WO2011148976A1 - 4-ニトロジフェニルアミンの製造方法 - Google Patents

4-ニトロジフェニルアミンの製造方法 Download PDF

Info

Publication number
WO2011148976A1
WO2011148976A1 PCT/JP2011/061980 JP2011061980W WO2011148976A1 WO 2011148976 A1 WO2011148976 A1 WO 2011148976A1 JP 2011061980 W JP2011061980 W JP 2011061980W WO 2011148976 A1 WO2011148976 A1 WO 2011148976A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrobenzene
aniline
reaction
nitrodiphenylamine
catalyst
Prior art date
Application number
PCT/JP2011/061980
Other languages
English (en)
French (fr)
Inventor
一 石田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010120184A external-priority patent/JP2011246378A/ja
Priority claimed from JP2010120185A external-priority patent/JP2011246379A/ja
Priority claimed from JP2011020400A external-priority patent/JP2012006909A/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011148976A1 publication Critical patent/WO2011148976A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups

Definitions

  • the present invention relates to a method for producing 4-nitrodiphenylamine from aniline and nitrobenzene.
  • 4-Nitrodiphenylamine is useful as a raw material for azo dyes.
  • 4-nitrodiphenylamine is converted to 4-aminodiphenylamine by hydrogenation, and 4-alkyldiphenylamine is alkylated to produce 4-alkylaminodiphenylamine useful as an antioxidant for natural rubber and synthetic rubber. Obtainable.
  • Patent Document 1 discloses a method of reacting aniline and nitrobenzene in the presence of quaternary ammonium hydroxide such as tetramethylammonium hydroxide dihydrate.
  • Patent Document 2 discloses a method of reacting aniline with nitrobenzene in the presence of an alkali metal hydroxide such as potassium hydroxide and a quaternary ammonium salt such as tetramethylammonium chloride.
  • Patent Documents 3 to 5 disclose methods of reacting aniline and nitrobenzene in a dimethyl sulfoxide solvent using montmorillonite, hydrotalcite or ruthenium-supported alumina as a solid catalyst in the presence of potassium hydroxide. Has been.
  • an object of the present invention is to provide a method for producing 4-nitrodiphenylamine, which can easily perform post-treatment of the reaction mixture obtained after the reaction.
  • a first aspect of the present invention provides a method for producing 4-nitrodiphenylamine, which comprises reacting aniline and nitrobenzene in the presence of a solid catalyst in which an alkali metal fluoride is supported on a support. is there.
  • the second aspect of the present invention provides a process for producing 4-nitrodiphenylamine in which aniline and nitrobenzene are reacted in the presence of a solid catalyst in a fixed bed flow system. That is, the present invention is as follows.
  • a process for producing 4-nitrodiphenylamine comprising reacting aniline and nitrobenzene in the presence of a catalyst in which an alkali metal fluoride is supported on a carrier.
  • alkali metal fluoride is at least one selected from the group consisting of potassium fluoride, lithium fluoride, sodium fluoride, and cesium fluoride.
  • a process for producing 4-nitrodiphenylamine characterized in that aniline and nitrobenzene are reacted in the presence of a solid catalyst in a fixed bed flow system.
  • alkali metal fluoride is at least one selected from the group consisting of potassium fluoride, lithium fluoride, sodium fluoride, and cesium fluoride.
  • 4-nitrodiphenylamine can be produced by simplifying the post-treatment of the reaction mixture obtained after the reaction, which is industrially advantageous.
  • FIG. 1 is a schematic explanatory view schematically showing an embodiment of a method for producing 4-nitrodiphenylamine of the present invention.
  • FIG. 5 is a schematic explanatory view schematically showing another embodiment of the method for producing 4-nitrodiphenylamine of the present invention.
  • 4-nitrodiphenylamine is reacted by reacting aniline with nitrobenzene in the presence of a catalyst in which an alkali metal fluoride is supported on a carrier (hereinafter referred to as a supported alkali metal fluoride catalyst).
  • a catalyst in which an alkali metal fluoride is supported on a carrier (hereinafter referred to as a supported alkali metal fluoride catalyst).
  • alkali metal fluoride in the supported alkali metal fluoride catalyst examples include potassium fluoride, lithium fluoride, sodium fluoride, cesium fluoride, or a mixture thereof, and among these, potassium fluoride is preferable. Therefore, alkali metal fluoride may use only 1 type and may use 2 or more types together.
  • Examples of the carrier include alumina, zirconia, silica, titania, activated carbon or a mixture thereof, and among these, alumina is preferable. Therefore, only one type of carrier may be used, or two or more types may be used in combination.
  • the supported amount of alkali metal fluoride in the supported alkali metal fluoride catalyst is usually 1 to 60% by weight, preferably 5 to 50% by weight, more preferably 25 to 45% by weight, and still more preferably based on the total amount of the catalyst. 30 to 40% by weight. When two or more alkali metal fluorides are used in combination, the total supported amount may be within the above range.
  • Examples of the method for supporting the alkali metal fluoride on the carrier include a method in which the carrier is contacted with a solution containing the alkali metal fluoride and dried.
  • the temperature during the treatment is preferably 0 to 100 ° C.
  • the pressure during the treatment is preferably 0.001 to 1.0 MPa.
  • Such contact treatment can be performed, for example, in an air atmosphere or in an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide.
  • Examples of the solvent used for preparing the solution include water; alcohols such as methanol and ethanol. Only 1 type may be used for a solvent and it may use 2 or more types together. The usage-amount of a solvent is suitably adjusted with the alkali metal fluoride to be used.
  • Examples of the contact treatment include mixing, impregnation or immersion.
  • Examples of the method for contact treatment with the solution include (A) a method in which a carrier is mixed with a solution containing an alkali metal fluoride, (B) a method in which a carrier is impregnated with a solution containing an alkali metal fluoride, and (C) a carrier.
  • Examples of the method include soaking in a solution containing an alkali metal fluoride, and the method (A) is preferable. What is necessary is just to adjust suitably the usage-amount of a support
  • a drying method using a known drying device such as an evaporation to dryness method, a box-type dryer, a drum-type aeration dryer, a spray dryer, an air dryer, or the like is used. It is also possible to use a combination of the evaporation and drying method and a drying method using a known drying apparatus.
  • a known drying apparatus for example, a method of distilling off the solvent from a slurry of the carrier and the solution containing the alkali metal fluoride is preferably used.
  • the drying temperature is usually 0 to 120 ° C., preferably 30 to 100 ° C.
  • the drying may be performed under normal pressure, under pressure, or under reduced pressure, but is preferably under normal pressure or under reduced pressure. Such drying can be performed in an air atmosphere or an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide.
  • the calcination can be performed in an inert gas, oxidizing gas, or reducing gas atmosphere.
  • the inert gas include nitrogen, carbon dioxide, helium, argon and the like, which are diluted with water vapor as necessary.
  • nitrogen is preferable as the inert gas.
  • the oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas.
  • the oxygen source air or pure oxygen is usually used, and an inert gas or water vapor is used as necessary. Diluted with Of these, air is preferable as the oxidizing gas.
  • the reducing gas is a gas containing a reducing substance, and examples thereof include a hydrogen-containing gas, a carbon monoxide-containing gas, and a hydrocarbon-containing gas, and the concentration thereof is adjusted with, for example, an inert gas or water vapor.
  • the reducing gas is preferably a hydrogen-containing gas or a carbon monoxide-containing gas.
  • the firing temperature in the firing is usually 100 to 1000 ° C., preferably 200 to 800 ° C.
  • the shape of the supported alkali metal fluoride catalyst is not particularly limited, and may be in the form of powder, or may be in the form of granules or tablets.
  • the catalyst in which the alkali metal fluoride is supported on the carrier may be produced by the above-described method or may be a commercially available supported alkali metal fluoride.
  • the shape of the commercially available supported alkali metal fluoride is not particularly limited, and may be a powder, or may be a molded body having a granular shape or a tablet shape. Moreover, it is preferable to perform the said baking to a commercially available carrying
  • the amount of the supported alkali metal fluoride catalyst used is usually 1 to 100 g, preferably 3 to 50 g, per 1 mol of nitrobenzene.
  • the ratio of aniline and nitrobenzene used as raw materials is usually 1:30 to 30: 1 as aniline: nitrobenzene (molar ratio), preferably 1:10 to 10: 1.
  • the reaction solvent can be used as necessary, and examples thereof include dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, t-butanol, toluene and the like. .
  • the reaction temperature is usually 100 to 500 ° C, preferably 140 to 250 ° C.
  • the reaction pressure is usually 0.01 to 5.0 MPa in absolute pressure.
  • a gas inert to the reaction may be present.
  • the inert gas include nitrogen, helium, air, and argon.
  • the reaction mixture is filtered to recover the catalyst as a filter residue, and the filtrate is washed as necessary and subjected to separation and purification operations such as distillation, distribution, and crystallization. Just do it.
  • the recovered catalyst may be reused.
  • compounds such as alkali metal hydroxides such as potassium hydroxide, quaternary ammonium hydroxides such as tetramethylammonium hydroxide dihydrate, and quaternary ammonium salts such as tetramethylammonium chloride are not used.
  • nitrodiphenylamine As a fraction and separating the high-boiling by-product as a residue. By such fractional distillation, the target 4-nitrodiphenylamine can be easily obtained. Moreover, the reaction mixture containing the unreacted raw material and the unreacted raw material recovered as a fraction can be recycled. The filtrate may be subjected to hydrogenation to produce 4-aminodiphenylamine as it is or after recovering unreacted raw material as a fraction by distillation or the like.
  • Examples of the solid catalyst used in this embodiment include a solid base catalyst, a catalyst in which a transition metal is supported on a carrier, and the like, and among them, a solid base catalyst is preferable.
  • Examples of the solid base catalyst include alkaline earth metal oxides such as calcium oxide and magnesium oxide; supported alkali metal hydroxides in which an alkali metal hydroxide such as sodium hydroxide and potassium hydroxide is supported on a support; sodium, Examples include a supported alkali metal in which an alkali metal such as potassium is supported on a carrier; a supported alkali metal fluoride; a composite oxide; an anion exchange resin; Among these, supported alkali metal fluorides and composite oxides are preferable.
  • solid base catalyst Only one solid base catalyst may be used, or two or more solid base catalysts may be used in combination.
  • the transition metal in the catalyst in which the transition metal is supported on the carrier include ruthenium, rhodium, palladium, silver, platinum, and gold. Of these, ruthenium is preferable.
  • Examples of the carrier in which the transition metal is supported on the carrier, the supported alkali metal hydroxide, the supported alkali metal, and the supported alkali metal fluoride include alumina, zirconia, silica, titania, activated carbon, and the like. preferable. Only one type of carrier may be used, or two or more types may be used in combination.
  • the amount of alkali metal fluoride supported by the supported alkali metal fluoride is not particularly limited, but is usually 1 to 60% by weight, preferably 5 to 50% by weight, based on the total amount of the solid catalyst. When two or more alkali metal fluorides are used in combination, the total supported amount may be within the above range.
