WO1992001441A1 - Stabile wirkstoff-formulierung - Google Patents

Stabile wirkstoff-formulierung Download PDF

Info

Publication number
WO1992001441A1
WO1992001441A1 PCT/EP1991/001306 EP9101306W WO9201441A1 WO 1992001441 A1 WO1992001441 A1 WO 1992001441A1 EP 9101306 W EP9101306 W EP 9101306W WO 9201441 A1 WO9201441 A1 WO 9201441A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
mmol
active ingredient
active substance
active
Prior art date
Application number
PCT/EP1991/001306
Other languages
English (en)
French (fr)
Inventor
Joerg Rosenberg
Hans-Juergen Krause
Hans-Heinrich Gruenhagen
Michael Kluge
Guenter Blaich
Sabine Halm
Original Assignee
Knoll Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knoll Aktiengesellschaft filed Critical Knoll Aktiengesellschaft
Publication of WO1992001441A1 publication Critical patent/WO1992001441A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes

Definitions

  • the present invention relates to new stable drug formulations and their preparation.
  • Liposomes consist of membrane double layers which, in the form of tiny hollow spheres, separate an aqueous interior from the surrounding water phase. Liposomes form spontaneously when dispersing suitable amphiphilic lipids in aqueous systems. Depending on the preparation conditions, liposomes with diameters of approximately 20 n to approximately 10 ⁇ m can be formed. Basic work on this was carried out by i.a. Bangham (J. Mol. Biol. J_3 (1965), pp. 238-252) and Papahadjopoulos (Biochem. Biophys. Acta J35 (1967), 624-638).
  • the spherical closed liposomes enable the encapsulation of water-soluble compounds, e.g. Active substances in the aqueous interior.
  • active substances e.g. Active substances in the aqueous interior.
  • Such liposomal active substance encapsulations are described in a number of patents (inter alia: US 3,993,754, US 4,145,410, US 4,235,871). Since the active ingredient is in encapsulated form, it is possible to influence the otherwise often present local toxicity (e.g. vein irritation after IV injection). However, such liposomal encapsulations cause problems both in the production and in the storage. For example, it is rarely possible to encapsulate more than 30% of the amount of active substance used with the customary processes. The non-encapsulated active ingredient must always be removed in a further process step by gel filtration or ultrafiltration. Finally, the storage stability of such preparations is limited by the premature active ingredient reflux.
  • the invention relates to a process for the preparation of stable active substance formulations, characterized in that an active substance which can form positively or negatively charged salts is dissolved in molar amounts with an oppositely charged lipid in an organic solvent, if appropriate those obtained in this way Active ingredient-lipid mixture, a double-layer membrane-forming lipid and optionally further membrane components which increase the mechanical and / or chemical stability of the colloidal particles upon contact with biological liquids, are added and the solvent is removed.
  • the invention further relates to the active ingredient formulations thus obtained.
  • non-neutral active substances ie active substances which can form cations or anions.
  • active substances ie active substances which can form cations or anions.
  • Such are, for example, basic active ingredients such as amonafide, mitonafide, Emopamil, N-acetylamonafide, anipamil and acidic active ingredients such as acetylsalicylic acid, ibuprofen, diclofenac, penicillins, prostaglandin egg.
  • the lipid used for the preparation of the formulations must have an opposite charge to the active ingredient so that salt formation with the active ingredient is possible.
  • Basic lipids are suitable for binding acidic active ingredients. Examples include: stearylamine and phosphatidylethanolamine.
  • Suitable solvents for salt formation are aprotic solvents in which the lipids are readily soluble, such as dichloroethane, ethanol, tetrahydrofuran, isopropanol.
  • Active ingredient and lipid are generally reacted with one another in a molar ratio of about 1: 1, regardless of how many charges the active ingredient ion has.
  • lipid-active substance salts it is generally necessary to add another lipid to the lipid-active substance salts, which brings about a homogeneous distribution of the solid lipid-active substance mixture when dispersed in aqueous systems.
  • these substances are added in amounts which are approximately 0.5 to 2 times the amount of lipid used for salt formation.
  • cholesterol and its esters are mentioned as components of the cell membrane, which increase the mechanical stability of the particles, which increase the stability of the drug carriers, in particular when in contact with biological liquids, e.g. Plasma, increase.
  • the new active ingredient formulations are generally produced at room temperature.
