WO1992018447A1 - Process for producing hydrochloromethanes - Google Patents

Process for producing hydrochloromethanes Download PDF

Info

Publication number
WO1992018447A1
WO1992018447A1 PCT/JP1992/000522 JP9200522W WO9218447A1 WO 1992018447 A1 WO1992018447 A1 WO 1992018447A1 JP 9200522 W JP9200522 W JP 9200522W WO 9218447 A1 WO9218447 A1 WO 9218447A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
reduction
selectivity
carbon tetrachloride
Prior art date
Application number
PCT/JP1992/000522
Other languages
English (en)
French (fr)
Inventor
Shinsuke Morikawa
Masaru Yoshitake
Shin Tatematsu
Original Assignee
Ag Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US07/960,423 priority Critical patent/US5334782A/en
Priority claimed from JP3119457A external-priority patent/JPH04327546A/ja
Priority claimed from JP3352257A external-priority patent/JP3004115B2/ja
Application filed by Ag Technology Co., Ltd. filed Critical Ag Technology Co., Ltd.
Priority to EP92909542A priority patent/EP0536420B1/en
Priority to DE69216977T priority patent/DE69216977T2/de
Priority to KR1019920703206A priority patent/KR100222459B1/ko
Priority to CA002086110A priority patent/CA2086110C/en
Publication of WO1992018447A1 publication Critical patent/WO1992018447A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • C07C19/04Chloroform

