WO1991010507A1 - Trägergebundene dialkoxyphosphorverbindungen, verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Trägergebundene dialkoxyphosphorverbindungen, verfahren zu ihrer herstellung und ihre verwendung Download PDF

Info

Publication number
WO1991010507A1
WO1991010507A1 PCT/EP1991/000027 EP9100027W WO9110507A1 WO 1991010507 A1 WO1991010507 A1 WO 1991010507A1 EP 9100027 W EP9100027 W EP 9100027W WO 9110507 A1 WO9110507 A1 WO 9110507A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
dialkoxyphosphorus
bound
spacer
gel
Prior art date
Application number
PCT/EP1991/000027
Other languages
English (en)
French (fr)
Inventor
Horst Schwinn
Henrich Hasko Paradies
Original Assignee
Octapharma Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Octapharma Ag filed Critical Octapharma Ag
Publication of WO1991010507A1 publication Critical patent/WO1991010507A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0082Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units
    • C12N7/06Inactivation or attenuation by chemical treatment

Definitions

  • the present invention relates to carrier-bound dialkoxy phosphorus compounds, in particular carrier-bound alkyl phosphates and alkyl phosphonates, processes for their preparation and their uses.
  • Di- or trialkylphosphates are substances which have been used, inter alia, to inactivate phospholipid-enveloped viruses, with the assumption that these phosphorus compounds destroy the membrane of these viruses.
  • EP-A-0131740 describes processes for the preparation of protein-containing preparations which are practically free of phospholipid-containing viruses, in which the preparations are brought into contact with an effective amount of di- or trialkylphosphates for a sufficiently long time.
  • This method can be used for a wide variety of biological fluids, in particular, however, for removing viruses in blood and plasma preparations in which the proteins are not to be denatured or only to be denatured as little as possible. In the case of such processes, however, it is necessary to subsequently remove the di- or trialkyl phosphates from the
  • the object of the invention was therefore initially to separate di- and trialkyl phosphates from biological liquids, in particular from protein-containing biological liquids, without denaturing the proteins and having to accept relatively high losses in protein yields . It has now been found that this problem can be solved in a surprisingly simple manner by carrier-bound dialkoxy oxyphosphorus compounds, namely alkyl phosphates and alkyl phosphonates of the general formula I
  • Tr-Spac (-0) n PO (-OAlk) 2 (I)
  • Tr in an inert carrier spac a spacer
  • n the numbers 0 and 1
  • Alk alkyl groups having 1 to 10 carbon * j _0 mean atoms.
  • inorganic or organic solids or gels can be used as carriers, which can be linked to a spacer by covalent bonds.
  • Suitable inorganic carriers are, for example, glasses, silicas, aluminum hydroxides and other inert inorganic carriers, such as are also used for carrier-bound enzymes.
  • all the inert carriers normally used come as organic carriers
  • crosslinked and uncrosslinked polymeric carbohydrates such as celluloses, dextrans, agaroses, polyacrylates and copolymers.
  • Succinimide such as bromoacetamido-alkyl derivatives, CNBr-Sepharose or O-bromoacetyl-N-hydroxy
  • Spacers generally straight Alkylgrup ⁇ be selected pen having 2 to 8 carbon atoms, the covalent bonds at both ends 30 can be received. Spacers with 6 carbon atoms are particularly preferred; In addition, all other known spacers can be used, which have been developed especially for carrier-bound enzymes.
  • the alkyl groups of the phosphorus compounds can have between 1 and 10 carbon atoms. Those having 3 to 6 carbon atoms are preferred. For the removal of viruses with a phospholipid envelope, such as hepatitis B, a chain length of 4 carbon atoms has proven particularly useful.
  • the covalent coupling of the phosphorus atom with the spacer can be carried out with the aid of conventional coupling reagents, such as, for example, oxiranes, epoxides, carbodimides.
  • conventional coupling reagents such as, for example, oxiranes, epoxides, carbodimides.
  • the alkylphosphonates can also be used according to the invention via Spacers are bound to the carrier. These carrier-bound alkylphosphonates also have excellent properties with regard to the separation and separation of lipophilic substances and the inactivation and removal of viruses with a phospholipid shell.
  • dialkoxyphosphorus compounds bound to carriers it has also been shown that it is possible with the aid of the dialkoxyphosphorus compounds bound to carriers to remove viruses from biological fluids with high efficiency without denaturing the desired proteins. If suitable carriers and spacers are selected, it is even possible to keep the yield losses on desired proteins extremely low. Furthermore, it has been found that it is possible with the aid of the dialkoxyphosphorus compounds bound to the carrier to separate lipophilic substances from hydrophilic substances and even to chromatographically separate substances with gradual gradation of lipophilicity, so that new forms of affinity chromatography are possible with them.
  • a suitable solvent for example 1,2-dimethoxyethane at 0-8 ° C.
  • the coupling to the gel matrix is achieved by stirring in the respective gel matrix at pH 6.0-7.0 with constant stirring at 4 ° C.
  • the often observed pH drop in the first hour is preferably prevented by adding thionyl or sulfuryl chloride (SOCl 2 , SO-Cl) in the presence of pyridine.
  • the reaction mixture is kept under constant control of the pH for a further 3 hours stirred at a pH of 6.0 and a temperature of 4 * C.
  • the product thus obtained is washed extensively at the same temperature with 0.1 M NaOH, then with water and then with 0.1 M HCl.
  • Organic solvents such as 1,4-dioxane, ethylene glycols, acetone etc. are removed by extensive washing with water at 4 ° C or by dialysis.
  • the free amino or hydroxyl group e.g. B. on the Sepharose (agarose bed) or Dextran ⁇ gels (Sephadex) and cross-linked (cross-linked) dextran gels, such as Sephacryl, Fractogel extended accordingly.
  • the matrix contains a spacer arm of 6-CH 2 groups, a primary amino group at the free end, which is then coupled with the corresponding carbodiimide (EDC), so that the di-n-butyl phosphate group is free and terminal .
