ンターパイパスライ ン (23)と、 前記センターバイパスライ ンに設け られ、 それぞれ対応する方向切換弁に連動して開度を変化させるブ リ一ドオフ用の複数の絞り手段( )と、 前記センタ一バイパスライ ンに設けられ、 制御圧力(ΡΖΓを発生させる流れ抵抗手段 と、 前 記制御圧力を検出し、 対応する電気信号(E:, を出力する圧力検岀手 段(8) とを備え、 この圧力検出手段から出力される電気信号により 前記ポンプレギュレー夕の駆動信号(ED)を与え、 この駆動信号に応 じてポンプレギュレータを駆動する建設機械の油圧駆動装置におい て、
( a ) 前記圧力検出手段(8) から出力される電気信号 ^ の値と 前記油圧ポンプ(1) の吐出流量(Q) との関係を特定する複 数のポンプ流量特性(40, 41, 42)を予め設定した記億手段 c)と ;
(b ) 前記記憶手段に設定された複数のポンプ流量特性:43, 41, 2)のうちの 1つを選択する指令信号 を出力する選択手 段 (12)と ;
( c ) 前記指令信号 iES)で選択されたポンプ流量特倥に基づき前 記圧力検出手段(8) から出力される電気信号 "E の値に対 応する吐出流量(Q) を求め、 その吐出流量に相当する信号 ^前記駆動信号(ED)と して出力する演算手段 ' b と : を備えることを特徵とする建設機械の油圧駆動装置。
2. 請求項 1記載の建設機械の油圧駆動装置において、 前記記憶 手段(9 c)及び演算手段(9 b)がマイ ク ロコ ンピュータで構成され、 前 記選択手段が前記指令信号(ES)を前記マイク ロコ ン ピュータに出力 する手動装置(12)であることを特徴とする建設機械の油圧駆動装置,
3. 請求項 1記載の建設機械の油圧駆動装置において、 前記圧力 検出手段が前記流れ抵抗手段(5) の上流側の圧力を検出する手段(8 ) であることを特徵とする建設機械の油圧駆動装置。
4. 請求項 1記載の建設機械の油圧駆動装置において、 前記圧力 検出手段が前記流れ抵抗手段(5) の前後差圧を検出する手段(12)で あるこ とを特徴とする建設機械の油圧駆動装置。
5. 請求項 1記載の建設機械の油圧駆動装置において、 前記記憶 手段(9 c)に予め設定された複数のポンプ流量特性(40, 41, 42)は、 最 小値及び最大値の複数組の設定値(EDla, ED2a;EDlb, ED2b;EDlc, ED2c ) を含み、 前記選択手段(12)から出力された指令信号(ES)により こ れら複数組の設定値のうちの 1組が選択されるこ とを特徴とする建 設機械の油圧駆動装置。
PCT/JP1992/000463 1991-04-12 1992-04-13 Hydraulic driving system in construction machine WO1992018710A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP92908529A EP0533958B1 (en) 1991-04-12 1992-04-13 Hydraulic drive system for a construction machine
US07/930,553 US5295795A (en) 1991-04-12 1992-04-13 Hydraulic drive system for construction machine
KR1019920702591A KR970001727B1 (ko) 1991-04-12 1992-04-13 건설기계의 유압구동장치
DE69220743T DE69220743T2 (de) 1991-04-12 1992-04-13 Hydraulisches antriebssystem für eine baumaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/106574 1991-04-12
JP10657491 1991-04-12

Publications (1)

Publication Number Publication Date
WO1992018710A1 true WO1992018710A1 (en) 1992-10-29

Family

ID=14437011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000463 WO1992018710A1 (en) 1991-04-12 1992-04-13 Hydraulic driving system in construction machine

Country Status (5)

Country Link
US (1) US5295795A (ja)
EP (1) EP0533958B1 (ja)
KR (1) KR970001727B1 (ja)
DE (1) DE69220743T2 (ja)
WO (1) WO1992018710A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644335A1 (en) * 1993-03-23 1995-03-22 Hitachi Construction Machinery Co., Ltd. Hydraulic drive for hydraulic work machine

