WO1992014195A1 - Amortisseur d'oscillations - Google Patents

Amortisseur d'oscillations Download PDF

Info

Publication number
WO1992014195A1
WO1992014195A1 PCT/JP1992/000120 JP9200120W WO9214195A1 WO 1992014195 A1 WO1992014195 A1 WO 1992014195A1 JP 9200120 W JP9200120 W JP 9200120W WO 9214195 A1 WO9214195 A1 WO 9214195A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
torsion
speed
target
vibration
Prior art date
Application number
PCT/JP1992/000120
Other languages
English (en)
Japanese (ja)
Inventor
Nobutoshi Torii
Ryo Nihei
Tetsuaki Kato
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1992014195A1 publication Critical patent/WO1992014195A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37356Torsion, twist
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41367Estimator, state observer, space state controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot

Definitions

  • the present invention relates to a vibration suppression control device for a control target having a low-frequency vibration system such as a robot, and more particularly to a vibration suppression control device that uses an observer to reduce vibration.
  • the vibration at the tip of the arm poses a serious problem in work.
  • the next operation cannot be performed until the tip vibration has subsided, and the cycle time deteriorates.
  • these vibrations have been prevented by lowering the servo gain of the system and slowly stopping the robot.
  • the present invention has been made in view of such a point, and a state feed filter in which a special filter is applied to a twist amount and a twist speed.
  • An object of the present invention is to provide a vibration suppression control method that reduces vibration by backing.
  • a control command corresponding to a target operation is given to a control target, and an observation value of the control target in response to the control command is fed back to the control instruction, so that the observation value of the control target becomes the target operation.
  • a vibration damping control device that controls to match and suppress vibration of a control target, comprising: a torsion parameter determining unit that determines a torsion parameter in the control target; and a vibration control device that controls the vibration of the control target.
  • a torsion feedback means for multiplying the determined transfer function by the torsion parameter and feeding back the control command.
  • FIG. 1 is a configuration diagram of a hardware of a robot system for implementing the present invention
  • FIG. 2 is a block diagram of the servo motor control of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram of hardware of a robot system for implementing the present invention.
  • the host processor 1 is a processor that controls the entire robot. From phosphorylase Topu ⁇ processor 1 position command theta d mouth bot is written in the shared RAM 2. Note that the ROM, RAM, and the like connected to the host processor 1 are omitted.
  • the DSP (digital signal 'processor) 11 that controls the servo motor 22 built in the robot controls the servo motor 22 according to the R0M12 system program. Therefore, the DSP 11 reads the position command 6 d of the shared RAM 2 at regular intervals.
  • DSP 1 1 is a The position command e d, Sa - you calculate the speed command from the error one amount by the difference between the position off I one Dobakku from Bomota 2 2 pulse coder 2 3 built in. Furthermore, the velocity feedback is calculated by differentiating the position feedback. The torque command is calculated from the difference between this speed feedback and the speed command.
  • the speed command and the torque command are given to the servo amplifier 21 via a digital servo LSI (DSL) 14, and the servo amplifier 21 receives the torque command and drives the servo motor 22.
  • the servo motor 22 drives the arm 26 via the speed reducer.
  • a panel component 24 panel constant K c
  • a damping component 25 dumping constant B k
  • the DSP 11 performs the function of an observer 36 for estimating the torsion amount ⁇ and the torsional speed ⁇ ( from the torque command T and the speed (i) of the servo motor 22 described later.
  • X ( ⁇ ) represents the ⁇ -order time derivative of the parameter X.
  • Fig. 2 is a block diagram of servo motor control in the vibration suppression control method of the present invention.
  • position command e d read from is sent to an adder 3 1, takes the difference between the position off I over Dobakku from pulse coder 2 3, the difference is sent to the element 3 2.
  • element 3 located in 2 input Apply loop gain C and set speed command V d To the adder 32a.
  • Adder 3, 2 a feedback amount F to be described later, from the speed command V d is subtracted. The feedback amount F will be described later in detail.
  • the output of the kamino 3 2 a is sent to the adder 33.
  • the adder 33 takes the difference between the speed command Vd of the servomotor 22 and the feedback speed CI) from the servomotor 22, and the difference is sent to the element 34.
  • the adder 33 adds the output 6 d 1) obtained by differentiating the position command d with the differential element 30.
  • This derivative element 30 constitutes a feedforward loop.
  • Element 3 4 multiplied by the speed control loop gain K v, and a torque directive T, the torque command T is sent to the element 35.
  • the band of the speed control loop shall be at least one digit larger than the band of the position loop.
  • the element 3 5 is an element corresponding to the servo motor 22, the power of which is the speed of the servo motor 22, and the output obtained by integrating (1 / s) the speed with the integral element 37 is the servo motor. 2 Position 2 is 0. Where s is a Laplace variable.
  • Observer 3 6 have the same one-dimensional observer, the torque command ⁇ a servomotor 3 5 0 speed 0 (,) from the position deviation between the position 6 t position the arm 2 6 of the servo motor 35 twisting amount s, servo Motor 3 5 speed 6 and arm speed 0
  • the torsional speed ⁇ (1) which is the speed deviation from the above, is estimated.
  • This torsion ⁇ is sent to element 38 and multiplied by a factor (K ⁇ s10C) / (snaA). Moreover, twisting speed epsilon (1> in element 3 9, the coefficient [K 2 (s tens C) Bruno (s + A)] that is subjected to. Elements 3 8 and element 3 9 outputs the adder 4 0 , And As Lee over Doba' click amount F, drawn pointing from the speed command V d. Next, considering the transfer function in Fig. 2, equation (1) is obtained. (However, the response of the speed control loop is much faster than the position loop, so the transfer characteristic is assumed to be 1.)
  • Equation (3) Equation (3)
  • equation (3) if A is made small enough that (s10A) can be regarded as S near the vibration frequency, that is, if it is smaller than the natural frequency of the arm, equation (3) becomes equation (4) Consequently
  • the damping term can be changed independently, and vibration can be suppressed. That is, by increasing K, the damping term can be increased and vibration can be suppressed. Further, by changing the K z, can a two changing the inertial Mome down bets, it is possible to change the oscillation frequency. That is, by setting ⁇ : _- to a negative value, the vibration frequency can be increased and the positioning can be made faster.
  • (s 10) is not set to s from the beginning because the integration of the state variable comes out. If estimating with an observer, the parameter does not match the control target and the state variable is off-set. This is to prevent the vehicle from accumulating when the vehicle is on board.
  • vibration can be suppressed and the positioning time can be shortened. Also, the trajectory accuracy is improved without reducing the servo loop gain.
  • T J m * ⁇ (2) + ⁇ ⁇ * ( ⁇ (1) - ⁇ ⁇ )
  • an estimated value of X (n) is defined as X (n), and a set of same-dimensional observers is formed.
  • control target is a robot.
  • present invention can be similarly applied to a control target having a low-frequency vibration system other than the robot.
  • the observer was used to determine the amount of torsion and the torsion speed, but these values can also be obtained by directly providing a position and speed detector at the tip of the mechanism and comparing it with the output of the pulse coder. it can. In that case, a force that requires a detector ; these torsion amounts, etc., will give accurate values.
  • the state feedback is provided so that the control system O damping term and the inertia term, which include the mechanism, can be controlled independently, so that the gain of the servo system is not reduced.
  • the vibration can be suppressed. For this reason, the positioning time is shortened, and the trajectory accuracy is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)
  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)

