WO1991012909A1 - Continuous casting apparatus - Google Patents

Continuous casting apparatus Download PDF

Info

Publication number
WO1991012909A1
WO1991012909A1 PCT/JP1991/000228 JP9100228W WO9112909A1 WO 1991012909 A1 WO1991012909 A1 WO 1991012909A1 JP 9100228 W JP9100228 W JP 9100228W WO 9112909 A1 WO9112909 A1 WO 9112909A1
Authority
WO
WIPO (PCT)
Prior art keywords
long side
electromagnet
magnetic pole
electromagnetic brake
width
Prior art date
Application number
PCT/JP1991/000228
Other languages
English (en)
French (fr)
Inventor
Toshio Kikuchi
Takashi Ishizawa
Kazuo Nagahama
Kenzo Sawada
Yoshiyasu Ishikawa
Ryuichi Kageyama
Takashi Tochihara
Toyohiko Kanki
Katsumi Funatsu
Original Assignee
Nippon Steel Corporation
Nittetsu Plant Designing Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4298590A external-priority patent/JPH0763808B2/ja
Priority claimed from JP2056608A external-priority patent/JPH0787974B2/ja
Priority claimed from JP1362691U external-priority patent/JPH04104250U/ja
Priority claimed from JP1362791U external-priority patent/JPH04104251U/ja
Application filed by Nippon Steel Corporation, Nittetsu Plant Designing Corporation filed Critical Nippon Steel Corporation
Priority to EP91904343A priority Critical patent/EP0577831B1/en
Priority to DE69131169T priority patent/DE69131169T2/de
Publication of WO1991012909A1 publication Critical patent/WO1991012909A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Definitions