Definitions

  • the present invention uses polychloromethanes, particularly tetrachloromethane carbon, which is regulated from the standpoint of protecting the global environment, as a raw material, and uses this as a raw material for various fluorine-based compounds, such as hydrogen-containing porcelain such as porcine form. It relates to a method for converting to chloromethanes.
  • carbon tetrachloride has been mainly used as a raw material for various types of fluorocarbons, but the production of carbon tetrachloride as a raw material as well as these fluorocarbons has been regulated. Or technology to convert to useful ones is widely demanded worldwide.
  • the present inventors have studied variously the above-mentioned gas-phase hydrogen reduction method. First, analysis of the organic components on the deactivated catalyst revealed that most of them were polymers. The catalyst particle size was almost the same as when the catalyst was not used, based on observation by transmission electron microscope and analysis by X-ray diffraction. Therefore, it is estimated that polymer accumulation is the main cause of deactivation. -Yes.
  • the present inventors have intensively studied a reaction method for suppressing rapid deactivation of a catalyst. As a result, short-term deterioration of the catalyst can be eliminated and hydrogen-containing chloromethanes can be obtained in high yield by adopting the method of reducing borochloromethanes in the liquid phase with hydrogen in the presence of a reduction catalyst.
  • the present invention has been completed on the basis of the above-mentioned findings, and is a method for producing hydrogen-containing chlorinated hydrogens, comprising reducing polychloromethanes with hydrogen in a liquid phase in the presence of a reduction catalyst. It provides Hereinafter, details of the present invention will be described with examples.
  • Polychloromethanes are carbon tetrachloride, chloroform, and methylene chloride. According to the method of the present invention, the reduction of carbon tetrachloride forms carbon, methylene chloride, and methyl chloride, the reduction of methylene chloride and methyl chloride, and the reduction of methylene chloride by reduction of methylene chloride. Methyl is obtained. As polychloromethanes, regulated carbon tetrachloride is preferable.
  • Carbon tetrachloride is a molecule in which four highly polar chlorine atoms are bonded to carbon atoms, and has extremely high adsorption energy among halogenated methanes. Therefore, the residence time on the catalyst is long, and it is easily catalyzed. Therefore, when a catalyst composed of elements with high reduction activity selected from groups 8, 9 and 10 is used, the formation of olefins and the formation of polymers are remarkable, and they tend to be deactivated in a very short time. . Particularly, in the gas phase reaction method, since basically the reaction temperature strength s high, likely to occur generation Polymerization of Orefin acids, also since the resulting polymer generally having a high boiling point, difficult to remove from the catalyst surface It is possible. This is thought to be the cause of the rapid deactivation.
  • the reduction catalyst at least one element selected from the group 8 elements of iron, ruthenium, and osmium, the group 9 elements of conolite, rhodium, and iridium, and the group 10 elements of nickel, palladium, and platinum are used. Catalysts based on the main component are preferred.
  • the catalyst mainly composed of the group 8, 9 or 10 element may be a catalyst composed of only these elements, and a metal element other than the group 8 to 10 element is further added to these elements. A catalyst used in combination may be used.
  • platinum group elements such as palladium, ruthenium, platinum, and platinum oxide are particularly preferable because of high activity and high durability.
  • additional component include Group 11 elements such as copper, silver, and gold. Both the main component element and the additional component element may be used alone or in combination of two or more. When an additive is used in combination, the amount is preferably 0.01 to 50% by weight, more preferably 0.1 to 50% by weight, and particularly preferably 1 to 50% by weight.
  • catalyst metals can be used as they are, or those supported on a carrier.
  • the carrier those usually used, such as activated carbon, alumina, zirconia, and silica, can be used.
  • the loading amount is preferably about 0.01 to 20% by weight, more preferably about 0.5 to 5% by weight, from the viewpoints of catalyst loading efficiency, reaction activity and dispersion of catalyst components.
  • the method for supporting the catalyst component and the like can also be appropriately selected from the range usually employed. For example, a method in which a simple salt or a complex salt of the above-mentioned element is used and supported by an impregnation method, an ion exchange method, or the like can be applied. Also, the catalyst when the use of, but not necessarily need to perform the reduction treatment of the catalyst, desirable for obtaining a force 3 stabilization characteristics that preliminarily subjected to a hydrogen reduction. As a method for reducing the supported catalyst component, a method of reducing in a liquid phase with hydrogen, hydrazine, formaldehyde, sodium borohydride, or the like, and a method of reducing in a gas phase with hydrogen can be applied.
  • any of a fixed bed and a suspension bed can be adopted.
  • the use of a reaction solvent is effective for controlling the product ratio, stabilizing the reaction activity, and the like, and can be performed as appropriate.
  • alcohols such as methanol and ethanol
  • amines such as triethylamine
  • carboxylic acids such as acetic acid
  • ketones such as acetone
