WO1992005364A1 - Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zündspule einer brennkraftmaschine - Google Patents

Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zündspule einer brennkraftmaschine Download PDF

Info

Publication number
WO1992005364A1
WO1992005364A1 PCT/DE1991/000712 DE9100712W WO9205364A1 WO 1992005364 A1 WO1992005364 A1 WO 1992005364A1 DE 9100712 W DE9100712 W DE 9100712W WO 9205364 A1 WO9205364 A1 WO 9205364A1
Authority
WO
WIPO (PCT)
Prior art keywords
output stage
circuit
power output
darlington circuit
voltage
Prior art date
Application number
PCT/DE1991/000712
Other languages
English (en)
French (fr)
Inventor
Gerd HÖHNE
Hartmut Michel
Lothar Gademann
Bernd Bodig
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE59107364T priority Critical patent/DE59107364D1/de
Priority to US08/030,493 priority patent/US5424671A/en
Priority to EP91915498A priority patent/EP0550469B1/de
Publication of WO1992005364A1 publication Critical patent/WO1992005364A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • F02P3/0552Opening or closing the primary coil circuit with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression

Definitions

  • the invention relates to a power amplifier with a Darlington circuit for switching an inductive load, in particular the ignition coil of an internal combustion engine, according to the preamble of the main claim.
  • a protective element can be connected in a known manner in parallel to the emitter-collector path of the end transistor. Furthermore, it is known from EP-B-01 74 473 to connect a Zener diode in parallel with the collector-base path of the end transistor, which opens the base of the end transistor when an upper limit voltage of generally over 250 volts is reached.
  • the power output stage according to the invention with the characterizing features of the main claim has the advantage that such a voltage limitation can be implemented at a lower voltage level in order to achieve, for example, a spark-free shutdown of an ignition coil, even with a significantly lower number of components. This makes the structure more cost-effective and can be integrated monolithically more easily. Another advantage is that this arrangement can also be used for power amplifiers that are not fully integrated with an integrated Darlington circuit, since now no more intervention between the transistors of the Darlington circuit is required.
  • the part of the voltage divider located between the tap and the collector of the Darlington circuit expediently has a Z diode connected in series with one of the resistors.
  • Decoupling of the divider tap from the base of the Darlington circuit is expedient or necessary for many applications.
  • the tapping of this voltage divider is connected to the base of the Darlington circuit via at least one decoupling diode.
  • the control of the Darlington circuit to the lower limit voltage can also take place via an auxiliary transistor instead of via the input transistor of the Darlington circuit, the switching path of which bridges the collector-base path of the end transistor of the Darlington circuit and the base of which is connected to the tap of the voltage divider closed i st.
  • an auxiliary function circuit is provided in the emitter-side part of the voltage divider, of which a circuit part is part of the voltage divider or through which a partial voltage of the voltage divider is tapped.
  • a hi-function circuit is, for example, a circuit for switching off the current control, a circuit for generating fault 1 information or the like
  • the Hi Ifsfunktions circuit can expediently also be formed as a monolithically integrated circuit, in particular together with the power output stage.
  • a voltage limitation for a higher voltage level can of course also be provided in order to protect the electronic components, in particular the Darlington circuit.
  • a Z-diode bridges the collector-emitter path of the end transistor of the Darlington circuit.
  • 1 is a circuit diagram of a first embodiment of the power output stage with external wiring
  • Fig. 2 is a circuit diagram of a second embodiment with an auxiliary transistor for limiting the voltage to the lower limit voltage
  • Fig. 3 is a circuit diagram of a third embodiment with a Hi Ifsfunkti ons scarf device.
  • a power output stage 10 which can be monolithically integrated, essentially consists of a Darlington circuit, which consists of an npn pilot control interference 11 and an npn end transistor interference 12.
  • the emitter of the pilot transistor 11 is connected to the base of the end transistor 12, and the interconnected collectors of the two transistors 11, 12 form the Kol lektoranschluß (C) 13 of the Darlington circuit or the power output stage 10.
  • the emitter of End transistor 12 is connected to an emitter connection (E) 14 and the base of the pilot transistor 11 is connected to a base connection (B) 15 of the Darlington circuit or the power output stage 10.
  • the collector terminal 13 and the base terminal 15 are connected to a Zener diode 17 via the series connection of a resistor 16.
  • a resistor 18 connects the base terminal 15 to the emitter terminal 14.
  • the resistors 16, 18 together with the Zener diode 17 form one Voltage part 1 at which the collector-emitter voltage of the Darlington circuit is applied.
  • a Zener diode 19 is connected between the base of the end transistor 12 and the collector terminal 13.
  • the collector connector 13 is connected via the primary winding of an ignition coil 20 for an ignition system of an internal combustion engine to the positive pole 21 of a supply voltage source having the supply voltage U.