  • the active ingredient formulations obtained according to the invention are suitable for the production of medicaments.
  • Liposomes or emulsions can be solved as by simply dissolving.
  • Liposome solutions or emulsions with an ionic bond with the active ingredient mitonafide in concentrations of 6 mg / ml (based on the active ingredient base) are prepared while e.g. even the mitonafide hydrochloride can only be dissolved in concentrations of up to 0.4 mg / ml in the same buffer system.
  • liposome solutions or emulsions with amonafides in concentrations of 6 mg / ml at physiological pH values of 6 to 7, in which those without using the invention
  • Anipami 1 base (solubility of the HCl salt in water at room temperature ⁇ 5 ppm) can also be dissolved at physiological pH values in a concentration of 8 mg / ml by using the method according to the invention.
  • solubilizers e.g. Tween 80®, Cremophor EL®
  • solubilizers must be used in concentrations that cause undesirable side effects such as sensitization, histamine release, hemolysis.
  • bilayer membrane-forming lipids such as the naturally occurring phospholipids do not show these side effects because they are an integral part of every cell membrane.
  • the active ingredient solutions according to the invention show significantly improved compatibility compared to the purely aqueous active ingredient solutions with the same molar active ingredient dose. This is particularly important for intravenous administration. 4.
  • the production methods of the liposome solutions according to the invention are considerably simplified compared to the known methods, since encapsulation or the like is not necessary and thus complex process steps (gel filtration, ultrafiltration etc.) are omitted. 5 By dispensing with the encapsulation, high active substance contents can also be achieved. Salt formation of the active ingredient with the lipid also takes place in the formulation. It is not necessary to prepare or isolate these salts beforehand.
  • Sensitive active ingredient solutions can be lyophilized using the known methods after adding antifreezing agents (sucrose, trehalose, glucose) etc.
  • Example 2 The preparation was carried out as in Example 1, but the ultrasonication was carried out in 9.25% sucrose solution. After sterile filtration, the samples were lyophilized in 1 ml portions in 2 liter vials. The particle sizes before the lyophilization were on average 104 nm, after the lyophilization in the samples redispersed after the addition of 1 ml of water by shaking, on average 119 nm (measured with photon correlation spectroscopy).
  • Example 3 The preparation was carried out as in Example 3, but the substance mixture additionally contained 223.1 mg (0.290 mmol) of lipid No. 2 and 49.9 mg (0.128 mmol) of cholesterol. After 20 min of ultrasonication, a clear opalescent solution was obtained, in which no flocculation occurred even after 3 months after cooling (storage in a refrigerator).
  • Example 4 The preparation was carried out as in Example 4, but only with 81.35 mg of 15 (0.111 mmol) lipid No. 2. The storage stability was identical to that of Example 4.
  • Example 20 The preparation was carried out as in Example 4, but with 30.0 mg (0.096 mmol) of mitonafide base, 70.2 mg (0.096 mmol) of lipid No. 1, 86.7 mg (0.111 mmol) of lipid No. 2, 21 , 3 mg (0.055 mmol) cholesterol and 6.0 mg (0.014 mmol) tocopherol.
  • the storage stability was identical to that of Example 4.
  • the vein irritant effect of the aqueous solution of the active ingredient mitonafide was compared to that of the formulation of Example 6 on animals after intravenous administration.
  • the vein irritant properties of the active ingredient could be measured indirectly by determining the tail diameter of the animals, 1 cm from the root of the tail, using a caliper. The histological examinations of the affected tail veins later verified the macroscopically observable changes (increase in tail diameter as a result of vein irritation).
  • Example 6 While the aqueous solution of the active ingredient showed severe vein irritation (increase in the tail diameter by about 25% after 8 days), the formulation of Example 6, like the active ingredient-free formulation and water, did not lead to an increase in the tail diameter at the same active ingredient dose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Es wird ein Verfahren zur Herstellung stabiler Wirkstoff-Formulierungen beschrieben, welches darin besteht, daß man einen positiv oder negativ geladenen Wirkstoff in molaren Mengen mit einem entgegengesetzt geladenen Lipid in einem organischen Lösungsmittel löst, gegebenenfalls der so erhaltenen Wirkstoff-Lipidmischung ein doppelschichtmembranbildendes Lipid sowie gegebenenfalls weitere Membranbestandteile, die die mechanische und/oder chemische Stabilität der kolloidalen Partikel bei Kontakt mit biologischen Flüssigkeiten erhöhen, zusetzt und das Lösungsmittel entfernt.