  • liquid phase reduction reaction in the present invention When the liquid phase reduction reaction in the present invention is performed continuously, it is preferable to employ a liquid phase fixed bed system in which a raw material solution is brought into contact with a fixed bed of a reduction catalyst.
  • a liquid phase fixed bed system in which a raw material solution is brought into contact with a fixed bed of a reduction catalyst.
  • the liquid phase diffusion distance of hydrogen is short, and it is easy to suppress a decrease in the hydrogen concentration on the catalyst surface.
  • the carrier a carrier having such a strength as not to be powdered by the flow of the liquid is employed.
  • the shape of the carrier is preferably in the form of pellets, which are hardly subject to abrasion loss, particularly when the raw material liquid is circulated in the upflow.
  • crushed charcoal or the like can be used, and is not necessarily limited.
  • the size of the catalyst is also not particularly limited, but usually, a catalyst having a diameter of about 0.5 to 210111111 is appropriate.
  • the temperature of the liquid phase reduction reaction is 0 "C to 200 ° C, preferably 50 to 150'C.
  • the reaction molar ratio between hydrogen and polychloromethane is not particularly limited. Increasing the amount of hydrogen increases the reaction rate, but increases the rate of dechlorination and hydrogenation, but increases the rate of production Use about 0.1 to 10 moles of hydrogen per mole of polychloromethane It is possible to increase the efficiency of hydrogen utilization by recycling excess hydrogen.
  • reaction pressure is suitably normal pressure or higher, and the reaction speed increases as the pressure increases. Pressurization up to several kg / cm 2 'G to about 10 kg / cm 2 ' G can be employed. At too high a pressure, difficulties such as an increase in equipment costs are observed even if the reaction rate increases.
  • the reaction was continued by supplying the mixture continuously in moles.
  • the reaction rate of carbon tetrachloride at 1,000 hours after the start of the reaction was 91%, and formation of chloroform (selectivity: 70%), perchloroethylene (selectivity: 18%), etc. was confirmed.
  • One liter of carbon tetrachloride was put into an autoclave having an internal volume of 2 liters, and 50 g of an alumina-supported palladium catalyst (supporting amount: 2% by weight, manufactured by Nichi-Kemkyat Co.) was added. After charging nitrogen, the temperature was raised to 115 eC, and then the supply of hydrogen was started. The pressure was 5 kgZcm 2 'G. For the product, the gas phase component, the liquid phase component, and the phase difference were also analyzed using gas chromatography. The reaction was continued by continuously supplying 4 mol of hydrogen to 1 mol of carbon tetrachloride.
  • the reaction rate of carbon tetrachloride at 1,000 hours after the start of the reaction is 92%, such as chloroform (selectivity: 60%), methylene chloride (selectivity: 9%), perchlorethylene (selectivity: 17%), etc. Generation was confirmed.
  • the reaction was continued by supplying 5 units of nitrogen continuously.
  • the reaction rate of carbon tetrachloride at 1,000 hours after the start of the reaction was 89%, and the form of chloroform (selectivity: 58%), methylene chloride (selectivity: 9%), and methyl chloride (selectivity: 1) 4%) and perchlorethylene (selectivity: 18%).
  • Activated carbon-supported platinum catalyst (supporting amount: 0.5% by weight: manufactured by Nichi-Im Chemical Co., Ltd.) 100 ⁇ was placed in a 0.5 inch inner diameter Inconel reaction tube, and the heat was set to 160. It was immersed in the medium. After preliminarily treating with nitrogen and then with hydrogen, hydrogen was introduced at a ratio of 2 mol per mol of carbon tetrachloride, and the reaction was carried out in the gas phase. The contact time was 7 seconds and the reaction pressure was normal pressure. The reaction rates of carbon tetrachloride at 2 hours and 20 hours after the start of the reaction were about 90% and about 30%, respectively, and were deactivated over time thereafter. As the products, chlorinated alkanes and alkenes having 2 to 5 carbon atoms, such as perchloroethylene, were recognized in addition to black form, salted methylene, methyl chloride, and methane.
  • acetylene black powder 100 g of acetylene black powder (average particle size: 1 m) as a carrier was put into 1 liter of ion-exchanged water.
  • Rhodium chloride and chloroauric acid were dissolved in ion-exchanged water in a weight ratio of metal components of 95: 5, respectively, in an amount corresponding to 2% of the weight of the carrier.
  • the mixture was washed with ion-exchanged water and dried at 110 eC .
  • pitch-based activated carbon powder 100 g of pitch-based activated carbon powder (average particle size of 10 to 20 ⁇ ) as a carrier was charged into one liter of ion-exchanged water.
  • Nickel chloride, chloroplatinic acid, and chloroauric acid were dissolved in ion-exchanged water at a weight ratio of metal components of 5: 4: 1, respectively, in an amount corresponding to 2% of the weight of the carrier.
  • After reduction with an aqueous solution of sodium borohydride it was washed with ion-exchanged water and dried at 110.
  • the solution was made alkaline with the addition of water, and then reduced with an aqueous solution of hydrazine. After washing with ion-exchanged water, it was dried at 110.
  • the reaction was carried out in the same manner as in Example 8, except that the reaction temperature was set to 110 using the reduction catalyst according to Preparation Example 2.
  • the reaction rate of carbon tetrachloride at 100 hours after the start of the reaction was 78%, and the form of chloroform (selectivity: 85%), hexacloane (selectivity: 5%), methylene chloride (selectivity: 8%) ) Etc. were confirmed.
  • the reaction was carried out in the same manner as in Example 8, except that the reaction temperature was set to 100 using the reduction catalyst according to Preparation Example 3.