  • the series connection of a resistor 22 with the switching paths of two transistors 23, 24 lies between the positive pole 21 and the negative pole of the supply voltage source 1 e, which is designed as a ground pole.
  • the connection point between the two transistors 23, 24 is connected to the base connection 15, while the ground connection of the transistor 24 is connected to the emitter connection 14.
  • the two transistors 23, 24 are controlled by an electronic control device 25, which in the present case is an ignition control device which is designed, for example, as a microcomputer.
  • the power output stage 10 can also be used to control other inductive loads.
  • the transistor 23 In the normal operating state, the transistor 23 is conductive and the transistor 24 is blocked during the current flow time through the ignition coil 20. As a result, the Darlington circuit is opened and the current flow through the primary winding of the ignition coil 20 is ensured. At the time of ignition, both transistors 23, 24 are reversed, that is, transistor 23 is blocked and transistor 24 is turned on. As a result, the Darlington circuit is switched off very quickly, which serves to generate an ignition spark.
  • the Zener diode 19 also serves to limit the voltage in normal business. For this purpose, a clamp voltage of, for example, more than 250 volts is determined by this Z-diode 19. When this voltage is reached, a breakdown takes place, through which the end transistor 12 is made conductive again to reduce the voltage. For the so-called spark-free shutdown, both transistors 23, 24 are blocked at the same time. As a result, the Darlington circuit is also initially blocked, so that there is a voltage rise due to induction. The increasing voltage lying between the collector terminal 13 and the emitter terminal 14 is simultaneously applied to the voltage divider 16-18.
  • the Zener diode 17 is used for temperature compensation and can also be omitted in a simpler embodiment.
  • the voltage limitation takes place at:
  • U Cr is the collector-emitter voltage and U *, r is the base-emitter voltage of the Darlington circuit, while U. is the voltage drop across the Zener diode 17. This condition applies to a single-stage pilot transistor 11. This can of course also be formed in several stages, as shown in FIG. 1.
  • the second embodiment shown in FIG. 2 and the third embodiment shown in FIG. 3 largely correspond to the first embodiment, so that the same or equivalent components are provided with the same reference numerals and are not described again.
  • the external circuitry has been omitted, which of course can again be designed in the same way as in the first exemplary embodiment.
  • the tap of the voltage divider 16-18 is not connected directly to the base connection 15 but via a decoupling diode 26. Furthermore, this tap is connected to the base of an auxiliary transistor 27, the switching path of which is connected in parallel to the switching path of the pilot control transistor 11.
  • the control when the lower limit voltage of, for example, 35 volts is reached is now no longer via the pilot transistor 11, but via the auxiliary transistor 27.
  • the base of the pilot transistor 11 is due to the decoupling diode 26 by the amount of the forward voltage Decoupling diode 26 below the base voltage of the auxiliary transistor 27, that is to say the pilot control transistor 11 remains blocked when the voltage limitation is set, and only the auxiliary transistor 27 becomes conductive and thereby controls the final transistor 12 in the current-conducting state.
  • the base terminal 15 is pulled to ground, that is to say if the external transistor 24 is conductive, the auxiliary transistor 27 is also permanently blocked since its base current is discharged to ground via the decoupling diode 26.
  • the voltage limitation then takes place only when the high voltage level of, for example, more than 250 volts is reached by the Zener diode 19.
  • auxiliary transistor 27 can of course also be designed in one or more stages.
  • the auxiliary transistor 27 is omitted.
  • the resistor 18 of the voltage divider is not directly connected to the emitter of the end transistor 12 or to ground connected, but indirectly via a Hi Ifsfunktions- circuit 28, which is also connected to the emitter of the pilot transistor 11.
  • the Hi Ifsfunktions- circuit 28 provides, for example, a known circuit for switching off the current control, a circuit for generating Störfal 1 information or the like. By tapping a part of the voltage drop across the voltage divider, the respective auxiliary function can be activated when the lower limit voltage is reached.
  • the decoupling diode 26 ensures that the auxiliary function only comes into play when the base connection 15 is separated from the emitter connection 14, that is to say when the transistor 24 is blocked.
  • the auxiliary function circuit 28 can be designed, for example, as a monolithically integrated circuit and, together with the remaining power output stage, form a single monolithically integrated circuit.
  • another switching means can be used instead of the transistor 24, through which the base connection 15 and the emitter connection 14 can be connected or separated from each other. If the voltage limitation is to be constantly effective at a lower voltage level for other purposes, the emitter connection 14 must of course be constantly separated from the base connection 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