  • the present invention relates to a continuous forming apparatus, and particularly to reducing the inclusions contained in molten steel by applying a damping to a molten steel flow from an immersion nozzle in continuous steel forming.
  • the present invention relates to a continuous structure type electromagnetic brake device.
  • a device for reducing the flow of molten steel from the injection nozzle in a mold and reducing inclusions contained in the molten steel was disclosed in Japanese Patent Application Laid-Open No. 63-203325 There is technology.
  • two pairs of magnetic poles 12 of the electromagnetic brake are locally arranged in the width direction of the molten steel discharge flow path of the injection nozzle 29.
  • the electromagnetic stone 11 used here has a long and narrow horseshoe shape in a horizontal section, and a coil 28 is wound on both ends thereof, and the portion becomes a magnetic pole 12.
  • the magnetic poles 12 are inserted into the openings 33 provided in the rectangular long-side water box 2 to penetrate the long-side backup plate (not shown) to cut the magnetic pole end surface.
  • the yoke part 13 of the electromagnet 11 is attached to the long-side water box 2 by bolting to the long-side copper plate 3.
  • the long side water box 2 is attached to a rectangular support frame 35 via support shafts 34 provided at both ends.
  • the ⁇ -shaped support frame 35 is placed on the vibration table 8. So Then, the long side backup plate in a region of 0.5 to 2 times the dimension of each side of the magnetic pole with respect to the magnetic pole center is used as the magnetic material.
  • FIGS. 1, 2 and 3 4 is a short side knock-up plate, 5 is a short side copper plate, 26 is a piece, 29a is a molten steel discharge port, and 30 is a molten steel discharge port.
  • Molten steel, 40 is the line of magnetic force. According to the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 63-203325, as shown in FIG. 4A, the magnetic pole 12 is locally formed along the molten steel discharge flow path of the injection nozzle 29 as shown in FIG. 4A. As shown in Fig.
  • the discharge flow does not become uniform after passing through the magnetic field, and inclusions in the discharge flow of molten steel are entrained and sunk deep into the molten steel as shown in Fig. 4B.
  • the effect of reducing inclusions cannot be expected sufficiently.
  • the electromagnetic brake device is quite heavy, and with a structure that is internally mounted and fixed, it vibrates together with the ⁇ type during operation, so it must be firmly fixed to the ⁇ type.
  • the outer diameter dimension was increased due to the ⁇ -type rigid structure, the motor capacity was increased due to the increased load on the ⁇ -type vibration device, and the strength of the drive system was increased accordingly.
  • drawbacks such as the need for considerably large-scale equipment remodeling, large costs for remodeling, and difficulty in installation.
  • a magnetic pole of an electromagnet is provided on the outside of the ⁇ type, a winding is wound around this, and the magnetic poles are combined by a yoke and integrated. Is disclosed.
  • the lines of magnetic force pass through the molten steel injected into the mold.
  • the magnetic pole width is smaller than the width of the mold. As a result, sufficient magnetic flux density is not generated at the end of the mold width, and inclusions are trapped at this end and penetrate downward. Is inevitable, and the effect of reducing inclusions cannot be expected sufficiently.
  • Japanese Patent Application Laid-Open No. Hei 12-71031 proposes a technique of applying an electromagnetic brake device in a continuous manufacturing mold. Have been. In this technology, two injection nozzles of different lengths are used, an electromagnet is installed between the molten steel jets of these injection nozzles, and the boundary between the surface layer and the inner layer is clarified by magnetic means. This is a method for obtaining a multilayer piece as follows.
  • the molten steel for the surface layer spouted from the nozzle above the ⁇ die and the molten steel for the inner layer spouted from the lower nozzle are used. Separation is required, and therefore, over the entire width of the piece, the magnetic flux density is required to be uniform and about twice the above value. Therefore, the outer shape of the electromagnet is larger than As a result, due to the interaction with peripheral devices such as the tundish force and type II vibrating devices, there is a problem that installation is not possible due to the limited installation space.
  • the surface metal is made of a material that has better properties than the metal for the inner layer, for example, a material with higher corrosion resistance and abrasion resistance. It is important to optimize the surface metal thickness from the point of view. Also, if the injection nozzle of the inner metal is too long at the time of multi-layer structure, clogging will occur during use, and there will be a problem in durability due to troubles such as cracking. For this reason, it is best to install the electromagnetic brake device in the ⁇ type. However, also in this case, there is a problem that it cannot be practically installed for the above-mentioned reason. Summary of the Invention
  • the present invention is configured as follows.
  • the magnetic poles of an electromagnet with a width approximately equal to the width of the long side of the mold are provided facing each other, and the magnetic field is applied uniformly over the entire width of the mold, and the flow of the molten steel after passing through the magnetic field is evenly damped, thereby forming The inclusions are prevented from sinking below, and the molten steel surface is no longer wavy.
  • An opening is provided in the long-side water box with a rectangular cross-section of ⁇ type, which allows the insertion of magnetic poles of an electromagnet with a width almost equal to the length of the long side, so that the magnetic flux density can work evenly over the entire width of ⁇ type. so Wear.
  • the electromagnet Since the electromagnet is divided into four parts, one on the long side and the other on the short side, it is easy to disassemble, as well as combining with the ⁇ type.
  • a spacer is used in the divided part to minimize the gap between the yoke (between the iron cores) generated during assembly in the divided part, thereby preventing the electromagnet from reducing its power.
  • the magnetic field at the long side end of the electromagnet pole By making the height of the long side end of the electromagnet pole higher than the center of the long side, the magnetic field at the long side end is increased, and the magnetic field at the long side end with respect to the magnetic field at the center of the long side is increased.
  • a uniform magnetic field is generated over the entire width of the molten steel in the ⁇ type, and the molten steel flow after the passage of the magnetic flux can be evenly damped, and the molten steel flow does not dive into the lower part after the short side wall collision Is done.
  • An electromagnet of approximately the same width as the long side of the ⁇ type is provided opposite to the middle of the molten steel jet of the two injection nozzles, and a magnetic field is applied uniformly over the entire width of the ⁇ type.
  • the boundary between the surface layer and the inner layer metal can be clarified and the thickness of the surface layer metal can be optimized.
  • the long side copper plate forming the ⁇ shape is cooled by the upper groove and supported by the water box, and the lower part is cooled by the deep hole and supported by the electromagnet. And minimize the distance between the opposing magnetic poles. .
  • a clamp is provided on the upper water box support section with an evening rod and a counter panel, and the lower electromagnet pole support section is fastened as described above.
  • a gap is provided between the long side yoke and the short side yoke so that the short side holding force can be obtained.
  • FIG. 1 to FIG. 4B are diagrams showing the prior art
  • FIG. 1 is a plan view of a type II equipped with an electromagnetic brake device, and a cross-section taken along line II of FIG. 2 is shown.
  • Figure 2 is a cross-sectional view along the line I-E in Figure 1
  • Figure 3 is a cross-sectional view along the wire plate in Figure 2
  • Figure 4A is the conventional electromagnetic brake.
  • FIG. 4B is a perspective view showing the concept
  • FIG. 4B is a view for explaining the distribution of the molten steel discharge flow velocity in FIG. 4A
  • FIG. 5 is a view showing the relationship between the ⁇ type and the electromagnet in the first embodiment of the present invention.
  • FIG. 1 is a plan view of a type II equipped with an electromagnetic brake device, and a cross-section taken along line II of FIG. 2 is shown.
  • Figure 2 is a cross-sectional view along the line I-E in Figure 1
  • Figure 3 is a cross-sectional view along the wire plate
  • FIG. 6 is a vertical cross-sectional view taken along the line II- 1 in FIG. 5
  • FIG. 7 is a plan view of the electromagnetic brake device according to the first embodiment of the present invention
  • FIG. 8 is FIG. No line coral-! ! 9 is a cross-sectional view along line IX-IX of FIG. 8
  • FIG. 10 is a cross-sectional view along line X--X of FIG. 8
  • FIG. 11 is a cross-sectional view of FIG. 1 7 Figure XI — section along XI, Figure 1 2 section along line XH — in Figure 7, Figure 13 Figure 3 shows a detailed section of the fixing device for Type I and electromagnets.
  • FIG. 16A and FIG. 16B are schematic views showing the structure of the electromagnet of the first embodiment of the present invention and its magnetic flux density distribution
  • FIG. 16D is a diagram showing a schematic structure diagram of a conventional electromagnet and its magnetic flux density distribution
  • FIGS. 17 to 19 are ⁇ and electromagnetic brakes according to the second embodiment of the present invention.
  • 17 is a plan view
  • FIG. 18 is a partial cross-sectional view taken along line XH—XI of FIG. 17, and FIG.
  • FIG. 19 is a line X of FIG. IX—X X IX
  • FIG. 20 is a perspective view schematically showing the shape and the electromagnet of the first embodiment of the present invention
  • FIG. 21 is a third embodiment of the present invention.
  • FIG. 22 is a perspective view showing an iron core of an electromagnet to be mounted
  • FIG. 22 is a graph showing magnetic flux density distributions in the first and third embodiments of the present invention
  • FIG. 23 is a graph showing a magnetic flux density distribution in the fourth embodiment of the present invention.
  • a plan view schematically showing a mold and an electromagnetic stone, Figure 24 is the line in Figure 23
  • FIG. 25 is a plan view similar to FIG. 7 of the fourth embodiment
  • FIG. 26 is a view showing details of the E section in FIG.
  • FIG. 7 is a view similar to FIG. 9 of the fourth embodiment
  • FIG. 28 is a view showing a schematic structure of an electromagnet in the fourth embodiment
  • FIG. 29 is a view of the first embodiment and the fourth embodiment.
  • FIG. 3A is a graph showing a comparison of magnetic flux density ratios in the examples
  • FIG. 3A is a perspective view with a part cut away showing the entire structure of the continuous structure according to the fifth embodiment of the present invention.
  • FIG. 30B is a schematic diagram showing the relationship between the ⁇ type and the electromagnet in the present invention
  • FIG. 30B is a schematic diagram showing the relationship between the ⁇ type and the electromagnet in the present invention
  • FIG. 31 is a cross-sectional view taken along line XXXI—XXXI of FIG. 3OA
  • FIG. 32 is a diagram of FIG.
  • Line XXXI [-section along XXXI, 3rd Fig. 3 is a cross-sectional view along the line XXX ⁇ ⁇ —XXX III of Fig. 3
  • OA-Fig. 34 is a cross-sectional view along the line XXX W_ XX XIV of Fig. 3A
  • Fig. 35 is a 3 OA Figure line XXXV—section along XXXV
  • FIG. 36 is section from FIG. 35 — section along XX XVI
  • FIG. 37 is section from FIG.
  • FIG. 38 is a detailed view of part I of Fig. 35
  • Fig. 39 is a detailed view of part J of Fig. 36
  • Fig. 40 is a view of Fig. 32 Line XL—Cross section along XL
  • FIG. 41 is a cross section along line XLI _ XLI in FIG. 40
  • FIG. 42 is a partial cross section along edge XL II in FIG.
  • FIG. 43 is a detailed view of an M part of FIG. 32
  • FIG. 44 is a detailed view of an N part of FIG. 32
  • FIG. 45 is a continuous structure according to a sixth embodiment of the present invention.
  • FIG. 46 is a partially cutaway perspective view showing the entire structure of the mold.
  • FIG. 46 is a sectional view taken along line XL / I—XLI of FIG. 45.
  • FIG. 47 is a line X LW of FIG. — Cross section along XL ⁇ 1
  • Fig. 48 is a detailed view of P part of Fig. 46
  • Fig. 49 is a detailed view of Q part of Fig. 46
  • Fig. 50 is a detailed view of Fig. 45
  • FIG. 51 is a detailed view of a portion R in FIG. 50
  • FIG. 52 is a cross-sectional view along line LIT in FIG. 51
  • FIG. 5 0 line L ⁇ — L IE Tsu sectional view
  • the 5 4 is a cross-sectional view taken along the line L W _ L IT fifth Figure 1. Description of the invention
  • the electromagnet 1 1 1 has the width of the long-side copper plate 103 of the rectangular shape 101 composed of the long-side copper plate 103 and the short-side copper plate 105. Magnetic poles 1 1 2 having almost the same width are provided facing the outside of the long side copper plate 103, and the magnetic flux lines 140 for electromagnetic brake work between the magnetic poles 112.
  • This electromagnet 11 1 is provided with a magnetic pole 1 12, a coil 1 2 8 wound around the outer circumference of the magnetic pole, and an iron core 13 9 including the magnetic pole 1 12 enclosing the ⁇ shape 101. Structure.
  • the electromagnet 111 generates a magnetic field line 140 from the N pole to the S pole when a DC current is applied to the coil 128.
  • Fig. 6 shows the case where the magnetic poles 11 and 12 are provided below the molten steel injection port 12 9a of the injection nozzle 12 29, in this case the molten steel discharge flow injected from the injection nozzle 12 9 Is braked at the position of the magnetic poles 1 1 and 2 and becomes a uniform flow.
  • the rectangular shape 101 is a water box 102a on the rear edge side, a stainless steel back-up plate 1336 fixed to the water box 102a, and a long edge on the front edge side as well.
  • Water box 102 b, stainless steel backup plate 130, long-side copper plate 103 a, 103 b, and short-side backup plate 104 a, 104b, and the short-side copper plates 105a, 105b fixed to and supported on them, and the short-side copper plates 105a, 105b are adjusted to predetermined positions.
  • the width adjustment device 106 for setting the one-side width and the short side copper plates 105a and 105b are firmly lengthened during fabrication. It consists of a clamp device 107 (see Fig. 10) for sandwiching between the side copper plates 103a and 103b.
  • the ⁇ -type vibrating tables 108 a and 108 b have a ⁇ -type fixing pressing device 10, which is fixed at a predetermined position when the ⁇ -type 101 is mounted.
  • 9a and 109b and a ⁇ -type fixing device 110 are provided.
  • the electromagnet 111 has a structure that allows the magnetic poles 112a and 112b to be inserted into the back openings of the long-side water boxes 102a and 102b. It has become. Then, a yoke 1 13 a, 1 13 b forming a magnetic path between the magnetic poles 1 1 2 a, 1 1 2 b is provided through the long-side water box 10 2 a, 10 2 b. As shown in FIG. 11, the magnetic poles 112a and 112b are fastened and integrated by spacers 114 and bolts 115, respectively.
  • the mold 101 and the electromagnet 111 are combined in advance in a maintenance shop or the like outside the continuous machine, but when they are combined and transported to the continuous machine, the mold 101