  • EDC carbodiimide
  • a preferred embodiment for producing the activated agarose or a dextran gel consists in the usual form of the CNBr-activated matrices and their subsequent conversion with 1.4 to 1.10 diamines according to the cyanogen bromide method.
  • agarose or dextran gels are reacted with 1,4- to - (2,3-epoxypropoxy) butane.
  • free oxirane groups are reacted with reagents containing hydroxyl groups.
  • the novel column matrix for inactivating PL viruses, loaded with di-n-butyl phosphate groups is formed.
  • a covalent population density of 25 ⁇ mol per g hydrated gel was determined for agarose gels.
  • the gel is first hydrolyzed, then heated with concentrated hydrochloric acid and the free phosphoric acid is determined by titration.
  • Another method for quantitative determination of the di-n-butylphosphate group consists in the hydrolysis by sodium methylate in methanol with subsequent lowering of the pH value by hydrochloric acid and determination of the phosphoric acid and the released diamine (NH, - (CH_ ) -NH_) by high pressure liquid chromatography (HPLC).
  • Carbodiimide is reached.
  • the pH is raised to pH 5.1 to
  • the milky suspension is mixed with 1,4-dioxane (10% w / w) to reduce the solubility of
  • the solution of di-n-butyl phosphate and N-ethyl-N '- (3-dimethylaminopropyl) carbodiimide is then added dropwise to the suspension with constant stirring.
  • the reaction is complete after 4 hours at 4 ° C.
  • the (CH 2 ) group can be extended, inter alia, by condensation with n-dialkyldiols, which in the end contain an epoxy group.
  • the loading can be increased five times, up to 150 ⁇ mol / g swollen gel, by adding the coupling reagent.
  • the gel is "In a bowl centrifuge or in a RC5B (Dupont) by centrifugation at 2,000 rpm, and the supernatant was discarded. The residue is washed several times with distilled water, filtered with suction and then lescu lyophi-.
  • the loading density of the gel with the ligand including the di-n-butylphosphate group was determined by titration of the o-phosphoric acid after hydrolysis with concentrated hydrochloric acid. Alternatively, direct determination by HPLC chromatography (Bondepak I 75, isotactic) of the spacer arms loaded with di-n-butyl phosphate, eg Tr-Spac (-O) P0 (0C 4 H g ) 2, is also possible.
  • the loading density for Sephadex G 100 or agarose gels is of the order of 25 ⁇ mol / g hydrated gel or 25 ⁇ mol / g hydrated gel in the case of agarose A 1.5 m. Fractogel preparations have an average loading density of 25 to 30 ⁇ mol / g swollen gel.
  • n-butylphosphoric acid dichloride (bp: "130 ⁇ C, 760 T) can also be obtained by correspondingly varying the molar ratios.
  • the CNBr-activated agarose 2 B is, as described under 2, provided with a corresponding spacer arm, for example with 1,4- (2,3-epoxybutoxy) -butane, and then the molar amount of di-n in 1 liter of pyridine with constant stirring -butylphosphoric acid chloride and 22.6 g of dicyclohexylcarbodiimide are added. After 60 hours at 35 ° C. the dicyclohexylurea is filtered off, washed first with plenty of water, then with plenty of ether and then with 2 liters of 0.01 M potassium Phosphate buffer solution of pH 7.5 and 20 ⁇ C washed. The gel or gel matrix prepared in this way is stored in 0.001 M potassium phosphate buffer solution at pH 7.5 and 4 ° C. in the presence of sodium azide.
  • a mixture of 24.5 g of dimethylaniline and 22 g of n-butyl alcohol is added dropwise to an ice-cooled solution of 15.0 g of phosphorus trichloride in 100 ml of benzene (toluene) with constant stirring within 3 hours. While stirring is continued, 12 g of n-butyl alcohol (p.a.) are added dropwise in the same way after a further 20 minutes.
  • the reaction mixture is left to stand at 20 ° C. overnight, 75 ml of water are added and the benzene (toluene) phase is washed several times in a separating funnel with 50 ml of H_0, then with 5 M ammonia and then with 500 ml of water. After drying over anhydrous sodium sulfate or molecular sieves, the benzene (toluene) is in the
  • the gel is then washed on a suction filter with at least 1 liter of water and then rinsed with 2 liters of 0.001 M potassium phosphate buffer solution at pH 7.5.
  • the finished gel with the phosphoric acid matrix is stored in the presence of sodium azide in 0.001 M potassium phosphate buffer solution at 4 ° C.
  • a mixture of 25 g of 1,8-chloroctane and 25.5 g of tri-n-butyl phosphite are heated to 100 ° C. for 6 hours. Then distilled at 150 to 160 ° C and 10 T and the transition 1-chloroctyl-di-n-butylphosphonate in 70% yield.
  • the ester is coupled to the gel in 25 ml of pyridine (90%) in the presence of 1 g of Fractogel (Agarose 6 B) at 20 ° C. with constant stirring.
  • the mixture is left to stand for 60 hours and then on the suction filter with 1 liter water, then washed with 2 liters of 0.01 M di-potassium hydrogen phosphate at pH 7.5.
  • the gel hydrogenphosphate in 0.001 M di-Kalium ⁇ at pH 7.5 in the presence of sodium azide at 4 C ⁇ stored.
  • 5 1 Fractogel loaded with chemically fixed dibutyl phosphate (50 - 1000 ⁇ mol / ml) are suspended in 0.15 mol / 1 NaCl and filled into a chromatography column so that the height of the gel bed is approximately the same as the diameter of the column .
  • 5 1 human citrate plasma are filtered (pore size 1 ⁇ m) and Herpes Simplex Viruses (HSV) are added.
  • HSV Herpes Simplex Viruses
  • the plasma then passes through the gel bed at room temperature over the course of 6 hours.
  • a chromatography column with Fractogel loaded with dibutyl phosphate is prepared as described under 1.
  • a factor VHI-containing solution containing 120 ⁇ mol / 1 NaCl, 10 mmol / 1 Na 3 ⁇ citrate) 1 mmol / 1 CaCl 2 and 120 mmol / 1 glycine are filtered (1 ⁇ m) and as in 1 with HSV transferred.
  • the factor VIII solution passes the gel bed over 12 hours at room temperature.
  • the factor VIII activity determined in the 1-phase test is not affected by this treatment.
  • Fractogel was chemically fixed to its surface dibutylphosphonate via spacers (50 to 1000 mol / ml are prepared in a temperature-chromatographic column as described under 1.
  • the gel bed we held by means of the water bath at 30 + ⁇ C..
  • the plasma then passes through the gel bed over a period of 6 hours at + 30 ° C. After that, no virulent polio virus is detectable.
  • the plasma then passes through the gel bed in the course of 24 hours at room temperature.