Es wird eine Leistungsendstufe mit einer Darlington-Schaltung (11, 12) zum Schalten einer induktiven Last, insbesondere der Zündspule einer Brennkraftmaschine, vorgeschlagen. Zur Vorgabe der Betriebsart der Leistungsendstufe ist ein die Basis-Emitter-Strecke der Darlington-Schaltung (11, 12) überbrückender Schalter (24) vorgesehen, der bei schneller Abschaltung der Endstufe geschlossen und bei spannungsbegrenzter Abschaltung der Endstufe geöffnet ist. Ein aus wenigstens zwei Widerständen (16, 18) bestehender, die Schaltstrecke der Darlington-Schaltung (11, 12) überbrückender Spannungsteiler ist mit seinem Abgriff mit dem Verknüpfungspunkt zwischen dem Schalter (24) und der Basis der Darlington-Schaltung (11, 12) verbunden, wobei der Schalter (24) parallel zu einem Teil (18) des Spannungsteilers geschaltet ist. Bei geöffnetem Schalter (24) wird dadurch bei Erreichen einer niedrigeren Grenzspannung von beispielsweise 35 Volt über den Widerstand (16) die Darlington-Schaltung wieder aufgesteuert, so daß im Falle der Ansteuerung einer Zündspule eine funkenfreie Abschaltung erreicht wird. Hierzu werden nur sehr wenige, einfache und billige Bauteile benötigt.