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564939B1 (de) * 1992-04-04 1995-12-13 Mannesmann Rexroth AG Hydraulische Steuereinrichtung für mehrere Verbraucher
DE69325702T2 (de) * 1992-08-25 1999-12-02 Hitachi Construction Machinery Co., Ltd. Hydraulische antriebsvorrichtung einer hydraulischen baumaschine
US5575148A (en) * 1993-11-30 1996-11-19 Hitachi Construction Machinery Co., Ltd. Hydraulic pump control system
US5456581A (en) * 1994-08-12 1995-10-10 The United States Of America As Represented By The Secretary Of The Navy Control system for a multi-piston pump with solenoid valves for the production of constant outlet pressure flow
US5560203A (en) * 1995-03-23 1996-10-01 Sauer Inc. Transmission control system and method
US6055851A (en) * 1996-08-12 2000-05-02 Hitachi Construction Machinery Co., Ltd. Apparatus for diagnosing failure of hydraulic pump for work machine
JP3517817B2 (ja) 1997-02-24 2004-04-12 新キャタピラー三菱株式会社 油圧パイロット回路
DE19745118B4 (de) * 1997-10-11 2006-10-12 Wabco Gmbh & Co.Ohg Druckerzeugungsanlage
US5873244A (en) * 1997-11-21 1999-02-23 Caterpillar Inc. Positive flow control system
US6216456B1 (en) 1999-11-15 2001-04-17 Caterpillar Inc. Load sensing hydraulic control system for variable displacement pump
US6594993B1 (en) * 1999-12-23 2003-07-22 Danfoss A/S Hydraulic driving device and system for a vehicle
US6684636B2 (en) * 2001-10-26 2004-02-03 Caterpillar Inc Electro-hydraulic pump control system
US6691603B2 (en) 2001-12-28 2004-02-17 Caterpillar Inc Implement pressure control for hydraulic circuit
US20030196528A1 (en) * 2002-04-19 2003-10-23 Cooper Christopher W. Compliant cutoff saw assembly
US6848254B2 (en) * 2003-06-30 2005-02-01 Caterpillar Inc. Method and apparatus for controlling a hydraulic motor
US7284346B2 (en) * 2003-09-18 2007-10-23 Miskin Mark R Systems and methods for controlling the removal of soil from an earth moving scraper
JP4096900B2 (ja) * 2004-03-17 2008-06-04 コベルコ建機株式会社 作業機械の油圧制御回路
US20060237203A1 (en) * 2005-03-15 2006-10-26 Miskin Mark R Hydraulic lift assist for tractor towed earth moving apparatus
US20060242955A1 (en) * 2005-04-19 2006-11-02 Clark Equipment Company Hydraulic system with piston pump and open center valve
US8024925B2 (en) * 2005-11-08 2011-09-27 Caterpillar Inc. Apparatus, system, and method for controlling a desired torque output
JP2007303416A (ja) * 2006-05-12 2007-11-22 Toyota Industries Corp 可変容量型圧縮機
CN101868580B (zh) * 2007-11-21 2012-07-18 沃尔沃建筑设备公司 载荷感测系统、包括该系统的工程机械及用于控制液压功能件的方法
CN102016186B (zh) * 2007-11-21 2014-06-11 沃尔沃建筑设备公司 用于控制作业机械的方法
US7874151B2 (en) * 2008-03-17 2011-01-25 Caterpillar Inc Dual mode hydraulic circuit control and method
PT2341252E (pt) 2009-12-30 2012-07-05 Agustawestland Spa Aeronave
US8165765B2 (en) 2010-05-28 2012-04-24 Caterpillar Inc. Variator pressure-set torque control
WO2012011615A1 (ko) * 2010-07-19 2012-01-26 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유압펌프 제어시스템
JP6603568B2 (ja) * 2015-12-14 2019-11-06 川崎重工業株式会社 油圧駆動システム
US10487855B2 (en) * 2016-09-29 2019-11-26 Deere & Company Electro-hydraulic system with negative flow control
US10233951B2 (en) * 2016-10-05 2019-03-19 Caterpillar Inc. Method to detect uncommanded spool valve positioning and stop fluid flow to hydraulic actuators
KR20220044439A (ko) * 2019-08-09 2022-04-08 스미토모 겐키 가부시키가이샤 쇼벨
GB2604608A (en) * 2021-03-08 2022-09-14 Bamford Excavators Ltd Hydraulic system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124802A (ja) * 1984-07-13 1986-02-03 Hitachi Constr Mach Co Ltd 液圧装置の制御回路
JPH0211901A (ja) * 1988-06-30 1990-01-17 Hitachi Constr Mach Co Ltd 油圧駆動装置
JPH02136437A (ja) * 1988-11-18 1990-05-25 Komatsu Ltd 建設機械等の作業機ファインコントロールモード切換装置
JPH0359227A (ja) * 1989-07-27 1991-03-14 Komatsu Ltd 建設機械のポンプ吐出量制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156482A (en) * 1980-05-01 1981-12-03 Hitachi Constr Mach Co Ltd Input limiting method and device for hydraulic device driven by engine
US4600364A (en) * 1983-06-20 1986-07-15 Kabushiki Kaisha Komatsu Seisakusho Fluid operated pump displacement control system
JP2670815B2 (ja) * 1988-07-29 1997-10-29 株式会社小松製作所 建設機械の制御装置
US5073091A (en) * 1989-09-25 1991-12-17 Vickers, Incorporated Power transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124802A (ja) * 1984-07-13 1986-02-03 Hitachi Constr Mach Co Ltd 液圧装置の制御回路
JPH0211901A (ja) * 1988-06-30 1990-01-17 Hitachi Constr Mach Co Ltd 油圧駆動装置
JPH02136437A (ja) * 1988-11-18 1990-05-25 Komatsu Ltd 建設機械等の作業機ファインコントロールモード切換装置
JPH0359227A (ja) * 1989-07-27 1991-03-14 Komatsu Ltd 建設機械のポンプ吐出量制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0533958A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644335A1 (en) * 1993-03-23 1995-03-22 Hitachi Construction Machinery Co., Ltd. Hydraulic drive for hydraulic work machine
EP0644335A4 (en) * 1993-03-23 1997-10-29 Hitachi Construction Machinery HYDRAULIC DRIVE FOR HYDRAULIC WORKING MACHINE.