  • the composite oxide is a composite oxide having two or more kinds of metal elements as constituent elements.
  • the metal elements include calcium, magnesium, silicon, aluminum, titanium, zirconium, niobium, lanthanum, potassium, and nickel. , Manganese, zinc, tin, lead, phosphorus and the like. Only 1 type may be used for the said complex oxide, and it may use 2 or more types together.
  • complex oxides containing calcium and zirconium are preferable.
  • the composite oxide containing calcium and zirconium include calcium oxide-zirconium oxide composite oxide.
  • As the composite oxide a commercially available composite oxide or a product obtained by molding a commercially available composite oxide can be used, and firing is performed as necessary.
  • a coprecipitation method Specifically, a mixed aqueous solution in which a water-soluble salt of each metal constituting the composite oxide is dissolved is prepared, and the pH is adjusted to obtain a coprecipitate, followed by firing.
  • the shape of these solid catalysts is not particularly limited, and can be used in various shapes such as powder, granules and tablets. From the viewpoint of handling, it is recommended that it is molded into a granular or tablet shape.
  • Examples of the fixed bed reactor that can be employed in the second aspect of the present invention include various flow-type fixed bed reactors in which a raw material supply port and a reaction liquid outlet port are provided in the reactor.
  • the number of reaction tubes is not particularly limited, and either a single tube fixed bed reactor or a multi-tube fixed bed reactor can be used.
  • a fixed bed reactor of an adiabatic system or a heat exchange system can be used.
  • a gas-liquid mixture of aniline and nitrobenzene for example, a mixed gas containing aniline and nitrobenzene or a gas containing aniline and a solution containing nitrobenzene
  • the solid catalyst charge in the fixed bed flow reactor is such that the gas-liquid mixture of aniline and nitrobenzene, for example, a mixed gas containing aniline and nitrobenzene or a gas containing aniline and a solution containing nitrobenzene per kg of the solid catalyst.
  • WHSV space velocity
  • the method for supplying the raw materials aniline and nitrobenzene to the fixed bed flow reactor is not particularly limited, and the solid catalyst is a mixed gas containing aniline and nitrobenzene or a gas-liquid mixture of a gas containing aniline and a solution containing nitrobenzene. Even in the case of contacting with the gas, a gas-liquid mixture of a mixed gas containing aniline and nitrobenzene or a gas containing aniline and a solution containing nitrobenzene may be used at the time of contact. For example, aniline and nitrobenzene are fed from separate fixed bed flow reactor inlets with separate feed lines, and aniline and nitrobenzene are fed through separate feed lines and fed before the fixed bed flow reactor inlet.
  • Examples thereof include a method of supplying from the fixed bed flow type reactor inlet.
  • aniline and nitrobenzene may be supplied as gas from the fixed bed flow reactor inlet, or aniline may be gas.
  • nitrobenzene may be supplied as a liquid from the fixed bed flow type reactor inlet, and the nitrobenzene may be vaporized in the reactor, or aniline and nitrobenzene may be supplied as liquid from the fixed bed flow type reactor inlet, In the case where aniline and nitrobenzene may be vaporized, and when a gas-liquid mixture of a gas containing aniline and a solution containing nitrobenzene is brought into contact with the solid catalyst, for example, fixed bed circulation using aniline as a gas and nitrobenzene as a liquid.
  • aniline and nitrobenzene As supplied from a fixed-bed flow reactor inlet liquid, aniline may also be vaporized in the reactor.
  • the reaction solvent can be used as necessary.
  • the reaction solvent include dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, t-butanol, toluene and the like. Can be mentioned.
  • the reaction solvent is supplied through a separate feed line from the aniline and nitrobenzene feed lines, and through a fixed bed flow reactor inlet that is separate from the fixed bed flow reactor inlet supplying each of aniline and nitrobenzene.
  • It may be supplied from the inlet of the reactor, or a liquid mixture of aniline, nitrobenzene and reaction solvent is prepared in advance, and the liquid mixture is preheated by a preheater through a feed line and supplied from the fixed bed reactor inlet. Okay, aniline and nitrobenzene are fed separately. In the time of feed may be supplied by mixing the reaction solvent to aniline and / or nitrobenzene.
  • the use ratio of the raw materials aniline and nitrobenzene (for example, the content ratio of aniline and nitrobenzene in the mixed gas or the gas-liquid mixture) is usually 1:30 to 30: 1 as aniline: nitrobenzene (molar ratio), The ratio is preferably 1:10 to 10: 1.
  • the reaction temperature is usually 100 to 500 ° C, preferably 100 to 300 ° C, more preferably 140 to 250 ° C.
  • the reaction pressure is usually 0.01 to 5.0 MPa in absolute pressure, and preferably 0.1 to 5.0 MPa.
  • the reaction temperature is usually 150 to 500 ° C, preferably 190 to 300 ° C.
  • the reaction pressure is usually 0.01 to 2.0 MPa in absolute pressure. The reaction temperature and the reaction pressure are adjusted so that aniline becomes a gas, and nitrobenzene is also adjusted as appropriate.
  • the reaction when the reaction is performed under normal pressure (0.1 MPa) using the mixed gas, the reaction is performed at a temperature equal to or higher than the boiling points of aniline and nitrobenzene (aniline: 184 ° C., nitrobenzene: 211 ° C.), When the reaction is performed below the boiling point of aniline or nitrobenzene using a mixed gas, the reaction is performed under reduced pressure in order to maintain the gas phase state of aniline and nitrobenzene.
  • aniline aniline: 184 ° C.
  • nitrobenzene 211 ° C.
  • the reaction when the reaction is carried out under normal pressure using the gas-liquid mixture, the reaction is carried out at a temperature not lower than the boiling point of aniline and lower than the boiling point of nitrobenzene, and using the gas-liquid mixture, the reaction is performed at a temperature lower than the boiling point of aniline.
  • the reaction is carried out under reduced pressure conditions that maintain the gas phase state of aniline and the liquid phase state of nitrobenzene, and when the reaction is carried out above the boiling point of nitrobenzene using the gas-liquid mixture, The reaction is carried out under pressurized conditions that maintain the gas phase state of nitrobenzene and the liquid phase state of nitrobenzene.
  • a gas inert to the reaction can be supplied together with aniline and nitrobenzene.
  • the inert gas include nitrogen, helium, air, and argon.
  • the post-treatment operation of the reaction mixture obtained by the reaction may be subjected to separation and purification operations such as distillation, distribution, and crystallization after washing as necessary.
  • separation and purification operations such as distillation, distribution, and crystallization after washing as necessary.
  • the reaction mixture can be easily taken out without requiring a solid catalyst separation operation such as filtration, and 4-nitrodiphenylamine can be continuously produced.
  • the method is industrially advantageous.
  • alkali metal hydroxide such as potassium hydroxide, quaternary ammonium hydroxide such as tetramethylammonium hydroxide dihydrate, tetramethyl chloride, etc. Since the reaction is carried out without using a compound such as a quaternary ammonium salt such as ammonium, the production method of the present invention is industrially advantageous in that the post-treatment is simplified as in the first embodiment. is there.
  • a reaction apparatus 10 includes a fixed bed flow reactor 1 filled with a solid catalyst, feed pumps 2a and 2b for supplying raw materials aniline and nitrobenzene to the fixed bed flow reactor 1, reaction pressure, and the like. Is provided with a pressure gauge 3, a cooler 4 for cooling the reaction mixture, and a pressure regulating valve 5 for adjusting the reaction pressure.
  • the raw material aniline and nitrobenzene are supplied from the raw material supply port of the fixed bed flow reactor 1 filled with the solid catalyst heated to a predetermined reaction temperature by the raw material feed pumps 2a and 2b, and are supplied by the pressure regulating valve 5 to a predetermined value. After the pressure is adjusted, the reaction proceeds by contacting the raw material (for example, as a gas-liquid mixture of a mixed gas containing aniline and nitrobenzene or a gas containing aniline and a solution containing nitrobenzene) with a solid catalyst.
  • a reaction mixture comprising 4-nitrodiphenylamine as a reaction product and unreacted raw material is continuously led out from the outlet of the fixed bed flow reactor 1, and is cooled appropriately by the cooler 4.
  • 4-nitrodiphenylamine is continuously produced.
  • Recovery of 4-nitrodiphenylamine from the reaction mixture is performed by first recovering the unreacted raw material as a fraction by distillation or the like, and then recovering 4-nitrodiphenylamine as a fraction and separating the high-boiling by-product as a residue. be able to.
  • the target 4-nitrodiphenylamine can be easily obtained.
  • the reaction mixture containing the unreacted raw material and the unreacted raw material recovered as a fraction can be recycled.
  • the reaction mixture may be subjected to hydrogenation for producing 4-aminodiphenylamine as it is or after recovering unreacted raw materials as a fraction by distillation or the like.
  • the reaction apparatus that can be used in the production method of the present invention is not limited to these, and it is possible to arbitrarily change the design as long as the effects of the present invention are not impaired.
  • the dried solid is filled in a quartz tube, and while flowing nitrogen at a flow rate of 50 Nml / min, the temperature is raised from room temperature to 350 ° C. over 1 hour, held at 350 ° C. for 1 hour, and then cooled to room temperature.
  • Catalyst A was prepared.
  • Catalyst B was prepared in the same manner as in Reference Example 1, except that ⁇ -alumina (Sumitomo Chemical Co., Ltd., NKHO-24) was changed to ⁇ -alumina (Sumitomo Chemical Co., Ltd., AC-11).
  • Catalyst C was prepared in the same manner as in Reference Example 1, except that the amount of potassium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) was changed from 12.03 g to 10.51 g.
  • Catalyst D was prepared in the same manner as in Reference Example 1 except that the amount of potassium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) was changed from 12.03 g to 15.00 g.
  • Catalyst E was prepared in the same manner as in Reference Example 1 except that the amount of potassium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) was changed from 12.03 g to 18.07 g.
  • Catalyst F was prepared in the same manner as in Reference Example 1 except that the amount of potassium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) was changed from 12.03 g to 21.13 g.
  • Catalyst G was prepared in the same manner as in Reference Example 1, except that the amount of potassium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) was changed from 12.03 g to 3.03 g.
  • Reference Example 8 (Preparation of catalyst H) A 300 ml eggplant flask was charged with 2.01 g of potassium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) and 100.11 g of water and stirred at room temperature to prepare an aqueous potassium fluoride solution. 10.01 g of ⁇ -alumina (manufactured by Sumitomo Chemical Co., Ltd., NKHO-24) was added to and mixed with the obtained potassium fluoride aqueous solution, and then water was distilled off using a rotary evaporator at 50 ° C. and 20 Torr. did. The obtained solid was dried in an air atmosphere at 110 ° C. for 24 hours.
  • potassium fluoride manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more
  • ⁇ -alumina manufactured by Sumitomo Chemical Co., Ltd., NKHO-24
  • the dried solid is filled in a quartz tube, and while flowing nitrogen at a flow rate of 50 Nml / min, the temperature is raised from room temperature to 350 ° C. over 1 hour, held at 350 ° C. for 1 hour, and then cooled to room temperature.
  • Catalyst H was prepared.