Abstract

Les oscillations sont supprimées par un signal en retour d'état dans lequel un filtre spécial est appliqué à la valeur de torsion et à la vitesse de torsion d'un objet témoin tel qu'un robot qui possède un système d'oscillations basse fréquence. La valeur de torsion epsilon et la vitesse de torsion epsilon(1) sont estimées par un mesureur (36), et sont introduites par l'intermédiaire d'éléments (38 et 39) dans un additionneur (40) où elles sont additionnées, et la valeur additionnée est réinjectée sous forme de valeur de signal en retour d'état (F) et est soustraite d'une instruction de vitesse d. Par conséquent, un terme d'amortissement de la fonction de transfert peut être indépendamment modifié en utilisant une constante K1 pour supprimer les oscillations. D'autre part, un terme d'inertie est modifié indépendamment en utilisant une constante K2 pour raccourcir le temps de positionnement.
PCT/JP1992/000120 1991-02-06 1992-02-06 Amortisseur d'oscillations WO1992014195A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/36899 1991-02-06
JP3689991A JPH04255007A (ja) 1991-02-06 1991-02-06 制振制御方式

Publications (1)

Publication Number Publication Date
WO1992014195A1 true WO1992014195A1 (fr) 1992-08-20

Family

ID=12482627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000120 WO1992014195A1 (fr) 1991-02-06 1992-02-06 Amortisseur d'oscillations

Country Status (3)

