WO1991013347A1 - Detecteur magnetique de defauts pour mince bande en acier - Google Patents

Detecteur magnetique de defauts pour mince bande en acier Download PDF

Info

Publication number
WO1991013347A1
WO1991013347A1 PCT/JP1991/000224 JP9100224W WO9113347A1 WO 1991013347 A1 WO1991013347 A1 WO 1991013347A1 JP 9100224 W JP9100224 W JP 9100224W WO 9113347 A1 WO9113347 A1 WO 9113347A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
thin steel
steel strip
defect
hollow
Prior art date
Application number
PCT/JP1991/000224
Other languages
English (en)
French (fr)
Inventor
Seigo Ando
Masaki Takenaka
Ken-Ichi Iwanaga
Takato Furukawa
Atsunao Takekoshi
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2325090U external-priority patent/JPH0750711Y2/ja
Priority claimed from JP18948490A external-priority patent/JPH07109416B2/ja
Priority claimed from JP19787190A external-priority patent/JPH07104329B2/ja
Priority claimed from JP2278918A external-priority patent/JP2617615B2/ja
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to KR1019960701203A priority Critical patent/KR960009762B1/ko
Priority to DE69123797T priority patent/DE69123797T2/de
Priority to EP91904342A priority patent/EP0469158B1/en
Priority to KR1019910701415A priority patent/KR960005364B1/ko
Publication of WO1991013347A1 publication Critical patent/WO1991013347A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Definitions