  • the dried solid is filled in a quartz tube, and while flowing nitrogen at a flow rate of 50 Nml / min, the temperature is raised from room temperature to 350 ° C. over 1 hour, held at 350 ° C. for 1 hour, and then cooled to room temperature.
  • Catalyst I was prepared.
  • Catalyst J was prepared in the same manner as in Reference Example 8 except that the amount of potassium fluoride (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% or more) was changed from 2.01 g to 10.08 g.
  • Example 1 In a 100 ml round bottom flask, 2.65 g of Catalyst A, 22.69 g (0.24 mol) of aniline and 30.26 g (0.24 mol) of nitrobenzene were placed and stirred under a nitrogen atmosphere. The temperature was raised to ° C. Stirring was continued for 10 hours after the temperature reached 150 ° C., and then cooled to room temperature. The obtained mixture was filtered and the filtrate was analyzed. As a result, the yield of 4-nitrodiphenylamine was 2.0%. Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 2 In a 100 ml round bottom flask, 2.10 g of Catalyst A, 12.95 g (0.14 mol) of aniline and 17.10 g (0.14 mol) of nitrobenzene were placed and stirred under a nitrogen atmosphere. The temperature was raised to ° C. Stirring was continued for 10 hours after the temperature reached 150 ° C., and then cooled to room temperature. As a result of filtering the obtained mixture and analyzing the filtrate, the yield of 4-nitrodiphenylamine was 2.6%. Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 3 The same operation as in Example 2 was performed except that the amount of catalyst A used was changed from 2.10 g to 4.53 g. The yield of 4-nitrodiphenylamine was 4.5%. Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 4 The same operation as in Example 1 was performed except that the catalyst B was used instead of the catalyst A.
  • the yield of 4-nitrodiphenylamine was 2.1%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 5 The same operation as in Example 1 was performed except that the catalyst C was used instead of the catalyst A.
  • the yield of 4-nitrodiphenylamine was 1.9%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 6 The same operation as in Example 1 was performed except that catalyst D was used instead of catalyst A.
  • the yield of 4-nitrodiphenylamine was 2.5%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 7 The same operation as in Example 1 was performed except that the catalyst E was used instead of the catalyst A.
  • the yield of 4-nitrodiphenylamine was 2.5%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 8 The same operation as in Example 1 was performed except that the catalyst F was used instead of the catalyst A.
  • the yield of 4-nitrodiphenylamine was 1.9%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 9 The same operation as in Example 1 was performed except that the catalyst G was used instead of the catalyst A.
  • the yield of 4-nitrodiphenylamine was 0.34%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 10 The same operation as in Example 1 was performed except that catalyst H was used instead of catalyst A.
  • the yield of 4-nitrodiphenylamine was 0.48%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 11 The same operation as in Example 1 was performed except that Catalyst I was used instead of Catalyst A.
  • the yield of 4-nitrodiphenylamine was 0.62%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 12 The same operation as in Example 1 was performed except that the catalyst J was used instead of the catalyst A.
  • the yield of 4-nitrodiphenylamine was 0.11%.
  • Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 13 In a 100 ml round bottom flask, 2.62 g of catalyst K, 22.69 g (0.24 mol) of aniline and 30.26 g (0.24 mol) of nitrobenzene were placed and stirred under a nitrogen atmosphere. The temperature was raised to ° C. Stirring was continued for 10 hours after the temperature reached 150 ° C., and then cooled to room temperature. The obtained mixture was filtered and the filtrate was analyzed. As a result, the yield of 4-nitrodiphenylamine was 1.1%. Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Example 12 The same operation as in Example 13 was performed except that hydrotalcite [Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O; manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of the catalyst K.
  • the yield of 4-nitrodiphenylamine was 0.01%. Table 1 shows the change in the yield of 4-nitrodiphenylamine every hour with stirring for 10 hours.
  • Reference Example 14 (Preparation of catalyst II) Calcium oxide-zirconium oxide composite oxide (Daiichi Rare Element Chemical Co., Ltd., Z-1043) was pressed with a hydraulic press machine under a pressure of 50 MPa, and the resulting solid was pulverized to 8 mesh.
  • the catalyst II was prepared by sieving using a sieving sieve (aperture 2.36 mm) and a 16 mesh sieve (aperture 1.00 mm) and molding into 8-16 mesh granules.
  • a reaction apparatus 20 includes a fixed bed flow type reaction tube 6 filled with a solid catalyst, feed pumps 2a and 2b for supplying aniline and nitrobenzene as raw materials to the fixed bed flow type reaction tube 6, aniline and A preheater 7 for preheating nitrobenzene, a pressure gauge 3 for measuring the reaction pressure, a mass flow controller 8 for controlling the flow rate of nitrogen, a cooler 4 for cooling the reaction mixture, and a receiver for collecting the cooled reaction mixture And a container 9.
  • reaction pressure is 0.1 MPa.
  • the reaction was started at (absolute pressure).
  • the reaction mixture led out from the outlet of the fixed bed flow type reaction tube 6 was cooled through the cooler 4 and then collected in the receiver 9.
  • the reaction mixture cooled through the cooler 4 was sampled for 10 minutes.
  • the reaction tube temperature and the preheater temperature are set to 150 ° C.
  • flow reaction is performed for 30 minutes at a reaction temperature of 150 ° C. and a reaction pressure of 0.1 MPa (absolute pressure), and then sampling of the reaction mixture cooled through the cooler 4 For 10 minutes.
  • Example 15 The reaction was performed in the same manner as in Example 14 except that the flow rate of nitrobenzene was changed to 0.24 g / min (118 mmol / h). As a result of analyzing the sampled reaction mixture, the production rate of 4-nitrodiphenylamine was 0.038 mmol / h at a reaction temperature of 100 ° C., and the production rate of 4-nitrodiphenylamine was 0.54 mmol / h at a reaction temperature of 150 ° C. Met.
  • Example 16 The reaction was performed in the same manner as in Example 14 except that the flow rate of aniline was 0.20 g / min (130 mmol / h). As a result of analyzing the sampled reaction mixture, the production rate of 4-nitrodiphenylamine was 0.045 mmol / h at a reaction temperature of 100 ° C., and the production rate of 4-nitrodiphenylamine was 0.53 mmol / h at a reaction temperature of 150 ° C. Met.
  • Example 17 The reaction was conducted in the same manner as in Example 14 except that 10.51 g of catalyst II was used instead of catalyst I. As a result of analyzing the sampled reaction mixture, the production rate of 4-nitrodiphenylamine was 0.010 mmol / h at a reaction temperature of 100 ° C., and the production rate of 4-nitrodiphenylamine was 0.050 mmol / h at a reaction temperature of 150 ° C. Met.
  • Comparative Example 1 The reaction was performed in the same manner as in Example 14 except that the catalyst I was not charged. As a result of analyzing the sampled reaction mixture, 4-nitrodiphenylamine was not detected at both the reaction temperature of 100 ° C. and 150 ° C.
  • a reaction apparatus 20 includes a fixed bed flow type reaction tube 6 filled with a solid catalyst, feed pumps 2a and 2b for supplying aniline and nitrobenzene as raw materials to the fixed bed flow type reaction tube 6, aniline and A preheater 7 for preheating nitrobenzene, a pressure gauge 3 for measuring the reaction pressure, a mass flow controller 8 for controlling the flow rate of nitrogen, a cooler 4 for cooling the reaction mixture, and a receiver for collecting the cooled reaction mixture And a container 9.
  • reaction tube temperature and the preheating tube temperature were set to 150 ° C., and the supply was continued for 40 minutes.
  • the reaction tube temperature and the preheating tube temperature are set to 200 ° C., and the reaction mixture is circulated through the reactor as a gas-liquid mixture of gaseous aniline diluted with nitrogen and liquid nitrobenzene, and the reaction temperature is 200 ° C. and the reaction pressure is 0.1 MPa.
  • the reaction was started at (absolute pressure).
  • the reaction mixture led out from the outlet of the fixed bed flow type reaction tube 6 was cooled through the cooler 4 and then collected in the receiver 9. When 30 minutes passed from the start of the reaction, the reaction mixture cooled through the cooler 4 was sampled for 10 minutes.
  • the reaction tube temperature and the preheater temperature are set to 220 ° C., and the mixture is circulated through the reactor as a mixed gas of aniline and nitrobenzene diluted with nitrogen.
  • the reaction temperature is 220 ° C. and the reaction pressure is 0.1 MPa (absolute pressure).
  • the flow reaction was carried out for 30 minutes, and then the reaction mixture cooled through the cooler 4 was sampled for 10 minutes.
  • the reaction tube temperature and the preheater temperature are set to 250 ° C., and the mixture is circulated through the reactor as a mixed gas of aniline and nitrobenzene diluted with nitrogen.
  • the reaction temperature is 250 ° C. and the reaction pressure is 0.1 MPa (absolute pressure).
  • the flow reaction was carried out for 30 minutes, and then the reaction mixture cooled through the cooler 4 was sampled for 10 minutes.
  • the reaction tube temperature and the preheater temperature are set to 280 ° C., and the inside of the reactor is circulated as a mixed gas of aniline and nitrobenzene diluted with nitrogen, the reaction temperature is 280 ° C., the reaction pressure is 0.1 MPa (absolute pressure)
  • the flow reaction was carried out for 30 minutes, and then the reaction mixture cooled through the cooler 4 was sampled for 10 minutes.
  • the production rate of 4-nitrodiphenylamine was 2.16 mmol / h at a reaction temperature of 200 ° C., and the production rate of 4-nitrodiphenylamine at a reaction temperature of 220 ° C.
  • the reaction temperature is 250 ° C.
  • the production rate of 4-nitrodiphenylamine is 0.24 mmol / h
  • the reaction temperature is 280 ° C.
  • the production rate of 4-nitrodiphenylamine is 0.030 mmol / h. there were.
  • Example 19 The reaction was performed in the same manner as in Example 18 except that the flow rate of nitrobenzene was changed to 0.24 g / min (118 mmol / h). As a result of analyzing the sampled reaction mixture, the production rate of 4-nitrodiphenylamine was 0.088 mmol / h at a reaction temperature of 200 ° C., and the production rate of 4-nitrodiphenylamine was 0.63 mmol / h at a reaction temperature of 220 ° C.
  • Example 20 The reaction was conducted in the same manner as in Example 18 except that the flow rate of aniline was 0.20 g / min (130 mmol / h).
  • the production rate of 4-nitrodiphenylamine was 1.36 mmol / h at a reaction temperature of 200 ° C.
  • the production rate of 4-nitrodiphenylamine was 0.18 mmol / h at a reaction temperature of 220 ° C.
  • the production rate of 4-nitrodiphenylamine was 0.13 mmol / h
  • the production rate of 4-nitrodiphenylamine was 0.026 mol / h.
  • Example 21 The reaction was conducted in the same manner as in Example 18 except that 10.51 g of catalyst II was used instead of catalyst I.
  • the production rate of 4-nitrodiphenylamine was 0.0017 mmol / h at a reaction temperature of 200 ° C.
  • the production rate of 4-nitrodiphenylamine was 0.0097 mmol / h at a reaction temperature of 220 ° C.
  • the production rate of 4-nitrodiphenylamine was 0.0094 mmol / h, and at a reaction temperature of 280 ° C., 4-nitrodiphenylamine was not detected.
  • Comparative Example 2 The reaction was performed in the same manner as in Example 18 except that the catalyst I was not charged. As a result of analyzing the sampled reaction mixture, 4-nitrodiphenylamine was not detected at any of reaction temperatures of 200 ° C., 220 ° C., 250 ° C. and 280 ° C.
  • 4-nitrodiphenylamine can be produced by simplifying the post-treatment of the reaction mixture obtained after the reaction, and thus has high industrial utility value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、反応混合物の後処理が簡便に行える、4-ニトロジフェニルアミンの製造方法を提供する。より詳細には、本発明は、4-ニトロジフェニルアミンの製造方法であって、担体にアルカリ金属フッ化物が担持されてなる触媒の存在下、アニリンとニトロベンゼンとを反応させる方法および固定床流通方式で固体触媒の存在下にアニリンとニトロベンゼンとを反応させる方法を提供する。