Description

Lei stunqsendstufe mit einer Darlington-Schaltung zum Schalten einer induktiven Last, insbesondere der Zündspule einer Brennkraftmaschine
Stand der Technik
Die Erfindung betrifft eine Leistungsendstufe mit einer Darlington-Schaltung zum Schalten einer induktiven Last, insbesondere der Zündspule einer Brennkraftmaschine, nach der Gattung des Hauptanspruchs.
Beim Schalten induktiver Lasten mit Leistungstransistoren besteht häufig die Forderung, die induktive Spannung am Leistungstransistor oder überhaupt an der elektronischen Schaltung auf einen definierten Wert zu begrenzen. In bekannter Weise kann hierzu ein Schutzelement parallel zur Emitter-Kollektor-Strecke des Endtransistors geschaltet werden. Weiterhin ist es aus der EP-B-01 74 473 bekannt, eine Z-Diode parallel zur Kollektor-Basis-Strecke des Endtransistors zu schalten, die bei Erreichen einer oberen Grenzspannung von im allgemeinen über 250 Volt die Basis des Endtransistors aufsteuert.
In bestimmten Anwendungsfällen besteht weiterhin die Forde¬ rung, eine Spannungsbegrenzung auch auf einem zweiten, niedrigeren Spannungsniveau vornehmen zu können, um z.B. die gespeicherte Energie einer Zündspule auf diesem nied¬ rigeren Spannungsniveau so abbauen zu können, daß es zu keinem Zündfunken kommen kann. Diese sogenannte funken¬ freie Abschaltung ist grundsätzlich erforde lich, wenn das Abschalten der Endstufe nicht zur Erzeugung eines Zündfunkens dienen soll. Zur Schaffung einer derartigen Spannungsbegrenzung auf niedrigerem Spannungsniveau ist beim genannten Stand der Technik ein Spannungsteiler par¬ allel zur Kollektor-Emitter-Strecke des Endtransistors geschaltet, wobei ein Abgriff über Transistorstufen auf die Basis eines Vorsteuertransistors einwirkt. Weiterhin ist ein externer Schalttransistor zur Vorgabe des Abschalt¬ modus zwischen die Basis des Vorsteuertransistors und Masse geschaltet. Nur wenn dieser gesperrt ist, kann die Basis des Vorsteuertransistors über den Spannungsteiler und die Transistorschaltung zur Spannungsbegrenzung aufge¬ steuert werden. Hierzu wird bei der bekannten Schaltung eine Vielzahl von Bauelementen benötigt, die einen nicht unerheblichen Kostenaufwand bedeuten.
Vorteile der Erfindung
Die erfindungsgemäße Leistungsendstufe mit den kennzeich¬ nenden Merkmalen des Hauptanspruchs hat den Vorteil, daß eine derartige Spannungsbegrenzung auf niedrigerem Spannungs¬ niveau zur Erzielung beispielsweise einer funkenfreien Abschaltung einer Zündspule auch mit einem wesentlich geringeren Bauteileaufwand realisiert werden kann. Der Aufbau wird dadurch kostengünstiger und kann leichter monolithisch integriert werden. Ein weiterer Vorteil besteht darin, daß diese Anordnung auch für nicht voll integrierte Leistungsendstufen mit einer integrierten Darlington- Schaltung eingesetzt werden kann, da jetzt kein Eingriff mehr zwischen die Transistoren der Darlington-Schaltung erforderl ich ist.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Leistungsendstufe möglich.
Zur Temperaturkompensation weist der zwischen dem Abgriff und dem Kollektor der Darlington-Schaltung liegende Teil des Spannungsteilers zweckmäßigerweise eine mit einem der Widerstände in Reihe geschaltete Z-Diode auf. Für viele Anwendungen ist eine Entkopplung des Teiler¬ abgriffs von der Basis der Darlington-Schaltung zweckmäßig oder erforderlich. Hierzu ist der Abgriff dieses Spannungs¬ teilers über wenigstens eine Entkoppl ungs-Diode mit der Basis der Darlington-Schaltung verbunden.
Die Aufsteuerung der Darlington-Schaltung auf die niedrigere Grenzspannung kann anstelle über den Eingangstransistor der Darlington-Schaltung auch über einen Hilfstransistor erfolgen, dessen Schaltstrecke die Kollektor-Basis-Strecke des Endtransistors der Darlington-Schaltung überbrückt und dessen Basis an den Abgriff des Spannungsteilers ange¬ schlossen i st .
Die beschriebene Anordnung kann auch in vorteilhafter Weise dazu verwendet werden, bei Erreichen der niedrigeren Grenzspannung Hilfsfunktionen zu aktivieren. Hierzu ist im emittersei tigen Teil des Spannungsteilers eine Hilfs- funktions-Schal tung vorgesehen, von der ein Schaltungs¬ teil Bestandteil des Spannungsteilers ist oder durch die eine Teilspannung des Spannungsteilers abgegriffen wird. Eine derartige Hi Ifsfunktions-Schal tung ist beispiels¬ weise eine Schaltung zur Abschaltung der Stromregelung, eine Schaltung zur Erzeugung von Störfal 1 -Informationen od . dgl .
Die Hi Ifsfunktions-Schaltung kann zweckmäßigerweise eben¬ falls als monolithisch integrierter Schaltkreis ausgebildet werden, insbesondere zusammen mit der Leistungsendstufe.