  • the present invention relates to a magnetic steel flaw detector for detecting a defect existing inside or on a surface of a thin steel strip in a running state, and in particular, rotatably supported on a fixed shaft orthogonal to a running path of the thin steel strip.
  • Magnetic test of a thin steel strip configured to press the formed hollow roll against the thin steel strip, house a magnetizer in the hollow roll, and detect leakage magnetic flux generated due to defects with a magnetic sensor Related to the device.
  • Magnetic flaw detectors use magnetism to detect defects such as flaws and inclusions inside or on the surface of a thin steel strip.
  • Magnetic steel flaw detectors for thin steel strips not only detect thin steel strips as test objects in a stationary state, but also, for example, are installed on production lines in factories, etc. It has been reported that defects existing in the belt can be detected continuously (Japanese Utility Model Application Laid-Open No. 63-107,849).
  • FIGS. 31 and 32 are cross-sectional views of magnetic steel flaw detectors for a thin steel strip for continuously detecting the above-described defects in the running thin steel strip viewed from different directions.
  • the hollow roll 1 is formed of a non-magnetic material.
  • One end of the fixed shaft 2 penetrates through the center shaft of the hollow hole 1.
  • the other end of the fixed shaft 2 is fixed to a frame of a building (not shown).
  • the fixed shaft 2 is positioned at the center axis of the hollow roll 1 —a pair of rolling bearings 3 a, 3 b and both ends of the hollow roll 1 Is supported by the inner peripheral surface of the. Therefore, the hollow roll 1 freely rotates with the fixed shaft 2 as a rotation center axis.
  • a magnetized iron core 4 c having a substantially U-shaped cross section is provided via a support member 5 with the magnetic poles 4 a and 4 b constituting a magnetic path approaching the inner peripheral surface of the hollow roll 1.
  • the magnetized coil 6 is wound around the magnetized iron core 4c. Therefore, the magnetizer 4 is composed of the magnetized core 4c on which the magnetic poles 4a and 4b are formed and the magnetized coil 6.
  • a plurality of magnetic sensors 7 are arranged in the axial direction between the magnetic poles 4a and 4b of the magnetized iron core 4c of the magnetizer 4. Each magnetic sensor 7 is fixed to the fixed shaft 2.
  • a power cable 8 for supplying an exciting current to the magnetizing coil 6 and a signal cable 9 for extracting each detection signal output from each magnetic sensor 7 are led out through the fixed shaft 2 to the outside. Therefore, the positions of the magnetized iron core 4 and each magnetic sensor 7 are fixed, and the hollow roll 1 rotates around the outer periphery of the magnetizer 4 and each magnetic sensor 7 with a small gap.
  • the signal level of the detected defect signal corresponds to the size of the defect inside or on the surface of the thin steel strip 10
  • the presence and size of the defect in the thin steel strip 10 are determined by the signal level of the defect signal. It is possible to grasp
  • the signal level of the defect signal depends on the state of the magnetic path formed by the magnetizer 4 composed of the thin steel strip 10, the magnetized iron core 4 c and the magnetized coil 6, and between the magnetizer 4 and the thin copper strip 10. It greatly changes depending on the distance L between them, the distance between the thin steel strip 10 called lift-off and each magnetic sensor 7, and the like.
  • the distance between the thin steel strip 10 and the magnetizer 4 is determined by using a hollow roll 1 having a constant thickness t as shown in FIGS. 31 and 32.
  • L and the distance ⁇ between the thin steel strip 10 and each magnetic sensor 7 are always maintained at constant values.
  • the hollow roll 1 is formed of a magnetic material, the formation of a magnetic path in the thin steel strip 10 is hindered, and thus the hollow roll 1 is formed of a non-magnetic material.
  • the formed magnetic field increases, and a stable magnetic flux can be obtained. Therefore, it is desirable to reduce the thickness t of the hollow roll 1.
  • the hollow roll 1 if the thickness t of the hollow roll 1 is large, the moment of inertia of the hollow roll 1 increases, and the running speed of the thin copper strip 10 fluctuates. In this case, due to the inertial force of the hollow roll 1, there is a concern that a sliding phenomenon may occur at the contact surface between the hollow roll 1 and the thin steel strip 10, causing a scratch on the surface of the thin copper strip 10. is there. Therefore, the hollow roll
  • the outer diameter of the hollow roll 1 may be set to be small only for the purpose of reducing the inertia moment, but it depends on the size of the magnetizer 4 and the magnetic sensor 7 housed inside. Therefore, its outer diameter is restricted.
  • the surface of the thin steel strip 10 must always be in contact with the outer peripheral surface of the hollow roll 1. Therefore, a downward force due to the tension of the thin steel strip 10 and a downward force due to the weight of the thin ladle strip 10 itself are applied to the hollow hole 1.
  • a downward force is applied, the hollow roll 1 is deformed or damaged.
  • the distance L between the thin steel strip 10 and the magnetizer 4 and the distance between the thin copper strip 10 and each magnetic sensor 7 cannot be controlled to a constant value, so that the defect detection accuracy can be reduced. Will be reduced or flaw detection will not be possible.
  • the thickness t of the hollow roll 1 cannot be reduced below a certain limit.
  • the thickness t is limited to about 2 under the running speed condition of the thin steel strip 10 of 10 GmZ.
  • a first object of the present invention is to improve the SZN of a defect signal detected by a magnetic sensor without significantly increasing manufacturing costs, and to improve the sensitivity and accuracy of detecting a thin copper strip.
  • the purpose is to provide a magnetic flaw detector.
  • a second object of the present invention is to provide a magnetic steel flaw detector for a thin steel strip which can easily detect a defect occurrence position and a defect size in a thickness direction of the thin steel strip.
  • the distance between the magnetic poles of a magnetizer disposed in a hollow hole rotating by contacting the surface of a traveling thin steel strip is set to The distance is set to 2 or more and 8 times or less the distance from the magnetic pole to the thin copper strip.
  • the magnetic flux that can be output from one magnetic pole is input to the other magnetic pole via a space (magnetic gap) between the magnetic poles.
  • a space magnetic gap
  • part of the magnetic flux output from one of the magnetic poles passes through the thin steel strip without passing through the magnetic gap. And input to the other magnetic pole.
  • the ratio between the magnetic flux passing through the magnetic gap and the magnetic flux passing through the thin steel strip is determined by the distance between the magnetic gaps (distance between magnetic poles W) and the distance L from each magnetic pole to the thin steel strip. It depends greatly. In other words, when the distance W between the magnetic poles is constant, more magnetic flux concentrates on the smaller magnetic resistance of the magnetic circuit, so that when the distance L between each magnetic pole and the thin steel strip becomes smaller, Naturally passes through thin steel strip As the magnetic flux density increases and the distance L increases, the density of the magnetic flux passing through the thin steel strip decreases.
  • the ratio of the magnetic flux passing through the thin steel strip increases as the distance W between the magnetic poles increases, but when the distance W between the magnetic poles becomes excessively large, the total number of magnetic fluxes described above decreases. Decrease.
  • the distance W between the magnetic poles is excessively small, the total number of the magnetic fluxes increases, but the ratio of the magnetic flux passing through the thin steel strip decreases.
  • the magnetic pole distance W there is a certain optimum range for the magnetic pole distance W. And this optimum range depends on the distance L from each magnetic pole to the thin copper strip. That is, when the distance L is large, the optimal range has a large contribution of the distance W between the magnetic poles, and when the distance L is small, the optimal range has a large contribution of the distance L.
  • the inventor experimentally obtained the relationship between the distance W between the magnetic poles and the distance L, and found that the distance W between the magnetic poles was 2 to 8 times the distance L.
  • the detection sensitivity of the magnetic sensor is set to the maximum by setting the distance W between the magnetic poles to the above relationship. And the accuracy of defect detection can be improved.
  • the position of the magnetic sensor in the running direction of the thin steel strip is set to a position shifted from the center position between the magnetic poles toward the running direction by a small distance determined by the remanent magnetization characteristics of the thin steel strip.
  • a thin copper strip with no defects is placed facing each magnetic pole of the magnetizer, and the magnetizing coil is DC-excited. And in this state, the magnetic field detected by the magnetic sensor when the traveling direction of the air sensor is changed becomes maximum and minimum at each magnetic pole position, and the vertical magnetic field caused by the stray magnetic flux crossing the 0 level line at the center position of the distance W between the magnetic poles. It becomes a magnetic field distribution characteristic. Therefore, if the magnetic sensor is set at the center of the distance W between the magnetic poles where the vertical magnetic field distribution characteristic crosses the zero level line, the influence of the stray magnetic flux can be eliminated.
  • the thin steel strip runs in one direction at a constant speed.
  • the thin steel strip is magnetized by the magnetizer, and a magnetic flux corresponding to the magnetization intensity and the coercive force of the thin steel strip remains in the thin copper strip.
  • the position where the vertical magnetic field distribution characteristic crosses the zero line is not necessarily the center position of the distance w between the magnetic poles, and moves in the traveling direction.
  • the vertical magnetic field distribution characteristic does not reach the zero level at the center position of the distance W between the magnetic poles. Then, the 0 level position moves in the traveling direction from the center position of the distance W between the magnetic poles. Therefore, stray magnetic flux density exists at the center position.
  • the magnetic sensor is moved to the moved 0 level position. As a result, this magnetic sensor does not detect stray magnetic flux. Therefore, the detection sensitivity of the magnetic sensor can be easily increased.
  • a pair of hollow rolls accommodating a magnetizer or a magnetic sensor are disposed so as to sandwich the thin steel strip.
  • the thickness of the hollow roll on the side of the thin steel strip to which the own weight or tension is directly applied is increased, and the thickness of the hollow roll of the thin steel strip on the side to which the own weight or tension is not directly applied is reduced. And this By storing the magnetic sensor in the thinner hollow roll, the lift-off can be shortened and the defect detection sensitivity can be increased.
  • the magnetic detection circuit for detecting a leakage magnetic flux generated due to a defect in the inside or surface of the thin steel strip is a supersaturated type in which a detection coil is wound around a ferromagnetic core.
  • a supersaturated magnetic sensor in which a detection coil is wound around a ferromagnetic core has a higher detection sensitivity and temperature characteristics than a magnetic sensor using a magnetic diode-magnetoresistive element or a Hall element. Has remarkably excellent characteristics.
  • a pair of hollow rolls are disposed so as to be in contact with the upper surface and the lower surface of the thin copper strip, respectively.
  • a magnetizer is arranged in one of the hollow rolls, and a magnetic sensor for detecting a leakage magnetic flux caused by a defect in the inside or the surface of the thin steel strip is arranged in both the hollow rolls.
  • the data processing device calculates a defect occurrence position and a defect size in the thickness direction of the thin copper band of the defect from each leakage magnetic flux value detected by the pair of magnetic sensors.
  • each magnetic sensor detects a leakage magnetic flux corresponding to the defect.
  • the leakage magnetic flux value detected by each magnetic sensor can be displayed as a function of the defect size and the distance to the defect, that is, each depth from the surface on the relevant magnetic sensor side. Therefore, assuming that these two functions are simultaneous equations, the defect size and defect position are calculated.
  • FIG. 1 is a cross-sectional view of a thin steel strip magnetic flaw detector according to one embodiment of the present invention, cut along a plane parallel to a running direction of a thin copper strip.
  • FIG. 2 is a cross-sectional view of the apparatus of the embodiment cut along a plane perpendicular to the running direction of the thin steel strip.
  • FIG. 3 is a sectional view showing an experimental apparatus for confirming the effect of the apparatus of the embodiment.
  • FIG. 4 is a detection characteristic diagram obtained with the experimental apparatus.
  • FIG. 5 is a characteristic diagram showing the detection characteristic diagram of FIG. 4 with different parameters.
  • FIG. 6 is a waveform diagram of a defect signal obtained by the apparatus of the embodiment.
  • FIG. 7 is a cross-sectional view of a magnetic steel flaw detector for a thin steel strip according to another embodiment of the present invention, cut along a plane parallel to the running direction of the thin steel strip.
  • FIG. 8 is a schematic view showing a main part of the apparatus of the embodiment for confirming the effect of the apparatus of the embodiment.
  • FIG. 9 is a diagram showing a relationship between each magnetic pole and a horizontal magnetic field distribution and a vertical magnetic field distribution.
  • FIG. 10 is a detection characteristic diagram showing the relationship between the excitation current and the detection voltage of the magnetic sensor.
  • FIG. 11 is a detection characteristic diagram of the magnetic sensor when the magnetizing current is changed in the experimental apparatus.
  • FIG. 12 is a detection characteristic diagram of the magnetic sensor when the position of the magnetic sensor in the experimental apparatus is changed.