  • the weight of the jack should be supported by the electromagnet 1 1 1, and as shown in Fig. 12, the jack bolt 1 16 force yoke 1 13 a, 1 1 Provided on the 3b side.
  • the long-side water boxes 102a and 102b there are provided seats 117 for the jacket bolts 116. Then, when mounted on the vibrating tables 108a and 108b, first, the ⁇ type 101 is moved to the vibrating tables 108a and 108b.
  • the electromagnet 111 is mounted on the electromagnet support devices 118, 119.
  • type 1 101 has key grooves 120 provided on vibration tables 108 a and 108 b and keys provided in water boxes 102 a and 102 b. 1 (see Fig. 8) allows positioning in the piece width direction.
  • the electromagnets 111 are also provided with the recesses 122 provided on the support devices 118 and 119 and the electromagnet cores 133, as shown in FIGS. O Positioned by the projections 1 2 3 provided on 9
  • the Type 1 101 is blocked by the pressing devices 1 09a and 1 09b. (See Fig. 7), and it is firmly fixed on the vibration tables 108a and 108b by the fixing device 110.
  • the electromagnet 1 11 is also fixed by a fixing device 1 25 (see FIG. 7) provided on the support device 1 19.
  • FIG. 16A schematically shows a type 101 and an electromagnet 111 according to the first embodiment of the present invention.
  • the magnetic flux density distribution in the width direction is shown in FIG. 16B.
  • FIG. 16C schematically shows a conventional type 1 and an electromagnet 11, and the resulting magnetic flux density distribution is shown in FIG. 16D.
  • the magnetic flux density is high, and the magnetic flux distribution is uniform in the width direction of the triangle, and it can be seen that it is working effectively. .
  • the first embodiment of the present invention has the following effects.
  • An opening is provided at the back of the ⁇ -shaped water box to allow insertion of an electromagnet wider than the width of the ⁇ -shaped water box, and a structure is possible in which a shock is provided through the inside of the water box.
  • the electromagnet is divided into two magnetic poles and two yoke parts, and these can be assembled with a spacer and a bolt.
  • assembling and centering of the ⁇ type are also easy, so that maintenance time and cost can be reduced, and the space for temporary placement of the electromagnet is also small. Also, the handling becomes easy.
  • FIG. 17 to FIG. 19 show a second embodiment of the present invention.
  • a ⁇ -shaped supporting frame in which a ⁇ -shaped 101A and an electromagnet 111A are common. It differs from the first embodiment in that it is fixedly installed at 141A.
  • FIG. 21 shows an electromagnet according to a third embodiment of the present invention.
  • FIG. 20 schematically shows the type 111 and the electromagnet 111 in the first embodiment of the present invention shown in FIG.
  • the electromagnet 1 1 1 has a magnetic pole 1 1 having a wider width than the long side copper plate 1 0 3 composed of a long side copper plate 10 3 and a short side copper plate 1 0 5. 2 is provided facing the outside of the long-side copper plate 103 so that the magnetic flux lines 140 of the electromagnetic brake work between the magnetic poles 112.
  • the electromagnet 111 has a magnetic pole 112 and a coil 128 wound around the magnetic pole. Electromagnet 1 1 1 does not generate magnetic field lines 140 from N pole to S pole when DC current is applied to coil 128
  • the distribution of the magnetic field generated in the molten steel depends on the distance between the opposing magnetic poles and the shape of the magnetic poles.
  • the width of the long side is substantially equal to the long side of the rectangular cross section ⁇ .
  • a rectangular electromagnet with a width is provided, and the magnetic field at the end of the long side of the ⁇ type is weaker than the magnetic field at the center of the long side, and ⁇ a uniform magnetic field is generated over the entire width of the molten steel in the ⁇ type become unable.
  • the magnetic field cannot be applied uniformly to the entire width of the rectangular shape, the uniformity of the molten steel flow after passing the magnetic field is impaired, and sufficient inclusions cannot be removed.
  • the magnetic pole 1 1 2B has a structure having a low portion c at the center of the long side and a high portion d at the end of the long side.
  • the example is different from the first embodiment.
  • FIG. 22 is a diagram comparing the magnetic flux density distributions generated in the molten steel by the electromagnets according to the first embodiment and the third embodiment of the present invention. As can be seen from FIG. In the case of ⁇ ⁇ , the magnetic flux density distribution is almost uniform in the width direction of the ⁇ -type 1 1 1 B, and it can be seen that the magnetic flux is effectively acting.
  • the third embodiment of the present invention has the following effects.
  • the electromagnetic brake device is composed of an electromagnet pole wider than the ⁇ type width or an electromagnet pole with the height of the long side end higher than the height of the center of the long side.
  • a uniform magnetic field can be applied to the entire area, and the ⁇ -type content steel drift was made uniform under the ⁇ -type, and the effect of reducing inclusions was improved.
  • FIG. 23 to FIG. 28 there is shown a continuous structure mold according to a fourth embodiment of the present invention.
  • parts common to the first embodiment shown in FIGS. 5 to 15B are designated by the same reference numerals.
  • a part of the backup plate 1336C is magnetic. It differs from the first embodiment in that it is made of wood.
  • the electromagnet 111 is formed of the long side copper plate 103 of the rectangular type 101 composed of the long side copper plate 103 and the short side copper plate 105.
  • the magnetic poles 1 1 and 2 having a width approximately equal to the width are provided facing the outside of the long side copper plate 103, and the magnetic flux lines 140 for the electromagnetic brake work between the magnetic poles 112. I have.
  • the electromagnet 111 is provided with a magnetic pole 112, a coil 122 wound around the magnetic pole, and an iron core 133 including the pole 112 enclosing the rectangular shape 101. Structure.
  • the electromagnet 111 When a direct current is applied to the coil 128, the electromagnet 111 generates a magnetic field line 140 from the N pole to the S pole.
  • the long side copper plate 103 is firmly supported by a nonmagnetic material (austenitic stainless steel) backup plate 1336C, and this knockup plate 1336
  • the portion of C opposite to the end of the magnetic pole 112 is made of a hard material, for example, mild steel or an iron-cobalt alloy.
  • Fig. 24 is a drawing of the case where the magnetic poles 11 and 12 are provided below the molten steel jet outlet 12 9a of the injection nozzle 12 29.In this case, the molten steel injected from the injection nozzle 12 29 is shown. The discharge flow is braked at the position of the magnetic poles 1 1 and 2 and becomes a uniform flow.
  • the range of nun is made of magnetic material 14 2.
  • FIGS. 30A to 44 show a ⁇ -shaped and electromagnetic brake according to a fifth embodiment of the present invention.
  • two injection nozzles 2 15 a and 2 15 b are inserted into the mold 201, and the surface metal is injected from the injection nozzle 2 a and the inner layer metal is injected from the injection nozzle 2 1 Each is injected from 5b.
  • the electromagnet 207 is located at the lower part of the ⁇ type 201 and at the outlets 25 3a and 25 3b of the injection nozzles 2 15a and 2 15b.
  • the long side copper plate 203 and the short side copper plate 205 surround the outside of the mold 201 forming a mold cross section.
  • Reference numeral 252 denotes molten steel
  • reference numeral 216 denotes a multi-layer piece.
  • the ⁇ type 201 has a long side copper plate 203 supported on the upper part by water boxes 202 a and 202 b and a lower part supported by the magnetic poles 209 of the electromagnet 207, and a water box Short side support plates 22 4 a and 22 4 b (see Fig. 31) provided on 202 b and short bolts positioned and supported by jack bolts 24 45 provided on them
  • the side back plate 204, the short side copper plate 205 supported by it, and the short side copper plate 2.05 are firmly connected to the long side during fabrication. Belleville spring for pinching between copper plates 203 (see Fig. 32) 206, and evening clamps 22 1 and nuts 22 2 Clamping device 2 2 5 and a large base frame that supports them collectively.
  • the long-side copper plate 203 has water boxes 202 a and 202 at the top, and a large number of copper plates penetrating therethrough to reach the long-side copper plate 3.
  • a large number of bolts are fixedly supported by the mounting bolts 232 and penetrate the lower part through the magnetic poles 209 of the electromagnet 207 to reach the copper plate 203 as shown in FIG. G 2 17 (see Fig. 32) fixedly supports the magnetic pole 209.
  • the lower end which cannot be supported by the magnetic pole 209, has a structure in which it is supported by the holding plate 246 attached to the magnetic pole 209. As shown in Fig. 43 and Fig.
  • the holding plate 2 46 is made of non-magnetic material, generally austenitic stainless steel, to prevent the magnetic flux density of the electromagnet 207 from lowering. It is used and is fixed to the protrusion of the front surface of the magnetic pole 209 by bolts 247, and the lower end of the long side copper plate 203 is supported by many bolts 248 as well. .
  • the cooling of the long-side copper plate 203 is provided with a large number of water cooling grooves 231 at the top, and the cooling water passing therethrough is a water box. Water is supplied and drained from 202a and 202b. The thickness of the lower part of the long side copper plate 203 is about half the thickness of the upper part in order to maximize the magnetic field strength by minimizing the distance between the poles 209 facing each other. Therefore, cooling is performed by a large number of deep water cooling holes 234. Cooling water is supplied. Water is supplied from the upper part of the deep hole 2 34 a through the branch pipe 2 38 a and the seal piece 2 39 (see Fig. 38) from the pipe 23 6 as shown in Fig. 39.
  • the deep holes 2 3 4 a and 2 3 4 b form one cooling water channel with two adjacent ones, and the lower end collecting hole 240 is a plug 2 3 5 every two holes (Fig. 36, Fig. 3 (See Figure 9).
  • the cooling water of the short-side copper plate 205 is supplied from the water supply hose 242 and from the water hole 243 a supplied to the open plate 204. After cooling the short side copper plate 205 through the cooling groove 244 of the short side copper plate 205, the water is drained from the drain hose 242 through the water hole 243b.
  • the electromagnet 207 is provided between the winding 208, the magnetic pole 209, the yoke 210, and the magnetic pole 209, which are provided to face each other on the long side. It is composed of a winding 211, a magnetic pole 209, and a pole 210 on the short side of the short side for forming a magnetic path. And the shorter side yoke 2 1 1 can be divided into four parts. As shown in Fig. 34, a tie rod 220, a countersink 250, and a nut 251, which are provided through the yokes 210 and 211, respectively. A structure that can be assembled as a single body with the force-locking device 2 2 3 ing. In the figure, reference numeral 255 denotes a yoke dividing part, and reference numeral 255 denotes an iron core.
  • the clamping device 222 for firmly holding the short-side copper plate 205 between the long-side copper plates 203 during fabrication has a
  • the water between the water boxes 202a and 202b is set using the evening rod 221 and the coned disc spring 206, but the lower part is fixed by the fastening device 2332 shown in Fig. 34.
  • a gap 5 (approximately 0.5 thigh) is provided at the split portion 254 of the yoke 210 and 211, and the disc spring 250 of the fastening device 223 is provided.
  • the structure is such that the short-side copper plate 205 is firmly held between the long-side copper plates 203 via the magnetic poles 209 opposed to the spring force.
  • the electromagnet 207 is supported by the base frame 214 and provided on the base frame 214 for alignment with the rectangular mold 201.
  • An adjustable structure is provided by the jack 249.
  • the foot roller 218 disposed immediately below the ⁇ type is a foot roller mounted on the lower surface of the yoke 210. It is fixed to the mounting frame 2226 together with the rocket 227 on the mounting frame 2226, and provided on the mounting frame 2226 as necessary. It can be adjusted by the jackport 229.
  • the fifth embodiment of the present invention has the following effects.
  • Electromagnets with high density and a width almost equal to the width of the long side can be installed in the lower part of the mold at the middle position between the two injection nozzles. By minimizing the number of layers, it became possible to produce multi-layer pieces with a clear boundary between the surface layer and the inner layer.
  • the upper part of the mold which requires high cooling capacity and sufficient strength against high temperature deformation, has a copper plate thickness and cooling structure that have been well established from the past.
  • the thickness of the copper plate is about half that of the upper part to maximize the magnetic flux density, and the cooling structure with deep holes is necessary for practical use. It has become possible to achieve both high magnetic flux density and type II performance.
  • the electromagnet is divided into two magnetic poles, a yoke part including windings, and two yoke parts for forming a magnetic path. Since the assembly can be made easier, the assembly and disassembly of the electromagnet and the ⁇ can be easily performed, and the maintenance time and cost of the ⁇ can be reduced.
  • a gap is provided between the yoke when assembling the electromagnet using the fastening device, and the short-side copper plate can be sandwiched between the long-side copper plates by the disc springs in the fastening device.
  • it is possible to maintain a rectangular cross section, and it is possible to ensure the precision of the rectangular cross section shape and dimensions, and the quality of the piece.
  • FIGS. 45 to 54 show a sixth embodiment of the present invention, The sixth embodiment is different from the fifth embodiment in the following points: the water boxes 302a and 302b are provided with a water supply box 3G2 and a drainage box 3
  • the backup plate 36 3 a and 36 3 b fixed and supported the long side copper plates 30 3 a and 303 b from the top to the bottom.
  • the structure is as follows. Further, the knockup plate 36 3 a,
  • the structure is such that 36 3 b penetrates the magnetic pole 3 09 of the electromagnet 3 07 and is fixedly supported on the magnetic pole 3 09 by a large number of bolts 3 17.
  • Cooling of the long side copper plates 303a, 303b is performed by supplying cooling water to a large number of grooves 331, which are provided from the top to the bottom of the copper plates 303a, 303b.
  • the water supply to this groove 331, does not interfere with the groove 331 on the copper plate 3033a, 303b of the backup plate 3663a, 3633b.
  • the structure is supplied from a large number of grooves 364 provided at the positions.
  • the cooling water for the copper plate is supplied to the water supply box 362 and the groove 364 provided in the open-top plates 363 a and 363 b. To the water supply header at the lower end, and then rise the cooling water groove 3 31 of the copper plate 30 3 a, 365 5 b to the drain water at the upper end.
  • the sixth embodiment of the present invention has the following effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