  • the reaction rate of carbon tetrachloride at 100 hours after the start of the reaction was 85%, and the form of chloroform (selectivity: 90%), hexacloane (selectivity: 5%), and pentachloroethane (selectivity: 2%) ), Tetrachloroethylene (selectivity: 2%), etc. were confirmed.
  • Example 1 2 The reaction was carried out in the same manner as in Example 8, except that the reduction catalyst according to Preparation Example 4 was used. After 100 hours from the start of the reaction, the conversion rate of carbon tetracarbonate was 86%, and formation of chloroform (selectivity: 92%), hexanechloroethane (selectivity: 4%), and the like was confirmed.
  • Example 1 2 the reduction catalyst according to Preparation Example 4 was used. After 100 hours from the start of the reaction, the conversion rate of carbon tetracarbonate was 86%, and formation of chloroform (selectivity: 92%), hexanechloroethane (selectivity: 4%), and the like was confirmed.
  • Example 1 2 The reaction was carried out in the same manner as in Example 8, except that the reduction catalyst according to Preparation Example 4 was used. After 100 hours from the start of the reaction, the conversion rate of carbon tetracarbonate was 86%, and formation of chloroform (selectivity: 92%)
  • the reaction was carried out in the same manner as in Example 8 except that the reaction temperature was set to 100 using the reduction catalyst according to Preparation Example 5.
  • the reaction rate of carbon tetrachloride at 100 hours after the start of the reaction was 84%.
  • the formation of black mouth form (selectivity: 89%), hexachloroethane (selectivity: 6%), etc. was confirmed.
  • Example 14 The reaction was carried out in the same manner as in Example 8, except that the reduction catalyst according to Preparation Example 6 was used.
  • the reaction rate of carbon tetrachloride at 100 hours after the start of the reaction was 90%, and formation of chloroform (selectivity: 92%), hexanechloroethane (selectivity: 3%), and the like was confirmed.
  • Example 14 The reaction rate of carbon tetrachloride at 100 hours after the start of the reaction was 90%, and formation of chloroform (selectivity: 92%), hexanechloroethane (selectivity: 3%), and the like was confirmed.
  • the reaction was carried out in the same manner as in Example 8, except that the reaction temperature was set to 110 ° C using the reduction catalyst according to Preparation Example 7. 100 hours after the start of the reaction, the reaction rate of carbon tetrachloride is 75%, and the formation of chloroform (selectivity: 85%), hexachloroethane (selectivity: 6%), methylene chloride (selectivity: 7%), etc. was confirmed.
  • the reaction was carried out in the same manner as in Example 8, except that the reaction temperature was set to 100 eC using the reduction catalyst according to Preparation Example 8. 100 hours after the start of the reaction, the reaction rate of carbon tetrachloride was 71%, and the form of chloroform (selectivity: 90%), hexachloroethane (selectivity: 4%), and phenol (selectivity: 2) %) And tetrachloroethylene (selectivity: 2%).
  • Example 17 The reaction was carried out in the same manner as in Example 8, except that the reduction catalyst according to Preparation Example 9 was used. 100 hours after the start of the reaction, the tetrachlorocarbon reaction rate was 84%, and formation of chloroform (selectivity: 97%), tetrachloroethane (selectivity: 3%), etc. was confirmed. Was.
  • Example 17 The reduction catalyst according to Preparation Example 9 was used. 100 hours after the start of the reaction, the tetrachlorocarbon reaction rate was 84%, and formation of chloroform (selectivity: 97%), tetrachloroethane (selectivity: 3%), etc. was confirmed. Was.
  • Example 17 Example 17
  • the reaction was carried out in the same manner as in Example 8 except that the reduction catalyst according to Preparation Example 10 was used. 100 hours after the start of the reaction, the conversion of carbon tetrachloride is 83%, and the form of chloroform (selectivity: 69%), hexachloroethane (selectivity: 28%), methylene chloride (selectivity: 1%), tetrachloroethylene (Selectivity: 2%).
  • the reaction was carried out in the same manner as in Example 8, except that the reaction temperature was set to 120 ° C. using the reduction catalyst according to Preparation Example 11.
  • the reaction rate of carbon tetrachloride at 100 hours after the start of the reaction was 84%. - ⁇ ⁇ -Yes, formation of black mouth form (selectivity: 87%), hexachlorene (selectivity: 6%), methylene chloride (selectivity: 7%), etc. was confirmed.
  • the reaction was carried out in the same manner as in Example 8, except that the reaction temperature was 90 using the reduction catalyst according to Preparation Example 12. After 100 hours from the start of the reaction, the conversion rate of tetrachlorosilane is 74%, and the form of chloroform is (selectivity: 89%), hexachloroethane (selectivity: 5%), and pentachloroethane (selectivity: 2%). , Tetrachloroethylene (selectivity: 3%), etc. were confirmed.
  • the reaction was carried out in the same manner as in Example 8 except that the reduction catalyst according to Preparation Example 13 was used.
  • the reaction rate of carbon tetrachloride 100 hours after the start of the reaction was 87%, and formation of chloroform (selectivity: 93%), hexachloroethane (selectivity: Wo) and the like was confirmed.
  • the present invention as shown in the examples, has the effect of producing high-yield hydrogen-containing chloromethanes such as chloroform by reducing polychloromethanes, particularly carbon tetrachloride with hydrogen in the liquid phase. Having.
  • the method of the present invention has an effect that even if the reaction rate of the raw material polychloromethans is increased, the hydrogen chloromethanes such as the desired product, such as chloroform, can be obtained with a high selectivity. Furthermore, the method of the present invention is extremely advantageous also from the viewpoint of catalyst life, because a side reaction that generates impurities that impair the catalytic activity can be effectively suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 糸田 書
