WO1991009827A1 - Procedimiento para la fabricacion de cloroformo - Google Patents
Procedimiento para la fabricacion de cloroformo Download PDFInfo
- Publication number
- WO1991009827A1 WO1991009827A1 PCT/ES1990/000047 ES9000047W WO9109827A1 WO 1991009827 A1 WO1991009827 A1 WO 1991009827A1 ES 9000047 W ES9000047 W ES 9000047W WO 9109827 A1 WO9109827 A1 WO 9109827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- hydrogen
- palladium
- carbon tetrachloride
- reaction
- Prior art date
Links
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 86
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 58
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 52
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 32
- 239000001257 hydrogen Substances 0.000 claims abstract description 31
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 239000007791 liquid phase Substances 0.000 claims abstract description 14
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 13
- 239000010948 rhodium Substances 0.000 claims abstract description 12
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 10
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 10
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims abstract description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 230000003197 catalytic effect Effects 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000725 suspension Substances 0.000 claims description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 5
- 239000000376 reactant Substances 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 241000764238 Isis Species 0.000 claims 1
- 239000012696 Pd precursors Substances 0.000 claims 1
- 150000002940 palladium Chemical class 0.000 claims 1
- 229950005499 carbon tetrachloride Drugs 0.000 abstract 3
- 238000007327 hydrogenolysis reaction Methods 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910021604 Rhodium(III) chloride Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005647 hydrohalogenation reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- -1 organic complexes Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- BNIXVQGCZULYKV-UHFFFAOYSA-N pentachloroethane Chemical compound ClC(Cl)C(Cl)(Cl)Cl BNIXVQGCZULYKV-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/01—Acyclic saturated compounds containing halogen atoms containing chlorine
- C07C19/03—Chloromethanes
- C07C19/04—Chloroform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/23—Preparation of halogenated hydrocarbons by dehalogenation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- the present invention relates to a process for obtaining chloroform (CHC1 3 ) from carbon tetrachloride (CC1 4 ).
- carbon tetrachloride is reacted in liquid phase with gaseous hydrogen or a gas containing molecular hydrogen, in the presence of a catalyst constituted based on a metal chosen from the group consisting of palladium, rhodium, ruthenium and platinum, said suspension catalyst being contained in the liquid.
- US Patent 2886605 year 1959, of Dow Chemical Co. describes a method of hydrohalogenation of polyhalogenated hydrocarbons using a cuprous chloride catalyst in a fluidized bed.
- the main drawback of this method for its commercial use, is that it operates at such high temperatures (350 ° C to 550 ° C) that such abundant carbonization originates, which forces a continuous or very frequent regeneration of the catalyst.
- the reaction is carried out in the liquid phase, with a supported metal catalyst, in powder, in suspension and in contact with molecular hydrogen, the active component of the catalyst being a metal chosen from the group consisting of palladium, rhodium, ruthenium and platinum
- the active component of the catalyst being a metal chosen from the group consisting of palladium, rhodium, ruthenium and platinum
- the procedure has proven particularly effective when the metal chosen is palladium.
- Another important advantage of the process according to the invention is that it allows to control the temperature with ease, which prevents the formation of chlorinated polymers, and also allows to maintain the activity of the catalyst for the time necessary to make the process commercially profitable.
- the catalyst used in the process according to the invention is constituted by a metal chosen from the group consisting of palladium, rhodium, ruthenium and platinum, deposited on a suitable support, such as carbon, silica, alumina, etc.
- a catalyst that has shown to have high activity and selectivity linked to high stability is constituted by metallic palladium deposited on a high surface active carbon.
- the metal can be deposited on the support by any of the methods commonly used for this purpose, such as, for example, impregnation with or without excess solution, precipitation, etc., using aqueous or organic solvents.
- the precursor salts of the metal can be used: chlorides, ammonia chlorides, organic complexes, nitrates, acetates, etc., both in their commercial form and those resulting from dissolving the metal in the appropriate solvents.
- the precursor is deposited on the support, it is allowed to dry at room temperature for three hours and subsequently at a temperature between 100 ° C and 140 ° C for the time necessary to remove residual water.