明 钿 連 続 铸 造 装 置 発明の背景
本発明は、 連続铸造装置に関 し、 特に鋼の連続鎳造に おいて、 浸漬ノ ズルからの溶鋼流に制動を加える こ とに よ り、 溶鋼中に含まれる介在物の低減を図る、 連続铸造 铸型の電磁ブ レ ーキ装置に関する。
注入ノ ズルからの溶鋼流を铸型内で減速 し、 溶鋼中に 含まれる介在物を低減するための装置と して、 特開昭 6 3 — 2 0 3 2 5 6 号後方に開示された技術がある。
こ の技術は、 第 1 図を第 2 図に示すよ う に電磁ブレー キの 2 対の磁極 1 2 を注入ノ ズル 2 9 の溶鋼吐出流路の 幅方向に局部的に配設している。 こ こ に使用 される電磁 石 1 1 は水平断面において横に細長い馬蹄形であ って、 その両端にコイ ル 2 8 を巻き、 その箇所が磁極 1 2 とな つてレ、る。
こ の磁極 1 2 を第 3 図に示すよ う に鐯型長辺水箱 2 に 設けた開口部 3 3 に挿入 し、 長辺バッ ク ア ッ ププレー ト (図示せず) を貫通 し磁極端面を長辺銅板 3 にボル トで 締結して電磁石 1 1 のヨ ー ク部 1 3 を長辺水箱 2 に取 り 付けている。 こ の長辺水箱 2 は、 両端に設けた支持軸 3 4 を介 して铸型支持枠 3 5 に取り付けられている。 その 铸型支持枠 3 5 は振動テーブル 8 に載置されている。 そ して磁極中心を基準と して、 磁極各辺の寸法の 0 . 5 か ら 2 倍の領域の長辺バ ッ ク ア ッ ププレ ー トが磁性材料と な っている。
なお第 1 図、 第 2 図および第 3 図において、 4 は短辺 ノくッ ク ア ッ ププレー 卜、 5 は短辺銅板、 2 6 は铸片、 2 9 a は溶鋼吐出口、 3 0 は溶鋼、 4 0 は磁力線である。 上記特開昭 6 3 - 2 0 3 2 5 6 号に開示された技術で は、 第 4 A図に示すよ う に磁極 1 2 を注入ノ ズル 2 9 の 溶鋼吐出流路に沿って局部的に配設しているので、 第 4 B図に示すよ う に吐出流が磁場通過後均一流にな り に く く 、 溶鋼吐出流内の介在物が巻き込まれて溶鋼内に深 く 潜行し、 介在物の低減効果は十分に期待できない。
また電磁ブレーキ装置はかな りの重量があ り、 誇型内 取付け固定の構造では、 操業中鐯型と一緒に振動するた め、 鐯型との強固な固定が必要となる。 この結果、 特に 既設連誇機への接地に際して、 铸型の剛構造化による外 径寸法の拡大や、 铸型振動装置への負荷増によるモータ 容量の増加、 それに伴う駆動系の強度増加等、 かな り大 幅な設備改造が必要とな り、 改造に多大の費用を要する こ と とな り、 設置が困難になる等多 く の欠点を有する。
また、 特公昭 4 9 - 3 0 6 1 3号公報には铸型の外側 に電磁石の磁極を配設し、 これに巻線を巻回 し、 磁極を ヨ ークで結合し一体化した ものが開示されている。 そ し て磁力線が鐯型内に注入された溶鋼内を貫通 している。 しか しながら上記特公昭 4 9 — 3 0 6 1 3 号に開示され た技術では铸型の幅に対 して磁極幅は小さ く この結果鎳 型幅端部には十分な磁束密度が生成されず、 こ の端部で の介在物の巻込み、 下方への侵入は避け られず、 介在物 の低減効果は十分に期待できない。
連続鎳造設備にて複合鋼材を製造する方法と して、 例 えば特開平 1 一 2 7 1 0 3 1 号公報では、 連続铸造铸型 内に電磁ブ レ ーキ装置を適用する技術が提案されている。 こ の技術は、 2 本の長さの異なる注入ノ ズルを用い、 こ の注入ノ ズルの溶鋼噴出部の間に電磁石を設け、 磁気的 手段によ って表層部と内層部の境界を明瞭とする複層鐯 片を得る方法である。
しか しこ の よ う な連続鐯造铸型の電磁ブレーキ装置に ついては、 その具体的な構造については、 今までに開示 報告された ものは無かった。
前記特開昭 6 3 - 2 0 3 2 5 6 号公報に開示された技 術において、 注入ノ ズルからの溶鐧流を鎳型内で減速し、 溶鋼中に含まれる介在物を低減するのに必要な磁束密度 と しては、 2 5 0 0 〜 3 5 0 0 ガウスである こ とが特開 平 1 一 9 9 7 6 3 号公報に示されている。
しか しながら こ の技術において、 2 個の注入ノ ズルを 用いて複合鋼材を製造する場合、 鐯型上方のノ ズルか ら 噴出する表層用溶鋼と、 下方ノ ズルか ら噴出する内層用 溶鋼の分離が必要であ り、 このため铸片幅全域において、 磁束密度が一様かつ上記の値の約 2 倍の磁束密度が必要 である。 そのために電磁石の外形は鐯型よ り も大きな も の とな り、 周辺装置例えばタ ンデッ シュ 力一、 铸型振動 装置等との取り合い上から、 決め られる設置スペースの 制約をう けて設置不可といった問題を惹起する。 また、 一般に複合鋼材の製造においては、 表層用金属は内層用 金属よ り も特性の優れた、 例えば耐蝕性、 耐磨耗性等の 高い材質の ものが使われてお り、 製造コス トの面から表 層金属厚みの最適が重要となる。 また複層铸片鐯造時、 内層金属の注入ノ ズルが余り長すぎる と、 使用中詰ま り が発生 し、 また柝損しゃすい等の ト ラブルから耐久性で 問題となる。 このよ う なこ とから、 電磁ブレーキ装置の 設置位置は鐯型内が最適である。 しかしながらこの場合 も、 前述の理由から実用上設置不可といった問題を惹起 する。 発明の要約
上記従来技術における課題を解決するため、 本発明は 以下のよ う に構成される。
鐯型長辺の幅とほぼ等しい幅の電磁石の磁極を相互に 対向させて設け、 磁場を铸型全幅に均一に働かせ、 磁場 通過後の溶鋼流を均一に制動 し、 それによ り溶鋼中に含 まれる介在物の下方への潜り こみが回避される と と もに 溶鋼表面の波立ち もな く なる。
長方形断面铸型の長辺水箱に、 長辺の幅とぼぼ等しい ' 幅の電磁石の磁極を挿入可能とする開口部を設けている ので、 磁束密度を、 鍀型全幅に均一に働かせる こ とがで き る。
電磁石を長辺側ヨ ー ク と短辺側ヨ ー ク とに 4 分割した ので、 铸型との合体は も と よ り、 解体も容易 となる。 さ らに分割部にスぺーサを用い、 分割部で組立時に発生す る ヨ ー ク間 (鉄芯間) の隙間を極小化 して、 電磁石の能 力低減を防止出来る。
電磁石磁極の長辺端部の高さを長辺中央部よ り高 く す る こ とによ って、 長辺端部の磁界を高め、 長辺中央部の 磁界に対する長辺端部の磁界の低下分を補償させ、 铸型 内溶鋼の全幅にわたって均一な磁界を生成し、 磁束通過 後の溶鋼流を均一に制動でき る と共に、 短辺壁衝突後の 溶鋼流の下部への潜り込みが回避される。 長辺バッ ク ァ ッ ププレー トの一部を磁性材とする こ とによ り、 磁極両 端部での磁束の減衰が 1 0 %以内である均一磁場が実現 でき、 磁場通過後の溶鋼流を均一に制動でき る と共に、 短辺壁衝突後の溶鋼流の下部への潜り込みが回避される <
2 本の注入ノ ズルの溶鋼噴出部の中間位置に铸型長辺 の幅とほぼ等しい幅の電磁石を対向させて設け、 磁場を 铸型全幅に均一に印加させ、 複層鐯片を連続的に製造す るに際 して、 表層 と内層金属の境界の明瞭化および表層 金属厚さの最適化が可能となる。
2 本の注入ノ ズルを設けた場合、 铸型を形成する長辺 銅板は、 上部の溝によ る冷却および水箱によ る支持、 下 部を深孔によ る冷却および電磁石での支持と し、 対向す る磁極間距離を最小とする。. 対向する铸型長辺間に短辺を挟持するために、 上部水 箱支持部には夕 イ ロ ッ ドと皿パネによ る ク ラ ンプ装置を 設け、 下部電磁石磁極支持部については前記締結装置で の組立時、 長辺側ヨ ー ク と短辺側ヨ ー ク間に隙間を設け る こ と によ り 、 短辺挟持力を得られる よ う にする。 図面の簡単な説明
第 1 図から第 4 B図は従来技術を示す図であ り、 第 1 図は電磁ブ レ ーキ装置を備えた铸型の平面図で第 2 図の 線 I — I に沿った断面を示す図、 第 2 図は第 1 図の線 I — E に沿った断面図、 第 3 図は第 2 図の線皿一 Πに沿つ た断面図、 第 4 A図は従来の電磁ブレーキの概念を示す 斜視図、 第 4 B図は第 4 A図における溶鋼吐出流速度の 分布を説明する図、 第 5 図は本発明の第 1 実施例におけ る铸型と電磁石との関連を示す模式図、 第 6 図は第 5 図 の線 ΥΓ— 1 VIに沿った縦断面図、 第 7 図は本発明の第 1 実 施例における電磁ブレーキ装置の平面図、 第 8 図は第 7 図の線珊 -!!に沿っ た断面図、 第 9 図は第 8 図の線 I X— I Xに沿った断面図、 第 1 0 図は第 8 図の線 X— Xに沿つ た断面図、 第 1 1 図は第 1 7 図の線 X I — X I に沿った 断面図、 第 1 2 図は第 7 図の線 X H — に沿った断面 図、 第 1 3 図は铸型及び電磁石の固定装置の詳細断面図 第 1 4 A図 と第 1 4 B図は第 9 図の b部詳細で電磁石支 持装置の詳細を示す平面図および側面図、 第 1 5 A図と 第 1 5 B図は同様に第 9 図の b部詳細で電磁石側取付け 部を示す側面図および平面図、 第 1 6 A図 と第 1 6 B図 は本発明の第 1 実施例の電磁石の概略構造図とその磁束 密度分布を示す図面、 第 1 6 C図 と第 1 6 D図は従来の 電磁石の概略構造図とその磁束密度分布を示す図、 第 1 7図か ら第 1 9 図は本発明の第 2実施例によ る铸型と電 磁ブ レ ーキ装置を示す図であって、 第 1 7図は平面図、 第 1 8 図は第 1 7図の線 XH— X Iに沿った部分断面図、 第 1 9 図は第 1 7図の線 X IX— X IXに沿っ た断面図、 第 2 0 図は本発明の第 1 実施例における鐯型と電磁石を概 略的に示す斜視図、 第 2 1 図は本発明の第 3実施例にお ける電磁石の鉄芯を示す斜視図、 第 2 2図は本発明の第 1 実施例と第 3実施例における磁束密度分布を示すグラ フ、 第 2 3 図は本発明の第 4実施例における铸型と電磁 石を概略的に示す平面図、 第 2 4 図は第 2 3 図の線