  • FIG. 13 is a cross-sectional view of a magnetic steel flaw detector for a thin steel strip according to another embodiment of the present invention, taken along a plane parallel to the running direction of the thin steel strip.
  • FIG. 14 is a cross-sectional view taken along a plane perpendicular to the running direction of the thin steel strip in the apparatus of the embodiment.
  • FIG. 15 is a cross-sectional view of a magnetic steel flaw detector for a thin steel strip according to still another embodiment of the present invention, taken along a plane parallel to the running direction of the thin steel strip.
  • FIG. 16 is a cross-sectional view taken along a plane perpendicular to the running direction of the thin steel strip in the apparatus of the embodiment.
  • FIG. 17 is a schematic diagram showing the entire system of the apparatus of the embodiment o
  • FIG. 18 is a characteristic diagram of a defect signal in the embodiment device.
  • FIG. 19 is a diagram showing a procedure for calculating a defect position and a defect scale from the defect signal characteristics.
  • FIG. 20 is a diagram showing the relationship between the actually measured value and the manual visual evaluation.
  • FIG. 21 is a diagram showing a table showing a relationship between each measured value and a defect position and a defect size in the magnetic flaw detector of another embodiment. is there.
  • FIG. 22 is a block diagram showing a magnetic detection circuit of a magnetic steel flaw detector for a thin steel strip according to still another embodiment of the present invention.
  • FIG. 23 is a time chart showing the operation of the magnetic detection circuit.
  • FIG. 24 is a waveform diagram of a voltage applied to a detection coil of the magnetic detection circuit.
  • Fig. 25 is a coil output voltage waveform diagram of the magnetic detection circuit.
  • c Fig. 26 is a coil output voltage waveform diagram of the magnetic detection circuit.
  • C Fig. 27 is a magnetization characteristic diagram of the ferromagnetic core. is there.
  • FIG. 28 is a graph showing output voltage characteristics with respect to magnetic flux density in the magnetic detection circuit.
  • FIG. 29 is a block diagram showing a magnetic detection circuit according to still another embodiment of the present invention.
  • FIG. 30 is an output voltage characteristic diagram with respect to a magnetizing current in the magnetic detection circuit.
  • FIG. 31 is a cross-sectional view taken along a plane parallel to the running direction of a thin steel strip of a general thin steel strip magnetic flaw detector.
  • FIG. 32 is a cross-sectional view of the conventional device cut along a plane perpendicular to the running direction of the thin steel strip.
  • FIG. 33 is a diagram showing the relationship between the arrangement direction of the magnetic sensors and the detection waveform of each magnetic sensor.
  • FIG. 34 is a diagram showing the relationship between the vertical magnetic field and the horizontal magnetic field detected by each magnetic sensor of FIG. 33.
  • FIG. 1 and FIG. 2 are cross-sectional views showing a schematic configuration of a magnetic steel flaw detector for a thin steel strip according to an embodiment.
  • the same parts as those of the conventional device shown in FIGS. 31 and 32 are denoted by the same reference numerals. Therefore, the detailed description of the overlapping part is omitted.
  • One end of the fixed shaft 2 is penetrated through the center shaft of the hollow roll 1a formed of a non-magnetic material.
  • the inner peripheral surfaces at both ends of the hollow roll 1a are rotatably supported on the fixed shaft 2 by a pair of rolling bearings 3a and 3b. Therefore, this hollow roll la freely rotates with the fixed shaft 2 as the rotation center axis.
  • the thickness t at both ends where the rolling bearings 3a and 3b are mounted. Is thick, and the thickness t X at the center where the thin steel strip 10 contacts is set to be thin.
  • the thickness t at both ends. It is set to 1 o mni, and the thickness of the center t! Is set to 1-4 mra.
  • a magnetized iron core 4 c having a substantially U-shaped cross section is fixed via a support member 5 in such a manner that the magnetic poles 4 a and 4 b are close to the inner peripheral surface of the hollow roll la.
  • the tips of the magnetic poles 4a, 4b are formed in an arc shape corresponding to the curvature of the inner peripheral surface of the hollow roll 1a.
  • the magnetizing coil 6 is wound around the magnetizing iron core 4c.
  • a plurality of magnetic sensors 7 are arranged in the axial direction between the magnetic poles 4a and 4b of the magnetized iron core 4c. Each magnetic sensor 7 is fixed to the fixed shaft 2.
  • magnetized core 4 c and magnetized coil 6 are A magnetizer 4 for generating a magnetic field in the thin steel strip 10 via the hollow roll 1a is configured.
  • each magnetic sensor 7 uses a supersaturated magnetic sensor described in Japanese Patent Application Laid-Open No. Hei 13-89082.
  • a power cable 8 for supplying an exciting current to the magnetizing coil 6 and a signal cable 9 for extracting each detection signal output from each magnetic sensor 7 are led out through the fixed shaft 2 to the outside. I have. Therefore, the positions of the magnetized iron core 4c and each magnetic sensor 7 are fixed, and the hollow roll 1a rotates around the magnetized iron core 4c and the outer periphery of each magnetic sensor 7 with a small gap.
  • the distance W between the magnetic poles 4a and 4b in the magnetizer 4 is defined by the distance L between each magnetic pole 4a and 4b and the thin steel strip 10. Set to 2 times or more and 8 times or less (2 L ⁇ W ⁇ 8 L) 0
  • the traveling direction position of the thin steel strip 10 of each magnetic sensor 7 is set at a substantially intermediate position between the magnetic poles 4a and 4b.
  • the lift-off between each magnetic sensor 7 and the thin steel strip 10 is set to 3 min in this embodiment.
  • the change in the signal level of the defect signal also indicates the presence of a defect inside or on the thin copper strip 10. The presence and its size can be determined.
  • the distance W between the magnetic poles 4 a and 4 b of the magnetizer 4 is set to be at least twice and eight times or less the distance L to the thin copper strip 10.
  • Fig. 3 shows a thin steel strip 10a separated by a distance L from a magnetizer 31 formed by winding a magnetized coil 33 around a magnetized core 32 having magnetic poles 32a and 32b spaced apart.
  • the magnetic sensor 7a is disposed at a position opposite to the thin steel strip 10a at a distance d.
  • the position of the magnetic sensor 7a is the center position of the distance W between the magnetic poles.
  • the magnetic sensor 7a indirectly detects the magnetic flux density of the magnetic flux passing through the thin steel strip 10a among the magnetic flux of the magnetic field generated by the magnetizer 31.
  • a plurality of types of magnetizers 31 differing only in the distance W between the magnetic poles are prepared. Also, the distance L between the thin steel strip 10a and the magnetizer 31 can be arbitrarily changed.
  • the magnetic sensor 7a is disposed with its axis perpendicular to the thin steel strip 10a, and the outer diameter formed on the thin steel strip 10a is 0.2 mm to 0.2 mm.
  • the vertical component of each stray field caused by four types of standard defects of 9 mra was measured.
  • the magnetic sensor 7a is arranged in the direction in which its axis is parallel to the thin steel strip 10a. Measured the horizontal component of the leakage magnetic field.
  • Fig. 33 shows the measurement results.
  • Signal waveform a is the horizontal component of the magnetic field
  • signal waveform b is the vertical component of the magnetic field.
  • FIG. 9 shows the positional relationship between the magnetic poles of the magnetizer and the horizontal magnetic field distribution characteristic F and the vertical magnetic field distribution characteristic D.
  • the horizontal magnetic field distribution characteristic F has a substantially mountain shape
  • the vertical magnetic field distribution characteristic D has a substantially sinusoidal waveform crossing the 0 line at the center position.
  • the distance L between the magnetizer 31 and the thin copper strip 10a is 3.5
  • the distance W between the magnetic poles is 20mm
  • the distance d between the magnetic sensor 7a and the thin steel strip 10a is 3mm. It is.
  • FIG. 34 shows the relationship between the relative output of the vertical component and the relative output of the horizontal component of the magnetic field detected by each magnetic sensor 7a. As can be understood from this characteristic, the horizontal and vertical components of the magnetic field have a positive correlation.
  • the detection sensitivity of the horizontal component detection type magnetic sensor is higher than the detection sensitivity of the vertical component detection type magnetic sensor.
  • the distance W between the magnetic poles of the magnetizer 31 was changed from, for example, 5 rain to 25 mm.
  • the output voltage of the magnetic sensor 7a was measured. If there are no defects in the thin steel strip 10a, the leakage flux is proportional to the magnetic flux density in the thin copper strip 10a, so the magnetic flux density in the thin steel strip 10a is reduced by the magnetic sensor 7a. Measured.
  • Figure 4 shows the measurement results. In the experiment, the magnetizing current supplied to the magnetizing coil 33 was gradually increased from 0 A to the rated 5 A. o
  • the horizontal axis represents the ratio (WZL) of the distance W between the magnetic poles to the distance L
  • the vertical axis represents the relative output of the magnetic sensor 7a
  • FIG. 6 shows the distance between the magnetizer 4 and the thin steel strip 10 in the actual equipment shown in Figs. 1 and 2 under the above conditions (2L ⁇ W ⁇ 8L).
  • FIG. 7 is a waveform diagram of a defect signal detected by each magnetic sensor 7 when L is changed from 1 mra to 5 mm. However, this waveform diagram is a signal waveform output by differentiating the vertical component of the magnetic field. The experiment was carried out using a thin copper strip 10 with a class III test defect with a pinhole outer diameter of 0.9 ram, 0.6 mm, and 0.3 mra. did.
  • the signal level of the entire detected defect signal decreases, but the S / N of the obtained defect signal increases. Therefore, if the gain is increased by using an amplifier, Even small defects such as 0.3 mm can be accurately detected.
  • the thickness t of the hollow roll la is set to be thick at both ends where the rolling bearings 3a and 3b are mounted, and thin at the center where the thin copper strip 10 comes into contact. I have. As described above, it is desirable that the thickness t of the hollow roll 1b be thin, but if it is excessively thin, there is a problem that the strength of the hollow roll 1a is reduced. To compensate for this strength, the thickness t at both ends where the rolling bearings 3a and 3b are mounted. By setting the thickness to be thicker than the thickness of the central portion where the thin steel strip 10 abuts, it is possible to compensate to some extent the strength reduction caused by reducing the thickness t of the entire hollow roll 1a.
  • FIG. 7 is a cross section showing a schematic configuration of a thin copper strip magnetic flaw detector according to another embodiment of the present invention.
  • the same parts as those of the magnetic flaw detector shown in FIGS. 31 and 1 are denoted by the same reference numerals. Therefore, the detailed description of the overlapping part is omitted.
  • the traveling direction position of the thin steel strip 10 of each magnetic sensor 11 attached to the fixed shaft 2 in the hollow roll 1 is the central position P of each magnetic pole 4a, 4b. It is set at a position separated by a minute distance ⁇ X 0 in the running direction of the thin copper strip 10 from the distance. In this embodiment, the distance is set to 1 mm. The distance W between the magnetic poles of the magnetizer 4 is set to 56 mm, and the lift-off between each magnetic sensor 11 and the thin steel strip 10 is set to 3 mm.
  • the magnetic sensor 11 is moved a minute distance ⁇ ⁇ from the center position P between the magnetic poles 4a and 4b.
  • the grounds and effects of the thin steel strip 10 being moved toward the running direction will be described with reference to FIGS. 8 to 12.
  • FIG. 9 shows the vertical magnetic field distribution characteristic D of the stray magnetic flux when the thin steel strip 10 having no defect is stationary with respect to the magnetic poles 4a and 4b. Since the thin steel strip 10 travels in one direction at a constant speed, a magnetic flux corresponding to the coercive force of the thin copper strip 10 remains in the thin copper strip 10. As a result, the position where the vertical magnetic field distribution characteristic D crosses the zero line is not always the center position of the distance W between the magnetic poles, and moves in the traveling direction.
  • the measured value showing the relationship between the excitation current value and the detected voltage of the magnetic sensor 7 when the thin steel strip 10 having no defects is running at a constant speed at the position facing the magnetic poles 4a and 4b is the first measured value. This is shown in Figure 0. From FIG. 10, it can be understood that the detected stray magnetic flux increases as the exciting current increases.
  • FIG. 8 is a schematic view showing a main part of FIG. Vertical magnetic field distribution characteristics G when a thin steel strip 10 with no defect is placed opposite each magnetic pole 4a, 4b, and vertical magnetic field distribution when the same thin steel strip 10 is run in the direction of arrow A
  • a certain amount of movement occurs with the characteristic E.
  • the amount of movement is substantially determined by the remanent magnetization characteristics of the thin copper strip 10.
  • Each magnetic sensor 11 is mounted at a position in the traveling direction where the vertical magnetic field distribution characteristic E is 0 level. That is, this movement amount is the minute distance ⁇ X described above. It becomes. Therefore, no floating magnetic flux is generated at the mounting position of the magnetic sensor 11.
  • the magnetic sensor 11 will not be saturated even if the detection sensitivity of the magnetic sensor 11 is increased. Therefore, even if it is a small defect, the leakage magnetic flux caused by this defect can be accurately detected.
  • Fig. 11 shows a case in which the magnetic sensor 11 is mounted at a position shifted from the center position P by one dragon in the running direction or the opposite direction of the thin steel strip 10 where no defect exists at all from the center position P, as in the embodiment.
  • 4 is a graph of actually measured values showing the relationship between the magnetizing current applied to the magnetizing coil 6 and the detection voltage of the magnetic sensor 11.