含水素クロロメタン類の製造法
[産業上の利用分野]
本発明は、 ポリクロロメタン類、 特に地球環境保護の立場から規制対象になつ ている四塩ィヒ炭素を原料とし、 これを種々のフッ素系化合物の原料として有用な ク口口ホルム等の含水素クロロメタン類に転換する方法に関するものである。
[背景技術]
従来、 四塩化炭素は主として各種フロン類の原料として利用されてきたが、 こ れらのフロン類はもとより、 原料である四塩化炭素も製造が規制されることにな つており、 これらを分解、 または有用なものへ転換する技術が広く世界的に求め られている。
一方、 四塩化炭素中の塩素原子を水素原子と置換することにより得られるクロ 口ホルム等の含水素クロロメタン類は、 種々の化学製品の原料として有用であ る。 したがって、 四塩化炭素等のポリクロロメタン類に効率的に水素を導入し て、 含水素クロロメ夕ン類へ転換する技術開発が早急に求められている。
四塩ィ匕炭素に水素を導入する方法としては、 種々の方法力 *知られている。 プロ トン性溶媒の存在下に電解還元する方法は、 反応速度が遅いなどの欠点を有し、 工業的には採用しがたい。 一方、 特開平 3-133939号公報などの還元触媒を用いて 水素還元する方法は、 反応速度が速く、 また副生物である塩化水素も利用するこ とができ、 工業的な展開に有利であると考えられる。 しかし、 特開平 3-133939号 公報の方法は、 鉄や白金などの汎用触媒を用いる気相水素還元方法であり、 極め て短時間のうちに触媒活性が低下すること力 i判明した。 また、 四塩化炭素の気相 水素還元方法では、 例えばへキサクロロェタンのような二量化物や、 特に高温に おいて炭素数 5〜 7個の重合物が副生するなど、 必ずしも目的生成物の収率が高 くないなどの問題点を有していた。
本発明者は上記の気相水素還元方法について種々検討した。 まず、 失活した触 媒上の有機成分の分析を行った結果、 その多くが重合物であること力 リ明した。 また、 透過型電子顕微鏡による観察および X線回折による分析から、 触媒粒径は 未使用時と殆ど同じであった。 それゆえ、 重合物の堆積が主たる失活原因と推定 - された。
[発明の開示]
本発明者らは、 触媒の急速な失活を抑制する反応方法について鋭意検討を行つ た。 その結果、 還元触媒の存在下においてボリクロロメタン類を液相状態で水素 で還元する方法を採用することにより、 触媒の短期的劣化を無くし且つ高収率で 含水素クロロメタン類力得られることを見出した。 本発明は、 上記知見に基いて 完成されたものであり、 還元触媒の存在下、 液相でポリクロロメタン類を水素に より還元することを特徴とする含水素ク口ロメ夕ン類の製造法を提供するもので ある。 以下、 本発明の詳細について実施例とともに説明する。
ボリクロロメタン類とは、 四塩化炭素、 クロ口ホルム、 塩化メチレンである。 本発明方法によれば、 四塩ィ匕炭素の還元により、 クロ口ホルム、 塩化メチレン、 塩化メチルが、 またクロ口ホルムの遼元により、 塩化メチレン、 塩化メチルが、 さらに塩化メチレンの還元により塩化メチルが得られる。 ボリクロロメタン類と しては、 規制対象の四塩化炭素が好ましい。
四塩化炭素は、 炭素原子に極性の大きな塩素原子が 4個結合した分子であり、 ハロゲン化メタンの中では極めて大きな吸着エネルギーを有している。 従って、 触媒上での滞留時間は長く、 触媒作用を受けやすい性質を持っている。 それゆえ に、 8族, 9族および 1 0族から選ばれる還元活性の高い元素からなる触媒を用 いた場合、 ォレフィンの生成 ·重合物生成が著しくなるため極めて短時間に失活 する傾向を示す。 特に、 気相反応法においては、 基本的に反応温度力 s高いので、 ォレフィン類の生成 ·重合が起こりやすく、 また生成した重合物は一般的に沸点 が高いので、 触媒表面から除去しがたいことが考えられる。 このことが急速な失 活の原因であると考えられる。
—方、 液相で反応を行なうことは、 反応システム力 s複雑になり易いが、 反応溶 媒の使用等により四塩化炭素の吸着を制御し易いこと、 副生重合物についてもそ れぽど重合度が大きくなければ、 触媒表面から溶解除去し易く、 従って、 活性点 の減少を抑制できるなどの利点を有すると考えられる。 そこで反応条件および触 媒の最適化について検討を進めた結果、 触媒の急速な失活を伴うこと無く、 高選 択的にクロ口ホルム、 塩化メチレン、 塩化メチルなどの含水素クロロメタン類が 得られることを見出したものである。
還元触媒としては、 鉄、 ルテニウム、 オスミウムの 8族元素、 コノヽつレト、 ロジ ゥム、 イリジウムの 9族元素およびニッケル、 パラジウム、 白金の 1 0族元素か ら選ばれる少なくとも 1種の元素を主成分とする触媒が好ましい。 この 8族, 9 族, 1 0族元素を主成分とする触媒は、 これらの元素のみからなる触媒でもよ く、 これらの元素に対して、 8〜1 0族元素以外の金属元素をさらに添加併用し た触媒でもよい。
主成分としての 8〜1 0族元素の中では、 パラジウム、 ルテニウム、 白金、 口 ジゥム等の白金族元素が、 高活性、 髙耐久性を得やすく特に好ましい。 また、 添 加成分としては、 銅, 銀, 金などの 1 1族元素が例示され得る。 主成分元素及び 添加成分元素ともに、 1種のみで用いてもよく、 2種以上を併用してもよい。 添 加成分を併用する場合には、 その添加量は 0. 01〜50重量%、 好ましくは 0. 1〜50 重量%、 特に 1〜50重量%が望ましい。
これらの触媒金属はそのまま、 または、 担体に担持させたものいずれでも使用 可能である。 担体としては、 活性炭、 アルミナ、 ジルコユア、 シリカなど通常用 いられるものが使用できる。 また、 担持量については、 0. 01〜20重量%程度、 好 ましくは 0. 5〜 5重量%程度が、 触媒の担持効率, 反応活性, 触媒成分の分散な どの点で好適である。
触媒成分の担持方法などについても、 通常採用される範囲から適宜選定され得 る。 例えば、 上記元素の単純塩または錯塩などを用いて含浸法、 イオン交換法な どにより担持する方法が適用できる。 また、 触媒の使用に当たっては、 必ずしも 触媒の還元処理を行う必要はないが、 あらかじめ水素還元を施しておくこと力3安 定した特性を得る上で望ましい。 担持した触媒成分の還元法としては、 水素、 ヒ ドラジン、 ホルムアルデヒド、 水素化ホウ素ナトリウムなどにより液相で還元す る方法、 および水素により気相で還元する方法など力 S適用できる。
液相反応プロセスとしては、 固定床、 懸濁床、 何れでも採用できる。 反応溶媒 の使用は、 生成物割合の制御、 反応活性の安定化等に有効であり、 適宜行なうこ とができる。 例えば、 メタノール、 エタノール等のアルコール類、 卜リエチルァ ミン等のアミン類、 酢酸等のカルボン酸類、 アセトン等のケトン類を反応溶媒と 一
して使用できる。
本発明における液相還元反応を連続的に行う場合には、 還元触媒の固定床に原 料液を接触させる液相固定床方式を採用するのが望ましい。 特に、 原料液をダウ ンフローで供給する滴下床方式においては、 水素の液相拡散距離が短く、 触媒表 面における水素濃度の低下を抑制しやすいため、 反応速度、 触媒耐久性を向上す る上で有利である。 液相固定床方式においては、 触媒金属を担体に担持させた触 媒を使用するのが望ましい。 担体としては、 液の流通により粉化しない程度の強 度を有するものが採用される。 担体の形状は、 特に原料液をアップフローで流通 させる場合には、 摩耗損失を受けにくいペレット状のものが好適であるが、 滴下 床方式では破砕炭なども使用可能であり、 必ずしも限定されない。 触媒のサイズ についても、 特に限定されないが、 通常は径が 0 . 5〜2 0 111111程度のものカ5適 当である。
液相還元反応の温度は 0 "C〜2 0 0で、 好ましくは 5 0 〜 1 5 0 'Cとするこ とが適当である。 水素とボリクロロメタン類の反応モル比は特に限定されない。 水素を多くすると反応率が上がるが、 より脱塩素 ·水素化が進んだものの生成割 合が多くなる。 ボリクロロメタン類 1モルに対して水素をおよそ 0. 1〜1 0モ ル程度で用いることが好ましい。 過剰の水素については、 これをリサイクルする ことにより、 水素の利用効率を髙めることが可能である。
また、 反応圧力は常圧以上が適当であり、 圧力を上げるほど反応速度が増加す る。 数 kg/cm2 'G〜1 0 kg/cm2 'G程度までの加圧が採用され得る。 余りに高圧 では、 反応速度が増加しても装置コス卜の上昇を伴うなどの難点が認められる。
[発明を実施するための最良の形態]
以下に本発明の実施例を示す。
実施例 1
内容積 2リヅトルのオートクレープに、 1リ トルの四塩化炭素を入れ、 活性 炭担持白金触媒 (担持量: 2重量%、 ェヌ 'ィー'ケムキヤッ卜社製) を 1 0 g 加えた。 窒素を封入し、 1 1 0でまで昇温した後、 水素の供給を開始した。 圧力 は 5 kgZcm2 'Gであった。 生成物につては気相成分、 液相成分、 いずれもガスク ロマ卜グラフィ一を用いて分析を行つた。 四塩化炭素 1モルに対して水素を 3 ー
モル連続的に供給し反応を継続した。 反応開始後 1,000時間における四塩化炭 素反応率は 91%であり、 クロ口ホルム (選択率: 70%) 、 パークロロェチレ ン (選択率: 18%) 等の生成が確認された。
実施例 2
内容積 2リットルのオートクレープに、 1リヅトルの四塩化炭素を入れ、 アル ミナ担持パラジウム触媒 (担持量: 2重量%、 ェヌ 'ィ一'ケムキヤット社製) を 50 g加えた。 窒素を封入した後、 115eCまで昇温した後、 水素の供給を開 始した。 圧力は 5kgZcm2'Gであった。 生成物につては気相成分、 液相成分、 レヽ ずれもガスクロマトグラフィーを用いて分析を行つた。 四塩化炭素 1モルに対し て水素を 4モル連続的に供給し反応を継続した。 反応開始後 1,000時間における 四塩化炭素反応率は 92%であり、 クロ口ホルム (選択率: 60%) 、 塩化メチ レン (選択率: 9%) 、 パークロロエチレン (選択率: 17%)等の生成が確認 された。
実施例 3
内容積 2リ、 トルのオートクレープに、 1リヅトルの四塩化炭素を入れ、 ジル コニァ担持ロジウム触媒 (担持量: 2重量%、 ェヌ 'ィー 'ケムキャット社製) を 50 g加えた。 窒素を封入した後、 11 CTCまで昇温した後、 水素の供給を開 始した。 圧力は 5kgZcm2'Gであった。 生成物につては気相成分、 液相成分、 レヽ ずれもガスクロマトグラフィ一を用いて分析を行った。 四塩化炭素 1モルに対し て水素を 3モル連続的に供給し反応を継続した。 反応開始後 1,000時間における 四塩化炭素反応率は 93%であり、 クロ口ホルム (選択率: 58%) 、 塩化メチ レン (選択率: 8%) 、 塩化メチル (選択率: 7%) 、 パークロロエチレン (選 択率: 16%)等の生成が確認された。
実施例 4
内容積 2リヅトルのオートクレープに、 1リヅトルの四塩化炭素を入れ、 活性 炭担持ルテニウム触媒 (担持量: 5重量%、 ェヌ 'ィー ·ケムキヤット社製) を 50 g加えた。 窒素を封入した後、 120°Cまで昇温した後、 水素の供給を開始 した。 圧力は 5kgZcm2'Gであった。 生成物につては気相成分、 液相成分、 いず れもガスクロマトグラフィ一を用いて分析を行つた。 四塩化炭素 1モルに対し水 一
素を 5モ JU¾続的に供給し反応を継続した。 反応開始後 1, 000時間における四塩 化炭素反応率は 8 9 %であり、 クロ口ホルム (選択率: 5 8 %) 、 塩化メチレン (選択率: 9 %) 、 塩化メチル (選択率: 1 4 %) 、 パークロロエチレン (選択 率: 1 8 %) 等の生成が確認された。
比較例 1
活性炭担持白金触媒 (担持量 0 . 5重量%:ェヌ ·ィ一'ケムキヤ 卜社製) 1 0 0 ^を内径0 . 5インチのインコネル製反応管に入れ、 1 6 0でに設定した 熱媒中に浸澄した。 あらかじめ窒素、 続いて水素で処理した後、 四塩化炭素 1モ ルに対して水素を 2モルの割合で導入し気相で反応を行った。 接触時間は 7秒、 反応圧は常圧であった。 反応開始後 2時間、 2 0時間での四塩化炭素の反応率は それぞれ約 9 0 %、 約 3 0 %であり、 それ以降も経時的に失活した。生成物とし てはクロ口ホルム、 塩ィ匕メチレン、 塩化メチル、 メタンの他、 パークロロェチレ ンなどの炭素数 2〜5個の塩素化されたアルカン類、 アルケン類が認められた。 実施例 5
