EP0523252A1 - Amortisseur d'oscillations - Google Patents

Amortisseur d'oscillations Download PDF

Info

Publication number
EP0523252A1
EP0523252A1 EP92904399A EP92904399A EP0523252A1 EP 0523252 A1 EP0523252 A1 EP 0523252A1 EP 92904399 A EP92904399 A EP 92904399A EP 92904399 A EP92904399 A EP 92904399A EP 0523252 A1 EP0523252 A1 EP 0523252A1
Authority
EP
European Patent Office
Prior art keywords
torsion
controlled object
speed
control command
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92904399A
Other languages
German (de)
English (en)
Other versions
EP0523252A4 (en
Inventor
Nobutoshi Fuyo Haitsu 308 Torii
Ryo Fanuc Mansion Harimomi 7-210 Nihei
Tetsuaki Fanuc Mansion Harimomi 8-101 Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Publication of EP0523252A1 publication Critical patent/EP0523252A1/fr
Publication of EP0523252A4 publication Critical patent/EP0523252A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37356Torsion, twist
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41367Estimator, state observer, space state controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot

Definitions

  • the present invention relates to a damping control device for a controlled object having a vibration system of a low-frequency, such as a robot.
  • a damping control device for a controlled object having a vibration system of a low-frequency, such as a robot.
  • it relates to such a device capable of reducing vibrations using an observer.
  • a controlled object such as a robot having a vibration system of a low-frequency has a serious problem with respect to operation at its tip end (end effector) of an arm. For example, upon positioning the arm, a next step of an operation is not started until the vibration of the tip ceases, therefore this results in deterioration of a cycle time characteristic of the operation. In general, to prevent such vibrations a countermeasure has been taken to reduce a servo gain of the system for softly stopping the robot.
  • the reduction of the servo gain requires an extended positioning-time with a deterioration of the cycle time characteristic of the operation.
  • the employment of a lower servo gain provides a decrease in the rigidity of the servomechanism, degrading the accuracy of a locus formation at the end effector of the robot arm, and deteriorating a machining accuracy of the robot used for arc welding, laser cutting and the like.
  • An object of the invention is to provide a damping control system for reducing vibrations by means of a state feedback produced by applying a special filter to a torsion quantity and a speed of torsion.
  • a damping control device for controlling a controlled object so that behavior of observed values of the controlled object becomes coincident with target behavior and vibration of the controlled object is damped, by feeding a control command according to the target behavior to the controlled object and by feeding back the observed values of the controlled object responsive to the control command, to the control command, comprising a torsion parameter decision means for determining parameters of torsion within the controlled object, and a torsion feedback means for feeding back the products obtained by multiplying the torsion parameters by transfer functions determined so as to damp vibration of the controlled object, to the control command.
  • Fig. 1 is a constitutional illustration of hardware of a robot system for embodying the invention.
  • a host processor 1 is a processor for controlling an entire robot.
  • a position command ⁇ d for the robot is written into a shared RAM 2 from the host processor 1.
  • a ROM and a RAM each coupled to the host processor 1 are omitted.
  • a DSP 11 (digital signal processor), which controls a servomotor 22 incorporated in the robot, controls the servomotor 22 according to a system program stored in ROM 12. From this operation, the DSP 11 reads the position command ⁇ d of the shared RAM 2 at every constant time interval. The DSP 11 computes a speed command from the amount of error that is a difference between the position command ⁇ d and the position feedback from a pulse coder 23 incorporated in the servomotor 22. Further, the DSP 11 differentiates the position feedback to compute a speed feedback, and to compute a torque command from a difference between the speed feedback and the speed command.
  • the resultant speed command and torque command are fed to a servo amplifier 21 through a digital servo LSI (DSL) 14, and the servo amplifier 21 is responsive to the torque command to drive the servomotor 22 which drives an arm 26 through a reduction gear.
  • a spring component 24 spring constant K c
  • a damping component 25 damping constant B k
  • the DSP 11 carries out a function of an observer 36 or the like which estimates the torsion quantity ⁇ and the torsion speed ⁇ (1) from the torque command T and a speed ⁇ (1) of servomotor 22 respectively as described later.
  • Symbol X (n) represents an n-th time-derivative of a parameter X throughout.
  • Fig. 2 is a block diagram of a servomotor control of a damping control system according to the invention.
  • the positional instruction ⁇ d read from the shared RAM 2 is fed to an adder 31 to take a difference between the position command ⁇ d and the position feedback ⁇ from the pulse coder 23, the difference being fed to an element 32.
  • the input thus received is multiplied by a positional loop gain C and fed to an adder 32a as a speed command V d .
  • the speed command V d is subtracted by the amount of feedback F which will be described in detail later.
  • An output of the adder 32a is fed to an adder 33 which produces a difference between the speed command V d for the servomotor 22 and the feedback speed ⁇ (1) from the servomotor 22, the difference being fed to an element 34. Further in the adder 33, an output ⁇ d (1) obtained by differentiating the position command ⁇ d in a differential element 30 is added.
  • the differential element 30 constitutes a feed forward loop.
  • a speed control loop gain K v is multiplied to form a torque command T which is fed to an element 35.
  • a band of the speed control loop is made larger by one or more digits than that of a positional loop.
  • the element 35 is an element corresponding to the servomotor 22, the output of which is a speed ⁇ (1) of the servomotor 22, and the speed of which is integrated for (1/s) by an integration element 37 to output a position ⁇ of the servomotor 22, where "s" represents the Laplace variable.
  • the observer 36 is an identity observer.
  • the observer 36 is responsive to each of the torque command T and the speed ⁇ (1) of servomotor 35, and estimates both of the amount of torsion ⁇ which is a position deviation between a position ⁇ of the servomotor 35 and a position ⁇ t of the arm 26 and the amount of torsion speed ⁇ (1 ) which is a velocity deviation between a speed ⁇ (1) of the servomotor 35 and a speed ⁇ t (1) of the arm.
  • the amount of torsion ⁇ is fed to an element 38 to be multiplied by a coefficient [K1(s + C)/(s + A)] .
  • the torsion speed ⁇ (1) is fed to an element 39 to be multiplied by a coefficient [K2(s + C)/(s + A)] .
  • Outputs of the elements 38 and 39 are added each other at an adder 40, and the resultant sum is subtracted from the speed command V d as a feedback value F.
  • An estimation process includes an integration of a state variable. If the state variable had some offset value because of a discrepancy between parameters and values of the controlled object, the offset value would be accumulated through the integration. To avoid the accumulation of the offset value, the term s + A is not replaced by s from the first step.
  • the robot is represented by a model formed using the spring 24 of a spring constant K c and the damper 25 of a damping constant B k . Constants at the motor side are expressed as follow,
  • the controlled object has been selected to be a robot.
  • the invention can also be applied in the same manner to controlled objects each having a vibration system of a low-frequency other than robots.
  • the observer has been used for obtaining an amount of torsions and a torsion speed, notwithstanding, those values can be produced by comparing with an output of a pulse coder in an arrangement of the positional and speed detectors provided directly at the tip end of the mechanical section. In such a case, although the detectors are used as required, accurate values of the torsion quantity etc. are obtained.
  • a state feedback is provided for independently controlling the damping term and the inertia term each of the control system including the mechanical section, accordingly vibrations can be prevented without decreasing a gain of the servo system. This reduces a positioning speed and improves an accuracy of the locus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Manipulator (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)

