WO1989012317A1 - Procede et dispositif pour la cristallisation de couches minces de semi-conducteurs sur un materiau de substrat - Google Patents

Procede et dispositif pour la cristallisation de couches minces de semi-conducteurs sur un materiau de substrat Download PDF

Info

Publication number
WO1989012317A1
WO1989012317A1 PCT/DE1989/000342 DE8900342W WO8912317A1 WO 1989012317 A1 WO1989012317 A1 WO 1989012317A1 DE 8900342 W DE8900342 W DE 8900342W WO 8912317 A1 WO8912317 A1 WO 8912317A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate material
melt
layer
laser
crystallization
Prior art date
Application number
PCT/DE1989/000342
Other languages
German (de)
English (en)
Inventor
Hermann Sigmund
Christian Stumpff
Original Assignee
Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zur Förderung Der Angewand filed Critical Fraunhofer-Gesellschaft Zur Förderung Der Angewand
Publication of WO1989012317A1 publication Critical patent/WO1989012317A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the invention relates to a method for the crystallization of thin semiconductor layers on a substrate material, in particular for the targeted crystallization of silicon films without the need for germs by means of laser radiation in so-called SOI structures (SOI: silicon insulator / silicon on insulation). gate), as well as a device for carrying out this method.
  • SOI structures silicon insulator / silicon on insulation. gate
  • SOI structures are of technical importance for a number of electronic components, in particular in integrated circuits (hereinafter referred to as "IC").
  • IC integrated circuits
  • a cross section through a substrate material with an SOI structure is shown schematically in the attached FIG. 1.
  • an insulator layer I here for example a 0.5 ⁇ m thick SiO 2 layer, is on a silicon base layer (bulk Si), and a polycrystalline silicon layer, here for example also 0.5 ⁇ m thick, is on this insulator layer I.
  • Surface layer S is formed.
  • SOI-IC integrated circuits
  • three-dimensional ICs in particular can also be produced if IC substrates which are provided with a suitable insulator layer are used as substrates for the Si layer to be crystallized.
  • SOI technology The formation of three-dimensional IC structures using SOI technology is described in the articles by Y. Akasaka et al. "Trends In Three-Dimensional Integration” (Solid State Technology, February 1988, pp. 81 to 89) and "Three-Dimensional IC Trends (Proc. Of the I ⁇ E, vol. 74, No. 12, Dec. 86, p. 1703-1714).
  • the object of the present invention is to provide a process with which a targeted crystallization of thin semiconductor layers, in particular of single-crystalline silicon films on an SOI structure, can take place by producing a melt with a predetermined temperature
  • a growth nucleus is reproducibly selected in a semiconductor surface layer solely by means of the radiated energy, and a stable single-crystal layer growth is subsequently achieved.
  • a device is also to be specified with which this method can be carried out.
  • the surface layer of a semiconductor structure is then melted locally, a temperature profile being generated in the melt which has a "supercooled" area running symmetrically to the center, the lateral dimensions of which are of the same order of magnitude as the thickness of the melt .
  • An SOI structure is used in particular as the semiconductor substrate material, so that the melt is produced in the polycrystalline silicon surface layer, from which the crystallization of a single-crystalline silicon layer then takes place.
  • energy is preferably irradiated onto the substrate by means of a laser which is operated in a TEM n - or TEM "- * vibration mode.
  • TEM nn modes can also be used to generate the required temperature profile of a laser, which are superimposed so that an intensity profile comparable to the TEM - ⁇ mode results.
  • the intensity profiles of a laser beam in the EM n1 oscillation mode or when two TEM Q modes are superimposed are shown in FIG.
  • An essential feature of the intensity distribution that arises is that two intensity maxima occur symmetrically to a central intensity minimum.
  • the temperature profile in the melt that follows the intensity profile of the laser beam in a targeted manner, ie to specify the lateral dimensions of the “supercooled” area of the melt as a function of the distance a intensity minimum - intensity maximum.
  • the intensity distribution of the laser beam is selected such that the supercooled region of the melt which is formed symmetrically to the beam scanning direction is comparable in its lateral dimensions to the thickness of the melt. This results in an "automatic" seed selection with subsequent stable single-crystal layer growth. If the surface layer of the semiconductor substrate is made of silicon, the crystallized layer shows a (100) orientation, the layer growth taking place in a ⁇ 100> direction which is identical to the scanning or scanning direction.