Description

4-ニトロジフェニルアミンの製造方法
 本発明は、アニリンとニトロベンゼンから4-ニトロジフェニルアミンを製造する方法に関する。4-ニトロジフェニルアミンは、アゾ染料の原料として有用である。また、4-ニトロジフェニルアミンを水素化することにより4-アミノジフェニルアミンに変換し、この4-アミノジフェニルアミンをアルキル化することにより、天然ゴムや合成ゴムの酸化防止剤として有用な4-アルキルアミノジフェニルアミンを得ることができる。
 4-ニトロジフェニルアミンを製造する方法として、例えば、特許文献1には、水酸化テトラメチルアンモニウム二水和物等の水酸化第四級アンモニウムの存在下に、アニリンとニトロベンゼンとの反応を行う方法が開示されており、特許文献2には、水酸化カリウム等のアルカリ金属水酸化物及び塩化テトラメチルアンモニウム等の第四級アンモニウム塩の存在下に、アニリンとニトロベンゼンとの反応を行う方法が開示されており、特許文献3~5には、水酸化カリウムの存在下に固体触媒としてモンモリロナイト、ハイドロタルサイトまたはルテニウム担持アルミナを使用してジメチルスルホキシド溶媒中、アニリンとニトロベンゼンとの反応を行う方法が開示されている。
特表平6-508630号公報 特表2005-515163号公報 特開2007-176811号公報 特開2007-176812号公報 特開2007-302588号公報
 しかしながら、上記従来の方法では、アルカリ金属水酸化物、水酸化第四級アンモニウム、第四級アンモニウム塩といった反応後の反応混合物中に溶解しうる化合物を大量に使用しなければならず、それらの化合物の分離及び回収や、目的生成物にそれらの化合物を残留させないための精製といった反応混合物の後処理に煩雑な工程、操作が必要となる等の問題がある。
 そこで、本発明の目的は、反応後に得られる反応混合物の後処理が簡便に行える、4-ニトロジフェニルアミンの製造方法を提供することにある。
 本発明の第一の態様は、担体にアルカリ金属フッ化物が担持されてなる固体触媒の存在下、アニリンとニトロベンゼンとを反応させることを特徴とする4-ニトロジフェニルアミンの製造方法を提供するものである。本発明の第二の態様は、固定床流通方式で固体触媒の存在下にアニリンとニトロベンゼンを反応させる4-ニトロジフェニルアミンの製造方法を提供するものである。即ち、本発明は以下のとおりである。
[1] 担体にアルカリ金属フッ化物が担持されてなる触媒の存在下、アニリンとニトロベンゼンとを反応させることを特徴とする、4-ニトロジフェニルアミンの製造方法。
[2] 前記アルカリ金属フッ化物が、フッ化カリウム、フッ化リチウム、フッ化ナトリウム及びフッ化セシウムからなる群から選ばれる少なくとも1種である、[1]に記載の製造方法。
[3] 前記担体が、アルミナ、ジルコニア、シリカ、チタニア及び活性炭からなる群から選ばれる少なくとも1種である、[1]または[2]に記載の製造方法。
[4] アニリンとニトロベンゼンとのモル比が、アニリン:ニトロベンゼン=1:30~30:1である、[1]乃至[3]のいずれか1項に記載の製造方法。
[5] 反応温度が100~500℃である、[1]乃至[4]のいずれか1項に記載の製造方法。
[6] 固定床流通方式で固体触媒の存在下にアニリンとニトロベンゼンとを反応させることを特徴とする、4-ニトロジフェニルアミンの製造方法。
[7] 前記固体触媒が、担体にアルカリ金属フッ化物が担持されてなる担持アルカリ金属フッ化物及び複合酸化物からなる群から選ばれる少なくとも一種である、[6]に記載の製造方法。
[8] 前記アルカリ金属フッ化物が、フッ化カリウム、フッ化リチウム、フッ化ナトリウム及びフッ化セシウムからなる群から選ばれる少なくとも1種である、[7]に記載の製造方法。
[9] 前記担体が、アルミナ、ジルコニア、シリカ、チタニア及び活性炭からなる群から選ばれる少なくとも1種である、[7]または[8]に記載の製造方法。
[10] 前記複合酸化物が、カルシウム及びジルコニウムを含有する複合酸化物である、[7]乃至[9]のいずれか1項に記載の製造方法。
[11] アニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物を固体触媒と接触させることによる、[6]乃至[10]のいずれか1項に記載の製造方法。
[12] アニリンとニトロベンゼンとの含有割合が、アニリン:ニトロベンゼン(モル比)=1:30~30:1である、[5]乃至[11]のいずれか1項に記載の製造方法。
[13] 反応温度が100~500℃である、[5]乃至[12]のいずれか1項に記載の製造方法。
 本発明によれば、反応後に得られる反応混合物の後処理を簡略化して、4-ニトロジフェニルアミンを製造することができるため、工業的に有利である。
本発明の4-ニトロジフェニルアミンの製造方法の一実施形態を模式的に示す概略説明図である。 本発明の4-ニトロジフェニルアミンの製造方法の他の実施形態を模式的に示す概略説明図である。
 1:固定床流通式反応器、2a,2b:フィードポンプ、3:圧力計、4:冷却器、5:調圧弁、6:固定床流通式反応管、7:予熱器、8:マスフローコントローラー、9:受器、10,20:反応装置
 以下、本発明の第一の態様についてまず説明する。
 この実施態様においては、担体にアルカリ金属フッ化物が担持されてなる触媒(以下、担持アルカリ金属フッ化物触媒と称する。)の存在下、アニリンとニトロベンゼンとを反応させることにより、4-ニトロジフェニルアミンを製造する。
 担持アルカリ金属フッ化物触媒におけるアルカリ金属フッ化物としては、例えば、フッ化カリウム、フッ化リチウム、フッ化ナトリウム、フッ化セシウムもしくはこれらの混合物が例示され、中でも、フッ化カリウムが好ましい。従ってアルカリ金属フッ化物は、1種のみを用いてもよいし、2種以上を併用してもよい。
 前記担体としては、例えば、アルミナ、ジルコニア、シリカ、チタニア、活性炭もしくはこれらの混合物が例示され、中でも、アルミナが好ましい。従って担体は1種のみを用いてもよいし、2種以上を併用してもよい。
 前記担持アルカリ金属フッ化物触媒におけるアルカリ金属フッ化物の担持量は、触媒総量に対して通常1~60重量%、好ましくは5~50重量%、より好ましくは25~45重量%、さらにより好ましくは30~40重量%である。アルカリ金属フッ化物を2種以上併用する場合は、合計の担持量が前記範囲となるようにすればよい。
 前記担体に前記アルカリ金属フッ化物を担持させる方法としては、例えば、担体をアルカリ金属フッ化物を含む溶液と接触処理し、乾燥する方法が挙げられる。接触処理において、処理時の温度は、0~100℃が好ましく、処理時の圧力は0.001~1.0MPaが好ましい。また、かかる接触処理は、例えば、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができる。前記溶液の調製に使用される溶媒としては、例えば、水;メタノール、エタノール等のアルコール等が挙げられる。溶媒は1種のみを用いてもよいし、2種以上を併用してもよい。溶媒の使用量は、使用するアルカリ金属フッ化物によって適宜調整される。
 接触処理としては、例えば、混合、含浸または浸漬が例示される。前記溶液と接触処理する方法として、例えば、(A)担体をアルカリ金属フッ化物を含む溶液と混合する方法、(B)担体にアルカリ金属フッ化物を含む溶液を含浸させる方法、(C)担体をアルカリ金属フッ化物を含む溶液に浸漬させる方法等が例示されるが、前記(A)の方法が好ましい。担体とアルカリ金属フッ化物の使用割合は、得られる触媒におけるアルカリ金属フッ化物担持量が前記範囲となるように、適宜調整すればよい。
 前記乾燥の方法としては、具体的には、蒸発乾固法や、箱型乾燥機、ドラム型通気乾燥装置、スプレードライヤー、気流乾燥機等の公知の乾燥装置を使用した乾燥方法を用いることができ、蒸発乾固法と公知の乾燥装置を使用した乾燥方法とを組み合わせて用いることもできる。蒸発乾固法としては、例えば、前記担体と前記アルカリ金属フッ化物を含む溶液とのスラリーから、前記溶媒を留去する方法が好ましく用いられる。乾燥温度は、通常0~120℃、好ましくは30~100℃である。常圧下、加圧下および減圧下のいずれで乾燥を行ってもよいが、常圧下または減圧下が好ましい。かかる乾燥は、空気雰囲気下、あるいは、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下でも行うことができる。
 前記乾燥後は、必要に応じて焼成を施すことが好ましい。該焼成は、不活性ガス、酸化性ガス又は還元性ガス雰囲気下で行うことができる。前記不活性ガスとしては、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等が例示され、必要に応じて水蒸気で希釈される。不活性ガスは、中でも、窒素が好ましい。前記酸化性ガスとは、酸化性物質を含むガスであり、例えば酸素含有ガス等が挙げられ、この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスや水蒸気で希釈される。酸化性ガスは、中でも、空気が好ましい。前記還元性ガスとは、還元性物質を含むガスであり、例えば水素含有ガス、一酸化炭素含有ガス、炭化水素含有ガス等が挙げられ、その濃度は、例えば、不活性ガスや水蒸気で調整される。還元性ガスは、中でも、水素含有ガス、一酸化炭素含有ガスが好ましい。前記焼成における焼成温度は、通常、100~1000℃、好ましくは200~800℃である。
 前記担持アルカリ金属フッ化物触媒の形状は特に制限されるものではなく、粉末状であってもよいし、粒状及びタブレット状等の形状の成形体であってもよい。
 本発明における、担体にアルカリ金属フッ化物が担持されてなる触媒は、上述の方法により製造されたものであってもよいし、市販の担持アルカリ金属フッ化物であってもよい。市販の担持アルカリ金属フッ化物の形状は特に制限されるものではなく、粉末状であってもよいし、粒状及びタブレット状等の形状の成形体であってもよい。また、市販の担持アルカリ金属フッ化物には、前記焼成を施すことが好ましい。
 前記担持アルカリ金属フッ化物触媒の使用量は、ニトロベンゼン1モルに対して、通常1~100g、好ましくは3~50gである。
 原料であるアニリン及びニトロベンゼンの使用割合は、アニリン:ニトロベンゼン(モル比)として、通常1:30~30:1であり、好ましくは1:10~10:1である。
 反応溶媒は必要に応じて使用することができ、その例としては、ジメチルスルホキシド、ジメチルホルムアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、テトラヒドロフラン、t-ブタノール、トルエン等が挙げられる。
 反応温度は通常100~500℃であり、140~250℃が好ましい。反応圧力は絶対圧で通常0.01~5.0MPaである。
 前記反応においては、反応に不活性なガスを存在させてもよい。不活性なガスとしては、例えば、窒素、ヘリウム、空気、アルゴン等が例示される。