Abstract

Les oscillations sont supprimées par un signal en retour d'état dans lequel un filtre spécial est appliqué à la valeur de torsion et à la vitesse de torsion d'un objet témoin tel qu'un robot qui possède un système d'oscillations basse fréquence. La valeur de torsion epsilon et la vitesse de torsion epsilon(1) sont estimées par un mesureur (36), et sont introduites par l'intermédiaire d'éléments (38 et 39) dans un additionneur (40) où elles sont additionnées, et la valeur additionnée est réinjectée sous forme de valeur de signal en retour d'état (F) et est soustraite d'une instruction de vitesse d. Par conséquent, un terme d'amortissement de la fonction de transfert peut être indépendamment modifié en utilisant une constante K1 pour supprimer les oscillations. D'autre part, un terme d'inertie est modifié indépendamment en utilisant une constante K2 pour raccourcir le temps de positionnement.
EP19920904399 1991-02-06 1992-02-06 Oscillation damper Withdrawn EP0523252A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP36899/91 1991-02-06
JP3689991A JPH04255007A (ja) 1991-02-06 1991-02-06 制振制御方式

Publications (2)

Publication Number Publication Date
EP0523252A1 true EP0523252A1 (fr) 1993-01-20
EP0523252A4 EP0523252A4 (en) 1993-06-09

Family

ID=12482627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920904399 Withdrawn EP0523252A4 (en) 1991-02-06 1992-02-06 Oscillation damper

Country Status (3)