- the catalyst is reduced to the metallic state in the presence of a gas containing molecular hydrogen or an appropriate reducing gas such as hydrazine, methane, etc.
- a gas containing molecular hydrogen or an appropriate reducing gas such as hydrazine, methane, etc.
- the reduction can be carried out at temperatures between 100 * C and 500 ° C, preferably between 150 ° C and 450 ° C, the advantage being more advantageous. range 200 ° C to 300 ° C when the metal is palladium.
- the reduction can be carried out at atmospheric pressure or with an overpressure.
- the optimum duration is between 1 and 4 hours and the flow of hydrogen between 200 and 1000 liters / hour per kg of catalyst, although an amount of hydrogen between 2 and 5 times that necessary to reduce all the metal is sufficient.
- the metal content in the catalyst may be between 0.1 and 5% by weight relative to the total weight of the final catalyst, although the preferred values are between 0.1 and 2% by weight.
- a high solid-liquid contact surface is required, so it is convenient to use the catalyst in powder form, with a particle size not exceeding 0.45 mm, and preferably less that 0.2 mm.
- any conventional mechanical agitation system can be used or take advantage of the linear velocity of hydrogen itself, properly dispersed within the liquid, to create the necessary turbulence.
- the support can be started in the form of pellets, grains or extrudates, then reducing it to the selected particle size.
- this new method of manufacturing chloroform by catalytic hydrogen tetraysis of carbon tetrachloride is essentially characterized by being carried out in the liquid phase, containing in suspension the adequate amount of the pulverized catalyst, in the presence of hydrogen at temperature and adequate pressure.
- the procedure can be operated interchangeably in a discontinuous (by loads), semi-continuous or continuous regime.
- a discontinuous regime an autoclave type reactor with stirring, containing the charge of liquid carbon tetrachloride and catalyst, can be used in the appropriate ratio. Hydrogen is allowed to enter the set pressure, it is heated to the working temperature and these conditions are maintained for the time required to achieve the desired conversion. After that time, the reaction products are discharged and separated. Both the unreacted reactant and the catalyst can be reused.
- both an autoclave type reactor and a tubular reactor can be used.
- the liquid and catalyst are charged in the appropriate proportions and the required flow of hydrogen is fed.
- the temperature and working pressure are adjusted.
- the gaseous effluent from the reactor containing H 2 , hydrogen chloride, methane and chlorinated hydrocarbons, is passed through a water absorption column where the water is retained. hydrogen chloride.
- the chlorinated products are condensed at a convenient temperature, from which, for example, the main product of the reaction, ie chloroform, is separated by distillation. If necessary, the gaseous stream and the reactant that have not reacted can be recycled.
- the equipment has a cyclone and / or filter to recover the possible entrained catalyst and return it to the reactor.
- the losses of observed catalysts are minimal.
- the content of the reactor, once the desired conversion has been reached, and after the catalyst is separated, is sent to distillation to recover the chloroform.
- the unreacted carbon tetrachloride is recycled to the reactor.
- the process can also be carried out by reversing, in relation to the above, the sequence of chlorine condensation and absorption of hydrogen chloride. This last operating method is the most suitable to be applied in an industrial installation.
- the same operating method is used as in the process described above referring to the semi-continuous regime, with the difference that in this case also the carbon tetrachloride is continuously fed in the liquid phase, to the required flow.
- the two effluents of the reactor, gas and liquid, are separated and processed as in the aforementioned semicontinuous case.
- the reaction is advantageously carried out at pressures above atmospheric. Excessively high pressures do not provide substantial advantages to the kinetics of the reaction and increase production costs. Therefore, the operating pressure is between 500 and 8000 kPa and preferably between 1500 and 5000 kPa.
- the hydrogen supply must be the one necessary to selectively produce the desired reaction, that is, obtaining chloroform.
- This reaction is:
- Another parameter determining the commercial profitability of this process is the relatively low metal content used as an active component, both in the catalyst composition, and in the chlorinated catalyst / reactant ratio (weight / weight) used in the reactor.
- productivity increases more than linearly as it increases, because with it the amount of catalyst particles in the slurry also increases and therefore the area of contact of the catalyst. It is well known that the reaction rate is proportional to this area.