X X W— X X IVに沿った断面図、 第 2 5 図は第 4実施例 の、 第 7 図に類似の平面図、 第 2 6 図は第 2 5 図の E部 の詳細を示す図、 第 2 7図は第 4 実施例の、 第 9 図に類 似の図、 第 2 8 図は第 4実施例における電磁石の概略構 造を示す図、 第 2 9 図は第 1 実施例と第 4 実施例におけ る磁束密度比の比較を示すグラ フ、 第 3 O A図は、 本発 明の第 5 実施例によ る連続鐯造鐯型の全体構造を示す一 部を破断した斜視図、 第 3 0 B図は本発明における鎳型 と電磁石との関連を示す模式図、 第 3 1 図は第 3 O A図 の線 X X X I — X X X I に沿った断面図、 第 3 2図は第 3 O A図の線 X X X I [ - X X X Iに沿った断面図、 第 3 3図は第 3 O A図の線 Χ Χ ΠΙ— X X X IIIに沿った断面図- 第 3 4図は第 3 O A図の線 X X X W_ X X XIVに沿っ た 断面図、 第 3 5図は第 3 O A図の線 X X X V— X X X V に沿った断面図、 第 3 6図は第 3 5図の線 — X X XVIに沿った断面図、 第 3 7図は第 3 5図の線
X X X 1— X X X VIIに沿った断面図、 第 3 8図は第 3 5 図の I部詳細図、 第 3 9図は第 3 6図の J部詳細図、 第 4 0図は第 3 2図の線 X L— X Lに沿った断面図、 第 4 1 図は第 4 0図の線 X L I _ X L I に沿った断面図、 第 4 2図は第 4 0図の縁 X L IIに沿った部分断面図、 第 4 3図は第 3 2図の M部詳細図、 第 4 4図は第 3 2図の N 部詳細図、 第 4 5図は本発明の第 6実施例によ る連続铸 造铸型の全体構造を示す、 一部を破断した斜視図、 第 4 6図は第 4 5図の線 X L /I— X L Iに沿った断面図、 第 4 7図は第 4 5図の線 X LW— X L\1に沿った断面図、 第 4 8図は第 4 6図の P部詳細図、 第 4 9図は第 4 6図 の Q部詳細図、 第 5 0図は第 4 5図の線 L一 Lに沿った 断面図、 第 5 1 図は第 5 0図の R部詳細図、 第 5 2図は 第 5 1 図の線 L ITに沿った断面図、 第 5 3図は第 5 0図 の線 L ΠΓ— L IEに沿った断面図、 および第 5 4図は第 5 1 図の線 L W _ L ITに沿った断面図である。 発明の説明
第 5図から第 1 5 B図を参照して、 本発明の第 1実施 例による連続铸造鐯型を説明する。 第 5 図、 第 6 図において、 電磁石 1 1 1 は、 長辺銅板 1 0 3 と短辺銅板 1 0 5 によ り構成された鐯型 1 0 1 の、 長辺銅板 1 0 3 の幅とほぼ等 しい幅を有する磁極 1 1 2 を長辺銅板 1 0 3 の外側に向かい合って設け、 その磁極 1 1 2 間に電磁ブレ ーキ用の磁力線 1 4 0 を働かせる よ う に している。
こ の電磁石 1 1 1 は、 磁極 1 1 2 と こ の磁極の外周に コ イ ル 1 2 8 を巻き、 磁極 1 1 2 を含む鉄芯 1 3 9 で铸 型 1 0 1 を包囲 して設けた構造と している。
電磁石 1 1 1 はコ イ ル 1 2 8 に直流電流を通電する と、 N極から S極へ磁力線 1 4 0 を生ずる。 第 6 図は磁極 1 1 2 を注入ノ ズル 1 2 9 の溶鋼噴出口 1 2 9 a よ り下方 に設けた場合を示 し、 こ の場合注入ノ ズル 1 2 9 から噴 出 した溶鋼吐出流は磁極 1 1 2 の位置で制動され、 均一 流となる。
次に第 7 図から第 1 6 D図に基づいて本装置の細部を 説明する。 第 9 図において、 铸型 1 0 1 は、 後縁側長辺 水箱 1 0 2 a 、 これに固定されるステ ン レ ス製バ ッ ク ァ ッ ププレー 卜 1 3 6 と、 同様に前縁側長辺水箱 1 0 2 b、 ステ ン レ ス製バ ッ ク ア ッ ププレー ト 1 3 6 、 長辺銅板 1 0 3 a , 1 0 3 b 、 そ して短辺バッ ク ア ッ ププ レー ト 1 0 4 a , 1 0 4 b と、 これに固定支持される短辺銅板 1 0 5 a , 1 0 5 b 、 そ して短辺銅板 1 0 5 a , 1 0 5 b を所定の位置に調整 し銬片幅を設定する幅調整装置 1 0 6 と、 短辺銅板 1 0 5 a , 1 0 5 b を铸造中に強固に長 辺銅板 1 0 3 a, 1 0 3 b 間に挟持するための ク ラ ンプ 装置 1 0 7 (第 1 0 図参照) から成っている。
第 7 図 と第 8 図を参照する と、 铸型振動テーブル 1 0 8 a, 1 0 8 b上には、 铸型 1 0 1 搭載時に所定の位置 に固定する铸型固定用押しつけ装置 1 0 9 a, 1 0 9 b と、 铸型固定装置 1 1 0 が設け られている。
電磁石 1 1 1 は、 第 7 図に示すよ う に磁極 1 1 2 a, 1 1 2 b が長辺水箱 1 0 2 a および 1 0 2 b の背面開口 部に挿入でき る様に突出 した構造となっている。 そ して 磁極 1 1 2 a , 1 1 2 b 間に磁路を形成する ヨー ク 1 1 3 a , 1 1 3 b が長辺水箱 1 0 2 a , 1 0 2 b を貫通し て設け られ、 第 1 1 図に示すよ う に、 それぞれ磁極 1 1 2 a , 1 1 2 b とスぺーサ 1 1 4 及びボル ト 1 1 5 によ り締結され一体にされる。
第 1 1 図に示すよ う に、 磁極 1 1 2 a, 1 1 2 b とョ — ク 1 1 3 a, 1 1 3 b のスぺ一サ 1 1 4 によ る一体化 時、 磁束の通過抵抗を最小とするために、 結合部でのェ ァギャ ッ プ 5 は極力小さ く する こ とが必要であ り、 こ の ためスぺーサ 1 1 4 は調整用シ厶 1 2 4 によ り厚み調整 可能となっている。
鐯型 1 0 1 と電磁石 1 1 1 は、 連続铸造機外の メ ンテ ナ ンスシ ョ ッ プ等で予め合体されるが、 合体後一体での 連続铸造機への運搬時、 铸型 1 0 1 の重量を電磁石 1 1 1 にて支持すべ く 、 第 1 2 図に示すよ う に铸型支持部材 と しての ジャ ッ キボル ト 1 1 6 力 ヨ ー ク 1 1 3 a, 1 1 3 b 側に設け られる。 一方長辺水箱 1 0 2 a, 1 0 2 b 側にこ の ジ ャ ッ キボル ト 1 1 6 の受座 1 1 7 が設け られ ている。 そ して振動テーブル 1 0 8 a, 1 0 8 bへの搭 載時最初に铸型 1 0 1 が振動テーブル 1 0 8 a,
1 0 8 b上へと搭載され、 次に ジャ ッ キボル ト 1 1 6 と 受座 1 1 7 の接触が断たれ、 且つ鐯造中の铸型振動時に も干渉しない約 1 0 mm下方に位置して電磁石 1 1 1 が電 磁石支持装置 1 1 8, 1 1 9 に上架される。
こ の場合铸型 1 0 1 は、 振動テーブル 1 0 8 a, 1 0 8 b上に設け られたキー溝 1 2 0 と水箱 1 0 2 a, 1 0 2 b に設けられたキ一 1 2 1 (第 8 図参照) によ り鐯片 幅方向の位置決めがな される。 また電磁石 1 1 1 につい て も、 第 1 4 A図から第 1 5 B図に示すよ う に支持装置 1 1 8, 1 1 9 上に設けられた凹部 1 2 2 と電磁石の鉄 芯 1 3 9 に設けられた凸部 1 2 3 によ って位置決めされ o
以上の如 く 铸型 1 0 1 及び電磁石 1 1 1 が、 位置決め、 搭載後、 铸型 1 0 1 は押 しつけ装置 1 0 9 a, 1 0 9 b によ り基準面ブロ ッ ク 1 2 4 (第 7 図参照) に押し当て られ、 そ して固定装置 1 1 0 によ り振動テーブル 1 0 8 a , 1 0 8 b上に強力に固定される。 同様に電磁石 1 1 1 も支持装置 1 1 9 に設けられた固定装置 1 2 5 (第 7 図参照) によ り 固定される。