Country Link
EP (1) EP0523252A4 (fr)
JP (1) JPH04255007A (fr)
WO (1) WO1992014195A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3738968C1 (en) * 1987-11-17 1988-09-01 Hans-Peter Schuermann Hairdressing implement having a sound-damped central blower
EP0695606A1 (fr) * 1994-07-25 1996-02-07 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Procédé et dispositif de contrÔle à logique floue pour le positionnement et l'amortissement rapide des oscillations mécaniques
DE19734208A1 (de) * 1997-08-07 1999-02-11 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur Ermittlung optimaler Reglerparamter für eine Drehzahlregelung
DE19846637A1 (de) * 1998-10-09 2000-04-13 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur automatischen Parametrierung eines schnellen digitalen Drehzahlregelkreises
EP1288745A1 (fr) * 2001-08-13 2003-03-05 Mori Seiki Co., Ltd. Appareil et procédé de commande d'un système d'avancement pour machine-outil
EP1521133A1 (fr) * 2003-07-18 2005-04-06 Ricoh Company, Ltd. Procédé, dispositif et programme pour l'entraínement d'un moteur pas à pas d'un appareil de formation d'images, pour supprimer l'oscillation de la commande à rétroaction
EP1591857A2 (fr) * 2004-04-08 2005-11-02 Fanuc Ltd Appareil pour atténuer des vibrations
WO2006095227A1 (fr) * 2005-03-11 2006-09-14 Atlas Copco Rock Drills Ab Dispositif d'amortissement d'un arbre de sortie d'une boite d'engrenage
JP2015030076A (ja) * 2013-08-05 2015-02-16 株式会社東芝 ロボット制御装置
US10718341B2 (en) 2015-06-03 2020-07-21 Abb Schweiz Ag Active damping of oscillations in a control process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821210B2 (ja) * 2011-02-22 2015-11-24 セイコーエプソン株式会社 水平多関節ロボット及び水平多関節ロボットの制御方法
JP5613117B2 (ja) * 2011-07-20 2014-10-22 本田技研工業株式会社 弾性部材の変形速度演算装置および変形速度演算方法ならびに駆動装置
JP2016078193A (ja) * 2014-10-20 2016-05-16 株式会社小松製作所 工作機械、レーザ加工機、及び工作機械の制御方法
JP6895242B2 (ja) * 2016-11-25 2021-06-30 株式会社東芝 ロボット制御装置、ロボット制御方法及びピッキング装置
CN108206529B (zh) * 2017-12-29 2021-04-30 国网江苏省电力有限公司经济技术研究院 一种抑制电力系统低频振荡的方法
CN112234628B (zh) * 2020-10-21 2022-10-11 国网黑龙江省电力有限公司电力科学研究院 一种电力系统的低频振荡抑制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321579A1 (fr) * 1987-06-18 1989-06-28 Fanuc Ltd. Dispositif de commande de robot articule