- competition for H 2 occurs between the catalyst particles, whereby there is a reduction in the effective amount of catalyst, saturation is reached and the activity per gram practically no longer increases.
- This example refers to a way of preparing a palladium catalyst, using an active carbon of 1200 m 2 / g as support, in the form of tablets of about 3 mm in diameter by 4 mm in height. Its retention volume or maximum volume of water absorption is 95 cm 3 / g.
- the grains are well removed to cause homogeneous absorption of the solution, allowed to dry at room temperature for three hours and then at 120 ° C for twelve hours. Subsequently, it is reduced to 250'C and atmospheric pressure, passing a hydrogen flow of 500 1 / hour per kg of catalyst for three hours. Allow to cool to room temperature under hydrogen flow.
- the catalyst contains 1% by weight of metallic palladium.
- the catalyst grains are reduced to a size less than 0.177 mm.
- Example 2.- This example refers to obtaining chlorine form (CHC1 3 ).
- the selectivity (S) is defined as the number of moles of carbon tetrachloride transformed into a product, divided by the total number of moles of reacted carbon tetrachloride multiplied by one hundred.
- a palladium catalyst containing 1% was prepared by weight of metal, using as another support aaccttiivvoo coal from 882200 mm 22 // gg from specific surface area and 78% retention volume.
- This example refers to a way of preparing a rhodium (Rh) catalyst.
- a rhodium (Rh) catalyst was prepared by dissolving in distilled water the amount of rhodium trichloride (RhCl 3 ) necessary for the final catalyst to contain 1.6% by weight of metallic rhodium relative to the total catalyst weight. To the resulting solution, distilled water was added until a solution volume equal to the carbon retention volume used in Example 1 was reached. After impregnating the support with this solution, it was dried at 120 ° C for twelve hours and subsequently reduced at 150 ° C, in hydrogen stream, for two hours.
- RhCl 3 rhodium trichloride
- This example refers to a way of preparing a ruthenium catalyst (Ru).
- a catalyst containing 1.6% by weight of ruthenium (Ru) was prepared, starting from ruthenium trichloride
- Example 9 except that the reduction was carried out at 250 ° C.
- Example 13 This example refers to a way of preparing a platinum catalyst (Pt).
- a platinum catalyst was prepared using silica silica powder of 600 m 2 / g of specific surface area and 3.0 cm 3 / g of specific retention volume as support. 1 g of hexachloroplatinic acid (H 2 PtCl 6 6H 2 0) is dissolved in distilled water until a volume of 113 cm 3 is completed . The solution is poured onto 37.5 g of support. After well impregnated, the solid is dried at 120 ° C for 12 h, calcined at 500 ° C in air flow for two hours and reduced to 450 ° C in hydrogen flow for 2 hours. The final catalyst contained 1% by weight of metallic platinum.
- the present Example 15 also deals with the preparation of a platinum catalyst (Pt).
- a platinum catalyst was prepared following the methodology of Example 13, but using the activated carbon of Example 6. After impregnation and drying, the catalyst was directly reduced with H 2 to 450 ° C, without prior calcination. The final catalyst contained 1% by weight of metallic platinum.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Compounds Of Unknown Constitution (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Steroid Compounds (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69017012T DE69017012T2 (de) | 1989-12-22 | 1990-12-13 | Verfahren zur herstellung von chloroform. |