第 1 6 A図は本発明の第 1 実施例によ る铸型 1 0 1 と 電磁石 1 1 1 を概略的に示 し、 これによ り得られる鐯型 の幅方向における磁束密度分布を第 1 6 B図に示す。 第 1 6 C図は、 従来技術によ る铸型 1 と電磁石 1 1 を概略 的に示 し、 これによ り得られる磁束密度分布を第 1 6 D 図に示す。 こ の図から も判る よ う に、 本発明例の場合は 磁束密度も高 く 、 また铸型の幅方向に均一な磁束分布と なってお り、 効果的に作用 している こ とが判る。
本発明の上記第 1 実施例は次の効果をもた らす。
(1) 铸型水箱背面に開口部を設け、 こ こ に铸片幅よ り も 広い電磁石の挿入を可能と し、 水箱内を貫通してョ 一 クを設ける こ とを可能な構造と したこ とから、 铸片幅 全域に均一な磁場の印加が可能とな り、 鐯型内溶鐧偏 流の铸型下部での均一化が達成され、 介在物の低減効 果が向上した。 特に注入ノ ズルからの吐出流の短辺壁 衝突後に発生する下降流が原因で生ずる介在物の下方 への潜り込みが阻止され、 铸片品質の向上が図 り う る。
(2) 電磁石を 2 つの磁極部と 2 つのヨ ー ク部に分割し、 これらをスぺーザとボル ト によ り組立可能と したこ と から、 電磁石と铸型の合体及び解体が容易 とな り、 ま た鐯型の組立、 芯出 し も容易 となる こ とから、 メ ンテ ナンス時間及び費用の節減を図 り う る と と もに、 更に 電磁石の仮置きスペース も小さ く て済み、 ハン ド リ ン グも容易になる。
(3) 鐯型と電磁ブレーキを合体構造と したこ とによ り、 締結部が全 く な く 、 単に铸型を電磁石側に設けられた ジャ ッ キボル ト によ り接触支持する よ う に し、 連続铸 造機内においては電磁石を独立に支持する構造と した こ とから、 踌型振動装置への負荷増が回避され、 モー 夕容量の増加や駆動系の強度ァ ッ プの必要性が全 く な く 、 設備改造に要する費用の節減ゃェ期の短縮を図 り う る。
第 1 7 図から第 1 9 図は、 本発明の第 2 実施例を示 し、 この第 2 実施例は、 铸型 1 0 1 A と電磁石 1 1 1 Aが共 通の踌型支持フ レーム 1 4 1 Aに固定設置されている点 で第 1 実施例 と異なる。
第 2 1 図は本発明の第 3 実施例における電磁石
1 1 1 B を示し、 第 2 0 図は第 5 図に示す本発明の第 1 実施例における铸型 1 0 1 と電磁石 1 1 1 を概略的に示 す。
第 2 0 図において電磁石 1 1 1 は、 長辺銅板 1 0 3 と 短辺銅板 1 0 5 によ り構成された铸型 1 0 1 の長辺銅板 1 0 3 よ り広い幅の磁極 1 1 2 を長辺銅板 1 0 3 の外側 に向かい合って設け、 その磁極 1 1 2 間に電磁ブ レーキ の磁力線 1 4 0 を働かせる よ う に している。 こ の電磁石 1 1 1 は、 磁極 1 1 2 と こ の磁極にコイ ル 1 2 8 を巻い た構造と している。 電磁石 1 1 1 はコイ ル 1 2 8 に直流 電流を通電する と、 N極から S極へ磁力線 1 4 0 を生ず な o
溶鋼内に生成される磁界の分布は、 対向する磁極間の 間隔 と磁極形状に依存する。 本発明の第 1 実施例では、 長方形断面鎳型の長辺側に、 こ の長辺の幅とほぼ等しい 幅の矩形の電磁石を設けてお り、 鐯型の長辺端部におけ る磁界が長辺中央部の磁界よ り弱ま り、 铸型内溶鋼の全 幅にわたつて均一な磁界を生成できな く なる。 すなわち、 磁場を鐯型全幅に均一に働かせる こ とができな く な り、 磁場通過後の溶鋼流の均一性がそこなわれ、 十分な介在 物除去ができない。
第 2 1 図において、 磁極 1 1 2 B は、 長辺中央部の高 さの低い部分 c 、 と長辺端部の高さの高い部分 d をもつ 構造と している点で、 第 3 実施例は第 1 実施例と異る。
第 2 2 図は、 本発明の第 1 実施例と第 3 実施例におけ る電磁石が溶鋼に生成する磁束密度分布を比較した図で あ り、 この図から も判る よ う に第 3 実施例の場合は铸型 1 1 1 Bの幅方向にほぼ均一な磁束密度分布となってお り、 効果的に作用 している こ とがわかる。
本発明の第 3 実施例は以下の効果を奏する。 铸型幅よ り も広い電磁石磁極あるいは、 長辺端部の高さを長辺中 央部の高さ よ り高 く した電磁石磁極によ り電磁ブレーキ 装置を構成したこ とから、 铸片幅全域に均一な磁界の印 加が可能とな り、 铸型内容鋼偏流の铸型下部での均一化 が達成され、 介在物の低減効果が向上した。
第 2 3 図から第 2 8 図を参照する と、 本発明の第 4 実 施例による連続铸造铸型が示されている。 これらの図に おいて、 第 5 図から第 1 5 B図に示した第 1 実施例と共 通の部品は同一の参照番号で措示される。 本発明の第 4 実施例は、 バッ ク ア ッ ププレ ー ト 1 3 6 Cの一部が磁性 材で作られている点で第 1 実施例 と異なる。
第 2 3 図、 第 2 4 図において、 電磁石 1 1 1 は、 長辺 銅板 1 0 3 と短辺銅板 1 0 5 によ り構成された铸型 1 0 1 の、 長辺銅板 1 0 3 の幅とほぼ等 しい幅の磁極 1 1 2 を長辺銅板 1 0 3 の外側に向かい合って設け、 その磁極 1 1 2 間に電磁ブ レ ーキ用の磁力線 1 4 0 を働かせる よ う に している。
こ の電磁石 1 1 1 は、 磁極 1 1 2 と こ の磁極にコ イ ル 1 2 8 を巻き、 磁.極 1 1 2 を含む鉄芯 1 3 9 で鐯型 1 0 1 を包囲 して設けた構造と している。
電磁石 1 1 1 はコ イ ル 1 2 8 に直流電流を通電する と、 N極か ら S極へ磁力線 1 4 0 を生ずる。
長辺銅板 1 0 3 は非磁性材 (オースチナイ ト系ステン レス鋼) のバッ ク ア ッ ププレー ト 1 3 6 C によ り強固に 支持されこ のノくッ ク ア ッ ププ レー ト 1 3 6 Cの、 磁極 1 1 2 の端部に対向する部位は硬性材、 例えば軟鋼、 或い は鉄 · コバル ト合金、 から成っている。 第 2 4 図は磁極 1 1 2 を注入ノ ズル 1 2 9 の溶鋼噴出口 1 2 9 a よ り下 部に設けた場合の図面であ り、 この場合注入ノ ズル 1 2 9 から噴出 した溶鋼吐出流は磁極 1 1 2 の位置で制動さ れ、 均一流となる。
第 2 5 図から第 2 7 図に示すよ う に、 ステ ン レ ス製バ ッ ク ア ッ ププレー ト 1 3 6 C の磁極 1 1 2 に対向する部 分で磁極 1 1 2 の両端外側から 1 0 0 腿、 内側中心に向 つて 2 5 0 ππη及び磁極 1 1 2 の高さ にほぼ等 しい 2 0 0 nunの範囲は磁性材 1 4 2 で作られている。
铸造幅 1 6 0 0 mn 鐯造厚み 2 6 0 匪の鐯型に磁極幅 1 6 0 0 匪、 磁極高さ 2 0 0 匪を用いた場合において、 第 1 実施例と第 4 実施例の比較を第 2 9 図に示す。 第 2 9 図に示すよ う に、 鐯型長辺方向の磁束分布が両端で 3 2 %減衰していた ものが 7 %減衰と小さ く する こ とがで きた。
第 3 0 A図から第 4 4 図は本発明の第 5 実施例による 铸型および電磁ブ レ ーキを示す。
図において铸型 2 0 1 に 2 本の注入ノ ズル 2 1 5 a , 2 1 5 b が挿入され、 表層用金属が注入ノ ズル 2 1 5 a から、 また内層用金属が注入ノ ズル 2 1 5 bからそれぞ れ注入される。 第 3 1 図に示すよ う に、 電磁石 2 0 7 は 铸型 2 0 1 の下部で、 且つ注入ノ ズル 2 1 5 a と 2 1 5 b の噴出口 2 5 3 a, 2 5 3 b の中間に位置し、 長辺 銅板 2 0 3 , 短辺銅板 2 0 5 で铸型断面を形成する鐯型 2 0 1 の外側を包囲 している。 なお 2 5 2 は溶鋼、 2 1 6 は複層铸片を示す。
铸型 2 0 1 は、 上部を水箱 2 0 2 a, 2 0 2 b によ り 支持され下部を電磁石 2 0 7 の磁極 2 0 9 によ り支持さ れる長辺銅板 2 0 3 と、 水箱 2 0 2 b に設けられた短辺 支持板 2 2 4 a , 2 2 4 b (第 3 1 図参照) と、 これに 設け られたジャ ッ キボル ト 2 4 5 によ り位置決め支持さ れる短辺バ ッ ク プレー ト 2 0 4 と、 これに支持される短 辺銅板 2 0 5 と、 短辺銅板 2. 0 5 を铸造中に強固に長辺 銅板 2 0 3 間に挟持するための皿バネ (第 3 2 図参照) 2 0 6 と、 夕 イ ロ ッ ド 2 2 1 およびナ ツ 卜 2 2 2 力ヽらな る ク ラ ンプ装置 2 2 5 と、 これ らを一括支持する铸型べ —ス フ レ ーム 2 1 4 カヽら構成されている。