 前記反応により得られる反応混合物の後処理操作については、反応混合物を濾過して、濾残として触媒を回収し、濾液は、必要により洗浄し、蒸留、分配、晶析等の分離精製操作に付せばよい。回収した触媒は、再使用してもよい。本発明においては、水酸化カリウム等のアルカリ金属水酸化物、水酸化テトラメチルアンモニウム二水和物等の水酸化第四級アンモニウム、塩化テトラメチルアンモニウム等の第四級アンモニウム塩といった化合物を使用しないので、反応混合物からのアルカリ金属水酸化物、水酸化第四級アンモニウム、第四級アンモニウム塩といった化合物の分離や回収を必要とせず、目的生成物にアルカリ金属水酸化物、水酸化第四級アンモニウム、第四級アンモニウム塩といった化合物を残留させないための精製工程が不要となり、後処理が簡略化され得るので工業的に有利である。通常、反応混合物からの4-ニトロジフェニルアミンの回収は、例えば、反応混合物を濾過して、濾残として触媒を回収した後、濾液から蒸留等によってまず未反応原料を留分として回収し、次いで4-ニトロジフェニルアミンを留分として回収し高沸点副生成物を残渣として分離することにより行うことができる。このような分留によって、目的物である4-ニトロジフェニルアミンを容易に得ることができる。また、未反応原料が含まれる反応混合物、及び留分として回収された未反応原料は、リサイクルすることができる。前記濾液は、そのまま、あるいは蒸留等によって未反応原料を留分として回収した後に、4-アミノジフェニルアミンを製造するための水素化に付してもよい。
 次いで、本発明の第二の態様について説明する。この態様においては、具体的には固定床流通方式で固体触媒の存在下にアニリン及びニトロベンゼンを反応させることにより、例えば、アニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物を固体触媒と接触させてアニリン及びニトロベンゼンを反応させることにより、4-ニトロジフェニルアミンを製造する。
 この態様において使用される固体触媒としては、固体塩基触媒、担体に遷移金属が担持されてなる触媒等が挙げられ、中でも、固体塩基触媒が好ましい。固体塩基触媒としては、例えば、酸化カルシウム、酸化マグネシウム等のアルカリ土類金属酸化物;水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を担体に担持した担持アルカリ金属水酸化物;ナトリウム、カリウム等のアルカリ金属を担体に担持した担持アルカリ金属;担持アルカリ金属フッ化物;複合酸化物;陰イオン交換樹脂;ハイドロタルサイト等が例示される。これらの中でも、担持アルカリ金属フッ化物、複合酸化物が好ましい。固体塩基触媒は1種のみを用いてもよいし、2種以上を併用してもよい。担体に遷移金属が担持されてなる触媒における遷移金属としては、例えば、ルテニウム、ロジウム、パラジウム、銀、白金、金等が挙げられ、中でもルテニウムが好ましい。
 担体に遷移金属が担持されてなる触媒、担持アルカリ金属水酸化物、担持アルカリ金属及び担持アルカリ金属フッ化物における担体としては、アルミナ、ジルコニア、シリカ、チタニア、活性炭等が挙げられ、中でも、アルミナが好ましい。担体は1種のみを用いてもよいし、2種以上を併用してもよい。
 アルカリ金属フッ化物を触媒として使用する場合に、担持アルカリ金属フッ化物の具体例および製造方法等については第一の態様において説明した通りである。
 前記担持アルカリ金属フッ化物のアルカリ金属フッ化物担持量に特に制限はないが、固体触媒総量に対して通常1~60重量%、好ましくは5~50重量%である。アルカリ金属フッ化物を2種以上併用する場合は、合計の担持量が前記範囲となるようにすればよい。
 前記複合酸化物は、2種以上の金属元素を構成元素とする複合酸化物であり、該金属元素としては、例えば、カルシウム、マグネシウム、ケイ素、アルミニウム、チタン、ジルコニウム、ニオブ、ランタン、カリウム、ニッケル、マンガン、亜鉛、スズ、鉛、リン等が挙げられる。前記複合酸化物は、1種のみを用いてもよいし、2種以上を併用してもよい。これらの複合酸化物の中でも、カルシウム及びジルコニウムを含有する複合酸化物が好ましい。カルシウム及びジルコニウムを含有する複合酸化物としては、酸化カルシウム-酸化ジルコニウム複合酸化物が挙げられる。複合酸化物は、市販の複合酸化物や市販の複合酸化物を成形したものを用いることができ、必要に応じて焼成が施される。また、所謂共沈法によって製造することもできる。具体的には、複合酸化物を構成する各金属の水溶性の塩を溶解した混合水溶液を調製し、これをpH調整して共沈物を得、次いで焼成する方法等が挙げられる。
 これら固体触媒の形状は特に制限されるものではなく、粉末状、粒状およびタブレット状などの各種形状で使用することができる。取り扱いの点から、粒状またはタブレット状に成形したものが推奨される。
 本発明の第二の態様において採用され得る固定床反応器としては、反応器に原料供給口と反応液取り出し口が設けられた流通式の各種固定床反応器が例示される。反応管の本数は特に限定されるものではなく、単管式固定床反応器、多管式固定床反応器のいずれも使用することができる。また、断熱方式又は熱交換方式の固定床反応器が使用可能である。
 前記固体触媒を充填した固定床流通式反応器に、アニリン及びニトロベンゼン、例えばアニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物を流通させて反応を行う際の固定床流通式反応器における固体触媒の充填量は、固体触媒1kgあたりのアニリン及びニトロベンゼン、例えばアニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物の流通速度(kg/h)、すなわち空間速度WHSV(h-1)で表すと、0.1~30h-1が好ましく、1~10h-1がより好ましい。アニリン及びニトロベンゼン、例えばアニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物の流れとしてはアップフロー、ダウンフローのいずれでもよい。
 原料であるアニリン及びニトロベンゼンの固定床流通式反応器への供給方法は特に制限はなく、アニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物として前記固体触媒と接触させるが場合でも、接触時にアニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物となっていればよい。例えば、アニリン及びニトロベンゼンをそれぞれ別々のフィードラインで別々の固定床流通式反応器入口から供給する方法、アニリン及びニトロベンゼンをそれぞれ別々のフィードラインでフィードし、固定床流通式反応器入口の前でフィードラインを合流させアニリン及びニトロベンゼンを混合して固定床流通式反応器入口から供給する方法、アニリン及びニトロベンゼンの混合物液を予め調製し、該混合物液をフィードラインを通し、適宜予熱器を通して予熱して固定床流通式反応器入口から供給する方法等が挙げられる。それぞれの方法において、アニリンとニトロベンゼンとを含む混合ガスを前記固体触媒と接触させる場合には、例えば、アニリン及びニトロベンゼンをガスとして固定床流通式反応器入口から供給してもよいし、アニリンをガスとして、ニトロベンゼンを液体として固定床流通式反応器入口から供給し、反応器内でニトロベンゼンを気化させてもよいし、アニリン及びニトロベンゼンを液体として固定床流通式反応器入口から供給し、反応器内でアニリン及びニトロベンゼンを気化させてもよく、アニリンを含むガスとニトロベンゼンを含む溶液との気液混合物を前記固体触媒と接触させる場合には、例えば、アニリンをガスとして、ニトロベンゼンを液体として固定床流通式反応器入口から供給してもよいし、アニリン及びニトロベンゼンを液体として固定床流通式反応器入口から供給し、反応器内でアニリンを気化させてもよい。
 反応溶媒は必要に応じて使用することができ、反応溶媒としては、例えば、ジメチルスルホキシド、ジメチルホルムアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、テトラヒドロフラン、t-ブタノール、トルエン等が挙げられる。反応溶媒は、アニリン及びニトロベンゼンのそれぞれのフィードラインとは別のフィードラインを通し、アニリン及びニトロベンゼンのそれぞれを供給する固定床流通式反応器入口とは別の固定床流通式反応器入口を通して供給してもよいし、アニリン及びニトロベンゼンのそれぞれのフィードラインとは別のフィードラインを通してフィードし、固定床流通式反応器入口の前でフィードラインを合流させることによりアニリン及びニトロベンゼンと混合して固定床流通式反応器入口から供給してもよいし、アニリン、ニトロベンゼン及び反応溶媒の混合物液を予め調製し、該混合物液をフィードラインを通して適宜予熱器により予熱して固定床反応器入口から供給してもよいし、アニリン及びニトロベンゼンをそれぞれ別々のフィードラインでフィードする際に、アニリン及び/又はニトロベンゼンに反応溶媒を混合することにより供給してもよい。
 原料であるアニリン及びニトロベンゼンの使用割合(例えば、前記混合ガスまたは前記気液混合物におけるアニリン及びニトロベンゼンの含有割合)は、アニリン:ニトロベンゼン(モル比)として、通常1:30~30:1であり、好ましくは1:10~10:1である。
 反応温度は通常100~500℃であり、100~300℃が好ましく、140~250℃がより好ましい。反応圧力は絶対圧で通常0.01~5.0MPaであって、0.1~5.0MPaが好ましい。前記アニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物を用いる際には、反応温度は通常150~500℃であり、190~300℃が好ましい。反応圧力は絶対圧で通常0.01~2.0MPaである。反応温度及び反応圧力は、アニリンが気体となるように調整され、適宜ニトロベンゼンも気体となるように調整される。例えば、前記混合ガスを使用して常圧(0.1MPa)下に反応を行う場合には、アニリン及びニトロベンゼンの沸点(アニリン:184℃、ニトロベンゼン:211℃)以上の温度で反応を行い、前記混合ガスを使用してアニリンまたはニトロベンゼンの沸点未満で反応を行う場合には、アニリン及びニトロベンゼンの気相状態を保つために減圧下に反応を行う。また、例えば、前記気液混合物を使用して常圧下に反応を行う場合には、アニリンの沸点以上ニトロベンゼンの沸点未満の温度で反応を行い、前記気液混合物を使用してアニリンの沸点未満で反応を行う場合には、アニリンの気相状態を保ち、ニトロベンゼンの液相状態を保つ減圧条件で反応を行い、前記気液混合物を使用してニトロベンゼンの沸点以上で反応を行う場合には、アニリンの気相状態を保ち、ニトロベンゼンの液相状態を保つ加圧条件で反応を行う。
 固定床流通式反応器には、反応に不活性なガスをアニリン及びニトロベンゼンと共に供給することができる。不活性なガスとしては、例えば、窒素、ヘリウム、空気、アルゴン等が挙げられる。