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117129A (en) * 1980-02-21 1981-09-14 Toshiba Corp Monitoring device for shaft torsional oscillation of turbine generator
US4502109A (en) * 1982-09-14 1985-02-26 Vickers, Incorporated Apparatus for estimating plural system variables based upon a single measured system variable and a mathematical system model
JPS6368903A (ja) * 1986-09-10 1988-03-28 Fujitsu Ltd デイジタルサ−ボ制御装置
DE3871074D1 (de) * 1987-10-26 1992-06-17 Siemens Ag Verfahren zur erfassung und regelung eines federmoments sowie einer differenzdrehzahl bei rotatorisch angetriebenen zwei-massen-systemen.
JPH01296301A (ja) * 1988-05-25 1989-11-29 Fanuc Ltd 産業用ロボットのサーボループ制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321579A1 (fr) * 1987-06-18 1989-06-28 Fanuc Ltd. Dispositif de commande de robot articule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9214195A1 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3738968C1 (en) * 1987-11-17 1988-09-01 Hans-Peter Schuermann Hairdressing implement having a sound-damped central blower
EP0695606A1 (fr) * 1994-07-25 1996-02-07 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Procédé et dispositif de contrÔle à logique floue pour le positionnement et l'amortissement rapide des oscillations mécaniques
DE19734208A1 (de) * 1997-08-07 1999-02-11 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur Ermittlung optimaler Reglerparamter für eine Drehzahlregelung
US6127793A (en) * 1997-08-07 2000-10-03 Dr. Johannes Heidenhain Gmbh Method and circuit arrangement for detecting optimal controller parameters for speed control
DE19846637A1 (de) * 1998-10-09 2000-04-13 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur automatischen Parametrierung eines schnellen digitalen Drehzahlregelkreises
US6274995B1 (en) 1998-10-09 2001-08-14 Dr. Johannes Heidenhain Gmbh Method and circuit arrangement for automatically parameterizing a quick-acting digital speed control loop
EP1288745A1 (fr) * 2001-08-13 2003-03-05 Mori Seiki Co., Ltd. Appareil et procédé de commande d'un système d'avancement pour machine-outil
EP1521133A1 (fr) * 2003-07-18 2005-04-06 Ricoh Company, Ltd. Procédé, dispositif et programme pour l'entraínement d'un moteur pas à pas d'un appareil de formation d'images, pour supprimer l'oscillation de la commande à rétroaction
CN1592083B (zh) * 2003-07-18 2013-10-16 株式会社理光 马达驱动方法,马达驱动控制装置及图像形成装置
US7330009B2 (en) 2003-07-18 2008-02-12 Ricoh Co., Ltd. Method, apparatus, and program for driving a motor in a feedback control system, capable of suppressing motor oscillation
US7800335B2 (en) 2003-07-18 2010-09-21 Ricoh Company, Ltd. Method, apparatus, and program for driving a motor in a feedback control system, capable of suppressing motor oscillation
EP1591857A2 (fr) * 2004-04-08 2005-11-02 Fanuc Ltd Appareil pour atténuer des vibrations
EP1591857A3 (fr) * 2004-04-08 2005-11-09 Fanuc Ltd Appareil pour atténuer des vibrations
US7181294B2 (en) 2004-04-08 2007-02-20 Fanuc Ltd Vibration control device
WO2006095227A1 (fr) * 2005-03-11 2006-09-14 Atlas Copco Rock Drills Ab Dispositif d'amortissement d'un arbre de sortie d'une boite d'engrenage
AU2006221737B2 (en) * 2005-03-11 2011-02-24 Epiroc Rock Drills Aktiebolag Damping device for an output shaft in a gearbox
US7874379B2 (en) 2005-03-11 2011-01-25 Atlas Copco Rock Drills Ab Damping device for an output shaft in a gearbox
NO334415B1 (no) * 2005-03-11 2014-02-24 Atlas Copco Rock Drills Ab Dempeinnretning for en utgangsaksel i en girkasse
JP2015030076A (ja) * 2013-08-05 2015-02-16 株式会社東芝 ロボット制御装置
US10718341B2 (en) 2015-06-03 2020-07-21 Abb Schweiz Ag Active damping of oscillations in a control process

Also Published As

Publication number Publication date
JPH04255007A (ja) 1992-09-10
EP0523252A4 (en) 1993-06-09
WO1992014195A1 (fr) 1992-08-20

Similar Documents

Publication Publication Date Title
EP0523252A1 (fr) Amortisseur d'oscillations
EP0417312B1 (fr) Unite de commande a action directe pour servomoteurs
EP1437637B1 (fr) Dispositif de commande de servomoteur
EP0012620B1 (fr) Dispositif de régulation pour le positionnement de machines-outils à commande numérique
US5056038A (en) Apparatus for effecting coordinated position/force control for a manipulator
US5341078A (en) Sliding mode control method for a machine having an operating section operatively coupled to a servomotor and wherein a switching variable is determined based on a torsion amount and a torsion speed
US6507165B2 (en) Controller for machine
US5442270A (en) Adaptive sliding mode control method for object of control including spring system
JP4391218B2 (ja) サーボ制御装置
JP3506157B2 (ja) 電動機の位置制御装置
US4727303A (en) Positional control method and system utilizing same
KR940702661A (ko) 적응 pi 제어 방법
US5115418A (en) Servo control apparatus
US5637969A (en) Vibration control method
KR100537325B1 (ko) 로봇 제어방법 및 제어장치
US4771389A (en) Control method and unit for controlling a manipulator
KR19980083174A (ko) 공진계의 진동억제 제어방법 및 제어장치
US6069463A (en) Controller of multi-axis robot
KR100842978B1 (ko) 서보 제어방법
KR970002259B1 (ko) 서보모터의 제어방법
JP2850075B2 (ja) 可変構造制御方法
EP0413030A1 (fr) Procede de servocommande utilisant un detecteur d'evaluation de perturbation
EP0483367A1 (fr) Systeme de surveillance et de commande
JP3308656B2 (ja) サーボモータの制御方法
JPH0922304A (ja) 振動抑制装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19930421

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19940302