Country Link
EP (1) EP0523252A4 (fr)
JP (1) JPH04255007A (fr)
WO (1) WO1992014195A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133228B (zh) * 2005-03-11 2011-06-15 阿特拉斯科普科凿岩机股份公司 用于齿轮箱中输出轴的减震装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3738968C1 (en) * 1987-11-17 1988-09-01 Hans-Peter Schuermann Hairdressing implement having a sound-damped central blower
EP0695606A1 (fr) * 1994-07-25 1996-02-07 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Procédé et dispositif de contrÔle à logique floue pour le positionnement et l'amortissement rapide des oscillations mécaniques
DE19734208A1 (de) * 1997-08-07 1999-02-11 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur Ermittlung optimaler Reglerparamter für eine Drehzahlregelung
DE19846637A1 (de) * 1998-10-09 2000-04-13 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur automatischen Parametrierung eines schnellen digitalen Drehzahlregelkreises
JP4578732B2 (ja) * 2001-08-13 2010-11-10 株式会社森精機製作所 工作機械送り系の制御装置
JP4272565B2 (ja) * 2003-07-18 2009-06-03 株式会社リコー ベルト駆動制御装置及び画像形成装置
JP2005301508A (ja) 2004-04-08 2005-10-27 Fanuc Ltd 制御装置
JP5821210B2 (ja) * 2011-02-22 2015-11-24 セイコーエプソン株式会社 水平多関節ロボット及び水平多関節ロボットの制御方法
JP5613117B2 (ja) * 2011-07-20 2014-10-22 本田技研工業株式会社 弾性部材の変形速度演算装置および変形速度演算方法ならびに駆動装置
JP6097174B2 (ja) * 2013-08-05 2017-03-15 株式会社東芝 ロボット制御装置
JP2016078193A (ja) * 2014-10-20 2016-05-16 株式会社小松製作所 工作機械、レーザ加工機、及び工作機械の制御方法
EP3101278B1 (fr) 2015-06-03 2021-04-28 ABB Schweiz AG Amortissement actif de vibrations dans un processus de commande
JP6895242B2 (ja) * 2016-11-25 2021-06-30 株式会社東芝 ロボット制御装置、ロボット制御方法及びピッキング装置
CN108206529B (zh) * 2017-12-29 2021-04-30 国网江苏省电力有限公司经济技术研究院 一种抑制电力系统低频振荡的方法
CN112234628B (zh) * 2020-10-21 2022-10-11 国网黑龙江省电力有限公司电力科学研究院 一种电力系统的低频振荡抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966705A (ja) * 1982-09-14 1984-04-16 ヴイツカ−ズ・インコ−ポレ−テツド パワ−サ−ボシステム
JPS6368903A (ja) * 1986-09-10 1988-03-28 Fujitsu Ltd デイジタルサ−ボ制御装置
JPS6337329B2 (fr) * 1980-02-21 1988-07-25 Tokyo Shibaura Electric Co
JPH01157283A (ja) * 1987-10-26 1989-06-20 Siemens Ag ばねモーメントおよび差回転数の検出および調節方法
JPH01296301A (ja) * 1988-05-25 1989-11-29 Fanuc Ltd 産業用ロボットのサーボループ制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314606A (ja) * 1987-06-18 1988-12-22 Fanuc Ltd 多関節ロボットの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337329B2 (fr) * 1980-02-21 1988-07-25 Tokyo Shibaura Electric Co
JPS5966705A (ja) * 1982-09-14 1984-04-16 ヴイツカ−ズ・インコ−ポレ−テツド パワ−サ−ボシステム
JPS6368903A (ja) * 1986-09-10 1988-03-28 Fujitsu Ltd デイジタルサ−ボ制御装置
JPH01157283A (ja) * 1987-10-26 1989-06-20 Siemens Ag ばねモーメントおよび差回転数の検出および調節方法
JPH01296301A (ja) * 1988-05-25 1989-11-29 Fanuc Ltd 産業用ロボットのサーボループ制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0523252A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133228B (zh) * 2005-03-11 2011-06-15 阿特拉斯科普科凿岩机股份公司 用于齿轮箱中输出轴的减震装置

Also Published As

Publication number Publication date
EP0523252A4 (en) 1993-06-09
EP0523252A1 (fr) 1993-01-20
JPH04255007A (ja) 1992-09-10

Similar Documents

Publication Publication Date Title
WO1992014195A1 (fr) Amortisseur d'oscillations
JP3506157B2 (ja) 電動機の位置制御装置
JP4697139B2 (ja) サーボ制御装置
EP2157489B1 (fr) Système de commande de moteur
JP2005301508A (ja) 制御装置
JPH0683403A (ja) 適応pi制御方式
WO2000075739A1 (fr) Unite de commande de position pour moteur
CN112720482B (zh) 一种工业机器人运动控制方法
JP3981773B2 (ja) ロボット制御装置
JP2005349555A (ja) 柔軟関節ロボットアームの制御装置
JPH10309684A (ja) マニピュレータのコンプライアンス制御方式
JP5208610B2 (ja) 慣性共振系を制御対象とする特性同定方法及びモータ制御装置
JPH0962363A (ja) 電動機の位置決め制御方法
US6828749B2 (en) Full-closed control apparatus
JP2002091570A (ja) サーボ制御方法
EP0498891A1 (fr) Systeme de commande pour servomoteur
JPH08278821A (ja) サーボ制御系の制振方法
JP3871030B2 (ja) サーボ制御方法
JP2003274684A (ja) サーボ制御装置
JPH0922303A (ja) 振動抑制装置
JPH117303A (ja) サーボ系の駆動制御装置
JPH08323670A (ja) マニピュレータの制御装置
JPS63201705A (ja) マニピユレ−タの防振制御装置
JP2024017883A (ja) 動力学トルク補償に基づく制御方法及び制御装置
JPH07281758A (ja) サーボモータの制御方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE IT SE

WWE Wipo information: entry into national phase

Ref document number: 1992904399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992904399

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992904399

Country of ref document: EP