Abstract

Die vorliegende Erfindung beschreibt trägergebundene Dialkoxyphosphorverbindungen, ein Verfahren zu ihrer Herstellung und ihre Verwendung. Die trägergebundene Dialkoxyphosphorverbindungen besitzen die allgemeine Formel (I): Tr-Spac(-O)n(PO(OAlk)2, in der Tr einen inerten Träger, Spac einen Spacer, n die Zahlen 0 und 1 und Alk Alkylgruppen mit 1 bis 10 Kohlenstoffatomen bedeuten.

Description

Träcrerqebundene Dialkoxyphosphorverbindunqen, Verfahren zu ihrer Herstellung: und ihre Verwendung
Gegenstand der vorliegenden Erfindung sind trägergebun¬ dene Dialkoxyphosphorverbindungen, insbesondere trägerge¬ bundene Alkylphosphate und Alkylphosphonate, Verfahren zu ihrer Herstellung und ihre Verwendungen.
Di- oder Trialkylphosphate sind Substanzen, die unter anderem verwendet worden sind, um phospholipid-umhüllte Viren zu inaktivieren, wobei man von der Annahme ausging, daß diese Phosphorverbindungen die Membran dieser Viren zerstören. So beschreibt beispielsweise die EP-A-0131740 Verfahren zur Herstellung von proteinhaltigen Zubereitun¬ gen, die praktisch frei sind von phospholipid-haltigen Viren, bei dem die Zubereitungen ausreichend lange mit einer wirksamen Menge von Di- oder Trialkylphosphaten in Berührung gebracht werden. Dieses Verfahren ist auf die verschiedensten biologischen Flüssigkeiten anwendbar, ins¬ besondere jedoch zur Entfernung von Viren in Blut- und Plasmapräparaten, in denen die Proteine nicht oder nur möglichst geringfügig denaturiert werden sollen. Gerade bei derartigen Verfahren ist es jedoch nötig, an- schließend die Di- oder Trialkylphosphate wieder aus der
Lösung zu entfernen, was mit erheblichem Aufwand und meist auch erheblichen Verlusten an Proteinen verbunden ist.
Die Erfindung hat sich somit zunächst die Aufgabe .ge- stellt, Di- und Trialkylphosphate aus biologischen Flüs¬ sigkeiten, insbesondere aus proteinhaltigen biologischen Flüssigkeiten abzutrennen, ohne dabei die Proteine zu denaturieren und relativ hohe Ausbeuteverluste an Pro¬ teinen in Kauf nehmen zu.müssen. Es wurde jetzt gefunden, daß diese Aufgabe überraschend einfach gelöst werden kann durch trägergebundene Dialk¬ oxyphosphorverbindungen, nämlich Alkylphosphate und Al- kylphosphonate der allgemeinen Formel I
5
Tr-Spac(-0)nPO(-OAlk)2 (I)
in der Tr einen inerten Träger, Spac einen Spacer, n die Zahlen 0 und 1 und Alk Alkylgruppen mit 1 bis 10 Kohlen- *j_0 Stoffatomen bedeuten.
Als Träger kommen insbesondere anorganische oder organi¬ sche Festkörper oder Gele in Frage, welche durch kova- lente Bindungen mit einem Spacer verknüpft werden können.
15 Als anorganische Träger kommen beispielsweise in Frage Gläser, Kieselsäuren, Aluminiumhydroxide und sonstige inerte anorganische Träger, wie sie auch für trägergebun¬ dene Enzyme zur Anwendung kommen. Als organische Träger kommen wiederum alle üblicherweise eingesetzten inerten
20 Träger in Frage insbesondere vernetzte und unvernetzte polymere Kohlehydrate, wie Cellulosen, Dextrane, Agaro- sen, Polyacrylate und Copolymerisate. Besonders bevorzugt sind Sephär A,oseR, Sephacel, FractogelR und SephadexR, und deren bereits aktivierte Abkömmlinge, die bereits einen 25 Spacer ^enthalten, wie z.B. Brom-acetamido-alkyl-derivate, CNBr-Sepharose oder O-Bromacetyl-N-Hydroxy-Succinimid.
Als Spacer werden im allgemeinen geradkettige Alkylgrup¬ pen gewählt mit 2 bis 8 Kohlenstoffatomen, die an beiden 30 Enden kovalente Bindungen eingehen können. Besonders bevorzugt werden Spacer mit 6 Kohlenstoffatomen; darüber hinaus können auch alle übrigen bekannten Spacer einge¬ setzt werden, die insbesondere für trägergebundene Enzyme entwickelt worden sind. Die Alkylgruppen der Phosphorverbindungen können je nach Verwendungszweck zwischen 1 und 10 Kohlenstoffatomen auf¬ weisen. Bevorzugt werden solche mit 3 bis 6 Kohlenstoff¬ atomen. Für die Entfernung von Viren mit einer Phospho- lipidhülle, wie Hepatitis B hat sich insbesondere eine Kettenlänge von 4 Kohlenstoffatomen besonders bewährt.
Ein Verfahren zur Entfernung von Viren aus biologischen Flüssigkeiten ist von der Anmelderin als Patentanmeldung mit gleichem Anmeldetag unter der Anmeldungs-Nr. P 40 01 099.6-41 beim DPA eingereicht worden.
Die weiteren Untersuchungen dieser neuen trägergebundenen Dialkoxyphosphorverbindungen hat ergeben, daß durch Vari- ationen des Trägers, des Spacers und der Länge der Alkyl¬ gruppen durchaus unterschiedliche Ergebnisse erzielt werden können. So ist einerseits darauf zu achten, daß der Träger nicht nur gegenüber den Proteinen inert ist, sondern auch nicht dazu neigt, diese unverhältnismäßig hoch zu adsorbieren, wodurch es zu unerwünschten Verlu¬ sten kommen kann. Das gleiche gilt für die Länge des Spacers. Zur Auf- und Abtrennung von lipophilen Substan¬ zen können vielfach schon sehr kurze Spacer ausreichen. Insbesondere um die Phospholipidhülle von Hepatitis B Viren zu zerstören, ist eine Mindestlänge des Spacers er- forderlich. Zu lange Spacer wiederum führen zu geringerer Effizienz der trägergebundenen Dialkoxyphosphorverbin¬ dungen. Für diesen Zweck haben sich daher Spacer-Längen von 6 Kohlenstoffatomen als optimal erwiesen.