  • the characteristic shown by the solid line is the measured value when the magnetic sensor 11 is shifted in the running direction
  • the characteristic shown by the broken line is an actually measured value when the magnetic sensor 11 is shifted in the reverse direction.
  • the distance W between the magnetic poles is 56 ram.
  • the vertical magnetic field due to the stray magnetic flux detected by the magnetic sensor 11 when the magnetic sensor 11 is displaced in the running direction is compared with the vertical magnetic field when the magnetic sensor 11 is displaced in the reverse direction. It is much smaller. Further, the vertical magnetic field detected when the magnetic sensor 7 is set at the center position P shown in FIG. 10 is greatly reduced.
  • the stray magnetic field detected by the magnetic sensor 11 is greatly reduced by shifting the magnetic sensor 11 in the traveling direction of the thin steel strip 10.
  • FIG. 12 is a view showing a defect detection result with respect to a thin steel strip 10 in which a defect composed of a through-hole having a diameter of 0.6 ram is artificially formed.
  • the case where the installation position of the magnetic sensor 11 is moved in the running direction shown by the solid line and the case where it is moved in the opposite direction shown by the broken line are shown.
  • the best detection sensitivity was secured under the condition that the magnetic sensor 11 was moved by a certain distance in the running direction.
  • FIGS. 13 and 14 are cross-sectional views showing a schematic configuration of a magnetic steel flaw detector for a thin steel strip according to another embodiment of the present invention.
  • Fig. 31 The same parts as those of the magnetic inspection apparatus shown in FIGS. 32 and 1 are denoted by the same reference numerals. Therefore, the detailed description of the overlapping part is omitted.
  • a pair of hollow rolls 1 and 1b are disposed vertically above and below a thin steel strip 10.
  • Each hollow roll 1, 1 b is formed of a non-magnetic material.
  • the outer diameters are set to be equal to each other, but the thickness t 3 of the upper hollow roll 1 b is set smaller than the thickness of the lower hollow roll 1.
  • One end of each of the hollow fixed shafts 2 and 2a is penetrated through each central shaft of each hollow roll i and lb.
  • the other end of the fixed shaft 2 of the lower hollow roll 1 is fixed to a frame of a building (not shown).
  • each fixed shaft 2, 2a is located on each central axis of each hollow roll 1, lb through a pair of rolling bearings 3a, 3b, respectively, and the inner peripheral surface at both ends of each hollow roll 1, l, b. It is supported by Therefore, each hollow roll 1, lb freely rotates about the fixed shaft 2, 2 a as a rotation center axis.
  • the hollow rolls 1 and lb rotate in the directions of arrow B and arrow C, respectively.
  • a plurality of magnetic sensors 7b are fixed to the fixed shaft 2a via a support member so as to face downward.
  • the tip of each magnetic sensor 7b faces the inner peripheral surface of the upper hollow roll 1b with a small gap.
  • the output signal of each magnetic sensor 7b is connected to the signal line cable passing through the inside of the fixed shaft 2a. It is led out with one bull 9a.
  • the magnetizer 4 is fixed to the fixed shaft 2 with the magnetic poles 4a and 4b of the magnetized iron core 4c facing upward.
  • the exciting current of the magnetizing coil 6 is supplied via a power cable 8 passing through the inside of the fixed shaft 2.
  • the upper hollow roll 1b is thicker than the lower hollow roll 1 in thickness ti. It can be set to be thinner the thickness t 3 of lb. Therefore, by setting the lift-off between the magnetic sensor 7b and the thin copper strip 10 shorter, the detection sensitivity of the magnetic sensor 7b can be further improved.
  • the thin steel strip 10 is sandwiched between the upper and lower hollow rolls 1b, 1, vibration generated during traveling is suppressed. As a result, variations in lift-off are reduced, and the accuracy of defect detection is improved.
  • FIGS. 15 and 16 are cross-sectional views showing a schematic configuration of a magnetic steel flaw detector for a thin steel strip according to another embodiment of the present invention.
  • the same parts as those of the magnetic flaw detector shown in FIGS. 13 and 14 are denoted by the same reference numerals. Therefore, the detailed description of the overlapping part is omitted.
  • the lower hollow roll 1 has the same configuration as the magnetic sensor 7b housed in the upper hollow roll 1b.
  • a magnetic sensor 7 is arranged between the magnetic poles of the magnetizer 4.
  • FIG. 17 is a diagram showing a system of the whole magnetic flaw detector.
  • the thin steel strip 10 fed from the supply reel 12 is led to a pair of hollow rolls 1 and 1b via front pressing rolls 13a and 13b, and a gap between the hollow rolls 1 and lb is provided. Then, it is wound on the take-up reel 15 at a constant speed via the rear holding rolls 14a and 14b.
  • a magnetization power supply 16 is connected to the lower hollow port 1 via a power cable 8.
  • Signal processing circuits 17a and 17 are connected to the hollow rolls 1 and 1b via signal cables 9 and 9a. Each signal processing circuit 1 7, 1 7 each defect signal yi that is output from a, y 2 are input to the data processing apparatus 1 8.
  • the data processing device 18 calculates a defect size a and a defect occurrence position X, using the input defect signals yj, y2. Calculated defect size a and defect occurrence position X! Is displayed, for example, on a display device 19 using a CRT display tube.
  • C n, C 12, C 21 , and C 22 are constants experimentally obtained in advance.
  • FIG. 19 is a diagram schematically showing a process of calculating a defect position and a defect size a.
  • the bi, b 2, b 3 is the point on the characteristic corresponding to the measured signal value.
  • a c, c 2, c 3 is the point on the characteristic corresponding to the measured signal value Y 2. Therefore, the points where the defect size a is equal to each other and the respective signal values and Y 2 are simultaneously satisfied are b 2 and c 2 respectively. Therefore, The position X: corresponding to the b 2 and c 2 points is the defect occurrence position, and the defect size a 2 at that time is the defect size a of the corresponding defect.
  • the magnetic steel flaw detector is disposed in a pair of hollow rolls lb, 1 opposed to each other with the thin steel strip 10 to be inspected interposed therebetween. From the defect signals y,, y 2 of the thin steel strip 10 detected by the magnetic sensors 7 b, 7, the position of the defect X existing on the surface and inside of the thin steel strip 10 can be calculated by a simple formula. , And the defect size a can be accurately grasped.
  • the types of defects that can be detected by this magnetic flaw detector include, for example, a tangible gouge, a latent gouge, a weld, a blowhole, a hole, an edge tong flaw, an ear crack flaw, and a trimmer flaw.
  • the magnetic sensors 7b, 7 are housed in hollow rolls 1b, 1 respectively.
  • Each hollow roll lb, 1 is constantly pressed against the upper and lower surfaces of the thin steel strip 10 with a constant urging force. Therefore, the distance between each of the magnetic sensors 7 b and 7 and the upper and lower surfaces of the thin steel strip 10 can always be kept constant. Therefore, even if the thin steel strip 10 vibrates up and down in the traveling process, the distance is maintained at a constant value, and the defect measurement accuracy is further improved.
  • FIG. 20 shows the defect size of the measured actual defect in the apparatus of the embodiment, and the observed defect is actually dissected by cutting or the like, and the defect size is visually observed by the observer.
  • FIG. 9 is a diagram showing correspondence with the results evaluated in five stages of E. It can be understood that the measured defect size shows a good response to the visual evaluation.
  • each signal value Y t, and a means for calculating the defect occurrence position X i and the defect size a from Y 2, defect signal yi, a y 2 (3) (4 The exponential function approximation method shown in Eq.) was used.
  • the standard defect sample is measured using a large number of standard defect samples whose defect positions and defect sizes are known in advance. Then, as shown in FIG. 21, the relationship between the obtained signal values Y 2 of the magnetic sensors 7 b and 7, Y 2 , the defect position, and the defect size a is recorded in the form of a table as shown in FIG. Is possible.
  • the table in FIG. 21 is searched using the measured values Y i and Y 2 obtained by measuring the actual thin steel strip 10, and the combination of the measured values and Y 2 is closest.
  • the defect position and defect size corresponding to the data may be read, and the read defect position and defect size may be used as the measurement result.
  • magnetic detection in the case of using a supersaturated magnetic sensor to detect leakage magnetic flux caused by the inside or surface of the thin steel strip 10 magnetized by the magnetizer 4 housed in the hollow roll. The circuit will be described.
  • Fig. 22 is a block diagram showing the schematic configuration of the magnetic detection circuit.
  • the supersaturated magnetic sensor 7 includes a bar-shaped ferromagnetic core 21 and a detection coil 22 wound around the ferromagnetic core 21.
  • the pulse voltage generator 23 outputs positive and negative pulse voltages at regular intervals as shown in FIG.
  • the output terminal of the output pulse voltage generator 21 is connected to one end of the detection coil 22 of the supersaturated magnetic sensor 7 via a resistor 24 that is a fixed impedance.
  • the other end of the detection coil 22 is grounded.
  • the pulse voltage output from the pulse voltage generation circuit 23 is applied to the detection coil 22.
  • the ferromagnetic core 21 is magnetized to the supersaturated region.
  • One end of the detection coil 22 is connected to input terminals of a positive voltage peak detector 25 and a negative voltage peak detector 26.
  • Each of the peak detectors 26 and 26 detects a peak value V on the (+) side of the input signal and a peak value V 2 on the (1) side of the input signal.
  • Each peak value V obtained by each peak detector 25, 26! , — V 2 is input to the next adder 27.
  • FIGS. 24 to 28 An AC power having an AC voltage waveform as shown in FIG. 24 is applied to the detection coil 22 of the magnetic sensor 7 via the resistor 24. Then, the voltage e generated at both ends of the detection coil 22. Is determined according to the resistance value R of the resistor 2 and the impedance Zs of the detection coil 22. That is,
  • e is a voltage value to be applied. Since the detection coil 22 is wound around the ferromagnetic core 21, the impedance Z s changes in proportion to the magnetic permeability of the ferromagnetic core 21.
  • the ferromagnetic core 21 has a ferromagnetic characteristic according to the hysteresis characteristic.
  • the permeability characteristics of body core 21 change. Note that n is the number of coil turns and i is the coil current.
  • the output voltage generated at both ends of the detection coil 22 has a waveform as shown in FIG.
  • the waveform is in a state not such applied external magnetic field positive, a negative symmetrical waveform, the voltage V 2 in the forward direction voltage and the negative direction are equal.
  • the magnetic flux crossing the ferromagnetic core 21 becomes a composite magnetic flux of the magnetic field generated by the detection coil 22 and the external magnetic field. Therefore, the waveform generated at both ends of the detection coil 22 is V> V 2 as shown in FIG.
  • an external magnetic field can detect the intensity of leakage magnetic flux generated by a defect.
  • the pulse voltage is supplied to the detection coil 22 of the magnetic sensor 7 in this manner, the power consumption is reduced as compared with the case of supplying the normal AC power shown in FIG. You can plan. For example, if the ratio of the pulse width of the pulse voltage to the pulse period is set to 10 to 100, the average power supplied to the magnetic sensor 7 can be suppressed to about 1Z10 to 1_100. it can. As a result, it becomes possible to use a battery as a power source of the magnetic flaw detector.
  • the pulse width can be changed.
  • the relative sensitivity of the small magnetic flux detection sensitivity hardly changes.
  • the power consumption is small, the power consumption does not greatly increase even in a magnetic flaw detector in which a large number of magnetic sensors 7 are arranged in the width direction of the thin steel strip 10.
  • FIG. 29 is a block diagram showing a schematic configuration of a magnetic detection circuit of another embodiment.
  • a bias circuit for adding a DC bias voltage to a pulse voltage applied to the magnetic sensor 7 is added to the circuit of FIG.
  • Output voltage V of adder 27 Is converted to DC by the low-pass filter 41 and then input to the differential amplifier 42.
  • Differential amplifier 42 is the input output voltage V.
  • the difference voltage V output from the differential amplifier 42 is input to the next DC power supply 44.
  • DC power supply 44 is be added to the pulse voltage via the adder 4 5 DC bus I ⁇ scan voltage V B which is proportional to the difference voltage .DELTA..nu ⁇ > o
  • Fig. 30 shows the relationship between the magnetizing current of the detection coil 22 and the output voltage when the value of the DC bias current from the DC power supply 4 was changed to O mA, 50 mA, 100 mA, 160 mA, and 200 mA. It is a graph which shows the measurement result.
  • the range of the linear characteristic of the output voltage with respect to the magnetizing current is 0 to 2.5 A, whereas 100 mA is applied to the detection coil 22.
  • the range of the linear characteristic is expanded to 0 to 4.5 A. In this way, by changing the DC bias current, the measurement span can be expanded and the defect detection accuracy can be improved.
  • the output voltage V increases. It is sufficient to control the bias current so that is always zero.
  • the output voltage is V.
  • a reference the voltage is the bias voltage V B which is proportional to the differential voltage delta [nu between V s is added to the pulse voltage, if no defect exists automatically output voltage V. Is controlled to 0. Note that the frequency response of the control loop is low, and conversely, since the defect of the running thin steel strip 10 has a high frequency component, the defect is reliably detected.
  • the operating point is automatically detected at the center of the measurement range of the magnetic detection circuit, so that even if the measurement conditions change, a good measurement range can always be secured, and the defect detection capability can be further improved. Can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