 反応により得られる反応混合物の後処理操作については、必要により洗浄した後、蒸留、分配、晶析等の分離精製操作に付せばよい。固定床流通方式を採用することで、濾過といった固体触媒の分離操作を必要とすることなく反応混合物の取出しを容易に行うことができ、4-ニトロジフェニルアミンを連続的に製造できるため本発明の製造方法は工業的に有利である。固定床流通方式で固体触媒を使用する第二の実施態様においても、水酸化カリウム等のアルカリ金属水酸化物、水酸化テトラメチルアンモニウム二水和物等の水酸化第四級アンモニウム、塩化テトラメチルアンモニウム等の第四級アンモニウム塩といった化合物を使用しないで反応を行うので、第一の実施態様におけるのと同様に、後処理が簡略化される点で本発明の製造方法は工業的に有利である。
 以下、図1を参照して、本発明にかかる4-ニトロジフェニルアミンの製造方法の一実施形態について図面を参照して詳細に説明する。図1において、反応装置10は、固体触媒が充填された固定床流通式反応器1と、原料であるアニリン及びニトロベンゼンを固定床流通式反応器1に供給するフィードポンプ2a及び2bと、反応圧力を測定する圧力計3と、反応混合物を冷却する冷却器4と、反応圧力を調整する調圧弁5とを備えている。
 原料のアニリン及びニトロベンゼンは、原料フィードポンプ2a及び2bにより、所定の反応温度に加熱された固体触媒を充填した固定床流通式反応器1の原料供給口から供給されて、調圧弁5により所定の圧力に調整された後、原料(例えば、アニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物として)を固体触媒と接触することにより反応が進行する。反応生成物である4-ニトロジフェニルアミンと未反応の原料とからなる反応混合物は固定床流通式反応器1の出口より連続的に導出され、これを冷却器4によって適宜冷却する。こうして、4-ニトロジフェニルアミンが連続的に製造される。反応混合物からの4-ニトロジフェニルアミンの回収は、蒸留等によってまず未反応原料を留分として回収し、次いで4-ニトロジフェニルアミンを留分として回収し高沸点副生成物を残渣として分離することにより行うことができる。このような分留によって、目的物である4-ニトロジフェニルアミンを容易に得ることができる。また、未反応原料が含まれる反応混合物や、留分として回収された未反応原料は、リサイクルすることができる。反応混合物は、そのまま、あるいは蒸留等によって未反応原料を留分として回収した後に、4-アミノジフェニルアミンを製造するための水素化に付してもよい。
 本発明の製造方法で用いることのできる反応装置はこれらに限定されるものではなく、本発明の効果を損なわない範囲で、任意に設計変更することは可能である。
 以下に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。
 以下、担持アルカリ金属フッ化物触媒の存在下による4-ニトロジフェニルアミンの製造方法の具体例について示す。
 4-ニトロジフェニルアミンの分析は、高速液体クロマトグラフィーにより行い、4-ニトロジフェニルアミンの収率は、供給したニトロベンゼンのモル数をX、生成した4-ニトロジフェニルアミンのモル数をYとして以下の式により算出した。
4-ニトロジフェニルアミンの収率(%)=[Y/X]×100
 参考例1(触媒Aの調製)
 500mlナスフラスコに、フッ化カリウム(和光純薬工業(株)製、純度99%以上)12.03gと水300.10gを入れて室温で攪拌し、フッ化カリウム水溶液を調製した。得られたフッ化カリウム水溶液にγ-アルミナ(住友化学(株)製、NKHO-24)30.02gを加えて混合した後、ロータリーエバポレーターを用いて、50℃、20Torrの条件で水を留去した。得られた固体を空気雰囲気下、110℃にて24時間乾燥させた。
 乾燥後の固体を石英管に充填し、窒素を50Nml/minの流量で流通させながら、室温から350℃まで1時間かけて昇温し、350℃で1時間保持した後、室温まで冷却して触媒Aを調製した。
 参考例2(触媒Bの調製)
 γ-アルミナ(住友化学(株)製、NKHO-24)をγ-アルミナ(住友化学(株)製、AC-11)に変更した以外は参考例1と同様の方法で触媒Bを調製した。
 参考例3(触媒Cの調製)
 フッ化カリウム(和光純薬工業(株)製、純度99%以上)の使用量を12.03gから10.51gに変更した以外は参考例1と同様の方法で触媒Cを調製した。
 参考例4(触媒Dの調製)
 フッ化カリウム(和光純薬工業(株)製、純度99%以上)の使用量を12.03gから15.00gに変更した以外は参考例1と同様の方法で触媒Dを調製した。
 参考例5(触媒Eの調製)
 フッ化カリウム(和光純薬工業(株)製、純度99%以上)の使用量を12.03gから18.07gに変更した以外は参考例1と同様の方法で触媒Eを調製した。
 参考例6(触媒Fの調製)
 フッ化カリウム(和光純薬工業(株)製、純度99%以上)の使用量を12.03gから21.13gに変更した以外は参考例1と同様の方法で触媒Fを調製した。
 参考例7(触媒Gの調製)
 フッ化カリウム(和光純薬工業(株)製、純度99%以上)の使用量を12.03gから3.03gに変更した以外は参考例1と同様の方法で触媒Gを調製した。
 参考例8(触媒Hの調製)
 300mlナスフラスコに、フッ化カリウム(和光純薬工業(株)製、純度99%以上)2.01gと水100.11gを入れて室温で攪拌し、フッ化カリウム水溶液を調製した。得られたフッ化カリウム水溶液にγ-アルミナ(住友化学(株)製、NKHO-24)10.01gを加えて混合した後、ロータリーエバポレーターを用いて、50℃、20Torrの条件で水を留去した。得られた固体を空気雰囲気下、110℃にて24時間乾燥させた。
 乾燥後の固体を石英管に充填し、窒素を50Nml/minの流量で流通させながら、室温から350℃まで1時間かけて昇温し、350℃で1時間保持した後、室温まで冷却して触媒Hを調製した。
 参考例9(触媒Iの調製)
 300mlナスフラスコに、フッ化カリウム(和光純薬工業(株)製、純度99%以上)3.06gと水100.05gを入れて室温で攪拌し、フッ化カリウム水溶液を調製した。得られたフッ化カリウム水溶液にγ-アルミナ(住友化学(株)製、AC-11)10.03gを加えて混合した後、ロータリーエバポレーターを用いて、50℃、20Torrの条件で水を留去した。得られた固体を空気雰囲気下、110℃にて24時間乾燥させた。
 乾燥後の固体を石英管に充填し、窒素を50Nml/minの流量で流通させながら、室温から350℃まで1時間かけて昇温し、350℃で1時間保持した後、室温まで冷却して触媒Iを調製した。
 参考例10(触媒Jの調製)
 フッ化カリウム(和光純薬工業(株)製、純度99%以上)の使用量を2.01gから10.08gに変更した以外は参考例8と同様の方法で触媒Jを調製した。
 参考例11(触媒Kの調製)
 フッ化カリウム担持アルミナ(Aldrich製、フッ化カリウム含有量:40重量%)5.0gを石英管に充填し、窒素を50Nml/minの流量で流通させながら、室温から350℃まで1時間かけて昇温し、350℃で1時間保持した後、室温まで冷却して触媒Kを調製した。
 実施例1
 100mlの丸底フラスコに、2.65gの触媒Aと、22.69g(0.24mol)のアニリンと、30.26g(0.24mol)のニトロベンゼンを入れて、窒素雰囲気下にて攪拌しながら150℃に昇温した。150℃になってから10時間攪拌を継続し、室温まで冷却した。得られた混合物を濾過し、濾液を分析した結果、4-ニトロジフェニルアミンの収率は2.0%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例2
 100mlの丸底フラスコに、2.10gの触媒Aと、12.95g(0.14mol)のアニリンと、17.10g(0.14mol)のニトロベンゼンを入れて、窒素雰囲気下にて攪拌しながら150℃に昇温した。150℃になってから10時間攪拌を継続し、室温まで冷却した。得られた混合物を濾過し、濾液を分析した結果、4-ニトロジフェニルアミンの収率は2.6%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例3
 触媒Aの使用量を2.10gから4.53gに変更した以外は実施例2と同様の操作を行った。4-ニトロジフェニルアミンの収率は4.5%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例4
 触媒Aに代えて触媒Bを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は2.1%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例5
 触媒Aに代えて触媒Cを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は1.9%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例6
 触媒Aに代えて触媒Dを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は2.5%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例7
 触媒Aに代えて触媒Eを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は2.5%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例8
 触媒Aに代えて触媒Fを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は1.9%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例9
 触媒Aに代えて触媒Gを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は0.34%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例10
 触媒Aに代えて触媒Hを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は0.48%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例11
 触媒Aに代えて触媒Iを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は0.62%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例12