Die kovalente Kupplung des Phosphoratoms mit dem Spacer kann unter Zuhilfenahme üblicher Kupplungsreagentien er¬ folgen, wie beispielsweise Oxiranen, Epoxiden, Carbodi- imiden. Während bei der Verwendung von Di- und Trialkyl- phosphaten nach dem Stand der Technik bisher nur Ester der Phosphorsäure zur Anwendung gekommen sind, können erfindungsgemäß auch die Alkylphosphonate über einen Spacer an Träger gebunden werden. Diese trägergebundenen Alkylphosphonate weisen ebenfalls hervorragende Eigen¬ schaften auf bezüglich der Auf- und Abtrennung von lipo- philen Substanzen sowie der Inaktivierung und der Ent- fernung von Viren mit einer Phospholipidhülle.
Es hat sich weiterhin gezeigt, daß es mit Hilfe der trä¬ gergebundenen Dialkoxyphosphorverbindungen möglich ist, aus biologischen Flüssigkeiten mit hoher Effizienz Viren zu entfernen, ohne die gewünschten Proteine zu denatu¬ rieren. Bei Auswahl geeigneter Träger und Spacer ist es sogar möglich, die Ausbeuteverluste an gewünschten Pro¬ teinen extrem gering zu halten. Weiterhin wurde gefunden, daß es mit Hilfe der erfindungsgemäßen trägergebundenen Dialkoxyphosphorverbindungen möglich ist, lipophile Sub¬ stanzen von hydrophilen Substanzen abzutrennen und sogar Substanzen mit gradueller Abstufung der Lipophilität chromatographisch aufzutrennen, so daß mit ihnen neue Formen der Affinitätschromatographie möglich sind.
Zur Herstellung der Di-n-butyl aktivierten Matrix wird zunächst beispielhaft N-ethyl-N'-(3-dimethyl-aminopro- pyl)-carbodiimid Hydrochlorid oder auch N-cyσlo-hexyl-
N'-2-(4-methylmorpholinium)-ethyl carbodiimid-p-Toluol- sulfonat mit Di-n-butylphosphat in einem geeigneten Lösungsmittel, z.B. 1,2 Dimethoxy-Ethan bei 0 - 8°C umge¬ setzt. Die Kopplung an die Gel-Matrix, die entweder eine Hydroxyl- oder eine Amino-Gruppe als funktionelle Gruppe enthält, wird durch Einrühren der jeweiligen Gelmatrix bei pH 6,0 - 7,0 unter ständigem weiteren Rühren bei 4βC erreicht. Die oftmals zu beobachtende pH-Absenkung in der ersten Stunde wird vorzugsweise verhindert durch Zugabe von Thionyl- oder Sulfurylchlorid (SOCl2, SO-Cl ) in Gegenwart von Pyridin.. Das Reaktionsge isch wird unter ständiger Kontrolle des pH-Wertes für weitere 3 Stunden bei einem pH-Wert von 6,0 und einer Temperatur von 4*C gerührt. Das so erhaltene Produkt wird bei derselben Temperatur ausgiebig mit 0,1 M NaOH, dann mit Wasser und anschließend mit 0,1 M HC1 gewaschen. Organische Lösungs- mittel, wie 1,4-Dioxan, Ethylen-Glykole, Aceton etc. werden durch extensives Waschen mit Wasser bei 4βC oder durch Dialyse entfernt.
Um den Spacerarm zu verlängern und je nach den experi- mentellen Erfordernissen variabel zu halten, wird durch Carbodiimid-Kupplung die freie Amino- oder Hydroxyl-Grup- pe, z. B. an der Sepharose (Agarose-Bett) oder Dextran¬ gelen (Sephadex) sowie vernetzten (cross-linked) Dextran- Gelen, z.B. Sephacryl, Fractogel entsprechend verlängert. Die Matrix enthält einen Spacerarm von 6-CH2-Gruppen, am freien endständigen Ende eine primäre A inogruppe, welche dann mit dem entsprechenden Carbodiimid (EDC) gekoppelt wird, so daß die Di-n-butylphoεphat-Gruppe frei und end¬ ständig vorliegt.
Eine vorzugsweise Ausführung zur Herstellung der akti¬ vierten Agarose oder eines Dextrangeles besteht in der üblichen Form der CNBr-aktivierten Matrizen und deren an¬ schließendem Umsatz mit 1,4 bis 1,10 Di-aminen nach der Cyanbromid-Methode.
überraschenderweise wurde nunmehr gefunden, daß bei Aga- rose-Gelen im Durchschnitt 20 μmol Di-n-butylphosphat pro gl geschwollenem Gel kovalent gebunden sind, während bei Dextrangelen im Durchschnitt 0,1 bis 0,15 mmol Di-n-butyl- phosphat-Gruppen pro gl hydratisiertem Gel gefunden wur¬ den. Für vernetzte Dextrangele, z. B. Sephacryl, wurden im Durchschnitt 0,12 mmol Di-n-butylphosphat-Gruppen pro g geschwollenem Gel bestimmt. Eine weitere Möglichkeit zur kovalenten Bindung von Di-n- butylphosphat an eine Säulenmatrix liefert die Reaktion von epoxy-aktivierten Agarose-Gelen oder Dextranen mit Di-n-butylphosphat. Zu diesem Zwecke werden Agarose- oder Dextrangele mit 1,4- bis -(2,3-epoxypropoxy-)-butan umge¬ setzt. Dabei werden, wie bekannt, freie Oxiran-Gruppen mit hydroxylgruppen-haltigen Reagenzien umgesetzt. Durch Reaktion der freien Oxiran-Gruppierung mit Di-n-butyl¬ phosphat entsteht die durch Di-n-butylphosphat-Gruppen beladene, erfindungsgemäß gewünschte neue Säulenmatrix zur Inaktivierung von PL-Viren. Für Agarose-Gele wurde eine kovalente Besetzungsdichte von 25 μmol pro g hydratisiertem Gel bestimmt. Die entsprechende Bestimmung für nicht-vernetztes Dextrangel ergaben Werte zwischen 80 und 150 μmol pro g, für Fractogel im Durchschnitt von 10 - 100 μmol und für Sephacryl im Durchschnitt 90 μmol pro g geschwollenem Gel.