Description

Stabile Wirkstoff-Formulierung
Beschreibung
Die vorliegende Erfindung betrifft neue stabile Wirkstoff-Formu ierungen und deren Herstellung.
Liposomen bestehen aus Membrandoppelschichten, die in Form winziger Hohl¬ kugeln einen wäßrigen Innenraum von der sie umgebenden Wasserphase trennen. Liposomen bilden sich spontan beim Dispergieren geeigneter amphi- philer Lipide in wäßrigen Systemen. In Abhängigkeit von den Präparations¬ bedingungen können Liposomen mit Durchmessern von etwa 20 n bis etwa 10 μm gebildet werden. Grundlegende Arbeiten dazu wurden von u.a. Bangham (J. Mol. Biol. J_3 (1965), S. 238 - 252) und Papahadjopoulos (Biochem. Biophys. Acta J35 (1967), 624 - 638) berichtet.
Die kugelförmigen geschlossenen Liposomen ermöglichen die Verkapselung wasserlöslicher Verbindungen, z.B. Wirkstoffen in den wäßrigen Innenraum. In einer Reihe von Patenten sind derartige liposomale Wirkstoffverkapse- lungen beschrieben (u.a.: US 3,993,754, US 4,145,410, US 4,235,871). Da der Wirkstoff in verkapselter Form vorliegt, gelingt es, die ansonsten oft vorhandene lokale Toxizität (z.B. Venenreizung bei i.v. Injektion) günstig zu beeinflussen. Solche liposomalen Verkapselungen bereiten allerdings sowohl bei der Herstellung als auch bei der Lagerung Probleme. So können mit den gebräuchlichen Verfahren selten mehr als 30 % der eingesetzten Wirkstoffmenge verkapselt werden. Der nicht verkapselte Wirkstoff muß immer in einem weiteren Verfahrensschritt durch Gelfiltration oder Ultrafiltration entfernt werden. Schließlich ist die Lagerstabilität derartiger Präparate durch den vorzeitigen Wirkstoffefflux limitiert.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung stabiler Wirk¬ stoff-Formulierungen, dadurch gekennzeichnet, daß man einen Wirkstoff, der positiv oder negativ geladene Salze bilden kann, in molaren Mengen mit einem entgegengesetzt geladenen Lipid in einem organischen Lösungsmittel löst, gegebenenfalls der so erhaltenen Wirkstoff-Lipidmischung ein doppelschicht embranbildendes Lipid sowie gegebenenfalls weitere Membran¬ bestandteile, die die mechanische und/oder chemische Stabilität der kolloidalen Partikel bei Kontakt mit biologischen Flüssigkeiten erhöhen, zusetzt und das Lösungsmittel entfernt. Gegenstand der Erfindung sind weiter die so erhaltenen Wirkstoff-Formulierungen.
Das erfindungsgemäße Verfahren läßt sich mit nicht neutralen Wirkstoffen durchführen, d.h. Wirkstoffen, die Kationen oder Anionen bilden können. Solche sind beispielsweise basische Wirkstoffe wie Amonafide, Mitonafide, Emopamil, N-Acetylamonafide, Anipamil und saure Wirkstoffe wie Acetyl- salicylsäure, Ibuprofen, Diclofenac, Penicilline, Prostaglandin Ei.
Das für die Herstellung der Formulierungen verwendete Lipid muß eine dem Wirkstoff entgegengesetzte Ladung besitzen, damit eine Salzbildung mit dem Wirkstoff möglich ist. Zur Bindung basischer Wirkstoffe eignen sich alle sauren Lipide, die durch Protonenabgabe zur Salzbildung in der Lage sind. Beispiele hierfür sind gesättigte und ungesättigte, vorzugsweise natürlich vorkommende Fettsäuren mit mehr als 11 C-Atomen wie z.B. ölsäure, Carboxylgruppen enthaltende doppelschichtmembranbildende Amphiphile (vgl. EP 331.092) wie N-(4-Oxobutansäure)-L-asparaginsäure-dioleylester (= Lipid Nr. 1) und Phosphatidsäuren wie z.B. 1, 2-Dihexadecyl-glycerin-3-phosphat (= Lipid Nr. 3). Zur Bindung saurer Wirkstoffe eignen sich basische Lipide. Beispiele hierfür sind: Stearylamin und Phosphatidylethanolamin.
Als Lösungsmittel eignen sich für die Salzbildung aprotische Lösungs¬ mittel, in denen die Lipide gut löslich sind, wie Dichlor ethan, Ethanol, Tetrahydrofuran, Isopropanol.