径 3雌の成形炭担持白金触媒 (担持量: 2重量%、 ェヌ 'ィー ·ケムキヤッ卜 社製) 4リツトルを、 内径 6 0咖の円筒状反応器に充填した。 触媒層を四塩化炭 素で充たした後窒素を封入した。 8 0 まで昇温した後、 水素の供給を開始し た。 四塩化炭素 1モルに対して水素を 3モル、 連続的にアップフローで供給し反 応を継続した。 生成するクロ口ホルム等の気体成分は気液分離器により連続的に 取り出し、 未反応の四塩化炭素等の液体成分は反応器に戻しリサイクルした。 圧 力は 5 kg/cm2 'Gであった。 生成物については気相成分、 液相成分、 いずれも ガスクロマトグラフィーを用いて分析を行った。 反応開始後 100時間における 四塩化炭素のワンパスでの反応率は 9 1 %であり、 クロ口ホルム (選択率: 9 0 %) 、 パークロロエチレン (選択率: 5 %) 等の生成が確認された。
実施例 6
触媒として径 5 mmの成形炭担持パラジウム触媒 (担持量: 2重量%、 ェヌ 'ィ 一 ·ケムキヤ、ヌト社製) を用いる他は実施例 5と同様にして実験を行ない、 生成 物の分析を行った。 反応開始後 100時間における四塩化炭素のワンパスでの反応 率は 9 2 %であり、 クロ口ホルム (選択率: 8 5 %) 、 パークロロエチレン (選 - - 択率: 1 0 %) 、 メタン (5 %)等の生成が確認された。
実施例 7
径 1画の成形炭担持白金触媒 (担持量: 2重量%、 ェヌ ·ィー ·ケムキヤッ ト 社製) 1リツトルを、 内径 3 O mmの円筒形反応器に充填した。 窒素を充たした後 8 CTCまで昇温した。 触媒を水素で十分に還元した後、 水素と四塩化炭素をモル 比 5 : 1でダウンフローで供給した。 生成物については気相成分、 液相成分、 レ、 ずれもガスクロマトグラフィーを用いて分析を行った。 反応開始後 100時間にお ける四塩化炭素の反応率は 9 4 %であり、 クロ口ホルム (選択率: 9 0 %) 、 ノ —クロ口エチレン (選択率: 5 %) 等の生成が確認された。
次に、 添加成分元素を併用した還元触媒の調製例を示し、 これらの還元触媒を 使用した液相還元反応の具体例を示す。
調製例 1
担体としてのヤシガラ活性炭粉末 (平均粒径 10〜20μ πι ) の 100gをイオン交換 水 1リットルに投入した。 塩化ルテニウムと塩化金酸を、 それぞれ金属成分の重 量比が 9 : 1の割合で、 担体重量の 5 %に相当する量でイオン交換水に溶解させ た。 ヒドラジンの水溶液で還元した後、 イオン交換水を用いて水洗し、 110°Cで 乾燥した。
調製例 2
担体としてのアセチレンブラック粉末 (平均粒径 1 m ) の 100gをイオン交換 水 1リツトルに投入した。 塩化ロジウムと塩化金酸を、 それぞれ金属成分の重量 比が 9 5 : 5の割合で、 担体重量の 2 %に相当する量でイオン交換水に溶解させ た。 水素化ホウ素ナトリウムの水溶液で還元した後、 イオン交換水を用いて水洗 し、 110eCで乾燥した。
調製例 3
担体としてのピッチ系活性炭粉末 (平均粒径 10〜20 /x m ) の 100gをイオン交換 水 1リヅトルに投入した。 塩化パラジウムと塩化金酸を、 それぞれ金属成分の重 量比が 8 : 2の割合で、 担体重量の 2 %に相当する量でイオン交換水に溶解させ た。 ヒドラジンの水溶液で還元した後、 イオン交換水を用いて水洗し、 110eCで 草乞燥した。 - - 調製例 4
担体としてのピッチ系活性炭粉末 (平均粒径 10〜20μ πι) の 100gをイオン交換 水 1リツトルに投入した。 塩化ニッケル、 塩化白金酸および塩化金酸を、 それぞ れ金属成分の重量比が 5 : 4 : 1の割合で、 担体重量の 2 %に相当する量でィォ ン交換水に溶解させた。 水素化ホウ素ナトリウムの水溶液で還元した後、 イオン 交換水を用いて水洗し、 110でで乾燥した。
調製例 5
担体としての木質系活性炭粉末 (平均粒径 10〜20μ πι) の 100gをイオン交換水 1リヅトルに投入した。 塩化白金酸と塩化金酸を、 それぞれ金属成分の重量比が 9 : 1の割合で、 担体重量の 2 %に相当する量でイオン交換水に溶解せしめた。 水素化ホウ素ナ卜リウムの水溶液で還元した後、 イオン交換水を用いて水洗し、
110 *Cで乾燥した。
調製例 6
担体のヤシガラ活性炭粉末 (平均粒径 10〜20μ ιη) の 100gをイオン交換水 1リ ヅトルに投入した。 塩化ルテニウムとジアンミン銀の硝酸塩を、 それぞれ金属成 分の重量比が 85 : 15の割合で、 担体重量の 5 %に相当する量でイオン交換水に溶 解させた。 アンモニア水を加えてアルカリ性にした後、 水素化ホウ素ナトリウム の水溶液で還元した。 イオン交換水を用いて水洗した後、 110eCで乾燥した。 調製例マ
担体としてのヤシガラ活性炭粉末 (平均粒径 10〜20 m) の 100gをイオン交換 水 1リットルに投入した。 塩化ロジウムとジアンミン銀の硝酸塩を、 それぞれ金 属成分の重量比が 9 : 1の割合で、 担体重量の 2 %に相当する量でイオン交換水 に溶解せしめた。 ヒドラジンの水溶液で還元した後、 イオン交換水を用いて水洗 し、 110eCで乾燥した。
調製例 8
担体としてのピッチ系活性炭粉末 (平均粒径 10〜20/x m) の 100gをイオン交換 水 1リツトルに投入した。 塩化パラジウムとジアンミン銀を、 それぞれ金属成分 の重量比が 95 : 5の割合で、 担体重量の 2 %に相当する量でイオン交換水に溶解 させた。 アンモニア水を加えてアルカリ性にした後、 ヒドラジンの水溶液で還元 した。 イオン交換水を用いて水洗した後、 iio°cで乾燥した。
調製例 9
担体としてのヤシガラ活性炭粉末 (平均粒径 10〜20/ m) の 100gをイオン交換 水 1リツトルに投入した。 塩化白金酸とジアンミン銀を、 それぞれ金属成分の重 量比が 9 : 1の割合で、 担体重量の 2%に相当する量でイオン交換水に溶解せし めた。 アンモニア水を加えてアルカリ性にした後、 ヒドラジンの水溶液で還元し た。 イオン交換水を用いて水洗した後、 110°Cで乾燥した。
調製例 10
担体としてのヤシガラ活性炭粉末 (平均粒径 10〜20 tm) の 100gをイオン交換 水 1リ ツトルに投入した。 塩化ルテニウムと塩化銅を、 それぞれ金属成分の重量 比が 95 : 5 の割合で、 担体重量の 5%に相当する量でイオン交換水に溶解せしめ た。 アンモニア水を加えてアルカリ性にした後、 水素化ホウ素ナトリウムの水溶 液で還元した。 イオン交換水を用いて水洗した後、 110eCで乾燥した。
調製例 1 1
担体としての木質系活性炭粉末 (平均粒径 10〜20μηι) の 100gをイオン交換水 1リヅトルに投入した。 塩化ロジウムと塩化銅を、 それぞれ金属成分の重量比が 9 : 1の割合で、 担体重量の 2%に相当する量でイオン交換水に溶解させた。 ァ ンモニァ水を加えてアルカリ性にした後、 ヒドラジンの水溶液で還元した。 ィォ ン交換水を用いて水洗した後、 110°Cで乾燥した。
調製例 12
担体としてのピッチ系活性炭粉末 (平均粒径10〜20^!11) の 100gをイオン交換 水 1リツトルに投入した。 塩化パラジウムと塩化銅を、 それぞれ金属成分の重量 比が 95 : 5 の割合で、 担体重量 ©2%に相当する量でイオン交換水に溶解せしめ た。 アンモニア水を加えてアルカリ性にした後、 ヒドラジンの水溶液により還元 した。 イオン交換^を用いて水洗した後、 110°Cで乾燥した。
調製例 13
担体としてのヤシガラ活性炭粉末 (平均粒径 10〜20μιη) の 100gをイオン交換 水 1 リットルに投入した。 塩化白金酸と塩化銅を、 それぞれ金属成分の重量比が 9 : 1の割合で、 担体重量の 2%に相当する量でイオン交換水に溶解させた。 ァ 一 I 0 —
ンモユア水を加えてアルカリ性にした後、 ヒドラジンの水溶液で還元した。 ィォ ン交換水を用いて水洗した後、 110でで乾燥した。
実施例 8
内容積 2リ トルのオートクレープに、 1リヅトルの四塩化炭素を入れ、 調製 例 1により調製した還元触媒 50gを加えた。 窒素を封入し、 80でまで昇温した 後、 水素の供給を開始した。 圧力は 5kg/cm2 *Gに保持した。 生成物については、 気相成分と液相成分のいずれも、 ガスクロマトグラフィーを用いて分析を行つ た。 四塩化炭素 1モルに対して、 水素を 3モルの割合で連続的に供給し反応を継 続させた。 反応開始後 100時間における四塩化炭素の反応率は 86%であり、 クロ 口ホルム (選択率: 95%) 、 へキサクロロェタン (選択率: 5%) 等の生成が確 認された。
実施例 9
調製例 2による還元触媒を用い、 反応温度を 110でとする他は、 実施例 8と同 様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 78%で あり、 クロ口ホルム (選択率: 85%) 、 へキサクロ口ェ夕ン (選択率: 5%) 、 塩化メチレン (選択率: 8%) 等の生成が確認された。
実施例 1 0
調製例 3による還元触媒を用い、 反応温度を 100でとする他は、 実施例 8と同 様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 85%で あり、 クロ口ホルム (選択率: 90%) 、 へキサクロ口ェ夕ン (選択率: 5%)、 ペンタクロロエタン (選択率: 2%) 、 テトラクロロエチレン (選択率: 2%) 等の生成が確認された。
実施例 1 1
調製例 4による還元触媒を用いる他は、 実施例 8と同様にして反応を行った。 反応開始後 100時間における四塩ィ匕炭素反応率は 86%であり、 クロ口ホルム (選 択率: 92%) 、 へキサクロロェタン (選択率: 4%) 等の生成が確認された。 実施例 1 2
調製例 5による還元触媒を用い、 反応温度を 100でとする他は、 実施例 8と同 様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 84%で あり、 クロ口ホルム (選択率: 89% ) 、 へキサクロロェタン (選択率: 6%) 等 の生成が確認された。
実施例 1 3
調製例 6による還元触媒を用いる他は、 実施例 8と同様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 90%であり、 クロ口ホルム (選 択率: 92% ) 、 へキサクロロェタン (選択率: 3% ) 等の生成が確認された。 実施例 1 4
調製例 7による還元触媒を用い、 反応温度を 110°Cとする他は、 実施例 8と同 様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 75%で あり、 クロ口ホルム (選択率: 85% ) 、 へキサクロロェタン (選択率: 6%) 、 塩化メチレン (選択率: 7% ) 等の生成が確認された。
実施例 1 5
調製例 8による還元触媒を用い、 反応温度を 100eCとする他は、 実施例 8と同 様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 71%で あり、 クロ口ホルム (選択率: 90% ) 、 へキサクロロェタン (選択率: 4%) 、 ペン夕クロ口ェ夕ン (選択率: 2% ) 、 テトラクロロエチレン (選択率: 2% ) 等の生成が確認された。
実施例 1 6
調製例 9による還元触媒を用いる他は実施例 8と同様にして反応を行った。 反 応開始後 100時間における四塩ィヒ炭素反応率は 84%であり、 クロ口ホルム (選択 率: 97% ) 、 テトラクロロェタン (選択率: 3% ) 等の生成が確 ^[された。 実施例 1 7
調製例 1 0による還元触媒を用いる他は実施例 8と同様にして反応を行つた。 反応開始後 100時間における四塩化炭素反応率は 83%であり、 クロ口ホルム (選 択率: 69% ) 、 へキサクロロェタン (選択率: 28% ) 、 塩化メチレン (選択率: 1 % ) 、 テトラクロロエチレン (選択率: 2% ) 等の生成が確認された。
実施例 1 8
調製例 1 1による還元触媒を用い、 反応温度を 120 Cとする他は実施例 8と同 様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 84%で - \^ - あり、 クロ口ホルム (選択率: 87%) 、 へキサクロ口ェ夕ン (選択率: 6%) 、 塩化メチレン (選択率: 7%) 等の生成が確認された。
実施例 1 9
調製例 1 2による還元触媒を用い、 反応温度を 90でとする他は実施例 8と同様 にして反応を行った。 反応開始後 100時間における四塩ィ匕炭素反応率は 74%であ り、 クロ口ホルム (選択率: 89%) 、 へキサクロロェタン (選択率: 5%) 、 ぺ ンタクロロェタン (選択率: 2%) 、 テトラクロロエチレン (選択率: 3%) 等 の生成が確認された。
実施例 2 0
調製例 1 3による還元触媒を用いる他は実施例 8と同様にして反応を行った。 反応開始後 100時間における四塩化炭素反応率は 87%であり、 クロ口ホルム (選 択率: 93%) 、 へキサクロロェタン (選択率: Wo ) 等の生成が確認された。 本発明は実施例に示した如く、 ポリクロロメタン類、 特に四塩化炭素を液相で 水素を用いて還元することによりクロ口ホルム等の含水素クロロメタン類を高収 率で製造し得るという効果を有する。 また、 本発明方法は、 原料ポリクロロメ夕 ン類の反応率を高めても、 目的物のクロ口ホルムなど含水素クロロメタン類を高 い選択率で得ることができるという効果も有する。 さらに、 本発明方法において は、 触媒活性を損なう不純物を生成する副反応を効果的に抑制し得ることから、 触媒寿命の観点からも極めて有利である。