明 細 書
薄鋼帯の磁気探傷装置
[技術分野]
本発明は、 走行状態の薄鋼帯の内部又は表面に存在する欠 陥を検出する薄鋼帯の磁気探傷装置に係わり、 特に、 薄鋼帯 の走行路に直交する固定軸に回転自在に支持された中空ロー ルを薄鋼帯に押し当てて、 その中空ロール内に磁化器を収納 し、 欠陥に起因して生じる漏洩磁束を磁気センサで検出する ように構成された薄鋼帯の磁気探傷装置に関する。
[従来の技術]
磁気探傷装置は、 磁気を利用して、 薄鋼帯の内部あるいは 表面に存在する疵, 介在物等の欠陥を検出する。 そして、 薄 鋼帯の磁気探傷装置は、 被探傷体と しての薄鋼帯を静止した 状態で探傷するのみならず、 例えば工場等の製造ライ ン等に 設置される、 走行中の薄鋼帯に存在する欠陥を連続的に検出 できることが報告されている (実開昭 6 3— 1 0 7 8 4 9号 公報) 。
第 3 1図および第 3 2図は上述した走行中の薄鋼帯の欠陥 を連続的に検出する薄鋼帯の磁気探傷装置をそれぞれ異なる 方向から見た断面図である。
中空ロール 1 は非磁性材料で形成されている。 この中空口 ール 1の中心軸に固定軸 2の一端が貫通されている。 この固 定軸 2の他端は図示しない建屋のフ レームに固定されている。 そして、 固定軸 2は中空ロール 1の中心軸に位置するように —対のころがり軸受 3 a , 3 bでもって中空ロール 1の両端 の内周面に支持されている。 したがって、 この中空ロール 1 は固定軸 2を回転中心軸と して自由に回転する。
中空ロール 1内に、 略コ字断面形状を有した磁化鉄心 4 c が、 磁路を構成する磁極 4 a , 4 bが中空ロール 1 の内周面 に近接する姿勢で、 支持部材 5を介して固定軸 2に固定され ている。 そして、 この磁化鉄心 4 c に磁化コイル 6が巻装さ れている。 したがって、 磁極 4 a, 4 bが形成された磁化鉄 心 4 c と磁化コイル 6とで磁化器 4を構成する。 磁化器 4の 磁化鉄心 4 cの磁極 4 a , 4 bの間に複数の磁気センサ 7が 軸方向に配列されている。 そして、 各磁気センサ 7は前記固 定軸 2に固定されている。
磁化コイル 6に励磁電流を供給するための電源ケーブル 8 および各磁気センサ 7から出力される各検出信号を取出すた めの信号ケーブル 9が固定軸 2内を経由して外部へ導出され ている。 したがって、 磁化鉄心 4および各磁気センサ 7の位 置は固定され、 中空ロール 1が磁化器 4および各磁気センサ 7の外周を微小間隙を有して回転する。
このような構成の磁気探傷装置の中空ロール 1の外周面を 例えば矢印 A方向に走行状態の薄鋼帯 1 0の一方面に所定圧 力でもって押し当てると、 固定軸 2は建屋のフ レームに固定 されているので、 中空ロール 1が矢印 B方向に回転する。 そして、 磁化コイル 6に励磁電流を供給すると、 磁化鉄心 4 c と走行状態の薄鋼帯 1 0 とで閉じた磁路が形成される。 このため、 薄銅帯 1 0の内部あるは表面に前述した欠陥が存 在すると、 薄鋼帯 1 0内の磁路が乱れ、 漏洩磁束が生じる。 この漏洩磁束が該当位置の磁気センサ 7で抽出されて欠陥信 号と して検出される。
検出された欠陥信号はその信号レベルが薄鋼帯 1 0内部ま たは表面の欠陥の大きさと対応するので、 欠陥信号の信号レ ベルでもって薄鋼帯 1 0の欠陥の存在とその大きさを把握す ることが可能である。
しかし、 欠陥信号の信号レベルは薄鋼帯 1 0 と磁化鉄心 4 c と磁化コイル 6からなる磁化器 4によつて形成される磁路 の状態や、 磁化器 4 と薄銅帯 1 0 との間の距離 Lや、 リ フ ト オフと呼ばれる薄鋼帯 1 0 と各磁気センサ 7 との間の距離 等によつて大きく変化する。
このような不都合を解消するために、 第 3 1図および第 3 2図に示すように一定厚み t を有した中空ロール 1を用いて、 薄鋼帯 1 0 と磁化器 4 との間の距離 Lや、 薄鋼帯 1 0 と各磁 気センサ 7 との間の距離 ϋ を常時一定値に維持している。 ま た、 中空ロール 1が磁性材料で形成されていると、 薄鋼帯 1 0内への磁路の形成が阻害されるので、 中空ロール 1 は非磁 性材料で形成されている。
したがって、 中空ロール 1の厚み t を薄くすればするほど、 薄鋼帯 1 0 と磁化器 4の磁極 4 a, 4 b との間の距離 Lが小 さ く なり、 薄銅帯 1 0内に形成される磁界が大きく なり、 安 定した磁束を得ることができる。 したがって、 中空ロール 1 の厚み t を薄くするのが望ま しい。
また、 中空ロール 1 の厚み tが大きいと、 中空ロール 1 の 慣性モーメ ン トが大きく なり、 薄銅帯 1 0の走行速度が変動 した場合に、 中空ロール 1の慣性力により、 中空ロール 1 と 薄鋼帯 1 0 との接触面で搢動現象が生じて、 薄銅帯 1 0の表 面に疵をつけてしま う懸念がある。 したがって、 中空ロール
1の厚み t を小さ く して、 前記慣性モーメ ン トを小さくする 必要がある。 なお、 ただ単に慣性モ一メ ン トを小さくする目 的のみでは中空ロール 1の外径を小さ く設定すればよいが、 内部に収納されている磁化器 4や磁気センサ 7の大きさによ つてその外径が制約される。
しかし、 前述したように連続して走行している薄鋼帯 1 0 の欠陥を精度よく検出するには、 薄鋼帯 1 0表面と中空ロー ル 1の外周面とが常時接触している必要があるので、 中空口 ール 1には薄鋼帯 1 0の張力に起因する下向きの力や、 薄鍋 帯 1 0自体の重量による下向きの力が印加される。 下向きの 力が印加されると中空ロール 1が変形したり損傷する。 する と、 前述した薄鋼帯 1 0 と磁化器 4 との間の距離 Lや薄銅帯 1 0と各磁気センサ 7 との間の距離 を一定値に制御できな く なるので、 欠陥検出精度が低下したり、 探傷不能となる。 よって、 中空ロール 1が長期間に亘つて真円状態を維持す るには、 中空ロール 1の厚み tを一定限度以下に薄くできな い。 ちなみに、 薄鋼帯 1 0が 10 G m Z分の走行速度条件下に おいては、 上記厚み t は 2 程度が限界である。
また、 中空ロール 1内に収納する磁化鉄心 4 c と磁化コィ ル 6からなる磁化器 4の発生する磁界の強さを大き くするこ とが考えられるが、 磁化鉄心 4 cの大きさや磁化コィル 6に 流す電流の大きさを一定限度以上にすれば、 装置全体が大型 化したり、 製造費が大幅に上昇する問題がある。
[発明の開示]
本発明の第 1の目的は、 製造費を大幅に上昇させることな く 、 磁気センサで検出される欠陥信号の S Z Nを向上でき、 欠陥の検出感度と検出精度を大幅に上昇できる薄銅帯の磁気 探傷装置を提供することである。
本発明の第 2の目的は、 薄鋼帯の厚み方向の欠陥発生位置 と欠陥規模とを簡単に検出できる薄鋼帯の磁気探傷装置を提 供することである。
本発明の第 1の目的を達成するために、 本発明においては、 走行する薄鋼帯の表面に接することによつて回転する中空口 ール内に配設された磁化器の磁極間距離は、 磁極から薄銅帯 までの距離の 2以上でかつ 8倍以下に設定されている。
周知のように、 離間した一対の磁極を有する磁化器におい ては、 一方の磁極から出力きれる磁束は磁極相互間の空間 (磁気ギャ ップ) を経由して他方の磁極へ入力される。 この 場合、 磁気ギヤ ップに近接して磁性材料である薄鋼帯が存在 すれば、 一方の磁極から出力された磁束の一部は磁気ギヤ ッ プを通過せずに薄鋼帯内を通過して他方の磁極に入力する。
この場合、 磁気ギャ ップを通過する磁束と薄鋼帯内を通過 する磁束との割合は、 磁気ギャ ップの間隔 (磁極間距離 W ) と各磁極から薄鋼帯までの距離 L とに大きく左右される。 す なわち、 磁極間距離 Wが一定の場合には、 磁気回路の磁気抵 抗が小さい方により多く の磁束が集中するので、 各磁極と薄 鋼帯との間の距離 Lが小さ く なると、 当然薄鋼帯を通過する 磁束の密度が増大し、 距離 Lが大き く なると、 薄鋼帯を通過 する磁束の密度が減少する。
—方、 距離 Lが一定の場合には、 磁極間距離 Wが広く なる と薄鋼帯を通過する磁束の割合が増大するが、 磁極間距離 W が過度に広く なると、 前述した磁束の総数が減少する。 また、 磁極間距離 Wが過度に狭く なると、 前記磁束の総数は増大す るが、 薄鋼帯を通過する磁束の割合が減少する。
したがって、 磁極間距離 Wには一定の最適範囲が存在する。 そして、 この最適範囲は、 各磁極から薄銅帯までの距離 Lに よって左右される。 すなわち、 距離 Lが大きい場合は、 前記 最適範囲は磁極間距離 Wの寄与が大きく、 距離 Lが小さい場 合は、 前記最適範囲は距離 Lの寄与が大きい。
発明者はこの磁極間距離 Wと距離 Lとの関係を実験的に求 めて、 磁極間距離 Wが距離 Lに対して 2倍から 8倍の範囲
( 2 L≤W≤ 8 L ) であれば、 薄鋼帯を通る磁束の磁束密度 が高く十分実用に耐えるレベルとなることを確認した。
したがって、 前述したように中空ロールの厚みの制約で、 たとえ距離 Lを小さ く設定できなかったとしても、 磁極間距 離 Wを上記関係に設定することによって、 磁気センサの検出 感度を最大限に設定でき、 欠陥検出精度を向上できる。
また、 本発明においては、 磁気センサの薄鋼帯の走行方向 位置が磁極間の中央位置から走行方向側へ薄鋼帯の残留磁化 特性で定まる微小距離だけ移動した位置に設定されている。
全く欠陥が存在しない薄銅帯を磁化器の各磁極に対向配置 して、 磁化コイルを直流励磁する。 そして、 この状態で、 磁 気センサの走行方向位置を変化させた場合の磁気センサに検 出される磁界は、 各磁極位置で最大, 最小となり、 磁極間距 離 Wの中央位置で 0 レベルライ ンを横切る浮遊磁束に起因す る垂直磁界分布特性となる。 したがって、 この垂直磁界分布 特性が 0 レベルライ ンを横切る磁極間距離 Wの中央位置に磁 気センサを設定すれば、 前記浮遊磁束の影響を除去できる。
しかし、 実際の磁気探傷装置においては、 薄鋼帯は一定速 度で一方方向へ走行している。 このとき薄鋼帯は磁化器によ つて磁化され、 この磁化強度と薄鋼帯の保磁力に対応した磁 束が薄銅帯に残留する。 その結果、 垂直磁界分布特性が 0ラ ィ ンを横切る位置が必ずしも、 磁極間距離 wの中央位置とは 限らず、 走行方向側に移動する。
すなわち、 薄鋼帯が走行状態においては、 磁極間距離 Wの 中央位置が垂直磁界分布特性が 0 レベルにならない。 そして、 0 レベル位置が磁極間距離 Wの中央位置から走行方向へ移動 する。 したがって、 中央位置には浮遊磁束密が存在する。
よって、 この発明においては、 この移動した 0 レベル位置 に磁気センサが移動している。 その結果、 この磁気センサは 浮遊磁束を検出する こ とはない。 したがって、 磁気センサの 検出感度を容易に上昇できる。
また、 本発明においては、 磁化器又は磁気センサを収納し た一対の中空ロールを薄鋼帯を挟むように配設している。
したがって、 例えば薄鋼帯の自重や張力が直接印加される 側の中空ロールの厚みを厚く し、 薄鋼帯の自重や張力が直接 印加されない側の中空ロールの厚みを薄くする。 そして、 こ の薄い方の中空ロール内に磁気センサを収納することによつ て、 リ フ トオフを短くでき、 欠陥検出感度を上昇できる。
さ らに、 本発明においては、 薄鋼帯の内部又は表面の欠陥 に起因して生じる漏洩磁束を検出する磁気検出回路は、 強磁 性体コアに検出コィルを巻装してなる過飽和型の磁気センサ と、 この磁気センサの検出コイルに固定イ ンピーダンスを介 して交流電力を供給して過飽和領域まで励磁する励磁電力供 給手段と、 前記検出コイルの両端に発生する電圧の正側電圧 および負側電圧を検出する電圧検出手段と、 この電圧検出手 段にて検出された正側電圧と負側電圧とを加算して、 この加 算値を前記漏洩磁束に対応する測定値とする演算手段とで構 成されている。
一般に、 強磁性体コアに検出コイルを巻装してなる過飽和 型の磁気センサは、 磁気ダイォ一 ドゃ磁気抵抗素子やホール 素子を使用した磁気センサに比較して検出感度や温度特性に おいて格段に優れた特性を有する。
また、 第 2の目的を達成するために、 本発明においては、 —対の中空ロールが薄銅帯の上面および下面にそれぞれ接す るように配設されている。 そして、 一方の中空ロール内に磁 化器が配設され、 両方の中空ロール内に、 薄鋼帯の内部また は表面の欠陥に起因して生じる漏洩磁束を検出する磁気セン サが配設されている。 データ処理装置は、 この一対の磁気セ ンサで検出された各漏洩磁束値から欠陥の薄銅帯の厚み方向 の欠陥発生位置と欠陥規模を算出する。
—対の中空ロールは銅帯の上面または下面にそれぞれ接触 しているので各磁気センサと銅帯の上面または下面までの距 離は一定に保たれる。 そして、 鋼帯内部には磁化器にて磁界 が発生されているので、 欠陥が存在すれば、 各磁気センサは それぞれ欠陥に対応する漏洩磁束を検出する。 各磁気センサ で検出される漏洩磁束値は、 欠陥規模と欠陥までの距離、 す なわち該当磁気センサ側の表面からの各深さとの関数で表示 することができる。 したがって、 この 2つの関数を連立方程 式とすると、 欠陥規模と欠陥位置が算出される。
[図面の簡単な説明]
第 1図は本発明の一実施例に係わる薄鋼帯の磁気探傷装置 の薄銅帯の走行方向に平行する面で切断した断面図である。 第 2図は同実施例装置における薄鋼帯の走行方向に直交す る面で切断した断面図である。
第 3図は同実施例装置の効果を確認するための実験装置を 示す断面図である。
第 4図は同実験装置で得られた検出特性図である。
第 5図は第 4図の検出特性図を異なるパラメータで示した 特性図である。
第 6図は同実施例装置で得られた欠陥信号波形図である。 第 7図は本発明の他の実施例に係わる薄鋼帯の磁気探傷装 置の薄鋼帯の走行方向に平行する面で切断した断面図である。 第 8図は同実施例装置の効果を確認するための同実施例装 置の要部を取出して示す模式図である。
第 9図は各磁極と水平磁界分布および垂直磁界分布との関 係を示す図である。 第 1 0図は励磁電流と磁気センサの検出電圧との関係を示 す検出特性図である。
第 1 1図は同実験装置における磁化電流を変化した場合に おける磁気センサの検出特性図である。
第 1 2図は同実験装置における磁気センサ位置を変更した 場合における磁気センサの検出特性図である。
第 1 3図は本発明の他の実施例に係わる薄鋼帯の磁気探傷 装置の薄鋼帯の走行方向に平行する面で切断した断面図であ o
第 1 4図は同実施例装置における薄鋼帯の走行方向に直交 する面で切断した断面図である。
第 1 5図は本発明のさらに別の実施例に係わる薄鋼帯の磁 気探傷装置の薄鋼帯の走行方向に平行する面で切断した断面 図である。
第 1 6図は同実施例装置における薄鋼帯の走行方向に直交 する面で切断した断面図である。
第 1 7図は同実施例装置全体のシステムを示す模式図であ る o
第 1 8図は実施例装置における欠陥信号特性図である。 第 1 9図は上記欠陥信号特性から欠陥位置および欠陥規模 を算出する手順を示す図である。
第 2 0図は実測値と人手による目視評価との関係を示す図 ある。
第 2 1図は他の実施例の磁気探傷装置における各測定値と 欠陥位置および欠陥規模との関係を示すテーブルを示す図で ある。
第 2 2図は本発明のさ らに別の実施例に係わる薄鋼帯の磁 気探傷装置の磁気検出回路を示すプロッ ク図である。
第 2 3図は同磁気検出回路の動作を示すタイムチヤ一トで ある。
第 2 4図は同磁気検出回路の検出コィルに印加する電圧の 波形図である。
第 2 5図は同磁気検出回路のコィル出力電圧波形図である c 第 2 6図も同磁気検出回路のコィル出力電圧波形図である c 第 2 7図は強磁性体コアの磁化特性図である。
第 2 8図は同磁気検出回路における磁束密度に対する出力 電圧特性図である。
第 2 9図は本発明のさらに別の実施例の磁気検出回路を示 すブロッ ク図である。
第 3 0図は同磁気検出回路における磁化電流に対する出力 電圧特性図である。
第 3 1図は一般的な薄鋼帯の磁気探傷装置の薄鋼帯の走行 方向に平行する面で切断した断面図である。