第 3 3 図 と第 3 7 図に示すよ う に、 長辺銅板 2 0 3 は、 上部を水箱 2 0 2 a , 2 0 2 と、 これを貫通 して長辺 銅板 3 に達する多数の銅板取付けボル ト 2 3 2 によ り 固 定支持され、 さ らに第 3 2 図に示すよ う に下部を電磁石 2 0 7 の磁極 2 0 9 を貫通 して銅板 2 0 3 に達する多数 のボル ト 2 1 7 (第 3 2 図参照) によ り磁極 2 0 9 に固 定支持される。 さ らに磁極 2 0 9 での支持ができない下 端部については、 磁極 2 0 9 に取り 付け られた押さえ板 2 4 6 によ り支持される構造となってレ、る。 第 4 3 図 と 第 4 4 図に示すよ う に、 押さえ板 2 4 6 は電磁石 2 0 7 の磁束密度の低下を防 ぐため、 非磁性材、 一般にオース テナイ ト系ステ ン レ ス鋼が用い られ、 磁極 2 0 9 の前面 突出部にボル ト 2 4 7 で固定され、 長辺銅板 2 0 3 の下 端を同様に多数のボル ト 2 4 8 で支持する よ う にな って いる。
第 3 5 図 と第 3 6 図を参照する と、 長辺銅板 2 0 3 の 冷却は、 上部は水冷用の溝 2 3 1 が多数設け られてお り、 こ れを通過する冷却水は水箱 2 0 2 a , 2 0 2 bから給 水および排水される構造となっている。 長辺銅板 2 0 3 の下部厚みは、 磁極 2 0 9 の対向間距離の最小化による 磁場強度最大化のために、 上部に比 して約半分の厚み と なってお り、 こ のため冷却は多数設けられた水冷用深孔 2 3 4 によ り行わ: .る。 冷却水は給水ノ、。ィ プ 2 3 6 よ り 支管 2 3 8 a 、 シール ピース 2 3 9 (第 3 8 図参照) を 介 して深孔 2 3 4 a の上部から給水され、 第 3 9 図に示 すよ う に、 下端集合孔 2 4 0 よ り隣接の深孔 2 3 4 b を 通って、 給水同様上方のシール ピース 2 3 9 、 支管 2 3 8 b を経て排水パイ プ 2 3 7 へと排水される。 深孔 2 3 4 a 、 2 3 4 b は、 隣接の 2 本で一つの冷却水路を形成 し、 下端集合孔 2 4 0 は 2 本ごとにプラ グ 2 3 5 (第 3 6 図、 第 3 9 図参照) によ り分割された構造となってい る。
第 3 1 図に示すよ う に、 短辺銅板 2 0 5 の冷却水は、 給水ホース 2 4 2 力、らノく ッ ク プレー ト 2 0 4 に給水され た水孔 2 4 3 a よ り、 短辺銅板 2 0 5 の冷却溝 2 4 4 を 通って短辺銅板 2 0 5 を冷却した後、 水孔 2 4 3 b を経 て排水ホース 2 4 2 から排水される。
第 3 0 B図に示すよ う に、 電磁石 2 0 7 は、 長辺側に 対向 して設けられる巻線 2 0 8 、 磁極 2 0 9 、 ヨー ク 2 1 0 と、 磁極 2 0 9 間に磁路を形成するための短辺側ョ — ク 2 1 1 と力、らな り、 巻線 2 0 8 、 磁極 2 0 9 、 ョ 一 ク 2 1 0 で構成され長辺側に配設される部分と、 短辺側 ヨ ー ク 2 1 1 に 4 分割可能となっている。 第 3 4 図に示 すよ う に、 ヨ ー ク 2 1 0 と 2 1 1 を貫通して設けられる タ イ ロ ッ ド 2 2 0 、 皿ノく ネ 2 5 0 、 ナ ッ ト 2 5 1 力、らな る締結装置 2 2 3 によ り一体組み立て可能な構造となつ ている。 なお図において、 2 5 4 はそれぞれヨ ー クの分 割部、 2 5 5 は鉄芯を示す。
第 3 2 図に示すよ う に、 錄造中に短辺銅板 2 0 5 を長 辺銅板 2 0 3 間に強固に挟持する ク ラ ンプ装置 2 2 5 は、 前述のよ う に上部については水箱 2 0 2 a , 2 0 2 b 間 を夕 イ ロ ッ ド 2 2 1 と皿バネ 2 0 6 を用いて行われるが、 下部については、 第 3 4 図に示す前記締結装置 2 3 2 で の電磁石 2 0 7 の組み立て時、 ヨ ー ク 2 1 0 と 2 1 1 の 分割部 2 5 4 において隙間 5 (約 0 . 5 腿) を設け、 締 結装置 2 2 3 の皿バネ 2 5 0 のバネ力に対向する磁極 2 0 9 を介 して長辺銅板 2 0 3 間に短辺銅板 2 0 5 を強固 に挟持する構造となっている。
第 3 2 図に示すよ う に、 電磁石 2 0 7 はベース フ レ ー 厶 2 1 4 に支持され、 铸型 2 0 1 との位置合わせのため ベース フ レ 一厶 2 1 4 に設け られたジ ャ ッ キボル ト 2 4 9 によ り、 調整可能な構造となっている。
第 4 1 図 と第 4 2 図に示すよ う に、 铸型直下に配設さ れる フ ッ ト ロ ーノレ 2 1 8 は、 ヨー ク 2 1 0 の下面に取付 け られたフ ッ ト ロ ール取り付けフ レ ーム 2 2 6 にチ ヨ ッ ク 2 2 7 と共にボル 卜 2 2 8 によ り 固定される構造とな つてお り、 必要に応じ取 り付けフ レーム 2 2 6 に設け ら れたジャ ッ キポル ト 2 2 9 によ り調整可能となっている。
本発明の第 5 実施例は下記の如き効果を奏する。
(1 ) 錶型長辺銅板を、 上部を水箱にて、 下部を電磁石磁 極にてそれぞれ直接支持したこ とによ り、 十分な磁束 密度を有し、 かつ長辺の幅とほぼ等しい幅の電磁石を、 2 本の注入ノ ズ几 の噴射口の中間位置で鐯型下部に設 置可能と したこ とから、 2 曆間の混合を最低限に押さ え、 表層 と内層の境界の明瞭な複層铸片の製造が可能 となった。
( 2 ) 高い冷却能を必要とする と共に高温変形に対して 十分な強度を必要とする铸型上部について、 従来から 十分確証された銅板厚みおよび冷却構造と し、 上部に 比し冷却能並びに高温強度共に劣る こ とが許される下 部について、 銅板厚みを上部の約半分と して磁束密度 の最大化を図 り、 さ らに深孔による冷却構造と したこ とによ り、 実用上必要な磁束密度および鐯型性能を両 立させる こ とが可能となった。
(3) 電磁石を 2 つの磁極、 巻線を含むヨ ー ク部と磁路を 形成するための 2 つのヨ ー ク部とに分割し、 夕イ ロ ッ ドと皿バネ とからなる締結装置によ り組み立て可能と したこ とから、 電磁石と铸型の組み立ておよび解体が 容易 とな り、 鎳型の整備時間および費用が少な く て済 む。
また締結装置による電磁石組み立て時においてヨ ー ク 間に隙間を設け、 締結装置内の皿バネカによ り長辺銅板 間に短辺銅板を挟持する こ とを可能と したこ とによ り、 铸造中 も鐯型断面の保持が可能とな り、 铸型断面形状、 寸法の精度な らびに铸片品質の確保が可能となった。
第 4 5 図から第 5 4 図は、 本発明の第 6 実施例を示し、 こ の第 6 実施例は次の点について第 5 実施例と異る もの である、 即ち水箱 3 0 2 a , 3 0 2 b は、 給水ボ ッ ク ス 3 G 2 、 排水ボ ッ ク ス 3 '6 1 を有し、 上部か ら下部に亘 つてバ ッ ク ア ッ ププ レ ー 卜 3 6 3 a, 3 6 3 b が長辺銅 板 3 0 3 a, 3 0 3 b を固定、 支持する構造となってい る。 そ して更にノくッ ク ア ッ ププレー ト 3 6 3 a,
3 6 3 b を電磁石 3 0 7 の磁極 3 0 9 を貫通 して多数の ボル ト 3 1 7 によ り磁極 3 0 9 に固定支持する構造とな つている。 長辺銅板 3 0 3 a , 3 0 3 b の冷却は銅板 3 0 3 a , 3 0 3 b の上部から下部にまで設け られた多数 の溝 3 3 1 に冷却水を供給する こ とによ り行われ、 こ の 溝 3 3 1 への給水は、 バッ クア ッ ププレー ト 3 6 3 a , 3 6 3 b の銅板 3 0 3 a, 3 0 3 b取付面に溝 3 3 1 と 干渉しない位置に設け られた多数の溝 3 6 4 か ら供給さ れる構造とな っている。 更に詳述する と銅板への冷却水 は、 給水ボ ッ ク ス 3 6 2 力、ら ノく ッ クア ッ ププ レ ー ト 3 6 3 a , 3 6 3 b に設け られた溝 3 6 4 部を下降し、 下端 部の給水ヘ ッ ダ— 3 6 5 a , 3 6 5 b カヽら銅板 3 0 3 a , 3 0 3 b の冷却水溝 3 3 1 部を上昇し、 上端部の排水へ ッ ダ一 3 6 6 a, 3 6 6 b 力、 ら排水ボ ッ ク ス 3 6 1 へと 排水される こ と に よ り銅板 3 0 3 a , 3 0 3 b を効果的 に冷却する構造とな っている。
本発明の第 6 実施例は次の如き効果を奏する
(1 ) 铸型長辺銅板の多数回使用後の銅板表面疵取り 等の ための銅板改削時、 銅板下部での電磁石、 磁極の固定 を解放 して も銅板の自由変形がバッ クア ッ ププレー ト で拘束される こ とから改削前の歪取り作業が不要とな る と共に改削量も最小とする こ とができ、 銅板寿命の 延長及びラ ン ニ ン グコス トの低減が可能となる。
(2) 銅板厚み及び冷却構造が上部、 下部共同一の もの と な り製作コス ト の低減が達成される。