Zur quantitativen Bestimmung der reaktiven Di-n-butyl- phosphat-Gruppe wird das Gel zunächst hydrolisiert, an¬ schließend mit konzentrierter Salzsäure erwärmt und die freie Phosphorsäure titrimetrisch bestimmt.
Eine andere Methode zu quantitativen Bestimmung der Di-n- butylphosphat-Gruppe besteht in der Hydrolyse durch Natri- ummethylat in Methanol mit anschließender Absenkung des pH-Wertes durch Salzsäure und Bestimmung der Phosphor¬ säure als auch des freigesetzten Diamins (NH,-(CH_) -NH_) durch Hochdruckflüssigkeitschromatographie (HPLC) .
In den nachfolgenden Beispielen sind einige bevorzugte Ausführungsformen der erfindungsgemäßen trägergebundenen Dialkoxyphosphorverbindungen bei ihrer Herstellung und ihrer Verwendung beschrieben: Beispiel 1
21,0 g Di-n-butylphosphat werden in 100 ml 1,2-Dimeth- oxyethan bei 4°C gelöst. Unter stetigem Rühren werden 18,0 g N-ethyl-N'-(3-dimethyl-aminσpropyl) carbodiimid, das in 75 bis 100 ml Wasser gelöst ist, tropfenweise zu der Lösung gegeben, bis eine Konzentration von 0,1 mol/1
Carbodiimid erreicht ist. Der pH-Wert wird auf pH 5,1 bis
5,5 konstant gehalten. Die milchige Suspension wird mit 1,4-Dioxan (10 % w/w) versetzt, um die Löslichkeit von
Di-n-butylphosphat zu erhöhen.
Es empfiehlt sich, das Gel, z.B. Fractogel, Agarose oder Sephadex unter kräftigem Rühren, vorzugsweise in einem Volumenverhältnis von Flüssigkeit (Suspension) zu Gel wie 2 : 1 (4°C, pH 5,5 - 6,0, maximal 6,0) mit Thionylchlorid in Pyridin (Gewichtsverhältnis 1 : 1) zu versetzen, um den pH-Wert während der Kupplungsreaktion möglichst kon¬ stant auf pH = 6,0 zu halten. Die Lösung von Di-n-butyl- Phosphat und N-ethyl-N'-(3-dimethyl-aminopropyl) carbo¬ diimid wird dann unter stetem Rühren tropfenweise zur Suspension zugegeben. Der beobachtbare pH-Abfall wird in den ersten 30 Minuten durch Pyridin/SOCl. korrigiert (pH = 6,0, 4°C). Die Reaktion ist nach vier Stunden bei 4°C beendet.
Beispiel 2
Um aktivierte Sepharose 6 B mit einem hydrophoben Spacer- arm an (CH2)4 herzustellen, verfährt man wie unter 1 beschrieben, läßt jedoch zuerst das Gel mit z.B. 1, 4 bis (2,3-epoxypropyloxy) butan, bei 20°C mit einem 10 %igen (w/w) Überschuß des Epoxides reagieren. Die Aufarbeitung gestaltet sich ebenso wie unter 1 ausgeführt. Im Unterschied zum mehr hydrophoben Spacerarm liegt in diesem Fall ein Gemisch von hydrophilen in hydrophoben Bereichen innerhalb des Spacerarms vor:
H O
-0-CH2-CH-CH2-0-(CH2)nO-CH2-C-CH20-P-(OC4Hg)2
OH OH
Die Verlängerung der (CH2) -Gruppe kann u.a. durch Kon¬ densation mit n-Dialkyl-diolen geschehen, die am Ende eine Epoxy-Gruppe enthalten. Die Beladungsdichte liegt bei einer Kettenlänge von n = 6 bei 120 μmol/g geschwol- lenem Gel im Fall von Sephadex G 100, oder 25 bis 30 μmol/g geschwollenem Gel bei Sepharose 6 B und 15 bis 18 μmol/g geschwollenem Gel bei Fractogel.
Eine Erhöhung der Beladung um das fünffache, bis zu 150 μmol/g geschwollenem Gel kann durch Hinzunahme des Kupplungsreagenzes erreicht werden.
Das Gel wird"In einer Bowl-Zentrifuge oder in einer RC5B (Dupont) bei 2.000 UpM abzentrifugiert, und der überstand verworfen. Der Rückstand wird mehrmals mit destilliertem Wasser gewaschen, abgenutscht und anschließend lyophi- lisiert.
Die Beladungsdichte des Gels mit dem Ligand einschließ- lieh der Di-n-butylphosphat-Gruppe wurde durch Titration der o-Phosphorsäure nach Hydrolyse mit konzentrierter Salzsäure bestimmt. Alternativ dazu ist auch eine direkte Bestimmung durch HPLC-Chromatographie (Bondepak I 75, isotaktisch) des mit Di-n-butylphosphat beladenen Spacer¬ arms, z.B. Tr-Spac(-O) P0(0C4Hg)2 möglich. Die Beladungsdichte liegt bei Sephadex G 100 oder Agarose-Gelen in der Größenordnung von 25 μmol/g hydra- tisierte Gel oder 25μmol/g hydratisiertem Gel im Falle von Agarose A 1,5 m. Fractogel-Präparationen haben im Durchschnitt eine Beladungsdichte von 25 bis 30 μmol/g geschwollenem Gel.
Beispiel 3
Herstellung von Di-n-butylphosphorsäurechlorid f(RO)2PfO)Cl)
168 g Phosphoroxychlorid und 175 g n-Butanol (p.a) werden in einem 1 Liter Rundkolben mit Rückflußkühler und Ther- mometer gemischt und mittels eines Heizpilzes auf 130 bis 140°C erwärmt. Die entstehende Salzsäure wird mit NaOH aufgefangen. Die Reaktion ist nach 1 1/2 bis 2 Stunden beendet. Der Kolbeninhalt wird im Vakuum bei 0,8 bis 1,0 T fraktioniert und die entsprechende Fraktion bei Kp 95 bis 97βC und 1,5 T aufgefangen und redestilliert. Kp : 93 - 95°C / 1,5 T. Die Ausbeute beträgt ca. 190 g entsprechend 80 %.
Erwähnenswert ist, daß durch entsprechende Variation der Molverhältnisse auch das n-Butylphosphorsäure-dichlorid (Kp : "l30βC, 760 T) erhalten werden kann.
Die CNBr aktivierte Agarose 2 B wird wie unter 2 be¬ schrieben mit einem entsprechenden Spacerarm, z.B. mit l,4-(2,3-epoxybutoxy)-Butan versehen und anschließend in 1 Liter Pyridin unter stetem Rühren die molare Menge von Di-n-butylphosphorsäurechlorid gelöst und 22,6 g Dicyc- lohexylcarbodiimid hinzugesetzt werden. Nach 60 Stunden bei 35βC wird vom Dicyclohexylharnstoff abfiltriert, zunächst mit reichlich Wasser, dann mit reichlich Ether gewaschen und anschließend mit 2 Liter 0,01 M Kalium- Phosphat-Pufferlösung vom pH 7,5 und 20βC gewaschen. Das so hergestellte Gel bzw. die Gelmatrix wird in 0,001 M Kalium-Phosphat-Pufferlösung bei pH 7,5 und 4°C in Gegen¬ wart von Natriumazid aufbewahrt.