第 3 2図は同従来装置における薄鋼帯の走行方向に直交す る面で切断した断面図である。
第 3 3図は磁気センサの配設方向と各磁気センサの検出波 形との関係を示す図である。
第 3 4図は第 3 3図の各磁気センサで検出された垂直磁界 と水平磁界との関係を示す図である。
[発明を実施するための最良の形態] 以下本発明の一実施例を図面を用いて説明する。
第 1図および第 2図は実施例の薄鋼帯の磁気探傷装置の概 略構成を示す断面である。 なお、 第 3 1図および第 3 2図に 示された従来装置と同一部分には同一符号が付してある。 し たがって、 重複する部分の詳細説明は省略されている。
非磁性材料で形成された中空ロール 1 aの中心軸に固定軸 2の一端が貫通されている。 中空ロール 1 aの両端の内周面 が一対のころがり軸受 3 a, 3 bによつて固定軸 2に回転自 在に支持されている。 したがって、 この中空ロール l aは固 定軸 2を回転中心軸と して自由に回転する。
前記中空ロール 1 aにおいて、 第 2図に示すように、 ころ がり軸受 3 a , 3 bが取付けられている両端部の厚み t 。 が 厚く、 薄鋼帯 1 0が接触する中央部の厚み t X が薄く設定さ れている。 この実施例においては、 両端部の厚み t 。 がら〜 1 O mniに設定され、 中央部の厚み t ! が 1〜 4 mraに設定され れている。
この中空ロール i a内において、 略コ字断面形状を有した 磁化鉄心 4 cが、 各磁極 4 a , 4 bが中空ロール l aの内周 面に近接する姿勢で、 支持部材 5を介して固定軸 2に固定さ れている。 各磁極 4 a, 4 bの先端は中空ロール 1 aの内周 面の曲率に対応して円弧状に形成されている。 そして、 磁化 鉄心 4 c に磁化コイル 6が巻装されている。 また、 磁化鉄心 4 cの磁極 4 a , 4 bの間に複数の磁気センサ 7が軸方向に 配列されている。 そして、 各磁気センサ 7は固定軸 2に固定 されている。 しかして、 磁化鉄心 4 cおよび磁化コィル 6は 中空ロール 1 aを介して薄鋼帯 1 0内に磁界を発生させる磁 化器 4を構成する。 なお、 各磁気センサ 7は特開平 1 一 3 0 8 9 8 2号公報に記載された過飽和型の磁気センサを使用し ている。
磁化コイル 6に励磁電流を供給するための電源ケーブル 8 および各磁気センサ 7から出力される各検出信号を取出すた めの信号ケ一プル 9が固定軸 2内を経由して外部へ導出され ている。 したがって、 磁化鉄心 4 c および各磁気センサ 7の 位置は固定され、 中空ロール 1 aが磁化鉄心 4 cおよび各磁 気センサ 7の外周を微小間隙を有して回転する。
そして、 磁化器 4における磁極 4 a , 4 b間の距離で示さ れる磁極間距離 (磁気ギヤ ップ間隔) Wは各磁極 4 a , 4 b と薄鋼帯 1 0までの距離 Lに対して 2倍以上でかつ 8倍以下 に設定されている ( 2 L≤W≤ 8 L ) 0
また、 各磁気センサ 7の薄鋼帯 1 0の走行方向位置は各磁 極 4 a, 4 bのほぼ中間位置に設定されている。 また、 各磁 気センサ 7 と薄鋼帯 1 0 との間の リ フ トオフ はこの実施例 においては 3 m inに設定されている。
このような構成の磁気探傷装置の中空ロール 1 aの外周面 を例えば矢印 A方向に走行状態の薄銅帯 1 0の一方面に所定 圧力でもって押し当てると、 固定軸 2は建屋のフ レームに固 定されているので、 中空ロール 1 aが矢印 B方向に回転する。
そして、 図示しない外部の磁化電源装置から励磁コィル 6 に励磁電流を供給すると、 磁化鉄心 4 cの各磁極 4 a , 4 b と走行中の薄鋼帯 1 0 とで閉じた磁路が形成される。 薄鋼帯 1 0の内部あるは表面に欠陥が存在すると、 薄鋼帯 1 0内の 磁路が乱れ、 漏洩磁束が生じる。 この漏洩磁束が該当位置の 磁気センサ 7でもつて欠陥信号と して検出される。
検出された欠陥信号はその信号レベルが薄銅帯 1 0内部ま たは表面の欠陥の大きさと対応するので、 欠陥信号の信号レ ベル変化でもつて薄銅帯 1 0の内部または表面の欠陥の存在 とその大きさを判定することができる。
次に、 上述したように、 磁化器 4の各磁極 4 a, 4 bの磁 極間距離 Wを薄銅帯 1 0までの距離 Lに対して 2倍以上でか つ 8倍以下に設定する根拠となる実験結果を説明する。
第 3図は離間した磁極 3 2 a , 3 2 bを有する磁化鉄心 3 2に磁化コイル 3 3を巻装してなる磁化器 3 1に距離 Lだけ 離間して薄鋼帯 1 0 aを配設して、 この薄鋼帯 1 0 aの反対 側位置に距離 dだけ離して磁気センサ 7 aを配設している。 なお、 この磁気センサ 7 aの位置は磁極間距離 Wの中心位置 である。 そして、 磁気センサ 7 aは磁化器 3 1にて生成され る磁界の磁束のうち薄鋼帯 1 0 a内を通過する磁束の磁束密 度を間接的に検出する。 なお、 磁極間距離 Wのみが異なる複 数種類の磁化器 3 1が準備されている。 また、 薄鋼帯 1 0 a と磁化器 3 1 との間の距離 L も任意に変更可能である。
このような実験装置において、 磁気センサ 7 aをその軸が 薄鋼帯 1 0 aに直交する方向に配設して、 薄鋼帯 1 0 aに形 成された外径 0. 2mm 〜0. 9 mra の 4種類の標準欠陥に起因する 各漏洩磁界の垂直成分を測定した。 また、 磁気センサ 7 aを その軸が薄鋼帯 1 0 a に平行する方向に配設して、 同一条件 で漏洩磁界の水平成分を測定した。 測定結果を第 3 3図に示 す。 信号波形 aが磁界の水平成分であり、 信号波形 bが磁界 の垂直成分である。
なお、 磁化器の各磁極と水平磁界分布特性 F と垂直磁界分 布特性 Dとの位置関係が第 9図に示されている。 図示するよ うに、 水平磁界分布特性 Fは略山形形状となり、 垂直磁界分 布特性 Dは中央位置で 0ライ ンを横切る略正弦波形となる。
また、 磁化器 3 1 と薄銅帯 1 0 a との距離 Lは 3 . 5 關、 磁極間距離 Wは 2 0 mm, 磁気センサ 7 a と薄鋼帯 1 0 a との 距離 dは 3 mmである。
そして、 各磁気センサ 7 aにて検出された磁界の垂直成分 と水平成分の各相対出力の関係を第 3 4図に示す。 この特性 から理解できるように、 磁界の水平成分と垂直成分とは正の 相関関係を有する。
このような知見に基づき、 以降の実施例においては、 特に 断らない限り、 垂直成分型の磁気センサを使用した場合につ いて説明する。
なお、 第 3 3図に示すように、 水平成分検出型の磁気セン ザの検出感度が垂直成分検出型の磁気センサの検出感度より 高い。 しかし、 水平成分検出型の磁気センサを用いた場合に は、 薄鋼帯 1 0 a等の被検体からの磁気ノイズから欠陥信号 を抽出するために別途ハイパスフィ ルタを設ける必要があり、 回路構成が複雑になる。
次に、 距離 Lを例えば 3 ramの一定値に固定した状態で、 磁 化器 3 1 の磁極間距離 Wを例えば 5 rainから 2 5 mmまで変更し ていった場合の磁気センサ 7 aの出力電圧を測定した。 薄鋼 帯 1 0 a内に欠陥が存在しなければ、 漏洩磁束は薄銅帯 1 0 a内の磁束密度に比例するので、 磁気センサ 7 aでもって薄 鋼帯 1 0 a内の磁束密度が測定される。 その測定結果が図 4 に示されている。 なお、 実験においては、 磁化コイル 3 3に 供給する磁化電流を 0 Aから定格の 5 Aまで徐々に増加して いる o
第 4図に示すように、 磁化電流が大きく なると、 磁極間距 離 Wの値によつて、 薄銅帯 1 0内を通る磁束の磁束密度が変 化することが理解できる。 すなわち、 例えば W = 5 の条件 等のように、 磁極間距離 Wが距離 Lに対して余りにも小さい 領域においては、 磁束密度が小さい。 また、 逆に、 例えば W = 2 5 の条件等のように、 磁極間距離 Wが距離 Lに対して 余りにも大きい領域においても、 磁束密度が小さく なる。 こ のような傾向は、 現実に測定を行つた 0. 5 mm≤ L≤ 8. 0 關の 実測範囲で観測することができた。
よって、 磁極間距離 Wと距離 Lとの比 (W Z L ) を横軸に して、 縦軸に前記磁気センサ 7 aの相対出力をとると、 第 5 図に示す特性が得られる。 すなわち、 この図においては、 各 距離 Lの実測範囲 ((]. 5 mm≤ L≤ 8. 0 mm) 内で、 磁極間距離 Wを調節して、 各距離 Lにおける最大出力値が、 距離 Lで規 格化された各磁極間距離 Wに対して示される。
—般に、 測定機器の特性は [一 3 d B ] を基準として評価 される。 そこで、 第 5図において、 相対出力が 7 0 %以上の 場合であれば、 その出力は十分実用に耐えると考える。 した がって、 前記比 (W Z L ) が 2以上でかつ 8以下の範囲が最 適範囲である。
第 6図は上述した条件 ( 2 L≤W≤ 8 L ) を満たした上で、 第 1図および第 2図に示す実際の装置において、 磁化器 4 と 薄鋼帯 1 0 との間の距離 Lを 1 mraから 5 mmまで変化させてい つた場合における各磁気センサ 7 にて検出された欠陥信号の 波形図である。 但し、 この波形図は磁界の垂直成分を微分し て出力した信号波形である。 また、 実験は、 0. 9 ram, 0. 6 mm, 0. 3 mraの予めピンホール外径が定ま っている 3榭類の試験用 欠陥を有した薄銅帯 1 0を用いて実施した。
当然距離 Lが大きく なると検出された欠陥信号全体の信号 レベルは低下するが、 得られた欠陥信号の S / Nが上昇して いるので、 増幅器を用いてゲイ ン (利得) を增大すれば、 0. 3 mm等の小さい欠陥であっても精度良く検出できる。
また、 第 2図に示すように、 中空ロール l aの厚み t を、 ころがり軸受 3 a, 3 bが取付けられている両端部において 厚く 、 薄銅帯 1 0が接触する中央部において薄く設定されて いる。 前述したように、 中空ロール 1 bの厚み t は薄い方が 望ま しいが、 過度に薄くすると、 中空ロール 1 aの強度が低 下する問題がある。 この強度を補う 目的で、 ころがり軸受 3 a , 3 bが取付けられる両端部の厚み t 。 を薄鋼帯 1 0が当 接する中央部の厚み より厚く設定することによって、 中 空ロール 1 a全体の厚み t を薄く することによる強度低下を ある程度補償できる。
したがって、 磁気センサ 7 と薄鋼帯 1 0 との間の距離で示 される リ フ トオフ を短く設定できるので、 磁気センサ 7の 検出感度を上昇できる。
第 7図は本発明の他の実施例の薄銅帯の磁気探傷装置の概 略構成を示す断面である。 なお、 第 3 1図および第 1図に示 された磁気探傷装置と同一部分には同一符号が付してある。 したがって、 重複する部分の詳細説明は省略されている。
この実施例の磁気探傷装置においては、 中空ロール 1内の 固定軸 2に取付けられた各磁気センサ 1 1の薄鋼帯 1 0の走 行方向位置は各磁極 4 a , 4 bの中央位置 Pから薄銅帯 1 0 の走行方向に微小距離 Δ X 0 だけ離れた位置に設定されてい る。 なお、 この実施例においては、 1 mmに設定されている。 また、 磁化器 4の磁極間距離 Wは 5 6 mmに設定され、 各磁気 センサ 1 1 と薄鋼帯 1 0との間のリフ トオフ は 3 mmに設定 されている。
次に、 上述したように、 磁気センサ 1 1を磁極 4 a, 4 b 間の中央位置 Pから微小距離 Δ Χ。 だけ薄鋼帯 1 0の走行方 向側へ移動させて取付けた根拠および効果を第 8図乃至第 1 2図を用いて説明する。
全く欠陥が存在しない薄鋼帯 1 0を磁極 4 a , 4 bに対し て静止させた状態における浮遊磁束の垂直磁界分布特性 Dが 第 9図に示されている。 薄鋼帯 1 0は一定速度で一方方向へ 走行しているので、 薄銅帯 1 0の保磁力に対応した磁束が薄 銅帯 1 0に残留する。 その結果、 垂直磁界分布特性 Dが 0ラ ィ ンを横切る位置が必ずしも、 磁極間距離 Wの中央位置とは 限らず、 走行方向側に移動する。 全く欠陥が存在しない薄鋼帯 1 0を一定速度で磁極 4 a , 4 bの対向位置を走行させた状態における励磁電流値と磁気 センサ 7の検出電圧との関係を示した実測値が第 1 0図に示 されている。 この第 1 0図から励磁電流が增大すると検出さ れる浮遊磁束が増大することが理解できる。
第 8図は第 7図の要部を取出して示す模式図である。 全く 欠陥が存在しない薄鋼帯 1 0を各磁極 4 a , 4 bに対向配置 した場合の垂直磁界分布特性 Gと、 同一薄鋼帯 1 0を矢印 A 方向に走行させた場合における垂直磁界分布特性 E との間に 一定の移動量が生じる。 そして、 この移動量はほぼ薄銅帯 1 0の残留磁化特性で定まる。 この垂直磁界分布特性 Eが 0 レ ベルとなる走行方向位置に各磁気センサ 1 1が取付けられて いる。 すなわち、 この移動量が前述した微小距離 Δ X。 とな る。 したがって、 磁気センサ 1 1の取付位置において浮遊磁 束は発生しない。
磁気センサ 1 1の検出電圧に浮遊磁束の成分が混入しない と、 磁気センサ 1 1 の検出感度を上昇させたと しても、 磁気 センサ 1 1が飽和する こ とはない。 よって、 たとえ小規模な 欠陥でもこの欠陥に起因する漏洩磁束を精度よく検出できる。
第 1 1図は、 実施例と同様に磁気センサ 1 1を中央位置 P から全く欠陥の存在しない薄鋼帯 1 0の走行方向又は逆方向 にそれぞれ 1 龍だけ移動させた位置に取付けた場合における、 磁化コイル 6に印加する磁化電流と磁気センサ 1 1 の検出電 圧との関係を示す実測値のグラフである。 実線で示す特性が 磁気センサ 1 1を走行方向へずらせた場合の実測値であり、 破線で示す特性が磁気センサ 1 1を逆方向へずらせた場合の 実測値である。 なお、 磁極間距離 Wは 5 6 ramである。
この実験結果から明らかなように、 磁気センサ 1 1を走行 方向へずらせた場合における磁気センサ 1 1で検出された浮 遊磁束による垂直磁界は、 逆方向へずらせた場合による垂直 磁界に比較して格段に小さい。 また、 第 1 0図に示した、 磁 気センサ 7を中央位置 Pに設定した場合に検出される垂直磁 界に対しても大幅に低減されている。
すなわち、 磁気センサ 1 1を薄鋼帯 1 0の走行方向にずら せることによって、 磁気センサ 1 1 にて検出される浮遊磁界 が大幅に低減される。
さ らに、 第 1 2図は、 人工的に 0. 6 ram径の貫通孔からなる 欠陥を人工的に形成した薄鋼帯 1 0に対する欠陥検出結果を 示す図である。 そして、 この実験においては、 磁気センサ 1 1の設置位置を実線で示す走行方向へ移動させていつた場合 と、 破線で示す逆方向へ移動させていった場合を示す。
図示するように、 磁気センサ 1 1を走行方向へ一定距離だ け移動させた条件で最良の検出感度が確保できた。
また、 磁気センサ 1 1の薄鋼帯 1 0の移動方向 (X方向) における取付位置が多少ずれたとしても、 人口欠陥の検出感 度の変動が小さい。 このため、 磁気センサ 1 1の取付が容易 となる。 ちなみに、 実施例装置においては、 取付位置の許容 範囲は X = 1 ± 0. 5 mmである。
第 1 3図および第 1 4図は本発明の他の実施例の薄鋼帯の 磁気探傷装置の概略構成を示す断面である。 なお、 第 3 1図, 第 3 2図および第 1図に示された磁気探傷装置と同一部分に は同一符号が付してある。 したがって、 重複する部分の詳細 説明は省略されている。