Wirkstoff und Lipid werden im allgemeinen im Molverhältnis von etwa 1:1 miteinander umgesetzt, unabhängig davon, wie viele Ladungen das Wirkstoff¬ ion besitzt.
Es ist im allgemeinen erforderlich, den Lipid-Wirkstoff-Salzen ein weite- res Lipid zuzusetzen, das eine homogene Verteilung der festen Lipid-Wirk- stoffmischung beim Dispergieren in wäßrigen Systemen bewirkt. Geeignete Lipide dafür sind doppelschichtmembranbildende Lipide wie die natürlich vorkommenden Phospholipide oder auch synthetische doppelschichtmembran¬ bildende Lipide wie N-(4-oxobutansäure)-L-asparaginsäure-dioleylester- Kaliumsalz (= Lipid Nr. 2) oder Cholesterin-hemisuccinat-Salze. Diese Sub¬ stanzen werden, sofern das Lipid-Wirkstoff-Salz nicht schon alleine in wäßrigen Systemen homogen verteilt werden kann, in Mengen zugesetzt, die etwa das 0,5- bis 2fache der zur Salzbildung eingesetzten Lipidmenge betragen.
Als Bestandteile der Zellmembran, die die mechanische Stabilität der Par¬ tikel erhöhen, sind insbesondere Cholesterin und dessen Ester zu nennen, die die Stabilität der Arzneimittelträger insbesondere beim Kontakt mit biologischen Flüssigkeiten, z.B. Plasma, erhöhen.
Sind die für die Herstellung der neuen Formen verwendeten Substanzen leicht oxidierbar, so ist die Zugabe von Radikalfängern, wie Tocopherolen oder Carotin, zweckmäßig. Die Herstellung der neuen Wirkstoff-Formulierungen gelingt im allgemeinen bei Raumtemperatur.
Die erfindungsgemäß erhaltenen Wirkstoff-Formulierungen eignen sich zur Herstellung von Arzneimitteln.
Das neue Verfahren besitzt folgende Vorteile:
1. Schwerlösliche Wirkstoffe können in deutliche höheren Konzentrationen in wäßrigen Systemen durch ionische Bindung an kolloidale Träger (z.B.
Liposomen oder Emulsionen) gelöst werden als durch einfaches Lösen. So können z.B. Liposomenlösungen oder Emulsionen mit ionischer Bindung mit dem Wirkstoff Mitonafide in Konzentrationen von 6 mg/ml (bezogen auf Wirkstoff-Base) hergestellt werden, während sich z.B. selbst das Mitonafide-Hydrochlorid lediglich in Konzentrationen bis 0,4 mg/ml im gleichen Puffersystem lösen läßt.
So lassen sich z.B. auch Liposomenlösungen oder Emulsionen mit Amona- fide in Konzentrationen von 6 mg/ml bei physiologischen pH-Werten von 6 bis 7 herstellen, bei denen ohne Anwendung des erfindungsgemäßen
Verfahrens der Wirkstoff in Form der Base weitgehend ausflockt. Auch Anipami 1-Base (Löslichkeit des HCl-Salzes in Wasser bei Raumtemperatur <5 ppm) läßt sich bei physiologischen pH-Werten in Konzentration von 8 mg/ml durch Anwendung des erfindungsgemäßen Verfahrens lösen.
2. Die Herstellung relativ konzentrierter Wirkstofflösungen ist daher auch bei physiologischen pH-Werten möglich, die normalerweise zur Ausfällung vieler Wirkstoffe führen. So lassen sich schwerlösliche Wirkstoffe zwar z.B. durch Einsatz micellenbildender Detergenzien in wäßrigen Syste em solubi lisieren. Die dafür gebräuchlichen
Löslichkeitsvermittler (z.B. Tween 80®, Cremophor EL®) müssen dazu aber in Konzentrationen eingesetzt werden, die unerwünschte Nebenwirkungen, wie Sensibil isierung, Histaminfreisetzung, Hä olyse verursachen. Doppelschichtmembranbildende Lipide dagegen wie z.B. die natürlich vorkommenden Phospholipide zeigen diese Nebenwirkungen nicht, da sie ein integraler Bestandteil jeder Zellmembran sind.
3. Die erfindungsgemäßen Wirkstofflösungen zeigen deutlich verbesserte Verträglichkeit gegenüber den rein wäßrigen Wirkstofflösungen bei gleicher molarer Wirkstoffdosis. Das ist besonders wichtig für die intravenöse Applikation. 4. Die Herstellmethoden der erfindungsgemäßen Liposomenlösungen sind gegenüber den bekannten Verfahren wesentlich vereinfacht, da eine Verkapselung oder Ähnliches nicht notwendig ist und somit aufwendige Verfahrensschritte (Gelfiltration, Ultrafiltration usw.) entfallen. 5 Durch den Verzicht auf die Verkapselung lassen sich zudem hohe Wirk¬ stoffgehalte erreichen. Weiter erfolgt die Salzbildung des Wirkstoffs mit dem Lipid bei der Formulierung. Eine vorherige Präparation oder Isolierung dieser Salze ist nicht notwendig.