Claims

求 の 範 囲
1 . 長方形断面を有する铸型長辺の側部に相互に対向 して設けられ、 かつ該踌型長辺の幅とほぼ等しい幅を有 する磁極、 該磁極の外周に巻回されたコイ ルおよび前記 铸型を包囲する よ う に設け られた鉄芯を有する電磁石を ョ
含む連続踌造鐯型の電磁ブレ ーキ装置。
2. 長方形断面を有する铸型長辺の側部に相互に対向 して設け られ、 かつ該踌型長辺の幅とほぼ等 しい幅を有 する磁極、 該磁極の外周に巻回されたコイ ルおよび前記 铸型を包囲する よ う に設け られた鉄芯を有する電磁石を 含み、 前記鉄芯が铸型長辺の側部の前記磁極を含む一対 のヨ ー ク と鐯型短辺の側部の一対のヨ ー クから成る連続 铸造鐯型の電磁ブレーキ装置。
3. 長方形断面を有する铸型長辺の側部に相互に対向 して設け られ、 かつ該铸型長辺の幅とほぼ等しい幅を有 する磁極、 該磁極の外周に巻回されたコイ ルおよび前記 铸型を包囲する よ う に設け られた鉄芯を有する電磁石を 含み、 前記鉄芯が铸型長辺の側部の前記磁極を含む一対 のヨ ー ク と铸型短辺の側部の一対のヨ ー クから成り、 さ らに前記铸型長辺の側部のヨ ー ク と鐯型短辺の側部のョ — ク との間に設けられたスぺーサを含む連続鎳造鐯型の 電磁ブレーキ装置。
4. 長方形断面を有する铸型長辺の側部に相互に対向 して設け られ、 かつ該铸型長辺の幅とほぼ等しい幅を有 する磁極、 該磁極の外周に巻回されたコイ ルおよび前記 鐯型を包囲する よ う に設けられた鉄芯を有する電磁石を 含み、 前記鉄芯が铸型長辺の側部の前記磁極を含む一対 のヨ ー ク と铸型短辺の側部の一対のヨー クから成り、 前 記踌型長辺の側部のヨ ー ク と铸型短辺の側部のヨー クが ばねおよび夕イ ロ ッ ドによ り連結されている連続铸造铸 型の電磁ブレーキ装置。
5. 長方形断面を有する鐯型長辺の側部に相互に対向 して設けられた磁極を有する電磁石を含み、 該磁極の間 に生成される磁界と、 こ の磁界に直交する方向に移動す る溶鋼流とが作用 して生じさせる誘導電流に基づ く 電磁 力によ り溶鋼流を抑制する電磁ブレーキ装置において、 前記電磁石の磁極の水平方向の幅が前記鐯型長辺の幅と ほぼ等しいか、 または大き く 、 前記電磁石の磁極の垂直 方向の幅が中央部よ り も端部において大きい連続铸造鐃 型の電磁ブレーキ装置。
6. 長方形断面を有する鐯型長辺の側部に相互に対向 して設けられ、 かつ該铸型長辺の幅とほぼ等しい幅を有 する磁極を有し、 連続铸造装置の注入ノ ズルから流出す る溶鋼の流動を電磁力によ り制御し抑制する電磁石を含 み、 前記鐃型長辺を支持するバッ ク ア ッ ププレー トが部 分的に磁性材料で作られ、 前記磁性材料の部分が前記磁 極の端部付近に位置している連続铸造铸型の電磁ブレー キ装置。
7. 前記磁性材料の部分が前記磁極の端部から中央部 に水平方向に向かって約 1 0 0 腿力、 ら約 2 5 0 隱および 垂直方向に少な く と も前記磁極の高さ にわた り延在して いる請求の範囲第 6 項に記載の連続踌造铸型の電磁ブレ ーキ装置。
8 . 前記磁極が注入ノ ズル の溶鋼噴出口 よ り も下方に 位置している請求の範囲第 1 項から第 7 項までのいずれ か一項に記載の連続铸造鎵型の電磁ブレーキ装置。
9. 前記铸型が鐯型振動テーブルに載置され、 前記電 磁石が前記鐯型振動テーブル とは別個の電磁石支持装置 に支持されている請求の範囲第 8 項に記載の連続铸造铸 型の電磁ブレ ーキ装置。
1 0 . 前記電磁石に設けられて前記铸型を支持可能な支 持部材が前記電磁石に設けられて、 前記铸型と前記電磁 石を一体に交換可能にする請求の範囲第 8 項に記載の連 続铸造鐯型の電磁ブレーキ装置。
1 1 . 前記電磁石、 水箱および铸型を支持する铸型支持 枠が設け られている請求の範囲第 1 項から第 7 項までの いずれか一項に記載の連続鐯造鐯型の電磁ブ レーキ装置。
1 2. 溶鋼噴出口の高さがそれぞれ異なる 2 個の注入ノ ズルおよび長方形断面を有する連続铸造铸型を含む連続 铸造装置において、 铸型長辺の側部に相互に対向 して設 けられ、 かつ該鐯型長辺の幅とほぼ等 しい幅を有する磁 極、 該磁極の外周に巻回されたコ ィ ルおよび前記铸型を 包囲する よ う に設け られた鉄芯を有する電磁石を含み、 前記磁極が前記 2 個の溶鋼噴出口の間に位置 している請 求の範囲第 1 項から第 7 項までのいずれか一項に記載の 連続铸造型の電磁ブレ ーキ装置。
1 3. 前記鐯型長辺の銅板の上部を水箱によ り、 下部を 前記磁極によ り支持している請求の範囲第 1 2 項に記載 の連続鐯造型の電磁ブレ ーキ装置。
1 4. 前記銅板の冷却水路の上部が溝、 下部が深孔の形 態にされている請求の範囲第 1 3 項に記載の連続铸造型 の電磁ブレ ーキ装置。
1 5 . 前記铸型長辺の側部の水箱が前記磁極を挿入可能 にする開口を設けられ、 ステン レス製のバッ クア ッ ププ レー トおよび銅板が前.記水箱の溶鋼側に設けられている 請求の範囲第 1 2 項に記載の連続铸造鐯型の電磁ブレー キ装置。
PCT/JP1991/000228 1990-02-23 1991-02-22 Continuous casting apparatus WO1991012909A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP91904343A EP0577831B1 (en) 1990-02-23 1991-02-22 Continuous casting apparatus
DE69131169T DE69131169T2 (de) 1990-02-23 1991-02-22 Stranggiessvorrichtung

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2/42985 1990-02-23
JP4298590A JPH0763808B2 (ja) 1990-02-23 1990-02-23 連続鋳造鋳型の電滋ブレーキ装置
JP2056608A JPH0787974B2 (ja) 1990-03-09 1990-03-09 連続鋳造鋳型の電磁ブレーキ装置
JP2/56608 1990-03-09
JP1362691U JPH04104250U (ja) 1991-02-20 1991-02-20 連続鋳造鋳型の電磁ブレーキ装置
JP1362791U JPH04104251U (ja) 1991-02-20 1991-02-20 連続鋳造設備の電磁ブレーキ装置
JP3/13627U 1991-02-20
JP3/13626U 1991-02-20

Publications (1)

Publication Number Publication Date
WO1991012909A1 true WO1991012909A1 (en) 1991-09-05

Family

ID=27456041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000228 WO1991012909A1 (en) 1990-02-23 1991-02-22 Continuous casting apparatus

Country Status (4)

Country Link
US (1) US5238051A (ja)
EP (1) EP0577831B1 (ja)
DE (1) DE69131169T2 (ja)
WO (1) WO1991012909A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012814A1 (en) * 1991-01-21 1992-08-06 Asea Brown Boveri Ab A method and a device for casting in a mould

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE501322C2 (sv) * 1993-01-19 1995-01-16 Asea Brown Boveri Anordning vid stränggjutning i kokill
DE19513045C3 (de) * 1995-03-29 2002-09-12 Mannesmann Ag Kokilleneinrichtung
EP0827792B2 (de) * 1996-09-09 2002-04-17 SMS Demag Aktiengesellschaft Strangguss-Kokilleneinrichtung mit Oszillationsvorrichtung
SE509112C2 (sv) * 1997-04-18 1998-12-07 Asea Brown Boveri Anordning vid kontinuerlig gjutning av två ämnen i parallell
US6341642B1 (en) * 1997-07-01 2002-01-29 Ipsco Enterprises Inc. Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
SE515990C2 (sv) * 1999-09-03 2001-11-05 Abb Ab Anordning för kontinuerlig eller halvkontinuerlig gjutning av metaller
FR2801523B1 (fr) * 1999-11-25 2001-12-28 Usinor Procede de coulee continue des metaux du type utilisant des champs electromagnetiques, et lingotiere et installation de coulee pour sa mise en oeuvre
AT412302B (de) 2000-03-28 2004-12-27 Hoerbiger Ventilwerke Gmbh Selbsttätiges ventil
FR2825040B1 (fr) * 2001-05-23 2003-08-01 Usinor Equipement electromagnetique pour tete de lingotiere de coulee continue des metaux en formats quadrangulaires allonges
JP4073837B2 (ja) * 2003-08-01 2008-04-09 新日本製鐵株式会社 連続鋳造用鋳型および連続鋳造用鋳型の取り外し方法
JP4519600B2 (ja) 2004-10-15 2010-08-04 新日本製鐵株式会社 電磁攪拌コイル
SE0502611L (sv) * 2005-11-25 2007-05-26 Abb Ab Elektromagnetisk bromsanordning för kontinuerlig eller halvkontinuerlig gjutning av metall
CN110405165B (zh) * 2019-08-30 2024-03-26 安徽马钢表面技术股份有限公司 一种防腐型连铸结晶器水箱
CN111570781A (zh) * 2020-07-10 2020-08-25 湖南中科电气股份有限公司 一种中间包水口控流系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271029A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法及び装置
JPH01271030A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法
JPH01271042A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法
JPH02284750A (ja) * 1989-04-27 1990-11-22 Kawasaki Steel Corp 静磁場を用いる鋼の連続鋳造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855157A (ja) * 1981-09-28 1983-04-01 Sumitomo Metal Ind Ltd 連続鋳造の注入流制御方法および装置
JPS61129261A (ja) * 1984-11-28 1986-06-17 Nippon Steel Corp 表面欠陥の少い連続鋳造鋳片の製造方法
JPS6466052A (en) * 1987-09-08 1989-03-13 Nippon Steel Corp Production of complex metal material by continuous casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271029A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法及び装置
JPH01271030A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法
JPH01271042A (ja) * 1988-04-22 1989-10-30 Nippon Steel Corp 複層鋳片の連続鋳造方法
JPH02284750A (ja) * 1989-04-27 1990-11-22 Kawasaki Steel Corp 静磁場を用いる鋼の連続鋳造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0577831A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012814A1 (en) * 1991-01-21 1992-08-06 Asea Brown Boveri Ab A method and a device for casting in a mould

Also Published As

Publication number Publication date
EP0577831A1 (en) 1994-01-12
DE69131169T2 (de) 1999-12-09
DE69131169D1 (de) 1999-05-27
EP0577831A4 (ja) 1994-03-23
US5238051A (en) 1993-08-24
EP0577831B1 (en) 1999-04-21

Similar Documents

Publication Publication Date Title
WO1991012909A1 (en) Continuous casting apparatus
JPH03258442A (ja) 連続鋳造鋳型の電磁ブレーキ装置
CN205496531U (zh) 立式特厚板坯连铸机零号段设备
JPS60106651A (ja) 溶湯流動制御装置
JPH1029044A (ja) 鋳造機への溶融金属流を遅延させる方法及び装置
JP3025366B2 (ja) 連続鋳造機の鋳型ユニット、鋳型構造および鋳型ユニット組換え方法
JPH0241361B2 (ja)
JP3131762B2 (ja) 連続鋳造用鋳型の電磁ブレーキ装置
JP4580135B2 (ja) 連続鋳造インゴットモールドに溶融金属を供給する装置、及びその使用方法
JPH05123841A (ja) 連続鋳造鋳型の電磁ブレーキ装置
EP0964759B1 (en) Method and apparatus for electromagnetic confinement of molten metal
JPH04197559A (ja) 鋼の連続鋳造法
CN113557097A (zh) 用于板坯连铸设备的铸模的电磁制动器
KR101148943B1 (ko) 압연기용 가이드장치
JPH0763808B2 (ja) 連続鋳造鋳型の電滋ブレーキ装置
JP2972098B2 (ja) 水平振動鋳型の短辺自立機構
CN214644571U (zh) 一种专用的叠合梁定型模具组件
EP1429879A1 (de) ELEKTROMAGNETISCHE BREMSVORRICHTUNG FüR DIE KOKILLE EINER STRANGGIESSANLAGE
JP5505967B2 (ja) 連続鋳造用鋳型
JPH1177258A (ja) 連続鋳造機の電磁ブレーキ装置
JPS6325005Y2 (ja)
JPH0471759A (ja) 溶融金属の流動制御方法
JPS5832545A (ja) 連続鋳造鋳片の断面寸法変更方法
JPH04147754A (ja) 連続鋳造設備の溶鋼流制御装置
JPH079545U (ja) 連続鋳造鋳型の電磁ブレーキ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991904343

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991904343

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991904343

Country of ref document: EP