この実施例の磁気探傷装置においては、 薄鋼帯 1 0を挟ん で上下に一対の中空ロール 1 , 1 bが配設されている。 各中 空ロール 1 , 1 bは非磁性材料で形成されている。 そして、 外径は互いに等しく設定されているが、 上側中空ロール 1 b の厚み t 3 が下側中空ロール 1の厚み より薄く設定され ている。 各中空ロール i, l bの各中心軸にそれぞれ中空の 固定軸 2, 2 aの一端が貫通されている。 下側中空ロール 1 の固定軸 2の他端は図示しない建屋のフレームに固定されて いる。 一方、 上側中空ロール 1 bの固定軸 2 aの他端は下側 中空ロール 1の固定軸 2に対して図示しないごく 弱いばねで 付勢されている。 各固定軸 2, 2 aは各中空ロール 1, l b の各中心軸に位置するようにそれぞれ一対のころがり軸受 3 a , 3 bを介して各中空ロール 1 , l, bの両端の内周面に支 持されている。 したがって、 各中空ロール 1 , l bは固定軸 2, 2 aを回転中心軸として自由に回転する。 そして、 薄銅 帯 1 0が矢印 A方向へ走行すると、 各中空ロール 1 , l bは それぞれ矢印 B方向および矢印 C方向へ回転する。
上側中空ロール 1 b内において、 複数の磁気センサ 7 b力く 下方を向く姿勢で固定軸 2 aに支持部材を介して固定されて いる。 そ して、 各磁気センサ 7 bの先端は上側中空ロール 1 bの内周面に微小間隙を有して対向している。 この各磁気セ ンサ 7 bの出力信号は固定軸 2 aの内部を経由した信号線ケ 一ブル 9 aでもって外部へ導出される。
—方、 下側中空ロール 1内において、 磁化鉄心 4 cの各磁 極 4 a , 4 bが上方を向く姿勢で、 磁化器 4が固定軸 2に固 定されている。 磁化コィル 6の励磁電流は固定軸 2内を経由 した電源ケーブル 8を介して供給される。
なお、 中空ロール 1内の磁化器 4の磁極間距離 Wと磁化器 と薄銅帯 1 0との間の距離 Lとの関係は先の実施例と同様 に一定の関係 ( 2 L≤W≤ 8 L ) を維持している。
このような磁気探傷装置においては、 上側の中空ロール 1 bには薄銅帯 1 0の重力や張力が直接印加されないので、 下 側の中空ロール 1の厚み t i に比較して、 上側の中空ロール l bの厚み t 3 を薄く設定できる。 よって、 磁気センサ 7 b と薄銅帯 1 0 との間のリ フ トオフ をより短く設定すること によって、 磁気センサ 7 bの検出感度をより向上できる。
また、 薄鋼帯 1 0は上下の中空ロール 1 b , 1によって挟 まれているので、 走行に伴って生じる振動が抑制される。 そ の結果、 リ フ トオフ の変動が小さく なり、 欠陥の検出精度 が向上する。
第 1 5図および第 1 6図は本発明の他の実施例の薄鋼帯の 磁気探傷装置の概略構成を示す断面である。 なお、 第 1 3図 および第 1 4図に示された磁気探傷装置と同一部分には同一 符号が付してある。 したがって、 重複する部分の詳細説明は 省略されている。
この実施例においては、 下側の中空ロール 1内にも上側の 中空ロール 1 b内に収納された磁気センサ 7 b と同一構成の 磁気センサ 7が磁化器 4の磁極間に配設されている。
また、 第 1 7図は磁気探傷装置全体のシステムを示す図で ある。 供給リール 1 2から繰出される薄鋼帯 1 0は、 前方押 さえロール 1 3 a , 1 3 bを介して一対の中空ロール 1 , 1 bへ導かれ、 この中空ロール 1 , l bの間を経由し、 後方押 さえロール 14 a , 1 4 bを経て巻取リール 1 5に一定速度 で巻取られる。 下側中空口一ル 1 には電源ケーブル 8を介し て磁化電源装置 1 6が接続されている。 各中空ロール 1, 1 bには信号ケーブル 9 , 9 aを介して各信号処理回路 1 7 a , 1 7が接続されている。 各信号処理回路 1 7 , 1 7 aから出 力された各欠陥信号 y i , y 2 はデータ処理装置 1 8へ入力 される。 データ処理装置 1 8は入力されれた各欠陥信号 y j , y 2 を用いて欠陥規模 a と欠陥発生位置 X , を算出する。 算 出された欠陥規模 a及び欠陥発生位置 X! は例えば C R T表 示管を用いた表示装置 1 9に表示される。
次に、 この磁気探傷装置を用いて薄鋼帯 1 0の厚み方向の 欠陥発生位置 X i と欠陥規模 aを算出する手順を説明する。
—対の中空ロール l b , 1 は薄銅帯 1 0の表面および裏面 にそれぞれ接触しているので各磁気センサ 7 b , 7 と薄鋼帯 1 0の表面および裏面までの距離は一定に保たれる。 したが つて、 欠陥が存在した場合に、 各磁気センサ 7 b, 7にて検 出される漏洩磁束値 , Y2 は(1) (2) 式に示すように、 欠陥規模 a と欠陥までの距離、 すなわち該当磁気セ ンサ側の 表面からの各深さ , X 2 との関数で表示することができ る o Y i = F ! (X i , a ) …(1)
Y2 = F 2 (X 2 , a ) …(2)
この各関数 F! , F 2 は例えば第 1 8図に示すように、 例 えば指数減衰曲線で近似できる。 そこで、 実施例においては、 (1) (2) 式を次の (3) (4)式に示すように指数関数で近似して いる。
Y 1 = C 1 1 exp [ C 12X i + a ] … (3)
Y 2 = C 21 exp [ C 22X 2 + a ] … (4)
但し、 C n, C 1 2 , C 2 1 , C 22は予め実験的に求められて いる定数である。
また、 鋼帯の厚み Tは予め定まっているので、
T = X 1 + X - (5)
である。 よって、 (3) (4) (5) の連立方程式を解く ことによつ て、 欠陥規模 a と欠陥位置 X i が求まる。
第 1 9図は欠陥位置 および欠陥規模 aを算出する過程 を模式的に示す図である。 欠陥規模 aが a = a 3 , a = a 2 , a = a! と変化すると、 欠陥信号 y の特性は右方向へ平行 移動する。 また、 欠陥規模 aが a = a 3 , a = a 2 , a = a i と変化すると、 欠陥信号 y 2 の特性は左方向へ平行移動す
O o
したがって、 測定された信号値 に対応する特性上の点 は b i , b 2 , b 3 となる。 同様に、 測定された信号値 Y 2 に対応する特性上の点は c , c 2 , c 3 となる。 したがつ て、 欠陥規模 aが互いに等しく、 また、 それぞれ同時に各信 号値 , Y 2 を満足する点は b 2 , c 2 となる。 よって、 この b 2 , c 2 点に対応する位置 X : が欠陥発生位置となり、 その時の欠陥規模 a 2 が該当欠陥の欠陥規模 a となる。
このように構成された薄鋼帯の磁気探傷装置によれば、 探 傷対象と しての薄鋼帯 1 0を挟んで対向配置された一対の中 空ロール l b, 1内に配設された各磁気センサ 7 b , 7で検 出された薄鋼帯 1 0の各欠陥信号 y , , y 2 から簡単な計算 式でもって, 薄鋼帯 1 0の表面および内部に存在する欠陥の 位置 X , と欠陥規模 a とを正確に把握できる。
したがって、 欠陥発生位置 X とその規模 aが正確に把握 できるので、 欠陥の種類もほぼ正確に把握できる。 この磁気 探傷装置で把握できる欠陥の種類と して、 例えば、 顕存ガウ ジ、 潜在ガウジ、 溶接部、 ブローホール、 穴、 エッ ジ ト ング 疵、 耳割れ疵、 ト リマー疵等がある。
このように、 欠陥の発生位置、 欠陥規模、 欠陥種類等が正 確に把握されるので、 この磁気探傷装置を工場の検査ライ ン に組込んだ場合において、 これらの検査データを品質改良対 策の重要な情報とすることができる。
また、 各磁気センサ 7 b, 7をそれぞれ中空ロール 1 b , 1内に収納している。 そして、 各中空ロール l b, 1 は常時 薄鋼帯 1 0の上面および下面に一定の付勢力で押付けられて いる。 したがって、 各磁気センサ 7 b , 7と薄鋼帯 1 0の上 面および下面との間の距離を常時一定に維持できる。 よって、 たとえ薄鋼帯 1 0が走行過程で上下に振動したと しても前記 距離は一定値に維持されるので、 欠陥測定精度がさ らに向上 する。 第 2 0図は、 実施例装置において、 測定された実際の欠陥 の欠陥規模と、 この実測された欠陥を切断等によつて実際に 解剖して観測者が目視によつて欠陥規模を A〜 Eの 5段階に 評価した結果との対応を示す図である。 測定された欠陥規模 は目視評価と良い対応を示していることが理解できる。
なお、 本発明は上述した実施例に限定されるものではない。 実施例のデータ処理装置 1 8内においては、 各信号値 Y t , Y 2 から欠陥発生位置 X i と欠陥規模 aを算出する手段と し て、 欠陥信号 y i , y 2 を(3) (4)式に示すような指数関数近 似手法が用られた。 しかし、 簡単な関数近似できない場合は、 予め欠陥位置と欠陥規模が既知の多数の標準欠陥試料を用い て、 その標準欠陥試料を測定する。 そして、 得られた各磁気 センサ 7 b, 7の各信号値 , Y 2 と前記欠陥位置 と 欠陥規模 aのとの関係を、 第 2 1図に示すように、 テーブル の形で記億することが可能である。 そして、 実際の薄鋼帯 1 0を測定して得られた、 各測定値 Y i , Y 2 でもって第 2 1 図のテーブルを検索して、 各測定値 , Y 2 の組合わせが 最も近いデータに対応する欠陥位置と欠陥規模とを読出して、 この読出した欠陥位置と欠陥規模を測定結果とすればよい。 次に、 中空ロール内に収納された磁化器 4でもって磁化さ れた薄鋼帯 1 0の内部又は表面に起因して生じる漏洩磁束を 過飽和型の磁気センサを用いて検出する場合の磁気検出回路 を説明する。
第 2 2図は磁気検出回路の概略構成を示すプロッ ク図であ o 過飽和型の磁気センサ 7は、 棒状に形成された強磁性体コ ァ 2 1 と、 この強磁性体コア 2 1に巻装された検出コイル 2 2とで構成されている。 パルス電圧発生器 23は、 第 23図 に示すような、 一定の間隔で正負のパルス電圧を出力する。 出力パルス電圧発生器 2 1の出力端子には固定イ ンピーダン スである抵抗 24を介して過飽和型の磁気センサ 7の検出コ ィル 22の一端に接続されている。 検出コイル 22の他端は 接地されている。 パルス電圧発生回路 23から出力されたパ ルス電圧は検出コイル 22に印加される。 その結果、 強磁性 体コア 2 1は過飽和領域まで磁化される。
検出コイル 22の一端は正電圧ピーク検波器 25及び負電 圧ピーク検波器 26の入力端子に接続されている。 各ピーク 検波器 26, 26は、 入力信号の (+ ) 側のピーク値 V , お よび (一) 側のピーク値一 V2 を検出する。 各ピーク検波器 25, 26にて得られた各ピーク値 V! , — V2 は次の加算 器 27へ入力される。 加算器 27は、 各ピーク値 V , 一 V 2 を加算して出力電圧 V。 を出力する。
次に動作原理を第 24図乃至第 28図を用いて説明する。 第 24図に示すような交流電圧波形を有する交流電力を抵 抗 24を介して磁気センサ 7の検出コイル 22に印加する。 すると、 検出コイル 22の両端に発生する電圧 e。 は抵抗 2 の抵抗値 Rと検出コイル 22のイ ンピーダンス Z sに対応 して決定される。 すなわち、
e 0 = e « Z s / (R + Z s ) (6)
で示される。 なお、 eは印加する電圧値である。 そして、 検出コイル 2 2は強磁性体コア 2 1に巻装されて いるので、 イ ンピーダンス Z s は強磁性体コア 2 1 の透磁率 に比例して変化する。
今、 外部磁界を磁気センサ 7に加えない状態で、 検出コィ ル 2 2に交流電流を流したとすると、 第 2 7図に示すように 強磁性体コア 2 1 のヒステリ シス特性に従って、 強磁性体コ ァ 2 1の透磁率特が変化する。 なお、 nはコイル巻数、 i は コィル電流である。
このため検出コイル 2 2の両端に発生する出力電圧は第 2 5図に示すような波形となる。 そして外部磁界を加えられな い状態では波形は正、 負対称波形となり、 正方向の電圧 と負方向の電圧 V 2 は等しく なる。
この状態で外部磁界を加えると、 強磁性体コア 2 1を交差 する磁束は検出コィル 2 2で発生する磁界と外部磁界との合 成磁束となる。 このため検出コイル 2 2の両端に発生する波 形は第 2 6図に示すように V > V 2 となる。
したがって、 検出コイル 2 2の両端に発生する出力電圧の 正側の電圧 と負側の電圧 V 2 を比較しその差を求めるこ とによって間接的に外部磁界を計測できる。 磁気探傷装置に おいては外部磁界は欠陥によつて発生する漏洩磁束の強度を 検出できる。
このような過飽和型の磁気センサ 7を用いるこ とによって、 第 2 8図に示すように 0 1 0ガウスという微小な磁束密度 に対して 0 5 0 0 m Vという出力電圧 V。 を得ることが可 能である。 第 2 2図に示す実施例の磁気検出回路においては、 磁気セ ンサ 7に印加する交流電力は第 2 3図に示すような正負のパ ルス電圧波波形を有する。
このように磁気センサ 7の検出コイル 2 2に対してパルス 電圧を供給しているので、 第 2 4図に示す通常の交流電力を 供給する場合に比べて消費電力は少なく なり、 省電力化を図 る こ とができる。 例えばパルス電圧のパルス幅とパルス周期 との比を 1 0 〜 1 0 0に設定すれば、 磁気センサ 7に供給す る平均電力を 1 Z 1 0 〜 1 _ 1 0 0程度に抑えるこ とができ る。 その結果、 磁気探傷装置の動力源と してバッテリを使用 することが充分に可能となる。
また、 検出コイル 2 2の両端に発生する電圧のピーク値を 検出するよ うにしているので、 前述したパルス幅とパルス周 期との比を 2 〜 1 0 0 という広い幅で変化させても微小磁束 の検出感度の相対感度はほとんど変化しない。
また、 消費電力が少ないので、 多数の磁気センサ 7を薄鋼 帯 1 0の幅方向に配設した磁気探傷装置においても、 消費電 力が大幅に増大することはない。
第 2 9図は他の実施例の磁気検出回路の概略構成を示すプ ロッ ク図である。
この実施例の磁気検出回路においては、 第 2 2図の回路に 磁気センサ 7に印加するパルス電圧に直流バイァス電圧を加 算するバイアス回路を付加している。
加算器 2 7の出力電圧 V。 はローパスフィ ルタ 4 1 で直流 に変換された後、 差動増幅器 4 2に入力される。 差動増幅器 42は入力された出力電圧 V。 と基準電圧発生器 43から出 力された基準電圧 Vs との差電圧 Δ Vを出力する。 差動増幅 器 42から出力された差電圧厶 Vは次の直流電源 44へ入力 さるる。 直流電源 44は、 その差電圧 Δνに比例する直流バ ィ ァス電圧 VB を加算器 4 5を介して前記パルス電圧に加算 す < > o
次に、 直流バイ アス電圧 VB をパルス電圧に加算する効果 を説明する。
第 30図は、 直流電源 4 からの直流バイァス電流の値を O mA, 50 mA, 1 00 mA, 160 mA, 200 mAと 変化させたときの検出コイル 22の磁化電流と出力電圧との 関係を測定した結果を示すグラフである。
例えば、 0 m Aの直流バイァス電流を供耠した場合には、 磁化電流に対する出力電圧の直線特性の範囲が、 0〜 2. 5 Aであるのに対して、 検出コイル 22に 1 00 m Aの直流バ ィ ァス電流を供給すると、 直線特性の範囲が 0〜4. 5 Aま で拡大される。 このように、 直流バイ アス電流を変化するこ とによって、 測定スパンを拡大でき、 欠陥検出精度を向上で さ O o
そして、 直流バイァス電流が 1 00 mAからさらに増大す ると、 測定スパンは変化しないが、 漏洩磁束の測定領域が移 動する。 このことは、 逆に、 直流バイ アス電流の値を調整し て、 欠陥が全く存在しない薄鋼帯 1 0を磁気探傷した場合に、 出力電圧 V。 が常時 0になるように、 バイ アス電流を制御す ればよい。 第 2 9図に示す磁気検出回路においては、 出力電圧 V。 と 基準電圧 V s との差電圧 Δ νに比例するバイアス電圧 V B が パルス電圧に加算されるので、 欠陥が存在しない場合は自動 的に出力電圧 V。 が 0に制御される。 なお、 制御ループの周 波数応答は低く、 反対に、 走行中の薄鋼帯 1 0の欠陥は高い 波数成分を有するので、 その欠陥は確実に検出される。
このように、 磁気検出回路の測定範囲の中央に動作点が自 動的に捕正されるので、 たとえ測定条件が変化しても、 常に 良好な測定範囲を確保でき、 欠陥検出能力をさ らに向上させ ることが可能である。