105. Stabilitätsprobleme bei der Lagerung werden minimiert, da der bei Ver¬ kapselung bekannte und störende Stabilitätslimitierende Wirkstoff- Efflux aus den Liposomen nicht auftritt. Empfindliche Wirkstofflösun- gen können mit den bekannten Verfahren nach Zusatz von Gefrierschutz¬ mitteln (Saccharose, Trehalose, Glucose) etc. lyophilisiert werden.
15
Die folgenden Beispiele erläutern die Erfindung:
Beispiel 1
20 120 mg Amonafide-Base (0,424 mmol), 310,6 mg Lipid Nr. 1 (0,424 mmol), 346,8 mg Lipid Nr. 2 (0,444 mmol) und 24,0 mg Tocopherol (0,056 mmol) wurden in wenig Dichlormethan klar gelöst. Das Lösemittel wurde anschlie¬ ßend (zuletzt im Vakuum) entfernt. Der Rückstand wurde mit 20 ml Puffer¬ lösung (NaCl 8,30 g/1 + EDTA-2Na 0,50 g/1, eingestellt auf pH 7,5) ver-
25 setzt und bei 45°C 20 min ultrabeschallt. Die noch warme Lösung filtrierte man dann durch ein 0,2 μ Spritzenfilter und lagerte anschließend im Kühl¬ schrank. Der pH-Wert der Lösung betrug 7,1
Beispiel 2 0
Die Präparation erfolge wie in Beispiel 1, aber die Ultrabeschallung er¬ folgte in 9,25 %iger Saccharoselösung. Nach der Sterilfiltration wurden die Proben in 1 ml-Portionen in 2 l-Vials lyophilisiert. Die Partikel¬ größen betrugen vor der Lyophilisation im Mittel 104 nm, nach der Lyophi- 5 lisation in den nach Zugabe von 1 ml Wasser durch Schütteln redispergier- ten Proben im Mittel 119 nm (gemessen mit Photonenkorrelationsspektro¬ skopie) .
Beispiel 3 (Vergleichsbeispiel) 0
30,0 mg Amonafide-Base (0,111 mmol) und 162,7 mg (0,222 mmol) Lipid Nr. 1 wurden in wenig Dichlormethan gelöst. Nach restloser Entfernung des Löse¬ mittels erfolgte die Ultrabeschallung bei 40°C in 10 ml Pufferlösung (0,9 % NaCl + 10 mM Phosphat, pH 7,2). Nach 30 min Beschallung erhielt man eine trübe Lösung, aus der beim Abkühlen auf Raumtemperatur innerhalb von 20 min die Substanzen ausflockten.
Beispiel 4 5
Die Präparation erfolgte wie in Beispiel 3, aber die Substanzmischung ent¬ hielt zusätzlich 223,1 mg (0,290 mmol) Lipid Nr. 2 und 49,9 mg (0,128 mmol) Cholesterin. Nach 20 min Ultrabeschallung wurde eine klare opaleszierende Lösung erhalten, bei der beim Abkühlen auch nach 3 Monaten 10 (Kühlschranklagerung) keine Ausflockungen auftraten.
Beispiel 5
Die Präparation erfolgte wie in Beispiel 4, aber lediglich mit 81,35 mg 15 (0,111 mmol) Lipid Nr. 2. Die Lagerstabilität war mit der des Beispiels 4 identisch.
Beispiel 6
20 Die Präparation erfolgte wie in Beispiel 4, aber mit 30,0 mg (0,096 mmol) Mitonafide-Base, 70,2 mg (0,096 mmol) Lipid Nr. 1, 86,7 mg (0,111 mmol) Lipid Nr. 2, 21,3 mg (0,055 mmol) Cholesterin und 6,0 mg (0,014 mmol) Tocopherol . Die Lagerstabilität war mit der des Beispiels 4 identisch.
25 Beispiel 7
100,0 mg (0,3 mmol) S-Emopamil und 219,2 mg (0,299 mmol) Lipid Nr. 1 wurden mit 397,8 mg (0,509 mmol) Lipid Nr. 2 in wenig Dichlormethan gelöst. Nach restloser Entfernung des Lösemittels wurde der Rückstand in 30 20 ml Pufferlösung (0,9 % NaCl + 10 M Phosphat, pH 7,2) bei 45°C 15 min ultrabeschallt. Die noch warme Lösung wurde durch ein steriles 0,45 μm Spritzenfilter in sterile Polypropylenröhrchen filtriert und lagerte anschließend ohne Ausfällungen/Ausflockungen 6 Monate bei Raumtemperatur.
35 Beispiel 8