BR909007163A BR9007163A (pt) | 1989-12-22 | 1990-12-13 | Processo para a fabricacao de cloroformio |
EP91900030A EP0460138B1 (en) | 1989-12-22 | 1990-12-13 | Method for producing chloroform |
KR1019910700971A KR0178540B1 (ko) | 1989-12-22 | 1990-12-13 | 클로로포름의 제조방법 |
CA002046892A CA2046892C (en) | 1989-12-22 | 1990-12-13 | Process for the manufacture of chloroform |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES8904342A ES2018748A6 (es) | 1989-12-22 | 1989-12-22 | Procedimiento para la fabricacion de cloroformo. |
ESP8904342 | 1989-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991009827A1 true WO1991009827A1 (es) | 1991-07-11 |
Family
ID=8265208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES1990/000047 WO1991009827A1 (es) | 1989-12-22 | 1990-12-13 | Procedimiento para la fabricacion de cloroformo |
Country Status (11)
Country | Link |
---|---|
US (1) | US5208393A (es) |
EP (1) | EP0460138B1 (es) |
JP (1) | JP2812800B2 (es) |
KR (1) | KR0178540B1 (es) |
AT (1) | ATE118473T1 (es) |
AU (1) | AU642187B2 (es) |
BR (1) | BR9007163A (es) |
CA (1) | CA2046892C (es) |
DE (1) | DE69017012T2 (es) |
ES (1) | ES2018748A6 (es) |
WO (1) | WO1991009827A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5334782A (en) * | 1991-04-23 | 1994-08-02 | Ag Technology Co., Ltd. | Method for producing a hydrogen-containing chloromethane |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5621151A (en) * | 1990-10-09 | 1997-04-15 | E. I. Du Pont De Nemours And Company | Halocarbon hydrogenolysis |
IT1266662B1 (it) * | 1993-11-04 | 1997-01-09 | Enichem Spa | Preparazione di chc13 a partire da ccl4 |
RU2107678C1 (ru) * | 1995-10-27 | 1998-03-27 | Товарищество с ограниченной ответственностью Фирма "БИМОС" | Способ получения хлороформа |
RU2187489C2 (ru) * | 2000-06-08 | 2002-08-20 | Зао "Каустик" | Способ получения хлороформа |
KR100395208B1 (ko) * | 2000-11-06 | 2003-08-21 | 학교법인 포항공과대학교 | 비균등화반응을 이용한 사염화탄소의 처리 방법 |
JP4519438B2 (ja) * | 2003-10-08 | 2010-08-04 | 株式会社トクヤマ | 多塩素化アルカンの還元用触媒 |
CN107876046A (zh) * | 2017-10-27 | 2018-04-06 | 江苏理文化工有限公司 | 一种四氯化碳气相加氢脱氯制氯仿的高效催化剂 |
CN108147943A (zh) * | 2018-01-19 | 2018-06-12 | 江苏理文化工有限公司 | 一种四氯化碳转氯仿生产工艺 |
EP4321238A1 (de) | 2022-08-08 | 2024-02-14 | Grillo-Werke Aktiengesellschaft | Dehalogenierung von halogenierten kohlenwasserstoffen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1951276A1 (de) * | 1968-10-12 | 1970-04-16 | Sumitomo Chemical Co | Verfahren zur Herstellung von Methylisobutylketon |
US3579596A (en) * | 1968-03-29 | 1971-05-18 | Dow Chemical Co | Hydrogenolysis of carbon tetrachloride and chloroform |
FR2154609A1 (es) * | 1971-09-27 | 1973-05-11 | Sumitomo Chemical Co |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3579595A (en) * | 1968-01-19 | 1971-05-18 | Baxter Laboratories Inc | 1-bromo-1-chloro-2,3,3-trifluoropropene and method of preparing same |
FR2661671B1 (fr) * | 1990-05-03 | 1992-07-17 | Atochem | Procede de dechloration des chloromethanes superieures. |
-
1989
- 1989-12-22 ES ES8904342A patent/ES2018748A6/es not_active Expired - Lifetime
-
1990
- 1990-12-13 WO PCT/ES1990/000047 patent/WO1991009827A1/es active IP Right Grant
- 1990-12-13 EP EP91900030A patent/EP0460138B1/en not_active Expired - Lifetime
- 1990-12-13 DE DE69017012T patent/DE69017012T2/de not_active Expired - Fee Related
- 1990-12-13 AU AU68916/91A patent/AU642187B2/en not_active Ceased
- 1990-12-13 JP JP3500663A patent/JP2812800B2/ja not_active Expired - Lifetime
- 1990-12-13 KR KR1019910700971A patent/KR0178540B1/ko not_active Expired - Fee Related