Claims

請 求 の 範 囲
. 還元触媒の存在下、 液相でポリクロロメタン類を水素により還元することを 特徴とする含水素クロロメタン類の製造法。
. 還元反応を液相固定床で行う請求項 1の製造法。
. 還元触媒が 8族, 9族および 1 0族元素から選ばれる少なくとも 1種の元素 を主成分とする触媒である請求項 1または請求項 2の製造法。
. 還元触媒が、 8族, 9族および 1 0族元素から選ばれる少なくとも 1種の元 素を主成分として含み、 これに 1 1族元素から選ばれる少なくとも 1種の元が 添加されてなる触媒である請求項 1または請求項 2の製造法。
. 還元触媒中の主成分元素が、 ルテニウム、 ロジウム、 パラジウム、 及び白金 カら選ばれる少なくとも 1種の白金族元素である請求項 4の製造法。
. 還元触媒中の添加成分元素が、 銅、 銀、 及び金から選ばれる少なくとも 1種 の 1 1族元素である請求項 4の製造法。
. 還元触媒中の添加成分元素の添加量が 0. 01~50重量%である請求項 4の製造 法。
. 還元温度が 0 eC〜 2 0 0 eCである請求項 1または請求項 2の製造法。
. ポリクロ口メタン類が四塩化炭素である請求項 1または請求項 2の製造法。
PCT/JP1992/000522 1991-04-23 1992-04-23 Process for producing hydrochloromethanes WO1992018447A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/960,423 US5334782A (en) 1991-04-23 1991-04-23 Method for producing a hydrogen-containing chloromethane
EP92909542A EP0536420B1 (en) 1991-04-23 1992-04-23 Process for producing hydrochloromethanes
DE69216977T DE69216977T2 (de) 1991-04-23 1992-04-23 Verfahren zur herstellung von hydrochlormethanen
KR1019920703206A KR100222459B1 (ko) 1991-04-23 1992-04-23 함수소 클로로메탄류의 제조방법
CA002086110A CA2086110C (en) 1991-04-23 1992-04-23 Method for producing hydrochloromethanes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3/119457 1991-04-23
JP3119457A JPH04327546A (ja) 1991-04-23 1991-04-23 含水素クロロメタン類の製造法
JP3/352257 1991-12-13
JP3352257A JP3004115B2 (ja) 1991-12-13 1991-12-13 含水素クロロアルカン類の製法

Publications (1)

Publication Number Publication Date
WO1992018447A1 true WO1992018447A1 (en) 1992-10-29

Family

ID=26457193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000522 WO1992018447A1 (en) 1991-04-23 1992-04-23 Process for producing hydrochloromethanes

Country Status (6)