60,0 mg (0,223 mmol) Amonafide-Base und 163,5 mg (0,223 mmol) Lipid Nr. 1 wurden mit 3 000 mg Sojaöl (Fa. Sig a), 173,4 mg (0,222 m ol) Lipid Nr. 2 und 12,0 mg (0,028 mmol) Tocopherol gemischt und in 20 ml wäßriger 40 Glycerinlösung (2,6 %) bei 60°C 15 min ultrabeschallt. Dabei wurde eine homogene Emulsion erhalten, deren Partikelgrößen auch nach 3monatiger Lagerzeit (Kühlschrank) noch zu 88 % unter 1 μm lagen. Beim Verzicht auf das zur Salzbildung eingesetzte Lipid Nr. 1 wurde dagegen keine stabile Emulsion erhalten. Beispiel 9
185,0 mg (0,237 m ol) Lipid Nr. 2 wurden mit 51,0 mg (0,070 mmol) Lipid Nr. 1 und 36,0 mg (0,070 mmol) Anipami1-Base in wenig Dichlormethan ge¬ löst. Nach Entfernen des Lösemittels im Vakuum wurde der Rückstand mit 10 ml Pufferlösung (0,9 % NaCl + 10 mM Phosphat, pH 7,2) versetzt und 20 min bei 45°C ultrabeschallt. Die Lösung wurde anschließend noch warm durch ein 0,45 μm Spritzenfilter filtriert und lagerte dann 1 Jahr ohne Ausfällungen im Kühlschrank.
Beispiel 10
120,0 mg (0,424 mmol) Amonafide-Base, 275,1 mg 1, 2-Dihexadecyl-glycerin- 3-phosphorsäure (Lipid Nr. 3) (0,444 mmol) und 346,8 mg (0,444 mmol) Lipid Nr. 2 wurden in wenig Dichlormethan gelöst. Nach Entfernen des Löse¬ mittels im Vakuum wurde der Rückstand mit 20 ml Phosphatpuffer (0,142 M; pH 7) 20 min bei 45°C ultrabeschallt. Nach Filtration durch ein 0,45 μm Spritzenfilter lagerte die Lösung 3 Monate ohne Ausfällungen im Kühl¬ schrank.
Beispiel 11
173,4 mg (0,222 mmol) Lipid Nr. 2 wurden mit 163,0 mg (0,222 mmol) Lipid Nr. 1 und 72,2 mg (0,222 mmol) N-Acetylamonafide-Base in wenig Dichlor- methan gelöst. Nach Entfernen des Lösemittels im Vakuum erfolgte nach Zu¬ gabe von 10 ml Pufferlösung (Phosphat 0,142 M; pH 7,0) eine Ultrabeschal¬ lung für 20 min bei 45°C. Die Lösung wurde danach noch warm durch ein 0,45 μm Spritzenfilter filtriert und lagerte dann 3 Monate ohne Ausfällun¬ gen im Kühlschrank.
Beim Verzicht auf das zur Salzbildung eingesetzte Lipid Nr. 1 konnten trotz gleichzeitiger Erhöhung der Menge des Lipids Nr. 2 auf 346,8 mg (0,444 mmol) keine stabilen Lösungen erhalten werden.
Beispiel 12
120,0 mg Amonafide-Base (0,424 mmol), 119,8 mg ölsäure (0,424 mmol), 401,0 mg Lipid Nr. 2 (0,514 mmol), 6,0 g Sojaöl und 24,0 mg Tocopherol (0,056 mmol) wurden mit 40 ml Glycerinlösung (2,6 % in Wasser) versetzt und 20 min bei 60°C ultrabeschallt. Dabei wurde eine homogene Emulsion erhalten, die auch nach 1 Monat Kühlschranklagerung stabil blieb.
Beim Verzicht auf die zur Salzbildung eingesetzte ölsäure wurde dagegen keine stabile Emulsion erhalten. Be i sp i e l 13
Die venenreizende Wirkung der wäßrigen Lösung des Wirkstoffs Mitonafide wurde mit der der Formulierung des Beispiels 6 am Tier nach intravenöser Gabe verglichen.
Beide Lösungen wurden in einer Dosierung von 4 mg/kg (bezogen auf die Wirkstoff-Base) 4 Tage lang täglich über die Schwanzvene appliziert (NMRI-Mäuse, männlich). Pro Gruppe wurden 10 Tiere behandelt, zwei weitere Gruppen von 10 Tieren erhielten Wasser bzw. eine Wirkstoff-freie Formulie¬ rung analog der von Beispiel 6 (Placebo) .
Die venenreizenden Eigenschaften des Wirkstoffs konnten indirekt über die Bestimmung des Schwanzdurchmessers der Tiere, 1 cm von der Schwanzwurzel entfernt, mit Hilfe einer Schieblehre gemessen werden. Durch spätere histologische Untersuchungen der betroffenen Schwanzvenen konnten die makroskopisch beobachtbaren Veränderungen (Zunahme des Schwanzdurchmessers als Folge der Venenreizung) verifiziert werden.
Währen die wäßrige Lösung des Wirkstoffs eine starke Venenreizung zeigte (Zunahme des Schwanzdurchmessers um etwa 25 % nach 8 Tagen), führte bei gleicher Wirkstoffdosis die Formulierung des Beispiels 6 ebenso wie die Wirkstoff-freie Formulierung und Wasser zu keiner Zunahme des Schwanz¬ durchmessers.