- 1990-12-13 AT AT91900030T patent/ATE118473T1/de active
- 1990-12-13 BR BR909007163A patent/BR9007163A/pt not_active IP Right Cessation
- 1990-12-13 CA CA002046892A patent/CA2046892C/en not_active Expired - Fee Related
- 1990-12-13 US US07/741,396 patent/US5208393A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3579596A (en) * | 1968-03-29 | 1971-05-18 | Dow Chemical Co | Hydrogenolysis of carbon tetrachloride and chloroform |
DE1951276A1 (de) * | 1968-10-12 | 1970-04-16 | Sumitomo Chemical Co | Verfahren zur Herstellung von Methylisobutylketon |
FR2154609A1 (es) * | 1971-09-27 | 1973-05-11 | Sumitomo Chemical Co |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5334782A (en) * | 1991-04-23 | 1994-08-02 | Ag Technology Co., Ltd. | Method for producing a hydrogen-containing chloromethane |
Also Published As
Publication number | Publication date |
---|---|
EP0460138B1 (en) | 1995-02-15 |
KR920701091A (ko) | 1992-08-11 |
JPH04504728A (ja) | 1992-08-20 |
ES2018748A6 (es) | 1991-05-01 |
BR9007163A (pt) | 1992-03-03 |
DE69017012T2 (de) | 1995-06-22 |
JP2812800B2 (ja) | 1998-10-22 |
KR0178540B1 (ko) | 1999-05-15 |
DE69017012D1 (de) | 1995-03-23 |
US5208393A (en) | 1993-05-04 |
CA2046892C (en) | 2001-08-07 |
EP0460138A1 (en) | 1991-12-11 |
AU642187B2 (en) | 1993-10-14 |
ATE118473T1 (de) | 1995-03-15 |
AU6891691A (en) | 1991-07-24 |
CA2046892A1 (en) | 1991-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8163265B2 (en) | Mechanically stable catalyst based on alpha-alumina | |
US7902411B2 (en) | Catalyst composition for oxychlorination | |
US20100183498A1 (en) | Thermally stable catalyst for hydrogen chloride gas phase oxidation | |
WO1998046523A1 (fr) | Catalyseur pour preparer un gaz de synthese et procede de preparation de monoxyde de carbone | |
WO1998046524A1 (fr) | Procede de preparation d'un gaz de synthese | |
KR20110107350A (ko) | 루테늄 및 니켈을 포함하는 염화수소 산화 촉매 | |
WO1991009827A1 (es) | Procedimiento para la fabricacion de cloroformo | |
KR20090015982A (ko) | 염화수소 함유 기체의 산화 방법 | |
JP2009527523A (ja) | 炭化水素の直接アミノ化法 | |
KR101871170B1 (ko) | 기체상 산화에 의한 염소 제조를 위한 촉매 및 방법 | |
JP2811424B2 (ja) | アンモキシデーション触媒の製造方法 | |
ES2226292T3 (es) | Procedimiento para la produccion de acetato de vinilo. | |
PT2401072E (pt) | Catalisador para a oxidação de cloreto de hidrogénio, contendo ruténio e prata e/ou cálcio | |
WO2017216653A1 (en) | Mixed cerium-lanthanum oxide catalysts and systems for oxidative halogenation of an alkane | |
CN102803130B (zh) | 在具有低表面粗糙度的催化剂上氧化氯化氢的方法 | |
CN1230164A (zh) | 费-托法催化剂与烃的制备方法 | |
US6602819B2 (en) | Process for the reduction of carbon monoxide and carbonyl sulfide emissions | |
WO2000009473A1 (en) | Amine production | |
WO2011148976A1 (ja) | 4-ニトロジフェニルアミンの製造方法 | |
KR20090015981A (ko) | 기체 상 산화에 의한 염소 제조 방법 | |
CA1069487A (en) | Hydrogenation catalyst | |
JP2005255514A (ja) | ヨウ化物の製造方法 | |
WO2001077068A2 (en) | Process for preparing 6-aminocaproamide | |
US20240351972A1 (en) | Preparation of a catalyst for the oxidative esterification of methacrolein to methyl methacrylate, for extending service life | |
JPS63179845A (ja) | カルボン酸エステルの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH DE DK FI GB GR HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB GR IT LU ML MR NL SE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2046892 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991900030 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019910700971 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1991900030 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991900030 Country of ref document: EP |