Also Published As

Publication number Publication date
EP0533958A1 (en) 1993-03-31
DE69220743D1 (de) 1997-08-14
US5295795A (en) 1994-03-22
DE69220743T2 (de) 1998-01-02
EP0533958A4 (ja) 1994-04-27
EP0533958B1 (en) 1997-07-09
KR970001727B1 (ko) 1997-02-14

Similar Documents

Publication Publication Date Title
WO1992018710A1 (en) Hydraulic driving system in construction machine
JP3805383B2 (ja) 作業アタッチメントを流体システムに統合する制御装置
EP0644335B1 (en) Hydraulic drive for hydraulic work machine
US5829252A (en) Hydraulic system having tandem hydraulic function
US5421155A (en) Hydraulic drive system for hydraulic working machines
JP2657548B2 (ja) 油圧駆動装置及びその制御方法
JPH11303809A (ja) 油圧駆動機械のポンプ制御装置
US5317871A (en) Circuit capable of varying pump discharge volume in closed center-load sensing system
JP2001323902A (ja) 油圧駆動装置
JPH08219121A (ja) 油圧再生装置
JP2840957B2 (ja) クローズドセンタ・ロードセンシングシステムにおけるポンプの吐出容積の可変回路
JP2740353B2 (ja) 建設機械の油圧駆動装置
JPH0681375A (ja) 建設機械の油圧駆動装置
JPH0650309A (ja) 建設機械の油圧駆動装置
JP3705886B2 (ja) 油圧駆動制御装置
JPH07119703A (ja) 建設機械の油圧駆動装置
JPH06159312A (ja) 建設機械の油圧駆動装置
JPH08270019A (ja) 作業機械
JP3394581B2 (ja) 建設機械の油圧制御装置
JPH07180189A (ja) 建設機械の油圧駆動装置
JP2749733B2 (ja) 油圧建設機械の油圧制御装置
JP3499590B2 (ja) 油圧アクチュエータ駆動装置
JPS5934002A (ja) 油圧閉回路装置
JP2994582B2 (ja) 建設機械等の旋回制御回路
JPH06249208A (ja) 建設機械の油圧駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1992908529

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWP Wipo information: published in national office

Ref document number: 1992908529

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992908529

Country of ref document: EP