Beispiel 4
Herstellung von Di-n-butylphosphonat und Di-n-butylphos- phorsäurechlorid
Zu einer eisgekühlten Lösung von 15,0 g Phosphortrichlo- rid in 100 ml Benzol (Toluol) wird unter stetem Rühren innerhalb von 3 Stunden eine Mischung von 24,5 g Di- methylanilin und 22 g n-Butylakohol zugetropft. Unter Fortsetzen des Rührens werden nach weiteren 20 Minuten 12 g n-Butylalkohol (p.a.) in derselben Weise zugetropft. Die Reaktionsmischung läßt man über Nacht bei 20°C stehen, fügt 75 ml Wasser hinzu und wäscht die Benzol- (Toluol-) Phase im Scheidetrichter mehrmals mit 50 ml H_0, dann mit 5 M Ammoniak und anschließend mit 500 ml Wasser aus. Nach dem Trocknen über wasserfreiem Natrium¬ sulfat bzw. Molekularsieben wird das Benzol (Toluol) im
Vakuum abgezogen. Das im Rückstand verbliebene öl wird im
Hochvakuum bei 10 -2 T und 70°C unter Stickstoffat osphäre destilliert. Zur Destillation wird das Produkt zunächst mit AmitToniakgas gesättigt und in Gegenwart von 1 % N- methyl-morpholin destilliert. Das Di-n-butylphosphonat destilliert bei 78°C und 10~ T über. 15 g Di-n-butyl¬ phosphonat werden in 100 ml Tetrachlorkohlenstoff gelöst und bei -20βC langsam eine 1,0N Lösung von Chlor in Tetrachlorkohlenstoff hinzugegeben. Es wird unter stetem Rühren bei -20°C trockenes Stickstoffgas eingeleitet bis keine Salzsäure mehr entweicht. Nach Verdampfen des Tetra¬ chlorkohlenstoffs bei 20"C destilliert das Säureσhlorid als hellgelbe Flüssigkeit bei 0,5 T über. Es wird sofort in die Kopplungsreaktion eingesetzt. 2,5 g Di-n-butylphosphorsäurechlorid werden in 50 ml Pyridin (90 %) unter stetem Rühren bei 40°C in Gegenwart von 6-Chlorhexanol und 10 ml Tri-butyla in gelöst. Unter stetem Rühren und Herabsetzung der Temperatur auf 20 ° C wird 1 g Gel (Fractogel, Sepharose 6 B) eingerührt, und der Brei 60 Stunden bei 20βC stehen gelassen. Danach wird das Gel auf einer Nutsche mit mindestens 1 Liter Wasser gewaschen, danach mit 2 Liter 0,001 M Kalium-Phosphat- Pufferlösung bei pH 7,5 gespült. Das fertige Gel mit der Phosphorsäure-Matrix wird in Gegenwart von Natriumazid in 0,001 M Kalium-Phosphat-Pufferlösung bei 4°C aufbewahrt.
Beispiel 5
1-Chloroctyl-di-n-butylphosphonat
Eine Mischung von 25 g 1,8-Chloroctan und 25,5 g Tri-n- -butylphosphit werden für 6 Stunden auf 100°C erhitzt. Anschließend wird bei 150 bis 160°C und 10 T destilliert und das übergehende 1-Chloroctyl-di-n-butylphosphonat in 70 %iger Ausbeute aufgefangen.
Der Ester wird in 25 ml Pyridin (90 %) in Gegenwart von 1 g Fractogel (Agarose 6 B) bei 20"C unter stetem Rühren an das Gel gekoppelt. Die Mischung wird 60 stunden ste¬ hengelassen und anschließend auf der Nutsche mit 1 Liter Wasser, dann mit 2 Litern 0,01 M Di-Kaliumhydrogenphosphat bei pH 7,5 gewaschen. Das Gel wird in 0,001 M Di-Kalium¬ hydrogenphosphat bei pH 7,5 in Gegenwart von Natriumazid bei 4βC aufbewahrt.
Bezugsbeispiel 1
5 1 Fractogel, beladem mit chemisch fixiertem Dibutyl- phosphat (50 - 1000 μmol/ml) werden in 0,15 mol/1 NaCl suspendiert und in eine Chromatographiesäule gefüllt, so daß die Höhe des Gelbettes etwa gleich groß ist wie der Durchmesser der Säule. 5 1 Human-Citrat-Plasma werden filtriert (Porengröße 1 μm) und mit Herpes-Simplex-Viren (HSV) versetzt.
Das Plasma passiert anschließend bei Raumtemperatur das Gelbett im Verlauf von 6 Stunden.
Danach ist kein virulentes HSV mehr nachweisbar.
Bezugsbeispiel 2
Eine Chromatographiesäule mit Dibutylphosphat-beladenem Fractogel wird vorbereitet wie unter 1 beschrieben.
50 1 einer Faktor VHI-haltigen Lösung, die 120 μmol/1 NaCl, 10 mmol/1 Na3~Citrat) 1 mmol/1 CaCl2 und 120 mmol/1 Glycin enthält, werden filtriert (1 μm) und wie unter 1 mit HSV versetzt. Die Faktor VIII-Lösung passiert das Gelbett im Verlaufe von 12 Stunden bei Raumtemperatur.
Danach ist kein virulentes HSV mehr nachweisbar.
Die im 1-Phasentest bestimmte Faktor VIII-Aktivität wird durch diese Behandlung nicht beeinträchtigt.
Bezugsbeispiel 3
5 1 Fractogel, an dessen Oberfläche Dibutylphosphonat über Spacer chemisch fixiert wurde (50 - 1000 μmol/ml werden in einer temperierbaren Chromatographie-Säule vorbereitet wie unter 1 beschrieben. Das Gelbett wir mittels eines Ultrathermostaten auf + 30βC gehalten.
5 1 Human-Citrat-Plasma werden filtriert (Porengröße 1 μm) und mit Polioviren versetzt.
Das Plasma passiert anschließend das Gelbett im Verlaufe von 6 Std. bei + 30°C. Danach ist kein virulentes Polio-Virus mehr nachweisbar.
Bezugsbeispiel 4
5 1 Dibutylphosphat-beladenes Fractogel werden vorbe¬ reitet wie unter 1.
50 1 Human-Citrat Plasma werden filtriert (Porengröße 1 μm) und mit HSV versetzt.
Das Plasma passiert anschließend das Gelbett im Verlaufe von 24 Std. bei Raumtemperatur.
Danach ist kein virulentes HSV mehr nachweisbar.