Zusätzlich zur Spannungsbegrenzung auf die niedrigere Grenzspannung kann selbstverständlich auch noch eine Span¬ nungsbegrenzung für ein höheres Spannungsniveau vorgesehen sein, um die elektronischen Bauteile, insbesondere die Darlington-Schaltung, zu schützen. Hierzu überbrückt eine Z-Diode die Kollektor-Emitter-Strecke des Endtransistors der Darlington-Schaltung. Ze i chnung
Drei Ausführungsbeispiele der Erfindung sind in der Zeich¬ nung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 ein Schaltbild eines ersten Ausführungsbeispiels der Leistungsendstufe mit externer Beschaltung,
Fig. 2 ein Schaltbild eines zweiten Ausführungsbeispiels mit einem Hilfstransistor zur Spannungsbegrenzung auf die niedrigere Grenzspannung und
Fig. 3 ein Schaltbild eines dritten Ausführungsbeispiels mit einer Hi Ifsfunkti ons-Schal tung .
Beschreibung der Ausführungsbeispiele
Bei dem in Fig. 1 dargestellten ersten Ausführungsbeispiel besteht eine Leistungsendstufe 10, die monolithisch inte¬ griert ausgebildet sein kann, im wesentlichen aus einer Darlington-Schaltung, die aus einem npn-Vorsteuertransi stör 11 und einem npn-Endtransi stör 12 besteht. In bekannter Weise ist dabei der Emitter des Vorsteuertransistors 11 mit der Basis des Endtransistors 12 verbunden , und die miteinander verbundenen Kollektoren der beiden Transistoren 11, 12 bilden den Kol lektoranschluß (C) 13 der Darlington- Schaltung bzw. der Leistungsendstufe 10. Der Emitter des Endtransistors 12 ist mit einem Emitteranschluß (E) 14 und die Basis des Vorsteuertransistors 11 mit einem Basis¬ anschluß (B) 15 der Darlington-Schaltung bzw. der Leistungs¬ endstufe 10 verbunden.
Der Kollektoranschluß 13 und der Basisanschluß 15 sind über die Reihenschaltung eines Widerstands 16 mit einer Z-Diode 17 verbunden. Ein .Widerstand 18 verbindet den Basi sanschl uß- 15 mit dem Emitteranschluß 14. Die Wider¬ stände 16,18 bilden zusammen mit der Z-Diode 17 einen Spannungstei 1 er , an dem die Kollektor-Emitter-Spannung der Darlington-Schaltung anliegt. Eine Z-Diode 19 ist zwischen die Basis des Endtransistors 12 und den Kollektor¬ anschluß 13 geschaltet. Als externe Beschaltung der Lei¬ stungsendstufe 10 ist der Kol 1 ektoranschluß 13 über die Primärwicklung einer Zündspule 20 für eine Zündanlage einer Brennkraftmaschine mit dem positiven Pol 21 einer Versorgungsspannungsquel le verbunden, die die Versorgungs¬ spannung U. aufweist. Weiterhin liegt die Reihenschaltung eines Widerstandes 22 mit den Schaltstrecken zweier Transi¬ storen 23,24 zwischen dem positiven Pol 21 und dem nega¬ ven, als Massepol ausgebildeten Pol der Versorgungs¬ spannungsquel 1 e . Der Verknüpfungspunkt zwischen den beiden Transistoren 23,24 rst dabei mit dem Basisanschluß 15 verbunden, während der masseseitige Anschluß des Transistors 24 mit dem Emitteranschluß 14 verbunden ist. Die beiden Transistoren 23,24 werden durch eine elektronische Steuer¬ vorrichtung 25 gesteuert, die im vorliegenden Falle eine Zündsteuervorrichtung ist, die beispielsweise als Mikro¬ rechner ausgebildet ist.
Selbstverständl ch kann die Leistungsendstufe 10 auch zur Steuerung anderer induktiver Lasten eingesetzt erden.
Im normalen Betriebszustand ist während der Stromflußzeit durch die Zündspule 20 der Transistor 23 stromleitend und der Transistor 24 gesperrt. Hierdurch ist die Darlington- Schaltung aufgesteuert und der Stromfluß durch die Primär¬ wicklung der Zündspule 20 gewährleistet. Im Zündzeitpunkt werden beide Transistoren 23,24 umgesteuert, das heißt, der Transistor 23 wird gesperrt und der Transistor 24 strom¬ leitend geschaltet. Hierdurch wird die Darlington-Schaltung sehr schnell abgeschaltet, was zur Erzeugung eines Zünd¬ funkens dient.
Die Z-Diode 19 dient zur Spannungsbegrenzung auch im Normal- betrieb. Hierzu wird eine Kl ammerSpannung von beispiels¬ weise mehr als 250 Volt durch diese Z-Diode 19 festgelegt. Bei Erreichen dieser Spannung erfolgt ein Durchbruch, durch den der Endtransistor 12 zum Spannungsabbau wieder stromleitend gemacht wird. Zur sogenannten funkenfreien Abschaltung werden beide Transistoren 23,24 gleichzeitig gesperrt. Hierdurch wird zunächst auch die Darlington- Schaltung gesperrt, so daß es induktionsbedingt zu einem Spannungsanstieg kommt. Die zwischen dem Kol lektoranschl uß 13 und dem Emitteranschluß 14 liegende, ansteigende Span¬ nung liegt gleichzeitig am Spannungsteiler 16-18 an. Dieser ist so dimensioniert, daß bei einer bestimmten Spannung von beispielsweise 35 Volt der durch den Widerstand 16 fließende Strom den Vorsteuertransistor 11 und über diesen den Endtransistor 12 wieder aufsteuert. Da der Transistor 24 gesperrt ist, kann dieser Strom nämlich jetzt nicht nach Masse abfließen. Hierdurch wird die Spannung auf den durch den Spannungste ler eingestellten Wert begrenzt, der so niedrig ist, daß kein Zündfunke entstehen kann. Die Z-Diode 17 dient der Temperaturkompensation und kann in einer einfacheren Ausführungsform auch weggelassen werden .