  • the lateral extent of the area of critical subcooling in the melt should be three to five times the layer thickness.
  • the scanning speed of the intensity-modulated laser beam is preferably 10 to 500 mm / sec, the beam diameter (at 1 / e intensity) on the substrate surface
  • the crystallization can take place in a chamber filled with doping gas, so that the crystallized layer can be specifically doped during the growth process.
  • doping silicon preference is given to using phosphine (PH.) Or arsine (AsH to produce n-type layers, diborane (B_H g ) or boron trichloride (BC1_.) To produce p-type layers.
  • single-crystalline semiconductor layers on a substrate material can be crystallized in a targeted manner - also computer-controlled - in any direction and without doping, without an additional covering layer to stabilize the substrate provide molten surface.
  • This is particularly interesting for reasons of economy, if one takes into account that only a small part of the surface of an IC chip (about 15%) is covered with active components and must therefore be single-crystal.
  • FIG. 1 shows a schematic cross section through an SOI structure (S_ilicon-on-insulator);
  • FIG. 2 intensity profiles of a laser beam in TEM n - oscillation mode and when two TEM __ oscillation modes are superimposed;
  • FIG. 3 shows the schematic structure of a device with an Ar laser for selective crystallization according to the method according to the invention.
  • FIGS. 4a and 4b scanning electron microscope images of recrystallized polysilicon regions on an SOI structure, which were achieved with laser beams in the TEM vibration mode (a) or in the TEM vibration mode (b).
  • FIG. 1 The structure of a device for carrying out the method according to the invention is shown schematically in FIG. According to this arrangement, a prism 1, a laser tube 2 for generating the laser beam (here an Ar laser), an adjustable aperture diaphragm 3, a coupling-out mirror 4, an electro-optical modulation device with an ADP crystal 5 are arranged one behind the other in the beam path of a laser beam and a dielectric polarizer 6, a ⁇ / 4 plate 7, an objective 8 and the wafer 9 to be irradiated.
  • a prism 1 a laser tube 2 for generating the laser beam (here an Ar laser), an adjustable aperture diaphragm 3, a coupling-out mirror 4, an electro-optical modulation device with an ADP crystal 5 are arranged one behind the other in the beam path of a laser beam and a dielectric polarizer 6, a ⁇ / 4 plate 7, an objective 8 and the wafer 9 to be irradiated.
  • a prism 1 a laser tube 2 for
  • Vibration modes or the TEM nn vibration modes of the laser posed.
  • TEM oscillation modes are selected, they are superimposed in such a way that an intensity profile of the laser beam comparable to the TEM n mode results.
  • the ⁇ j4 plate 7 is arranged in the beam path in order to maintain a constant, i.e. to achieve non-oscillating absorption of the laser radiation in the melted or to be melted material layer.
  • the portion of the beam reflected from the surface of the wafer 9 is suppressed by the ⁇ / 4 plate 7, since this reflected, circularly polarized portion of the beam is linearly polarized again as it passes through the ⁇ / 4 plate 7, but the direction of polarization is perpendicular to the direction of polarization of the incident laser beam.
  • the reflected beam portion can therefore not pass the dielectric polarizer 6 and therefore does not get back into the laser resonator.
  • the desired beam diameter on the surface of the wafer 9 is set via the focal length of the lens 8.
  • the beam movement on the substrate 9 can take place, for example, by means of mechanically moved mirrors or electro-optical deflection elements or also by the mechanical adjustment of an x-y table on which the wafer 9 is arranged. These elements for deflecting the beam on the substrate surface are not shown in FIG. 3.
  • the control of the beam movement or the control of the x-y table and the modulation of the light intensity is carried out by a computer.
  • FIG. 4 shows a selectively crystallized Si layer after structural etching has taken place, as has been achieved by the method according to the invention with the device explained above with reference to FIG. 3.
  • the substrate surface was scanned from top to bottom with a laser beam using a TEM.
  • Profile in the structure according to FIG. 4b, scanned from bottom to top with a laser beam with a TEM Q1 profile.
  • the 1 / e diameter in the laser focus was 10 ⁇ m with a laser line of 2 watts and a light wavelength of 488 nm.
  • a 0.5 ⁇ m thick polycrystalline Si layer was crystallized, which by means of chemical layer deposition (CVD) on an amorphous SiO ? -Sub ⁇ trat had been produced.
  • CVD chemical layer deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