Country Link
US (1) US5334782A (ja)
EP (1) EP0536420B1 (ja)
KR (1) KR100222459B1 (ja)
CA (1) CA2086110C (ja)
DE (1) DE69216977T2 (ja)
WO (1) WO1992018447A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022792A1 (en) * 1993-03-26 1994-10-13 British Technology Group Limited Catalytic method of replacing halogen in halocarbons
US5476984A (en) * 1994-04-14 1995-12-19 The Dow Chemical Company Hydrodechlorination process and catalyst for use therein
US5817896A (en) * 1993-03-26 1998-10-06 The University Court Of The University Of Dundee Catalytic method of replacing halogen in halocarbons

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621151A (en) * 1990-10-09 1997-04-15 E. I. Du Pont De Nemours And Company Halocarbon hydrogenolysis
GB0020910D0 (en) * 2000-08-25 2000-10-11 Univ Birmingham Reduction method
IT1319258B1 (it) * 2000-10-31 2003-09-26 Sued Chemie Mt Srl Catalizzatore per la idrodeclorurazione del tetracloruro di carbonio acloroformio.
KR100484508B1 (ko) * 2002-09-27 2005-04-20 학교법인 포항공과대학교 사염화탄소 처리방법
CN102690203A (zh) * 2011-03-22 2012-09-26 中国科学院大连化学物理研究所 一种制备1,3-环己二甲胺的方法
TWI537347B (zh) * 2015-04-02 2016-06-11 綠點高新科技股份有限公司 用於催化性油墨的芯鞘型催化劑

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021414A (ja) * 1988-03-28 1990-01-05 Kanto Denka Kogyo Co Ltd ハロゲン化炭素又はハロゲン化炭化水素中のハロゲンを水素に置換する方法
JPH03133939A (ja) * 1989-10-20 1991-06-07 Asahi Glass Co Ltd 部分塩素化メタンの製造方法
EP0455547A1 (fr) * 1990-05-03 1991-11-06 Elf Atochem S.A. Procédé de déchloration des chlorométhanes supÀ©rieurs
EP0460138A1 (en) * 1989-12-22 1991-12-11 Ercros S.A. Method for producing chloroform
JPH0426636A (ja) * 1990-05-22 1992-01-29 Asahi Glass Co Ltd ハロゲン化炭素の還元方法
EP0479116A1 (en) * 1990-10-04 1992-04-08 The Dow Chemical Company Vapor phase hydrogenation of carbon tetrachloride

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579596A (en) * 1968-03-29 1971-05-18 Dow Chemical Co Hydrogenolysis of carbon tetrachloride and chloroform
BE1004608A3 (fr) * 1990-11-16 1992-12-22 Solvay Procede pour la fabrication du chloroforme a partir de tetrachlorure de carbone, compositions catalytiques et procede pour leur obtention.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021414A (ja) * 1988-03-28 1990-01-05 Kanto Denka Kogyo Co Ltd ハロゲン化炭素又はハロゲン化炭化水素中のハロゲンを水素に置換する方法
JPH03133939A (ja) * 1989-10-20 1991-06-07 Asahi Glass Co Ltd 部分塩素化メタンの製造方法
EP0460138A1 (en) * 1989-12-22 1991-12-11 Ercros S.A. Method for producing chloroform
EP0455547A1 (fr) * 1990-05-03 1991-11-06 Elf Atochem S.A. Procédé de déchloration des chlorométhanes supÀ©rieurs
JPH0426636A (ja) * 1990-05-22 1992-01-29 Asahi Glass Co Ltd ハロゲン化炭素の還元方法
EP0479116A1 (en) * 1990-10-04 1992-04-08 The Dow Chemical Company Vapor phase hydrogenation of carbon tetrachloride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0536420A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022792A1 (en) * 1993-03-26 1994-10-13 British Technology Group Limited Catalytic method of replacing halogen in halocarbons
US5817896A (en) * 1993-03-26 1998-10-06 The University Court Of The University Of Dundee Catalytic method of replacing halogen in halocarbons
US5476984A (en) * 1994-04-14 1995-12-19 The Dow Chemical Company Hydrodechlorination process and catalyst for use therein

Also Published As

Publication number Publication date
CA2086110C (en) 1999-05-11
US5334782A (en) 1994-08-02
EP0536420A4 (en) 1993-09-29
DE69216977T2 (de) 1997-05-15
EP0536420B1 (en) 1997-01-22
CA2086110A1 (en) 1992-10-24
DE69216977D1 (de) 1997-03-06
EP0536420A1 (en) 1993-04-14
KR100222459B1 (ko) 1999-10-01
KR930701369A (ko) 1993-06-11

Similar Documents

Publication Publication Date Title
EP2209759B1 (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
JP4958790B2 (ja) ハイドロフルオロアルカノールのハイドロフルオロアルケンへの接触転化
EP2457889B1 (en) Process for production of 2-chloro-3,3,3-trifluoropropene
EP2473275B1 (en) Catalysts for fluoroolefins hydrogenation
JP6827810B2 (ja) ハイドロフルオロオレフィンの製造方法
JP6673413B2 (ja) フルオロオレフィンの製造方法
US7179440B2 (en) Process to obtain hydrogen peroxide
WO2016031778A1 (ja) ハイドロフルオロオレフィンの製造方法
WO1992018447A1 (en) Process for producing hydrochloromethanes
CN102762523B (zh) 3,3,3-三氟丙烯的制造方法
JPH08239336A (ja) 金属による触媒作用の下でのパーフルオルアルキルアイオダイドテロマーの製造方法
JPH04321634A (ja) 1,1,2−トリクロロ−1,2,2−トリフルオロエタンを出発物質としてクロロトリフルオロエチレン及びトリフルオロエチレンを調製する方法及びこの方法に用いられる触媒組成物
CN113634275B (zh) 一种催化加氢脱氯用催化剂及其制备方法和应用
US6291729B1 (en) Halofluorocarbon hydrogenolysis
CN111013604A (zh) 一种催化加氢脱氯用催化剂及其制备方法和应用
JP3031508B2 (ja) 多塩素化アルカン類の還元方法
US8940948B2 (en) Process for the manufacture of fluorinated olefins
WO2018123911A1 (ja) 含塩素プロペンの製造方法
CN113649030B (zh) 加氢脱卤催化剂和三氟氯乙烯与三氟乙烯的制备方法
JP5400148B2 (ja) ヘキサフルオロイソプロパノールを生成する連続方法
CN104692998B (zh) 1,1-二氟-2-氯乙烷的制备方法
JP3004115B2 (ja) 含水素クロロアルカン類の製法
JPH04327546A (ja) 含水素クロロメタン類の製造法
JPH0517379A (ja) 含水素クロロフルオロカーボン類または含水素フルオロカーボン類の製法
CN114605224A (zh) 一种1,1,2,2,3,3,4-七氟环戊烷及其制备方法和应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1019920703206

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2086110

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992909542

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992909542

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992909542

Country of ref document: EP