Claims

Patentansprüche
1. Verfahren zur Herstellung stabiler Wirkstoff-Formulierungen, dadurch gekennzeichnet, daß man einen Wirkstoff, der positiv oder negativ ge- ladene Salze bilden kann, in molaren Mengen mit einem entgegengesetzt geladenen Lipid in einem organischen Lösungsmittel löst, gegebenen- .falls der so erhaltenen Wirkstoff-Lipidmischung ein doppelschicht- membranbi ldendes Lipid sowie gegebenenfalls weitere Membranbestand¬ teile, die die mechanische und/oder chemische Stabilität der kolloida- len Partikel bei Kontakt mit biologischen Flüssigkeiten erhöhen, zu¬ setzt und das Lösungsmittel entfernt.
2. Wirkstoff-Formulierungen gemäß Anspruch 1.
3. Verwendung der Wirkstoff-Formulierungen gemäß Anspruch 1 zur Her¬ stellung von Arzneimitteln.
PCT/EP1991/001306 1990-07-21 1991-07-12 Stabile wirkstoff-formulierung WO1992001441A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4023241.7 1990-07-21
DE4023241A DE4023241A1 (de) 1990-07-21 1990-07-21 Stabile wirkstoff-formulierung

Publications (1)

Publication Number Publication Date
WO1992001441A1 true WO1992001441A1 (de) 1992-02-06

Family

ID=6410761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/001306 WO1992001441A1 (de) 1990-07-21 1991-07-12 Stabile wirkstoff-formulierung

Country Status (2)