Die Spannungsbegrenzung erfolgt bei:
UCE = 2 UBE <X + R16/R18> + Uk
Dabei ist UCr die Kollektor-Emitter-Spannung und U*,r die Basis-Emitter-Spannung der Darlington-Schaltung, während U. die an der Z-Diode 17 abfallende Spannung ist. Diese Bedingung gilt für einen einstufigen Vorsteuertransistor 11. Dieser kann sel stverständlich auch mehrstufig ausge¬ bildet sein, wie dies in Fig. 1 dargestellt ist.
Das in Fig. 2 -dargestel 1te zweite Ausführungsbeispiel und das in Fig. 3 dargestellte dritte Ausführungsbeispiel entsprechen weitgehend dem ersten Ausführungsbeispiel, so daß gleiche oder gleich wirkende Bauteile mit denselben Bezugszeichen versehen und nicht nochmals beschrieben sind. Gleichfalls wurde zur Vereinfachung die externe Beschaltung weggelassen, die selbstverständlich wieder in der gleichen Weise wie im ersten Ausführungsbeispiel ausgebildet sein kann.
Bei dem in Fig. 2 dargestellten zweiten Ausführungsbeispiel ist im Unterschied zum ersten Ausführungsbeispiel der Abgriff des Spannungsteilers 16-18 nicht direkt, sondern über eine Entkopplungs-Diode 26 mit dem Basisanschluß 15 verbunden. Weiterhin ist dieser Abgriff mit der Basis eines Hilfstransistors 27 verbunden, dessen Schaltstrecke parallel zur Schaltstrecke des Vorsteuertransistors 11 geschaltet ist .
Die Aufsteuerung bei Erreichen der niedrigeren Grenzspan¬ nung von beispielsweise 35 Volt erfolgt nun nicht mehr über den Vorsteuertransistor 11, sondern über den Hilfs¬ transistor 27. Die Basis des Vorsteuertransistors 11 liegt infolge der Entkopplungs-Diode 26 um den Betrag der Flu߬ spannung der Entkopplungs-Diode 26 unter der Basisspannung des Hilfstransistors 27, das heißt, der Vorsteuertransistor 11 bleibt beim Einsetzen der Spannungsbegrenzung gesperrt, und nur der Hilfstransistor 27 wird stromleitend und steuert dadurch den Endtransistor 12 in den stromleitenden Zustand. Wenn dagegen der Basisanschluß 15 nach Masse gezogen ist, wenn also der externe Transistor 24 stromleitend ist, so ist auch der Hilfstransistor 27 ständig gesperrt, da sein Basisstrom über die Entkopplungs-Diode 26 nach Masse abgeführt wird. Die Spannungsbegrenzung erfolgt dann nur noch bei Erreichen des hohen Spannungsniveaus von beispiels¬ weise über 250 Volt durch die Z-Diode 19.
Sind die Transistoren 11,12 der Darlington-Schaltung mehr- stufig, z.B. zweistufig, ausgebildet, so können statt einer Entkopplungs-Diode 26 auch zwei derartiger Dioden eingesetzt werden, um im Klammerbetrieb auf dem Niveau der niedrigeren Grenzspannung den Vorsteuertransistor 11 noch stärker vom Hilfstransistor 27 zu entkoppeln. Auch der Hilfstransistor 27 kann selbstverständlich ein- oder mehrstufig ausgebildet sein.
Bei dem in Fig. 3 dargestellten dritten Ausführungsbeispiel ist zwar wie im zweiten Ausführungsbeispiel eine Entkopp¬ lungs-Diode 26 vorgesehen, jedoch entfällt der Hilfstransi¬ stor 27. Der Widerstand 18 des Spannungsteilers ist nicht direkt mit dem Emitter des Endtransistors 12 bzw. mit Masse verbunden, sondern indirekt über eine Hi Ifsfunktions- Schaltung 28, die zusätzlich noch mit dem Emitter des Vorsteuertransistors 11 verbunden ist. Die Hi Ifsfunktions- Schaltung 28 stellt beispielsweise eine bekannte Schaltung zur Abschaltung der Stromregelung, eine Schaltung zur Erzeugung von Störfal 1 -Informationen od.dgl. dar. Durch Abgriff eines Teils der am Spannungsteiler abfallenden Spannung kann die jeweilige Hilfsfunktion aktiviert werden, wenn die niedrigere Grenzspannung erreicht wird. Dabei wird durch die Entkopplungs-Diode 26 sichergestellt, daß die Hilfsfunktion nur dann zum Tragen kommt, wenn der Basisanschluß 15 vom Emitteranschluß 14 getrennt ist, wenn also der Transistor 24 gesperrt ist.
Die Hilfsfunktions-Schaltung 28 kann beispielsweise als monolithisch integrierte Schaltung ausgebildet sein und zusammen mit der übrigen Leistungsendstufe einen einzigen monolithisch integrierten Schaltkreis bilden.
Zur Einstellung der Betriebszustände mit und ohne Spannungs¬ begrenzung auf niedrigerem Spannungsniveau kann anstelle des Transistors 24 auch ein anderes Schaltmittel treten, durch das der Basisanschluß 15 und der Emitteranschluß 14 miteinander verbunden oder voneinander getrennt werden können. Soll für andere Anwendungszwecke die Spannungs¬ begrenzung auf niedrigerem Spannungsniveau ständig wirksam sein, so muß selbstverständlich der Emitteranschluß 14 ständig vom Basisanschluß 15 getrennt sein.