 触媒Aに代えて触媒Jを使用した以外は実施例1と同様の操作を行った。4-ニトロジフェニルアミンの収率は0.11%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 実施例13
 100mlの丸底フラスコに、2.62gの触媒Kと、22.69g(0.24mol)のアニリンと、30.26g(0.24mol)のニトロベンゼンを入れて、窒素雰囲気下にて攪拌しながら150℃に昇温した。150℃になってから10時間攪拌を継続し、室温まで冷却した。得られた混合物を濾過し、濾液を分析した結果、4-ニトロジフェニルアミンの収率は1.1%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
 参考例12
 触媒Kに代えてハイドロタルサイト〔MgAl(OH)16CO・4HO;和光純薬工業(株)製〕を使用した以外は実施例13と同様の操作を行った。4-ニトロジフェニルアミンの収率は0.01%であった。10時間の攪拌における1時間毎の4-ニトロジフェニルアミンの収率の推移を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 次に、固定床流通方式で固体触媒の存在下による4-ニトロジフェニルアミンの製造方法の具体例について示す。
 4-ニトロジフェニルアミンの分析は、高速液体クロマトグラフィーにより行い、4-ニトロジフェニルアミンの生成速度(mol/h)を求めた。
 参考例13(触媒Iの調製)
 フッ化カリウム担持アルミナ(Aldrich製、フッ化カリウム含有量:40重量%)を油圧式プレス機で50MPaの圧力をかけてプレスし、得られた固形物を粉砕し、8メッシュの篩(目開き2.36mm)と16メッシュの篩(目開き1.00mm)を使用することにより篩い分けして8~16メッシュの粒状に成型し、触媒Iを調製した。
 参考例14(触媒IIの調製)
 酸化カルシウム-酸化ジルコニウム複合酸化物(第一稀元素化学工業(株)製、Z-1043)を油圧式プレス機で50MPaの圧力をかけてプレスし、得られた固形物を粉砕し、8メッシュの篩(目開き2.36mm)と16メッシュの篩(目開き1.00mm)を使用することにより篩い分けして8~16メッシュの粒状に成型し、触媒IIを調製した。
 実施例14
 図2に示す実験装置を使用して反応を行った。図2において、反応装置20は、固体触媒が充填された固定床流通式反応管6と、原料であるアニリン及びニトロベンゼンを固定床流通式反応管6に供給するフィードポンプ2a及び2bと、アニリン及びニトロベンゼンを予熱する予熱器7と、反応圧力を測定する圧力計3と、窒素の流量を制御するマスフローコントローラー8と、反応混合物を冷却する冷却器4と、冷却された反応混合物を捕集する受器9とを備えている。固定床流通式反応管6(SUS316製、内径18mm、長さ400mm)に、参考例13で調製した触媒Iを10.20g充填し、100℃に加熱した。窒素をマスフローコントローラー8を使用して50Nml/minの流量で固定床流通式反応管6に供給し、フィードポンプ2a及び2bを使用して、アニリンを0.50g/min(320mmol/h)、ニトロベンゼンを0.58g/min(290mmol/h)の流量でフィードし、100℃に加熱した予熱器7を通して固定床流通式反応管6に連続的に供給し、反応温度100℃、反応圧力0.1MPa(絶対圧)にて反応を開始した。固定床流通式反応管6の出口より導出された反応混合物は、冷却器4を通して冷却した後、受器9に捕集した。反応開始から30分間経過した時点で、冷却器4を通して冷却された反応混合物のサンプリングを10分間行った。サンプリング後、反応管温度及び予熱器温度を150℃とし、反応温度150℃、反応圧力0.1MPa(絶対圧)にて30分間流通反応を行い、次いで冷却器4を通して冷却された反応混合物のサンプリングを10分間行った。それぞれの反応温度でサンプリングした反応混合物を分析したところ、反応温度100℃では、4-ニトロジフェニルアミンの生成速度は0.0065mmol/hであり、反応温度150℃では、4-ニトロジフェニルアミンの生成速度は0.61mmol/hであった。
 実施例15
 ニトロベンゼンの流量を0.24g/min(118mmol/h)にした以外は、実施例14と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度100℃では、4-ニトロジフェニルアミンの生成速度は0.038mmol/hであり、反応温度150℃では、4-ニトロジフェニルアミンの生成速度は0.54mmol/hであった。
 実施例16
 アニリンの流量を0.20g/min(130mmol/h)にした以外は、実施例14と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度100℃では、4-ニトロジフェニルアミンの生成速度は0.045mmol/hであり、反応温度150℃では、4-ニトロジフェニルアミンの生成速度は0.53mmol/hであった。
 実施例17
 触媒Iに代えて、触媒IIを10.51g使用した以外は、実施例14と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度100℃では、4-ニトロジフェニルアミンの生成速度は0.010mmol/hであり、反応温度150℃では、4-ニトロジフェニルアミンの生成速度は0.050mmol/hであった。
 比較例1
 触媒Iを充填しなかった以外は、実施例14と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度100℃及び150℃のどちらの場合においても、4-ニトロジフェニルアミンは検出されなかった。
 実施例18
 図2に示す実験装置を使用して反応を行った。図2において、反応装置20は、固体触媒が充填された固定床流通式反応管6と、原料であるアニリン及びニトロベンゼンを固定床流通式反応管6に供給するフィードポンプ2a及び2bと、アニリン及びニトロベンゼンを予熱する予熱器7と、反応圧力を測定する圧力計3と、窒素の流量を制御するマスフローコントローラー8と、反応混合物を冷却する冷却器4と、冷却された反応混合物を捕集する受器9とを備えている。固定床流通式反応管6(SUS316製、内径18mm、長さ400mm)に、参考例13で調製した触媒Iを10.20g充填し、100℃に加熱した。窒素をマスフローコントローラー8を使用して50Nml/minの流量で固定床流通式反応管6に供給し、フィードポンプ2a及び2bを使用して、アニリンを0.50g/min(320mmol/h)、ニトロベンゼンを0.58g/min(290mmol/h)の流量でフィードし、100℃に加熱した予熱器7を通して固定床流通式反応管6に連続的に供給した。40分間経過後、反応管温度及び予熱管温度を150℃とし、40分間供給を継続した。次いで、反応管温度及び予熱管温度を200℃とし、窒素で希釈された気体のアニリンと液体のニトロベンゼンとの気液混合物として反応器内を流通させて、反応温度200℃、反応圧力0.1MPa(絶対圧)にて反応を開始した。固定床流通式反応管6の出口より導出された反応混合物は、冷却器4を通して冷却した後、受器9に捕集した。反応開始から30分間経過した時点で、冷却器4を通して冷却された反応混合物のサンプリングを10分間行った。サンプリング後、反応管温度及び予熱器温度を220℃とし、窒素で希釈されたアニリンとニトロベンゼンとの混合ガスとして反応器内を流通させて、反応温度220℃、反応圧力0.1MPa(絶対圧)にて30分間流通反応を行い、次いで冷却器4を通して冷却された反応混合物のサンプリングを10分間行った。サンプリング後、反応管温度及び予熱器温度を250℃とし、窒素で希釈されたアニリンとニトロベンゼンとの混合ガスとして反応器内を流通させて、反応温度250℃、反応圧力0.1MPa(絶対圧)にて30分間流通反応を行い、次いで冷却器4を通して冷却された反応混合物のサンプリングを10分間行った。サンプリング後、反応管温度及び予熱器温度を280℃とし、窒素で希釈されたアニリンとニトロベンゼンとの混合ガスとして反応器内を流通させて、反応温度280℃、反応圧力0.1MPa(絶対圧)にて30分間流通反応を行い、次いで冷却器4を通して冷却された反応混合物のサンプリングを10分間行った。それぞれの反応温度でサンプリングした反応混合物を分析したところ、反応温度200℃では、4-ニトロジフェニルアミンの生成速度は2.16mmol/hであり、反応温度220℃では、4-ニトロジフェニルアミンの生成速度は0.21mmol/hであり、反応温度250℃では、4-ニトロジフェニルアミンの生成速度は0.24mmol/hであり、反応温度280℃では、4-ニトロジフェニルアミンの生成速度は0.030mmol/hであった。
 実施例19
 ニトロベンゼンの流量を0.24g/min(118mmol/h)にした以外は、実施例18と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度200℃では、4-ニトロジフェニルアミンの生成速度は0.088mmol/hであり、反応温度220℃では、4-ニトロジフェニルアミンの生成速度は0.63mmol/hであり、反応温度250℃では、4-ニトロジフェニルアミンの生成速度は0.31mmol/hであり、反応温度280℃では、4-ニトロジフェニルアミンの生成速度は0.018mmol/hであった。
 実施例20
 アニリンの流量を0.20g/min(130mmol/h)にした以外は、実施例18と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度200℃では、4-ニトロジフェニルアミンの生成速度は1.36mmol/hであり、反応温度220℃では、4-ニトロジフェニルアミンの生成速度は0.18mmol/hであり、反応温度250℃では、4-ニトロジフェニルアミンの生成速度は0.13mmol/hであり、反応温度280℃では、4-ニトロジフェニルアミンの生成速度は0.026mol/hであった。
 実施例21
 触媒Iに代えて、触媒IIを10.51g使用した以外は、実施例18と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度200℃では、4-ニトロジフェニルアミンの生成速度は0.0017mmol/hであり、反応温度220℃では、4-ニトロジフェニルアミンの生成速度は0.0097mmol/hであり、反応温度250℃では、4-ニトロジフェニルアミンの生成速度は0.0094mmol/hであり、反応温度280℃では、4-ニトロジフェニルアミンは検出されなかった。
 比較例2
 触媒Iを充填しなかった以外は、実施例18と同様に反応を行った。サンプリングした反応混合物を分析した結果、反応温度200℃、220℃、250℃及び280℃のいずれの場合においても、4-ニトロジフェニルアミンは検出されなかった。
 本発明により、反応後に得られる反応混合物の後処理を簡略化して、4-ニトロジフェニルアミンを製造することができるため、工業的利用価値が高い。