Claims

請求の範囲
( 1 ) 薄鋼帯の走行路に直交する固定軸に回転自在に支持さ れ、 前記走行路を走行する薄鋼帯の表面に接するこ とによつ て回転する中空ロールと、 この中空ロール内に配設され、 前 記走行方向に離間した磁極を有し、 前記薄鋼帯内に磁界を発 生させる磁化器と、 前記薄鋼帯の内部又は表面の欠陥に起因 して生じる漏洩磁束を検出する磁気センサとを備えた薄鋼帯 の磁気探傷装置において、
前記離間した磁極間の距離がこの磁極から前記薄鋼帯まで の距離の 2以上でかつ 8倍以下に設定された薄鋼帯の磁気探 傷装置。
(2) 前記磁気センサは中空ロール内に収納された請求の範 囲第 1項記載の薄銅帯の磁気探傷装置。
(3) 前記中空ロールにおける薄鋼帯と接触する領域の厚さ が被接触領域の厚さより薄い請求の範囲第 2項記載の薄銅帯 の磁気探傷装置。
(4 ) 前記磁気センサの前記走行方向の位置が前記磁極間の 中央位置から走行方向側へ前記薄鋼帯の残留磁化特性で定ま る微小距離だけ移動した位置に設定された請求の範囲第 1項 又は第 2項記載の薄鋼帯の磁気探傷装置。
(5) 薄鋼帯の走行路に直交する固定軸に回転自在に支持さ れ、 前記走行路を挟んでこの走行路を走行する薄鋼帯の表面 および裏面にそれぞれ接することによって回転する一対の中 空ロールと、 この一対の中空ロールのうちの一方の中空口一 ル内に配設され、 前記薄銅帯内に磁界を発生させる磁化器と、 前記一対の中空ロールのうちの他方の中空ロール内に配設さ れ、 前記薄鋼帯の内部または表面の欠陥に起因して生じる漏 洩磁束を検出する磁気センサとを備えた薄鋼帯の磁気探傷装
(6) 前記磁気センサが収納された中空ロールが前記磁化器 が収納された中空ロールより上方に位置する請求の範囲第 5 項記載の薄鋼帯の磁気探傷装置。
(7) 前記磁気センサが収納された中空ールの厚みが前記磁 化器が収納された中空ロールの厚みより薄い請求の範囲第 6 項記載の薄鋼帯の磁気探傷装置。
(8) 薄鋼帯の走行路に直交する固定軸に回転自在に支持さ れ、 前記走行路を挟んでこの走行路を走行する薄鋼帯の上面 および下面にそれぞれ接することによって回転する一対の中 空ロールと、 この一対の中空ロールのうちの一方の中空ロー ル内に配設され、 前記薄鋼帯内に磁界を発生させる磁化器と、 前記各中空ロール内に配設され、 前記薄銅帯の内部または表 面の欠陥に起因して生じる漏洩磁束を検出する一対の磁気セ ンサと、 この一対の磁気センサで検出された各漏洩磁束値か ら前記欠陥の前記薄鋼帯の厚み方向の欠陥発生位置と欠陥規 模を算出するデータ処理装置とを備えた薄鋼帯の磁気探傷装 置 o
( 9 ) 前記磁化器は前記一対の中空ロールのうち前記薄鋼帯の 下面に接する中空ロール内に配設された請求の範囲第 8項記 載の薄鋼帯の磁気探傷装置。
( 1 0) 薄鋼帯の走行路に直交する固定軸に回転自在に支持さ れ、 前記走行路を走行する薄鋼帯の表面に接することによつ て回転する中空ロールと、 この中空ロール内に配設され、 前 記薄鋼帯内に磁界を発生させる磁化器と、 前記薄鋼帯の内部 又は表面の欠陥に起因して生じる漏洩磁束を検出する磁気検 出回路とを備えた薄鋼帯の磁気探傷装置において、
前記磁気検出回路は、 前記中空ロール内に収納され、 強磁 性体コアに検出コィルを巻装してなる過飽和型の磁気センサ と、 この磁気センサの検出コイルに固定ィ ン ピーダンスを介 して交流電力を供給して過飽和領域まで励磁する励磁電力供 給手段と、 前記検出コィルの両端に発生する電圧の正側電圧 および負側電圧を検出する電圧検出手段と、 この電圧検出手 段にて検出された正側電圧と負側電圧とを加算して、 この加 算値を前記漏洩磁束に対応する測定値とする演算手段とで構 成された薄鋼帯の磁気探傷装置。
(1 1) 前記励磁電力供給手段は前記検出コィルに正負のパル ス電圧を供給するパルス電圧発生器であり、 前記電圧検出手 段は前記検出コィルの両端に発生する電圧の正負のピーク値 を検出する一対のピーク値検出回路である請求の範囲第 1 0 項記載の薄銅帯の磁気探傷装置。
(12) 前記パルス電圧発生器から出力されるパルス電圧に直 流バイアス電圧を加算する直流バイアス加算手段を備えた請 求の範囲第 1 1項記載の薄鋼帯の磁気探傷装置。
(1 3) 前記演算手段にて得られた測定値に応じて前記直流バ ィァス電圧を可変制御するバイァス制御手段を備えた請求の 範囲第 1 2項記載の薄鋼帯の磁気探傷装置。
PCT/JP1991/000224 1990-02-22 1991-02-22 Detecteur magnetique de defauts pour mince bande en acier WO1991013347A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019960701203A KR960009762B1 (ko) 1990-02-22 1991-02-22 박강대의 자기탐상 장치
DE69123797T DE69123797T2 (de) 1990-02-22 1991-02-22 Magnetischer fehlstellendetektor für dünne stahlbänder
EP91904342A EP0469158B1 (en) 1990-02-22 1991-02-22 Magnetic flaw detector for thin steel belt
KR1019910701415A KR960005364B1 (ko) 1990-02-22 1991-02-22 박강대의 자기탐상 장치

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP4184090 1990-02-22
JP2/41840 1990-02-22
JP2/23250U 1990-03-09
JP2325090U JPH0750711Y2 (ja) 1990-03-09 1990-03-09 薄鋼帯の磁気探傷装置
JP2/77379 1990-03-27
JP7737990 1990-03-27
JP18948490A JPH07109416B2 (ja) 1990-07-19 1990-07-19 薄鋼帯の磁気探傷装置
JP2/189484 1990-07-19
JP19787190A JPH07104329B2 (ja) 1990-07-27 1990-07-27 鋼帯の磁気探傷方法及びその装置
JP2/197871 1990-07-27
JP2/278918 1990-10-19
JP2278918A JP2617615B2 (ja) 1990-10-19 1990-10-19 磁気測定方法およびその装置

Publications (1)

Publication Number Publication Date
WO1991013347A1 true WO1991013347A1 (fr) 1991-09-05

Family

ID=27549089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000224 WO1991013347A1 (fr) 1990-02-22 1991-02-22 Detecteur magnetique de defauts pour mince bande en acier

Country Status (5)

Country Link
US (1) US5235275A (ja)
EP (1) EP0469158B1 (ja)
KR (1) KR960005364B1 (ja)
DE (1) DE69123797T2 (ja)
WO (1) WO1991013347A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432665C (zh) * 2005-08-05 2008-11-12 营口市北方检测设备有限公司 钢制品表层缺陷的双场漏磁通的在线检测装置和检测方法
CN114894886A (zh) * 2022-07-15 2022-08-12 国机传感科技有限公司 一种管道检测器用浮动探头

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327083A (en) * 1992-03-19 1994-07-05 Allegheny Ludlum Corporation Method and apparatus using magnetic flux scanning to test grain structure of magnetic sheet material
CA2151461C (en) * 1992-12-09 2004-09-21 John S. Hendricks Advanced set top terminal for cable television delivery system
EP0624793A1 (de) * 1993-05-03 1994-11-17 Tuboscope Vetco (Deutschland) Gmbh Verfahren und Gerät zur Ermittlung von magnetischen Unstetigkeiten in einer Probe aus magnetisierbarem Material
US5808465A (en) * 1994-02-28 1998-09-15 Vamco Machine & Tool, Inc. Electronically controlled high speed press feed
US7131339B2 (en) * 1997-01-27 2006-11-07 Southwest Research Institute Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors
EP1806577A4 (en) * 2004-10-28 2013-05-29 Toyo Kohan Co Ltd DEVICE AND METHOD FOR INSPECTING SCRATCHES ON OUTER CELL BODIES
US7489134B2 (en) * 2005-03-10 2009-02-10 Arcady Reiderman Magnetic sensing assembly for measuring time varying magnetic fields of geological formations
KR100802723B1 (ko) 2006-11-23 2008-02-12 현대자동차주식회사 벨트의 노이즈 방지 시스템
CN102253115B (zh) * 2011-04-25 2013-10-30 许志浩 钢丝绳芯胶带探伤系统及用其检测的方法
CN106990163A (zh) * 2016-01-20 2017-07-28 宝山钢铁股份有限公司 用于内部缺陷检测的检测电路及系统
US11485609B2 (en) * 2018-03-08 2022-11-01 Shimadzu Corporation Magnetic body inspection device
CN109541507B (zh) * 2018-12-17 2021-01-08 武汉钢铁有限公司 用于取向硅钢片性能检测的单片磁导计、检测装置及检测方法
CN109500100B (zh) * 2018-12-27 2023-10-27 中冶南方工程技术有限公司 一种用于带钢双面检查的磁力转向辊及检查站
WO2024086323A1 (en) * 2022-10-21 2024-04-25 Fermi Research Alliance, Llc Shielded irradiator vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170068U (ja) * 1985-04-10 1986-10-22
JPS63107849U (ja) * 1986-12-29 1988-07-12

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938164A (en) * 1957-06-25 1960-05-24 Hansburg Milton Automatic earth field balance control system for magnetometers
DE1931654B2 (de) * 1969-06-21 1971-11-11 Walzenspaltpositionsregelung fuer walzgerueste
GB1311907A (en) * 1970-06-19 1973-03-28 British Steel Corp Apparatus for the magnetic testing of metal strip
GB1378505A (en) * 1971-06-14 1974-12-27 British Iron Steel Research Detection of electrical or magnetic properties of metal strip
US3886445A (en) * 1973-10-17 1975-05-27 Nippon Kokan Kk Method and apparatus for electromagnetic detection of welds in metal strips including pressing means for the strip
DE2620070A1 (de) * 1975-05-08 1976-11-25 British Steel Corp Vorrichtung zur magnetischen pruefung eines metallbandes
US4107606A (en) * 1976-12-14 1978-08-15 Measurex Corporation Non-contacting electromagnetic thickness gauge for sheet measurement having improved small distance sensitivity
US4305035A (en) * 1979-08-22 1981-12-08 Rockwell International Corporation Magnetic field amplitude detection sensor apparatus
JPS57108656A (en) * 1980-12-26 1982-07-06 Kawasaki Steel Corp Detecting method of internal defect in thin steel plate
US4518919A (en) * 1981-01-16 1985-05-21 Tokyo Shibaura Denki Kabushiki Kaisha Detecting device for detecting a magnetic strip embedded in a sheet
EP0098115A1 (en) * 1982-06-28 1984-01-11 De La Rue Systems Limited Detecting the condition of a sheet or web
US4767987A (en) * 1983-12-12 1988-08-30 Harris Graphics Corporation Method and apparatus for monitoring film thicknesses by sensing magnetic interaction between members movable to a film thickness distance
JPS61147158A (ja) * 1984-12-21 1986-07-04 Nippon Steel Corp ストリツプの欠陥検出装置
JPS61170068A (ja) * 1985-01-23 1986-07-31 Nec Ic Microcomput Syst Ltd Mosトランジスタ
JPS61170067A (ja) * 1985-01-23 1986-07-31 Nec Corp 半導体装置
JPH06101713B2 (ja) * 1985-11-11 1994-12-12 日本電気株式会社 時分割多方向多重通信方式
JPS6396547A (ja) * 1986-10-14 1988-04-27 Nippon Steel Corp 帯状金属板の欠陥検出装置
JPS63107849A (ja) * 1986-10-27 1988-05-12 松下電工株式会社 無機質硬化体の製造方法
JP2617570B2 (ja) * 1989-04-28 1997-06-04 日本鋼管株式会社 磁気測定装置
US5089776A (en) * 1989-09-25 1992-02-18 Nkk Corporation Apparatus for detecting defects in a moving steel strip with a magnetizing yoke and a sensor placed on opposite sides of the strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170068U (ja) * 1985-04-10 1986-10-22
JPS63107849U (ja) * 1986-12-29 1988-07-12

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0469158A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432665C (zh) * 2005-08-05 2008-11-12 营口市北方检测设备有限公司 钢制品表层缺陷的双场漏磁通的在线检测装置和检测方法
CN114894886A (zh) * 2022-07-15 2022-08-12 国机传感科技有限公司 一种管道检测器用浮动探头
CN114894886B (zh) * 2022-07-15 2022-10-18 国机传感科技有限公司 一种管道检测器用浮动探头

Also Published As

Publication number Publication date
EP0469158B1 (en) 1996-12-27
DE69123797D1 (de) 1997-02-06
US5235275A (en) 1993-08-10
EP0469158A4 (en) 1992-06-24
EP0469158A1 (en) 1992-02-05
KR960005364B1 (ko) 1996-04-24
DE69123797T2 (de) 1997-07-03
KR920701818A (ko) 1992-08-12

Similar Documents

Publication Publication Date Title
EP0801304B1 (en) Magnetic flaw detection apparatus
WO1991013347A1 (fr) Detecteur magnetique de defauts pour mince bande en acier
JP3811039B2 (ja) 磁気探傷装置の漏洩磁気検出センサ
JPH03175352A (ja) 薄鋼帯の磁気探傷装置
WO1992014145A1 (fr) Procede d&#39;inspection magnetique et dispositif prevu a cet effet
JP2605519B2 (ja) 磁気探傷方法およびその装置
JPS6352345B2 (ja)
JP2848081B2 (ja) 磁気探傷装置
JPH08193980A (ja) 磁気探傷法及び、磁気探傷装置
EP0544911B1 (en) Device for detecting magnetic flux
CA2054718C (en) Magnetic inspection apparatus for thin steel strip
JP3584453B2 (ja) 微小欠陥検出装置
JPH11108900A (ja) 磁気探傷装置の感度校正方法及び装置
JP2617605B2 (ja) 磁気測定装置及び磁気探傷装置の診断方法
KR960009762B1 (ko) 박강대의 자기탐상 장치
JPH0750711Y2 (ja) 薄鋼帯の磁気探傷装置
JPH09166582A (ja) 電磁気探傷法
JPH0812178B2 (ja) 磁気探傷装置
JP2526742B2 (ja) 薄鋼帯の磁気探傷装置
JPH07104329B2 (ja) 鋼帯の磁気探傷方法及びその装置
JPH07113788A (ja) 渦流探傷用プローブコイル
JPH03239960A (ja) 鋼板の疵検出装置
KR100285641B1 (ko) 박강판 흠탐상을 위한 자기센서의 신호처리 방법
JPH07294491A (ja) 磁気探傷装置
JPH07109416B2 (ja) 薄鋼帯の磁気探傷装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 2054718

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991904342

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991904342

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991904342

Country of ref document: EP

ENP Entry into the national phase

Ref country code: CA

Ref document number: 2054718

Kind code of ref document: A

Format of ref document f/p: F