Claims

Ansprüche
1. Leistungsendstufe mit einer Darlington-Schaltung zum Schalten einer induktiven Last, insbesondere der Zünd¬ spule einer Brennkraftmaschine, mit einem die Betriebsart der Leistungsendstufe vorgebenden, die Basis-Emitter- Strecke der Darlington-Schaltung überbrückenden Schalter, der bei schneller Abschaltung der Endstufe geschlossen und bei spannungsbegrenzter Abschaltung der Endstufe geöff¬ net ist, und mit einem wenigstens aus zwei Widerständen bestehenden, die Schaltstrecke der Darlington-Schaltung überbrückenden Spannungsteiler, der einen auf die Basis der Darlington-Schaltung einwirkenden Abgriff aufweist, dadurch gekennzeichnet, daß der Abgriff des Spannungsteilers (16-18) mit dem Verknüpfungspunkt zwischen dem Schalter (24) und der Basis der Darlington-Schaltung (11,12) ver¬ bunden ist, wobei der Schalter (24) parallel zu einem Teil (18) des Spannungsteilers (16-18) geschaltet ist.
2. Leistungsendstufe nach Anspruch 1, dadurch gekennzeich¬ net, daß sie als monolithisch integrierter Schaltkreis ausgebildet ist.
3. Leistungsendstufe nach Anspruch 2, dadurch gekennzeich¬ net, daß der Schalter (24) als externer Transistor ausge- bi ldet ist .
4. Leistungsendstufe nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß der zwischen dem Abgriff und dem Kollektor der Darlington-Schaltung (11,12) liegende Teil des Spannungsteilers (16-18) eine mit einem der Widerstände (16) in Reihe geschaltete Z-Diode (17) aufwei st.
5. Leistungsendstufe nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß der Abgriff des Span¬ nungsteilers (16-18) über wenigstens eine Entkopplungs- Diode (26) mit der Basis der Darlington-Schaltung (11,12) verbunden ist.
6. Leistungsendstufe nach Anspruch 5, dadurch gekennzeich¬ net, daß ein Hilfstransistor (27) vorgesehen ist, dessen Schaltstrecke die Kollektor-Bas is-Strecke des Endtransistors (12) der Darlington-Schaltung (11,12) überbrückt und dessen Basis an den Abgriff des Spannungsteilers (16-18) ange¬ schlossen ist.
7. Leistungsendstufe nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß im emittersei tigen Teil des Spannungs¬ teilers (16-18) eine Hilfsfunktions-Schaltung (28) vorge¬ sehen ist, von der ein Schaltungsteil Bestandteil des Spannungsteilers ist, oder durch die eine Teilspannung des Spannungsteilers abgegriffen wird.
8. Leistungsendstufe nach Anspruch 7, dadurch gekennzeich¬ net, daß die Hilfsfunktions-Schaltung (28) eine Schaltung zur Abschaltung der Stromregelung, eine Schaltung zur Erzeugung von Störfal 1 -Informationen od.dgl. ist.
9. Leistungsendstufe nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Hilfsfunktions-Schaltung (28) als monolithisch integrierter Schaltkreis ausgebildet ist, insbesondere zusammen mit der Leistungsendstufe.
10. Leistungsendstufe nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß eine Z-Diode (19) die Kollektor-Emitter-Strecke des Endtransistors (12) der Darlington-Schaltung (11,12) überbrückt.
PCT/DE1991/000712 1990-09-26 1991-09-07 Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zündspule einer brennkraftmaschine WO1992005364A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59107364T DE59107364D1 (de) 1990-09-26 1991-09-07 Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zündspule einer brennkraftmaschine
US08/030,493 US5424671A (en) 1990-09-26 1991-09-07 Power output stage having a darlington-pair circuit for switching an inductive load, especially the ignition coil of an internal-combustion engine
EP91915498A EP0550469B1 (de) 1990-09-26 1991-09-07 Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zündspule einer brennkraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4030418A DE4030418A1 (de) 1990-09-26 1990-09-26 Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zuendspule einer brennkraftmaschine
DEP4030418.3 1990-09-26

Publications (1)

Publication Number Publication Date
WO1992005364A1 true WO1992005364A1 (de) 1992-04-02

Family

ID=6415002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000712 WO1992005364A1 (de) 1990-09-26 1991-09-07 Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zündspule einer brennkraftmaschine

Country Status (7)

Country Link
US (1) US5424671A (de)
EP (1) EP0550469B1 (de)
JP (1) JP3121834B2 (de)
KR (1) KR100202803B1 (de)
DE (2) DE4030418A1 (de)
ES (1) ES2082988T3 (de)
WO (1) WO1992005364A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010432A1 (de) * 1995-09-12 1997-03-20 Robert Bosch Gmbh Zündendstufe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331874C2 (de) * 1993-09-21 1999-07-01 Temic Semiconductor Gmbh Zündanlage für Brennkraftmaschinen mit einer ruhenden Zündspannungsverteilung
US5684427A (en) * 1996-01-19 1997-11-04 Allegro Microsystems, Inc. Bipolar driver circuit including primary and pre-driver transistors
JP3234159B2 (ja) * 1996-07-15 2001-12-04 東芝マイクロエレクトロニクス株式会社 出力回路
GB2387881B (en) * 2002-04-23 2005-11-09 Metaldyne Internat Method of bearing construction
US20070202311A1 (en) * 2006-02-28 2007-08-30 Saint-Gobain Performance Plastics Corporation Multi-layer release films
CN101820274A (zh) * 2010-04-20 2010-09-01 武汉星火投资咨询中心(普通合伙) 一种无火花安全开关、插座及安全通断电方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009957A1 (de) * 1978-10-02 1980-04-16 Lumenition Limited Monolithische Darlington-Schaltung mit vier Anschlüssen und diese Schaltung enthaltendes opto-elektronisches Zündsystem
DE3015343A1 (de) * 1979-04-26 1980-11-06 Fairchild Camera Instr Co Zuendkontrollsystem
US4290406A (en) * 1978-03-14 1981-09-22 Nippondenso Co., Ltd. Ignition system for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1166910B (it) * 1979-10-03 1987-05-06 Ates Componenti Elettron Circuito di comando per interruttore statico a transistore per carichi in corrente continua ad elevata corrente di spunto
DE3123667C2 (de) * 1981-06-15 1985-04-18 Robert Bosch Gmbh, 7000 Stuttgart Darlington-Transistorschaltung
US4564771A (en) * 1982-07-17 1986-01-14 Robert Bosch Gmbh Integrated Darlington transistor combination including auxiliary transistor and Zener diode
FR2580444B1 (fr) * 1985-04-16 1987-06-05 Radiotechnique Compelec Etage de commutation du type darlington notamment pour un decodeur de lignes d'une memoire
GB2228639B (en) * 1989-02-17 1992-07-15 Motorola Semiconducteurs Protected darlington transistor arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290406A (en) * 1978-03-14 1981-09-22 Nippondenso Co., Ltd. Ignition system for internal combustion engine
EP0009957A1 (de) * 1978-10-02 1980-04-16 Lumenition Limited Monolithische Darlington-Schaltung mit vier Anschlüssen und diese Schaltung enthaltendes opto-elektronisches Zündsystem
DE3015343A1 (de) * 1979-04-26 1980-11-06 Fairchild Camera Instr Co Zuendkontrollsystem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010432A1 (de) * 1995-09-12 1997-03-20 Robert Bosch Gmbh Zündendstufe
CN1070578C (zh) * 1995-09-12 2001-09-05 罗伯特·博施有限公司 点火输出级