Claims (13)

  1.  担体にアルカリ金属フッ化物が担持されてなる触媒の存在下、アニリンとニトロベンゼンとを反応させることを特徴とする、4-ニトロジフェニルアミンの製造方法。
  2.  前記アルカリ金属フッ化物が、フッ化カリウム、フッ化リチウム、フッ化ナトリウム及びフッ化セシウムからなる群から選ばれる少なくとも1種である、請求項1に記載の製造方法。
  3.  前記担体が、アルミナ、ジルコニア、シリカ、チタニア及び活性炭からなる群から選ばれる少なくとも1種である、請求項1または2に記載の製造方法。
  4.  アニリンとニトロベンゼンとのモル比が、アニリン:ニトロベンゼン=1:30~30:1である、請求項1乃至3のいずれか1項に記載の製造方法。
  5.  反応温度が100~500℃である、請求項1乃至4のいずれか1項に記載の製造方法。
  6.  固定床流通方式で固体触媒の存在下にアニリンとニトロベンゼンとを反応させることを特徴とする、4-ニトロジフェニルアミンの製造方法。
  7.  前記固体触媒が、担体にアルカリ金属フッ化物が担持されてなる担持アルカリ金属フッ化物及び複合酸化物からなる群から選ばれる少なくとも一種である、請求項6に記載の製造方法。
  8.  前記アルカリ金属フッ化物が、フッ化カリウム、フッ化リチウム、フッ化ナトリウム及びフッ化セシウムからなる群から選ばれる少なくとも1種である、請求項7に記載の方法。
  9.  前記担体が、アルミナ、ジルコニア、シリカ、チタニア及び活性炭からなる群から選ばれる少なくとも1種である、請求項7または8に記載の方法。
  10.  前記複合酸化物が、カルシウム及びジルコニウムを含有する複合酸化物である、請求項7乃至9のいずれか1項に記載の方法。
  11.  アニリンとニトロベンゼンとを含む混合ガスまたはアニリンを含むガスとニトロベンゼンを含む溶液との気液混合物を固体触媒と接触させることによる、請求項6乃至10のいずれか1項に記載の方法。
  12.  アニリンとニトロベンゼンとの含有割合が、アニリン:ニトロベンゼン(モル比)=1:30~30:1である、請求項5乃至11のいずれか1項に記載の方法。
  13.  反応温度が100~500℃である、請求項5乃至12のいずれか1項に記載の方法。
PCT/JP2011/061980 2010-05-26 2011-05-25 4-ニトロジフェニルアミンの製造方法 WO2011148976A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-120185 2010-05-26
JP2010-120192 2010-05-26
JP2010120184A JP2011246378A (ja) 2010-05-26 2010-05-26 4−ニトロジフェニルアミンの製造方法
JP2010120192 2010-05-26
JP2010-120184 2010-05-26
JP2010120185A JP2011246379A (ja) 2010-05-26 2010-05-26 4−ニトロジフェニルアミンの製造方法
JP2011020400A JP2012006909A (ja) 2010-05-26 2011-02-02 4−ニトロジフェニルアミンの製造方法
JP2011-020400 2011-02-02

Publications (1)

Publication Number Publication Date
WO2011148976A1 true WO2011148976A1 (ja) 2011-12-01

Family

ID=45003965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061980 WO2011148976A1 (ja) 2010-05-26 2011-05-25 4-ニトロジフェニルアミンの製造方法

Country Status (1)

Country Link
WO (1) WO2011148976A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108558675A (zh) * 2018-04-25 2018-09-21 南通理工学院 一种4-氨基二苯胺的合成方法
CN110624602A (zh) * 2018-06-25 2019-12-31 中国石油化工股份有限公司 一种固体碱催化剂制备方法及应用
CN110627660A (zh) * 2018-06-25 2019-12-31 中国石油化工股份有限公司 一种固体碱法rt培司制备方法
CN113509946A (zh) * 2020-04-10 2021-10-19 中石化南京化工研究院有限公司 一种负载型氧化铝固体碱催化剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310553A (ja) * 1998-03-13 1999-11-09 Bayer Ag 4―アミノジフェニルアミンの製造方法
JP2005515163A (ja) * 2001-07-23 2005-05-26 フレクシス アメリカ エル. ピー. 4−アミノジフェニルアミンの製造法
JP2007176811A (ja) * 2005-12-27 2007-07-12 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法
JP2007176812A (ja) * 2005-12-27 2007-07-12 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法
JP2007302588A (ja) * 2006-05-10 2007-11-22 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310553A (ja) * 1998-03-13 1999-11-09 Bayer Ag 4―アミノジフェニルアミンの製造方法
JP2005515163A (ja) * 2001-07-23 2005-05-26 フレクシス アメリカ エル. ピー. 4−アミノジフェニルアミンの製造法
JP2007176811A (ja) * 2005-12-27 2007-07-12 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法
JP2007176812A (ja) * 2005-12-27 2007-07-12 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法
JP2007302588A (ja) * 2006-05-10 2007-11-22 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAS, P. ET AL.: "Microwave-Assisted Copper Promoted N-Arylation of Amines with Aryl Boronic Acids/Salts on a KF-Alumina Surface", SYNTHETIC COMMUNICATIONS, vol. 34, no. 12, 2004, pages 2177 - 2184 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108558675A (zh) * 2018-04-25 2018-09-21 南通理工学院 一种4-氨基二苯胺的合成方法
CN110624602A (zh) * 2018-06-25 2019-12-31 中国石油化工股份有限公司 一种固体碱催化剂制备方法及应用
CN110627660A (zh) * 2018-06-25 2019-12-31 中国石油化工股份有限公司 一种固体碱法rt培司制备方法
CN113509946A (zh) * 2020-04-10 2021-10-19 中石化南京化工研究院有限公司 一种负载型氧化铝固体碱催化剂

Similar Documents

Publication Publication Date Title
JP5339923B2 (ja) 炭化水素の直接アミノ化方法
US8637668B2 (en) Process for preparing a cyclic tertiary methylamine
KR101871176B1 (ko) 기체상 산화에 의한 염소 제조를 위한 촉매 및 방법
CN103153940B (zh) 反式-1,4-双(氨基甲基)环己烷的制造方法
EP3828170A1 (en) Method for safely preparing pimavanserin and tartrate salt thereof using triphosgene
CN111960948B (zh) 一种四丁基溴化铵的合成工艺
WO2011148976A1 (ja) 4-ニトロジフェニルアミンの製造方法
CN101489978A (zh) 烃的直接胺化方法
JP6242878B2 (ja) モノ−n−アルキル−ピペラジンの製造方法
EP1645555B1 (en) A method for producing 4-aminodiphenylamine
CN105153058A (zh) 一种苯并三唑类化合物的合成方法
CN112125814A (zh) 一种制备一异丙醇胺的方法
CN1312109C (zh) 生产苯二甲胺的方法
KR101871170B1 (ko) 기체상 산화에 의한 염소 제조를 위한 촉매 및 방법
KR20100108394A (ko) 일단계 환원성 아민화 방법
JP4344057B2 (ja) N−エチル−ジイソプロピルアミンの製造方法
US20100098616A1 (en) Catalyst and process for preparing chlorine by gas phase oxidation
US20160311746A1 (en) Method of producing adipic acid or at least a resultant product thereof
JP4424479B2 (ja) キシリレンジアミンの製造方法
KR20090015981A (ko) 기체 상 산화에 의한 염소 제조 방법
JPH04504728A (ja) クロロフォルムの製造方法
WO2014002884A1 (ja) イソプロパノールの製造方法
CN111196761B (zh) 一种制备3-氨基丙醇的方法以及反应装置
JP4026350B2 (ja) 亜硝酸アルキルの製造方法
JP2011246379A (ja) 4−ニトロジフェニルアミンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786675

Country of ref document: EP

Kind code of ref document: A1