Dans un procédé pour la cristallisation de couches minces de semi-conducteurs sur un matériau de substrat, on crée dans la couche de surface du substrat une matière en fusion ayant une courbe de température qui présente une région ''sous-refroidie'' sensiblement symétrique par rapport à son centre et ayant des dimensions latérales du même ordre de grandeur que l'épaisseur de la matière en fusion. La matière en fusion dans la couche de surface du matériau de substrat est de préférence produite par irradiation avec un faisceau laser en mode oscillant TEM01 ou TEM01*. Ce procédé convient particulièrement à la cristallisation de régions de silicium monocristallines sur des substrats SOI (silicium sur isolant).
PCT/DE1989/000342 1988-05-31 1989-05-30 Procede et dispositif pour la cristallisation de couches minces de semi-conducteurs sur un materiau de substrat WO1989012317A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3818504A DE3818504A1 (de) 1988-05-31 1988-05-31 Verfahren und vorrichtung fuer die kristallisation duenner halbleiterschichten auf einem substratmaterial
DEP3818504.0 1988-05-31

Publications (1)

Publication Number Publication Date
WO1989012317A1 true WO1989012317A1 (fr) 1989-12-14

Family

ID=6355519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1989/000342 WO1989012317A1 (fr) 1988-05-31 1989-05-30 Procede et dispositif pour la cristallisation de couches minces de semi-conducteurs sur un materiau de substrat

Country Status (2)

Country Link
DE (2) DE3818504A1 (fr)
WO (1) WO1989012317A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871216A1 (fr) * 1997-04-11 1998-10-14 SHARP Corporation Procédé de fabrication de substrats SOI ayant un rendement élevé pour la récupération des dommages dus à une implantation ionique
EP1047119A3 (fr) * 1999-04-19 2001-10-10 Sony Corporation Procédé de crystallisation d'une couche semi-conductrice et appareil d'irradiation par laser
JP2006080511A (ja) * 2004-09-01 2006-03-23 Japan Steel Works Ltd:The レーザ放射によってアモルファス半導体を改質するための方法及び装置
WO2007031209A1 (fr) * 2005-09-12 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede de recristallisation de structures de couches par le processus de la zone fondue, dispositif destine a cet effet et utilisation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562389B2 (ja) * 1999-06-25 2004-09-08 三菱電機株式会社 レーザ熱処理装置
CN111519256B (zh) * 2020-04-15 2022-01-04 中国科学院上海硅酸盐研究所 一种利用脉冲激光触发形核的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2181000A1 (fr) * 1972-04-20 1973-11-30 Pierres Holding Sa

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821319A (ja) * 1981-07-30 1983-02-08 Fujitsu Ltd レ−ザアニ−ル方法
EP0109254A2 (fr) * 1982-11-13 1984-05-23 Yuk Wah Joseph Koo Laser à impulsion à mode unique
JPS61289617A (ja) * 1985-06-18 1986-12-19 Sony Corp 薄膜単結晶の製造装置
US4707217A (en) * 1986-05-28 1987-11-17 The United States Of America As Represented By The Secretary Of The Navy Single crystal thin films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2181000A1 (fr) * 1972-04-20 1973-11-30 Pierres Holding Sa