Claims

P a t e n t a n s p r ü c h e
1. Trägergebundene Dialkoxyphosphorverbindungen der all¬ gemeinen Formel I
TR-Spac (-0) n-PO (OAlk) 2 (I)
in der Tr einen inerten Träger, Spac einen Spacer, n die Zahlen 0 und 1 und Alk Alkylgruppen mit 1 bis 10 Kohlenstoffatomen bedeuten.
2. Trägergebundene Dialkoxyphosphorverbindungen gemäß Anspruch 1, dadurch gekennzeichnet, daß als inerter Träger anorganische oder organische Festkörper oder Gele verwendet werden, welche durch kovalente Bindun¬ gen mit einem Spacer verknüpft werden können.
3. Trägergebundene Dialkoxyphosphorverbindungen gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, daß als Spacer geradkettige Alkylgruppen mit 3 bis 8 Kohlen¬ stoffatomen verwendet werden, die an beiden Enden ko- valent gebunden sind.
4. Trägergebundene Dialkoxyphosphorverbindungen gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Alkylgruppen geradkettig sind und 3 bis 6 Kohlenstoffatome aufweisen.
5. Verfahren zur Herstellung von trägergebundenen Dialk- oxyphosphorverbindungen der allgemeinen Formel I, in der Tr einen inerten Träger, Spac einen Spacer, n die Zahlen 0 und 1 und Alk Alkylgruppen mit 1 bis 10 Koh¬ lenstoffatomen bedeuten, dadurch gekennzeichnet, daß zunächst der Träger mit einem Ende des Spacers umge¬ setzt wird und dann das zweite Ende des Spacers mit einer Dialkoxyphosphorverbindung verknüpft wird. Verwendung von trägergebundenen Dialkoxyphosphorver¬ bindungen der allgemeinen Formel I zur Auftrennung und/oder Abtrennung von lipophilen Komponenten einer Lösung, insbesondere zur Inaktivierung und/oder Ent¬ fernung von Viren, insbesondere phospholipid-umhüll- ten Viren aus biologischen Flüssigkeiten, insbeson¬ dere proteinhaltigen Lösungen.
PCT/EP1991/000027 1990-01-17 1991-01-10 Trägergebundene dialkoxyphosphorverbindungen, verfahren zu ihrer herstellung und ihre verwendung WO1991010507A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4001098A DE4001098A1 (de) 1990-01-17 1990-01-17 Traegergebundene dialkoxyphosphorverbindungen, verfahren zu ihrer herstellung und ihre verwendung
DEP4001098.8 1990-01-17

Publications (1)

Publication Number Publication Date
WO1991010507A1 true WO1991010507A1 (de) 1991-07-25

Family

ID=6398180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/000027 WO1991010507A1 (de) 1990-01-17 1991-01-10 Trägergebundene dialkoxyphosphorverbindungen, verfahren zu ihrer herstellung und ihre verwendung

Country Status (2)

Country Link
DE (1) DE4001098A1 (de)
WO (1) WO1991010507A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679405A1 (de) * 1994-04-25 1995-11-02 Rotkreuzstiftung Zentrallaboratorium Blutspendedienst Srk Verfahren zur Abtrennung von Viren aus Proteinlösungen
US5912328A (en) * 1995-04-21 1999-06-15 Rotkreuzstiftung Zentrallaboratorium Blutspendedienst Method for the removal of viruses from protein solutions
WO2012002832A1 (en) * 2010-07-01 2012-01-05 Uniwersytet Mikołaja Kopernika The method of selective alkyl-phosphate phases manufacture for liquid chromatography and related techniques