Also Published As

Publication number Publication date
DE59107364D1 (de) 1996-03-14
DE4030418A1 (de) 1992-04-02
US5424671A (en) 1995-06-13
JP3121834B2 (ja) 2001-01-09
EP0550469B1 (de) 1996-01-31
EP0550469A1 (de) 1993-07-14
ES2082988T3 (es) 1996-04-01
KR100202803B1 (ko) 1999-06-15
JPH06501293A (ja) 1994-02-10

Similar Documents

Publication Publication Date Title
DE2638178C2 (de) Schutzvorrichtung für integrierte Schaltungen gegen Überspannungen
DE69523908T2 (de) Steuerungsschaltung, MOS Transistor mit solch einer Schaltung
DE2132717A1 (de) Ansteuerschaltung fuer magnetventile hoher schaltgeschwindigkeit, insbesondere einer hydraulischen stelleinrichtung
DE3238880A1 (de) Schaltungsanordnung
DE68924107T2 (de) Steuerschaltung für die Begrenzungsspannung einer durch eine Leistungsvorrichtung in spannungsseitiger Treiberkonfiguration getriebenen induktiven Last.
DE3741394C2 (de) Schaltungsanordnung zum Schutz vor Verpolungsschäden für Lastkreise mit einem MOS-FET als Schalttransistor
EP0550469B1 (de) Leistungsendstufe mit einer darlington-schaltung zum schalten einer induktiven last, insbesondere der zündspule einer brennkraftmaschine
DE1638065B2 (de) Temperaturkompensierter halbleiterspannungsregler fuer den generator einer batterieladeeinrichtung
EP0817380A2 (de) Vorrichtung zum Schalten eines induktiven Verbrauchers
DE19638260C2 (de) Schaltungsanordnung zur Steuerung von kleinen Magnetspulen, insbesondere für Magnetventile
DE19533637A1 (de) Zündendstufe
DE3871846T2 (de) Einschaltstromrueckfuehrung durch einen eine induktive last treibenden leistungsschalttransistor.
DE3334833A1 (de) Ansteuerschaltung fuer einen leistungstransistor
DE4344126A1 (de) Elektronische Schützschnellabschaltung
DE2135858C3 (de) Transistorschalteinrichtung zum Schalten eines induktiven Gleichstromkreises
WO1989003579A1 (en) Circuit arrangement for accelerating the supply to an electromagnetic consumer
DE4402340C1 (de) Integrierte Schaltung
DE3443770C2 (de)
DE19815628C1 (de) Steuereinrichtung für ein Kraftstoff-Einspritzsystem
DE3712998C2 (de)
DE2638179A1 (de) Schaltungsvorrichtung zur ableitung des abschaltstroms von induktiven verbrauchern
DE3026740A1 (de) Schaltungsanordnung fuer elektrische verbraucher mit verpolschutz
WO1993010588A1 (de) Verpolschutzanordnung für leistungsendstufen-transistoren
WO1991015058A1 (de) Kurzschlussfeste transistorendstufe, insbesondere zündungsendstufe für kraftfahrzeuge
DE3903789A1 (de) Schaltungsanordnung zur einschaltstrombegrenzung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991915498

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08030493

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1991915498

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991915498

Country of ref document: EP