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Applied Optics, Band 19, Nr. 2, 15. Januar 1980, Optical Society of America, (New York, US), H. KUWAHARA: "Optical Isolator for Semiconductor Lasers"m, seiten 319-323 *
Applied Physics Letters, Band 40, Nr. 5, 1. Marz 1982, American Institute of Physics, S. KAWAMURA et al.: "Recrystallization of Si on Amorphous Substrates by Doughnutshaped Cw Ar Laser Beam", seiten 394-395 *
Elektronik, Band 35, Nr. 2, 24. Januar 1986, (Munchen, DE), H. STEINBERGER: "Dreidimensionale Bauweise Integrierter Schaltungen", seiten 63-66 *
Journal of the Electrochemical Society, Band 135, Nr. 4, April 1988, (Manchester, NH, US), S.-I. KATO et al.: "Phosphorus Doping into Silicon using Arf Excimer Laser", seiten 1030-1032 *
Proceedings of the IEEE, Band 74, Nr. 12, Dezember 1986, IEEE, Y. AKASAKA: "Three-Dimensional IC Trends", seiten 1703-1714 *
Silicon-on-Insulator: Its Technology and Applications, Ausgegeben von S. FURUKAWA, 1985, KTK Scientific Publishers, (Tokio, JP), S. KAWAMURA et al.: "Recrystallization of Silicon on Insulator with a Heat-Sink Structure", seiten 67-84 *
Solid State Technology, Februar 1988, Y. AKASAKA et al.: "Trends in Threedimensional Integration", seiten 81-88 in der anmeldung erwahnt *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871216A1 (fr) * 1997-04-11 1998-10-14 SHARP Corporation Procédé de fabrication de substrats SOI ayant un rendement élevé pour la récupération des dommages dus à une implantation ionique
US6110845A (en) * 1997-04-11 2000-08-29 Sharp Kabushiki Kaisha Process for fabricating SOI substrate with high-efficiency recovery from damage due to Ion implantation
EP1047119A3 (fr) * 1999-04-19 2001-10-10 Sony Corporation Procédé de crystallisation d'une couche semi-conductrice et appareil d'irradiation par laser
JP2006080511A (ja) * 2004-09-01 2006-03-23 Japan Steel Works Ltd:The レーザ放射によってアモルファス半導体を改質するための方法及び装置
WO2007031209A1 (fr) * 2005-09-12 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede de recristallisation de structures de couches par le processus de la zone fondue, dispositif destine a cet effet et utilisation
US7713848B2 (en) 2005-09-12 2010-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for re-crystallization of layer structures by means of zone melting, a device for this purpose and use thereof

Also Published As

Publication number Publication date
DE3990622A1 (en) 1992-01-30
DE3818504C2 (fr) 1993-03-25
DE3990622D2 (en) 1992-01-30
DE3818504A1 (de) 1991-01-03

Similar Documents

Publication Publication Date Title
EP1738402B1 (fr) Dopage laser d'elements solides au moyen d'un faisceau laser a focalisation lineaire et fabrication d'emetteurs de cellules solaires basee sur ce procede
US4330363A (en) Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas
DE1933690C3 (de) Verfahren zum Herstellen eines mindestens bereichsweise einkristallinen Films auf einem Substrat
DE60027820T2 (de) Vorrichtung mit einem optischen System zur Laserwärmebehandlung und ein diese Vorrichtung verwendendes Verfahren zur Herstellung von Halbleiteranordnungen
DE69839042T2 (de) Vergrabene schicht mit hoher leitfähigkeit in einem optischen wellenleiter
US4323417A (en) Method of producing monocrystal on insulator
DE3779672T2 (de) Verfahren zum herstellen einer monokristallinen halbleiterschicht.
JP2973492B2 (ja) 半導体薄膜の結晶化方法
EP0078681B1 (fr) Méthode pour la formation de zones semi-conductrices monocristallines
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
DE4021541C1 (fr)
DE68922293T2 (de) Verfahren zur herstellung von halbleiteranordnungen.
WO1989012317A1 (fr) Procede et dispositif pour la cristallisation de couches minces de semi-conducteurs sur un materiau de substrat
KR100250182B1 (ko) 반도체결정의 형성방법 및 반도체소자
DE3824127C2 (de) Vorrichtung zur Wärmebehandlung der Oberfläche eines Substrates, insbesondere zum Kristallisieren von polykristallinem oder amorphem Substratmaterial
KR100269349B1 (ko) 펄스레이저를이용한실리콘박막재결정방법
DE3856186T2 (de) Verfahren zur Herstellung von Kristallen auf einem Lichtdurchlässigen Substrat
DE19651003C2 (de) Verfahren zur Herstellung eines flächigen Einkristalls auf einem Fremdsubstrat
DE102005045096A1 (de) Dünnschichtsolarzelle und Verfahren zur Herstellung eines Halbleiterbauelements
JPS5927521A (ja) 半導体基体の製法
JPS5893229A (ja) 半導体グラフオエピタキシ−素子の製造方法
JPH02177534A (ja) 半導体装置の製造方法
JPS62208620A (ja) 半導体装置の製造方法
WO1989010632A1 (fr) Procede de fabrication de cellules solaires et four a miroir pour appliquer ledit procede
Fennell et al. Defect reduction by tilted zone crystallization of patterned silicon films on fused silica

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE

REF Corresponds to

Ref document number: 3990622

Country of ref document: DE

Date of ref document: 19920130

WWE Wipo information: entry into national phase

Ref document number: 3990622

Country of ref document: DE