Country Link
DE (1) DE4023241A1 (de)
WO (1) WO1992001441A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013765A1 (en) * 1992-01-21 1993-07-22 Rosenberg, Joerg Lecithin-containing solutions with levemopamil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003248910B2 (en) 2002-07-08 2009-10-08 Chemgenex Pharmaceuticals, Inc. Naphthalimide synthesis including amonafide synthesis and pharmaceutical preparations thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2247257A1 (de) * 1973-10-12 1975-05-09 Richardson Merrell Inc
EP0219922A2 (de) * 1985-10-15 1987-04-29 Vestar, Inc. In mizellulare phospholipidische Partikel eingekapselte antineoplastische Anthracyclinmittel
EP0276735A2 (de) * 1987-01-24 1988-08-03 BASF Aktiengesellschaft Wässriges oder pulverförmiges, wasserdispergierbares Präparat eines in Wasser schwerlöslichen pharmazeutischen Wirkstoffs und Verfahren zu seiner Herstellung
WO1988007362A1 (en) * 1987-03-30 1988-10-06 Liposome Technology, Inc. Non-crystalline minoxidil composition and method of application
EP0331092A2 (de) * 1988-03-03 1989-09-06 Knoll Ag Neue Alpha-Aminocarbonsäure-Derivate, ihre Herstellung und Verwendung
DE3825374A1 (de) * 1988-07-26 1990-02-01 Schwendener Reto Dipl Apotheke Komplex aus mindestens einer lipophilen saeure und mitoxantron und/oder bisantren
EP0426029A1 (de) * 1989-10-30 1991-05-08 Abbott Laboratories Fettlösliche Arzneimittel enthaltende injizierbare Zusammensetzungen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2247257A1 (de) * 1973-10-12 1975-05-09 Richardson Merrell Inc
EP0219922A2 (de) * 1985-10-15 1987-04-29 Vestar, Inc. In mizellulare phospholipidische Partikel eingekapselte antineoplastische Anthracyclinmittel
EP0276735A2 (de) * 1987-01-24 1988-08-03 BASF Aktiengesellschaft Wässriges oder pulverförmiges, wasserdispergierbares Präparat eines in Wasser schwerlöslichen pharmazeutischen Wirkstoffs und Verfahren zu seiner Herstellung
WO1988007362A1 (en) * 1987-03-30 1988-10-06 Liposome Technology, Inc. Non-crystalline minoxidil composition and method of application
EP0331092A2 (de) * 1988-03-03 1989-09-06 Knoll Ag Neue Alpha-Aminocarbonsäure-Derivate, ihre Herstellung und Verwendung
DE3825374A1 (de) * 1988-07-26 1990-02-01 Schwendener Reto Dipl Apotheke Komplex aus mindestens einer lipophilen saeure und mitoxantron und/oder bisantren
EP0426029A1 (de) * 1989-10-30 1991-05-08 Abbott Laboratories Fettlösliche Arzneimittel enthaltende injizierbare Zusammensetzungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013765A1 (en) * 1992-01-21 1993-07-22 Rosenberg, Joerg Lecithin-containing solutions with levemopamil

Also Published As

Publication number Publication date
DE4023241A1 (de) 1992-01-23

Similar Documents

Publication Publication Date Title
DE2730570C2 (de)
DE69632859T2 (de) Verfahren zur Arzneistoffbehandlung von Liposomen Zusammensetzung
EP0056781B1 (de) Verfahren zur Herstellung von liposomalen Arzneimitteln
DE60103863T2 (de) Lipidnanokapseln, seine herstellungsverfahren sowie verwendung als medizin
DE69923315T2 (de) Verfahren zur herstellung von liposomen
DE69727849T2 (de) Cyclosporin-Emulsionen
DE2629100B2 (de) Dispersion von Kügelchen und Verfahren zu ihrer Herstellung
DE2532317A1 (de) Verfahren zur herstellung von liposomen
DE60025961T2 (de) Verwendung von Estern von L-Carnitinsäure oder von Alkanoyl L-Carnitinsäure als kationische Lipide für die intrazelluläre Verabreichung therapeutischer Stoffe
FI88676C (fi) Foerfarande foer framstaellning av en komposition foer intravenoes administrering av pregnanolon
EP0707847A1 (de) Ketoprofen Liposomen
DE2914789C2 (de)
EP0331092B1 (de) Neue Alpha-Aminocarbonsäure-Derivate, ihre Herstellung und Verwendung
DE69821001T2 (de) Wässriges arzneimittel, das einen in wasser sehr schwerlöslichen aktivbestandteil enthält
DE4110779A1 (de) Liposomale formulierungen antimykotischer, antibakterieller und/oder antiphlogistischer arzneimittel fuer die lokale und vaginale anwendung
WO1992001441A1 (de) Stabile wirkstoff-formulierung
DE4125255A1 (de) Prostaglandin e (pfeil abwaerts)1(pfeil abwaerts)-formulierung
DE3309076C2 (de) Liposome und Verfahren zu ihrer Herstellung
WO1991016039A1 (de) Verfahren zur herstellung von wirkstoffhaltigen wässrigen liposomensuspensionen
EP1267943A2 (de) Arzneimittel zur stimulierung der leukopoese, zur behandlung von tumor- und protozoenerkrankungen, von akarinosis, arthropodiasis und verfahren zu seiner herstellung
EP0684840B1 (de) Verfahren zur herstellung kolloidaler wässriger lösungen schwerlöslicher wirkstoffe und ein lipid dafür
WO2003028736A2 (de) Alkylphosphocholinverbindungen enthaltende arzneimittelzubereitungen in sterilfiltrierbaren und/oder hitzesterilisierbaren liposomen
EP0834312B1 (de) Topisches Arzneimittel auf Basis von Diclofenac
DE10148065A1 (de) (Ester)-Lysolecithine in Liposomen
DE3912685A1 (de) Pharazeutische praeparation, enthaltend felbinac

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: CA