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004696A1 (en) * 1983-05-31 1984-12-06 Baxter Travenol Lab Particle adsorption
EP0273756A2 (de) * 1986-12-29 1988-07-06 Aluminum Company Of America Aktives Material, verwendet als Sorbentmittel, bestehend aus Metalloxid-Hydroxid-Partikeln, die mit einem oder mehreren Phosphor enthaltenden Materialien reagiert haben
EP0304377A2 (de) * 1987-08-21 1989-02-22 THERAPEUTIQUES SUBSTITUTIVES Groupement d'Intérêt Public Polymere von Polystyrenen und vernetzten Dextranen, ihre Herstellung und Anwendung für die Analyse und die Reinigung von biologischen Molekülen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540573A (en) * 1983-07-14 1985-09-10 New York Blood Center, Inc. Undenatured virus-free biologically active protein derivatives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004696A1 (en) * 1983-05-31 1984-12-06 Baxter Travenol Lab Particle adsorption
EP0273756A2 (de) * 1986-12-29 1988-07-06 Aluminum Company Of America Aktives Material, verwendet als Sorbentmittel, bestehend aus Metalloxid-Hydroxid-Partikeln, die mit einem oder mehreren Phosphor enthaltenden Materialien reagiert haben
EP0304377A2 (de) * 1987-08-21 1989-02-22 THERAPEUTIQUES SUBSTITUTIVES Groupement d'Intérêt Public Polymere von Polystyrenen und vernetzten Dextranen, ihre Herstellung und Anwendung für die Analyse und die Reinigung von biologischen Molekülen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679405A1 (de) * 1994-04-25 1995-11-02 Rotkreuzstiftung Zentrallaboratorium Blutspendedienst Srk Verfahren zur Abtrennung von Viren aus Proteinlösungen
US5696236A (en) * 1994-04-25 1997-12-09 Rotkreuzstiftung Zentrallaboratorium Blutspendedienst Skr Method for the removal of viruses from protein solutions
US5912328A (en) * 1995-04-21 1999-06-15 Rotkreuzstiftung Zentrallaboratorium Blutspendedienst Method for the removal of viruses from protein solutions
WO2012002832A1 (en) * 2010-07-01 2012-01-05 Uniwersytet Mikołaja Kopernika The method of selective alkyl-phosphate phases manufacture for liquid chromatography and related techniques

Also Published As

Publication number Publication date
DE4001098A1 (de) 1991-07-18
DE4001098C2 (de) 1993-08-26

Similar Documents

Publication Publication Date Title
EP0039033B1 (de) Verfahren zur Herstellung von omega-Amino-1-hydroxyalkyliden-1,1-bisphosphonsäuren
EP0066074B1 (de) Polymere tertiäre und sekundäre Organosiloxanamine, ihre Herstellung und Verwendung
CH666039A5 (de) Isomere 0-phosphonylmethylderivate enantiomerer und racemischer vicinaler diole und verfahren zu ihrer herstellung.
DE2516935A1 (de) Mit silanen gepfropfte anorganische traegermaterialien
DE2900231A1 (de) Verfahren zur herstellung von n,n- diaethyl-m-toluamid aus m-toluylsaeure durch katalytische reaktion mit diaethylamin in fluessiger phase
DE3017518A1 (de) Verfahren zur herstellung von n-phosphonomethyl-glycin
EP0605677A1 (de) Silicium- oder siliciumdioxid-substrat mit modifizierter oberfläche und verfahren zu dessen herstellung
DE3011738A1 (de) Neue glycerin-3-phosphorsaeurehalogenalkylester
DE2033359A1 (de) Acylpropandiol (1,3) phosphorsaure mono chohnester und Verfahren zu deren Herstellung
WO1991010507A1 (de) Trägergebundene dialkoxyphosphorverbindungen, verfahren zu ihrer herstellung und ihre verwendung
EP0511232B1 (de) Verfahren zur entfernung von viren aus biologischen flüssigkeiten
EP0090213B1 (de) Verfahren zur Herstellung von Derivaten der Vinylphosphon- oder Vinylpyrophosphonsäure
DE2849442A1 (de) Verfahren zur herstellung weitgehend reiner pyrazolverbindungen
EP0101027A1 (de) An Siliciumdioxid als Träger gebundene Wirkstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0021391B1 (de) Phosphonoameisensäurehydrazide, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel
DE2644905C3 (de) Verfahren zur Herstellung von optisch aktivem 2-[bis-(2-Chloräthyl)-amino] -1 -oxa-3-aza-2phosphacyclohexanoxid-2
EP1457257A1 (de) Trennmaterial, Säule mit diesem Trennmaterial sowie deren Verwendung zur Reinigung von Proteinen
DE1206425B (de) Verfahren zur Herstellung von Phosphorsaeureestern
DE2709109C3 (de) Verfahren zur Herstellung von 1 -tert-Butylamino-3-(23-dichlorphenoxy)-2-propanol einschließlich seiner Enantiomere sowie von dessen Hydrochlorid
DE1695308B2 (de) Verfahren zur Isolierung von Adenosintriphosphat
AT407639B (de) Modifizierte oligonukleotide, verfahren zu ihrer herstellung und verwendung als wirkstoffe zur herstellung von arzneimitteln
DE1568206C (de) Neue Phosphorsäureester, Verfahren zu deren Herstellung, sowie insektizide und akarizide Mittel
US2492153A (en) Preparation of insecticidal polyphosphate esters
DE2257052C3 (de) Imidothiokohlensäureester, Verfahren zu ihrer Herstellung und ihre Verwendung als Mikrobizide
EP0451598B1 (de) Verfahren zur Entfernung von bzw. zur Verminderung des Gehaltes an 1-Carboxy-1-phosphonocyclopentan-3-on aus technischer 2-Phosphonobutan-1,2,4-tricarbonsäure mittels Bleichlauge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE