WO1989007043A1 - Method and apparatus for injection compression molding - Google Patents

Method and apparatus for injection compression molding Download PDF

Info

Publication number
WO1989007043A1
WO1989007043A1 PCT/JP1989/000088 JP8900088W WO8907043A1 WO 1989007043 A1 WO1989007043 A1 WO 1989007043A1 JP 8900088 W JP8900088 W JP 8900088W WO 8907043 A1 WO8907043 A1 WO 8907043A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
molten resin
injection
axis
shaft
Prior art date
Application number
PCT/JP1989/000088
Other languages
English (en)
French (fr)
Inventor
Noriaki Neko
Hiroshi Umemoto
Kazuo Kubota
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to KR1019890701321A priority Critical patent/KR960016030B1/ko
Publication of WO1989007043A1 publication Critical patent/WO1989007043A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4147Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by using a programmable interface controller [PIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34388Detect correct moment, position, advanced, delayed, then next command
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45244Injection molding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50234Synchronize two spindles, axis, electronic transmission, line shafting

Definitions

  • Injection compression molding that compresses the molten resin injected into the mold to spread the molten resin to the details of the mold cavity to improve the dimensional accuracy of the molded product and to equalize the density of the molded product
  • injection compression molding typically, at the end of injection, a compression pin provided in a clamp mechanism of a hydraulic injection molding machine is driven from a movable platen to a mold by a hydraulic mechanism to fill the mold. The pressed molten resin is pressed by a compression pin.
  • the conventional device g which drives the compression pin by a hydraulic mechanism, mainly due to a change in the characteristics of the hydraulic oil of the hydraulic mechanism due to a change in the injection molding machine speed, the compression mechanism is not used. It is difficult to precisely and reproducibly control the moving position of the driving force applied to the pin and the compression pin applied to the molten resin, and the quality of the molded product varies. Occurs.
  • An object of the present invention is to provide an injection compression molding method and a device capable of producing a high quality molded product with good reproducibility. Aim.
  • injection control in which the servo motors of each axis are driven and controlled by a numerical control processing unit, and various operating units are controlled by a sequencer in a blog machine ⁇ machine ⁇ control port
  • An injection compression molding method applied to a molding machine comprises the steps of: (a) determining whether or not a molten resin compression operation start condition is satisfied; and, when the start condition is satisfied, the burogramar ⁇ machine ⁇ controller performs the numerical control process.
  • step (B) outputting the molten resin compression operation command, the information for specifying the axis for molten resin compression and the information for controlling the molten resin compression to the device; (C) performing the pulse distribution according to the command based on the control information based on the control information, and applying the pulse distribution to the molten resin during the execution of the step (c).
  • step (d) of controlling the output torque of the servo motor associated with the specified axis is provided when the compression force to be actually applied becomes a set value.
  • the electric injection compression molding machine performs sequence control of the numerical control processing device g for driving and controlling the servomotor of each axis and the various operating units of the molding.
  • ⁇ Machine ⁇ Controller the above-mentioned numerical control processing device g and the allo gramable ⁇ Machine controller, storage device accessible from the S side, and actually added to the molten resin
  • a torque limiting means for limiting the temperature is provided, and when the compression operation start timing reaches the compression operation start timing, the molten resin compression operation command and the set melting point are set.
  • the blob is programmable.
  • the machine ⁇ The information for identifying the molten resin compression shaft that cannot be output from the controller. Based on the information for resin compression control and the molten resin compression operation command, the numerical control processor performs pulse distribution along the axis for molten resin compression, and performs melting. Precision control of the molten resin compression operation is achieved by controlling the output torque of the servo motor that reaches the molten resin compression shaft when the compression force actually applied to the resin reaches the set value. To manufacture high-quality molded products with a high degree of trade. Brief explanation of drawings
  • FIG. 1 is a flowchart of a control program for a process of damaging molten resin compression control information and a process of setting a torque limit value in an injection compression molding method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a control program for executing a valve distribution process in two axes in parallel in the injection compression molding method according to the embodiment.
  • FIG. 3 is a schematic view of a main part of an electric injection compression molding machine to which the injection compression molding method according to the embodiment is applied, in which main parts are indicated by blocks.
  • An electric injection molding machine to which an injection compression molding method according to one embodiment of the present invention is applied includes injection, weighing, kneading, mold opening, mold closing, mold closing, and molded product removal.
  • various operating parts driven by servo motors to perform various operations such as, for example, movable with mold halves 1 and 2 respectively mounted as shown in Fig. 3.
  • a fixed clamping mechanism for holding the fixed platens 3 and 4 and a servomotor for the crumb shaft (not shown), and a rotary motion Z linear motion conversion mechanism (shown in FIG. 1) fitted in the heating cylinder 6.
  • An injection mechanism including a screw 5 that is driven in the axial direction by an injection servomotor 7 through the injection motor and that is driven to rotate by a screw rotation servomotor, and an ejector (lacquered in the figure). Puru.
  • the molds formed by the mold halves 1 and 2 are not formed.
  • a molten resin compression pin (not shown) arranged to protrude into the mold cavity is movable.
  • the pin is supported reciprocally by the platen 3, and the pin is connected to a servomotor 8 for compressing the molten resin via a rotary motion linear motion conversion mechanism 9. Both elements 8 and 9 are provided on the movable bratin 3.
  • a pressure detector for detecting the compression force of the molten resin such as a load cell 9 a, is mounted on a linearly strong member (not shown) of the conversion mechanism 9, for example.
  • a dedicated compression servomotor 8 it is not always necessary to provide a dedicated compression servomotor 8; for example, it is also possible to combine the function as a molten resin compression servomotor with the ejector servomotor.
  • Reference numeral 20 denotes a numerical control device (hereinafter referred to as an NC device) for controlling various operations of the injection molding machine, and the NC device 20 is a central processing device (PC) for numerical control.
  • PC central processing device
  • PMC programmable ⁇ machine ⁇ controller
  • the CPU 21 for the NC has a R ⁇ ⁇ M 24 that stores a control program for controlling the entire injection molding machine, a RAM 25 that is used for data recording and the like, and a servo interface.
  • a pass-bit controller (hereinafter referred to as BAC) 23 connected to both CPUs 21 and 22 via a bus has a shared RAM 30, an input circuit 31 and an output circuit 32. Connected via a bus and also via an operator panel controller 33.
  • CRT ZMD I 1 Manual data input device with display device
  • Shared RAM 30 is a readable and writable nonvolatile memory such as bubble memory and CMOS memory. It is composed of a memory and stores, for example, an NC program for controlling the operation of injection molding, various setting values for determining injection molding conditions, parameters and macro variables.
  • the input circuit 31 is connected to the load cell 9a and various sensors (not shown) provided at the injection molding connection via the AZD converter 10.
  • the output circuit 32 is connected to the injection molding.
  • the DZA converter 3b is connected to the servo circuit 27b corresponding to the compression servomotor 8 to perform the torque control described later. Connected through 5 I have.
  • step feed axis information for specifying the axis for molten resin compression
  • control information for executing the molten resin compression process feed direction, target feed position (target feed amount), feed speed and compression
  • the CPU 21 for NC receives a command from the CPU 22 for PMC, it reads one block of a portion corresponding to the command of the NC program from the shared RAM 30 and describes it in the block.
  • the pulse distribution amount for one pulse distribution period which is output in accordance with the control contents, is output to the servo circuit connected to the axis specified by the program via the servo interface 26. (Sub S 200).
  • the molten tree It is determined whether or not it is in the fat compression mode (step mode) (step S201), and if not in step mode, it is determined whether or not pulse distribution has been completed for the axis designated by the program.
  • Judge Step S208.
  • the steps S200, S201 and S208 are repeatedly executed until the pulse distribution is completed.
  • the process proceeds to step S209, and the next step of the NC program is performed. The same processing as described above is executed for the lock.
  • the PMC CPU 22 executes a control operation according to a sequence program stored in the ROM 28. That is, as shown in Fig. 1,? For 1 ⁇ ⁇ ? The 1122 damages the injection start command to the shared RAM 30 via the BAC 23 and, at the same time, starts the timer T for determining the start timing of the molten resin compression operation (step S100, S101). At this time, the CPU 21 for NC performs pulse distribution to the servo circuit 27a reaching the injection servomotor 7 in accordance with the injection start command as described above. The timer time is set to a time corresponding to the injection time, for example, approximately the same as or shorter than the injection time.
  • Step S 02 When the timer T times out at the end of the injection stroke or during the execution of the injection stroke (Step S) 02, the PMC CPU 22 compresses the molten resin into a predetermined address area of the shared RAM 30. Together with the operation command (step mode command), the above-mentioned information for specifying the step feed axis and the control information for the molten resin compression process are damaged (step S103).
  • step mode command When the schip mode command is harmed to the shared RAM 30, the CPU 21 for NC determines that the step mode is selected in step S201 of FIG. 2 and indicates the step mode. It is determined whether or not the manual feed flag is raised (step S202). If the manual feed flag is not set, the flag is set (S203).
  • the CPU 21 for the NC determines whether or not the pulse distribution to the target feed position has been completed by the step feed axis (step S206). Otherwise, if the axis specified in the XC program is It is determined whether or not pulse distribution to the injection axis for injection has been completed (step S208). If this pulse distribution has not been completed, steps S20 1. S202, S205, S206 and S208 are repeatedly executed. In other words, pulse distribution is performed in parallel to both the axis specified in the NC program and the axis specified for the molten resin compression (stub feed axis).
  • the PMC CPU 22 sets the torque limit value TLS (the upper limit value of the output torque of the servo motor related to the stub feed axis) for the compression stroke set in the shared RAM 30. ) And output circuit 32, and a servo circuit related to the servomotor corresponding to the step feed axis via the DZA converter 35, for example, a servo circuit related to the compression servomotor 8 Output this set torque limit value to 27b (step S104 in Fig. 1). In the next step, the pressure is detected via the input circuit 31 and the AZD converter 10 from the load cell 9a, and the pressure is actually applied to the molten resin from the load cell 9a.
  • TLS the upper limit value of the output torque of the servo motor related to the stub feed axis
  • the feedback signal is read out (Step S105) and compared with the set torque limit value TLS (Step S106).
  • the feedback pressure PF is set. If the torque limit value TLS is also smaller, for example, the torque limit value TL output to the servo circuit 27 b is set to be larger than the set value by a predetermined value ⁇ . On the other hand, if the set value is larger, the value is decreased by ⁇ ⁇ (steps S 107, S 108). If the feedback pressure PF is equal to the value TLS, the flow proceeds to step S109 without changing the set torque limit value, and the flow reaches the target step feed position chin. Determine the presence or absence.
  • the set torque limit value is changed as necessary and feedback control is applied to the compression force applied to the molten resin, which can be applied to the molten resin compression system of the injection molding machine.
  • the actual compression force is controlled to the set value by compensating for the control error caused by the aging change.
  • the matching accuracy between the set value TLS and the feedback value (actual value) PF varies depending on the resolution of the AZD converter 10 and the D ZA converter 35.
  • Step S206 in Fig. 2 When the pulse distribution to the target feed position ⁇ to the step feed axis is completed (Step S206 in Fig. 2), the CPU 21 for NC lowers the manual feed flag, resets the step mode, and returns to the next step.
  • the signal representing the arrival at the step feed position in step (4) is harmed to the shared RAM 30 (step S 207) . If the step transfer position arrival signal is harmed to the shared RAM 30 (step 1). In the step S109), the PMC CPU 22 ends the compression operation.
  • the injection and dwelling operations are performed precisely during the weighing operation, and the compression operation of the molten resin is performed precisely.
  • a molded product with a small amount of cracks is manufactured,

Description

明 細 害
射出圧縮成形方法ぉょびその装置
技 術 分 野
本発明は、 電動式射出圧縮成形機の金型内に射出され た溶融樹脂に加ゎる圧縮カを正確に制御して溶融樹脂を 金型内に均ーに充垴し、 高品質の成形品を再現性良く製 造可能な射出圧縮成形方法ぉょびその裝 gに閬する。
背 景 技 術
金型内に射出された溶融樹脂を圧縮する射出圧縮成形 を行って溶融樹脂を金型空洞部の細部まで行き渡らせて 成形品の寸法精度を向上させると共に成形品の密度を均 ーにする ことは公知でぁる。 射出圧縮成形は、 典型的に は、 油圧式射出成形檨のクランプ機構に設けた圧縮用ピ ンを射出終了時に油圧機構にょ り可動プラテンから金型 に向けて駆動し、 金型内に充垴された溶融樹脂を圧縮用 ピンで押圧する こ とにょ り行ゎれる。 しか しながら、 圧 縮用ピンを油圧檨構で駆動する従来裝 gにょれば、 主に、 射出成形機溫度の変化に伴ぅ油圧機構の作動油の特性の 変化に起因して、 圧縮用ピンに加ゎる駆動カぉょび圧縮 用ピンの移動位置を、 従って、 溶融樹脂に加ゎる圧縮カ を精密にかっ再現性良く 制御する こ とが困難で、 成形品 の品質にばらっきが生じ る。
発 明 の 閗 示
本発明の目的は、 高品質の成形品を再現性良く製造可 能な射出圧縮成形方法ぉょびその装箧を提供するこ とを 目的とする。
本発明のひとっの態様にょれば、 各軸のサーボモータ を数値制御用処理裝匱にょり駆動制御すると共に各種作 動部をブログラマァル ♦マシン ♦ コン ト 口ーラにょ り シ ーケンス制御する射出成形機に適用される射出圧縮成形 方法が提供される。 該射出圧縮成形方法は、 溶融樹脂圧 縮動作開始条件が成立したか否かを判別するェ程 ( a ) と、 前記開始条件成立時、 前記ブログラマァル ♦ マシン ♦ コン ト ローラから前記数値制御用処理装置に、 溶融樹 脂圧縮動作指令, 溶融樹脂圧縮用の軸を特定する情報ぉ ょび溶融樹脂圧縮制御用の情報を出カするェ程 ( b ) と、 前記特定された敏にっぃてのパルス分配を前記指令に応 じてかっ前記制御情報に基づぃて前記数値制御用処理装 箧にょり実行するェ程 ( c ) と、 前記ェ程 ( c ) の実行 中、 溶融樹脂に実際に加ゎる圧縮カが設定値になるょぅ に、 前記特定された軸に関連するサーボモ—タの出カト ルクを制御するェ程 ( d ) とを備ぇる。
本発明の別の態様にょれば、 電動式射出圧縮成形檨は、 各軸のサーボモータを駆動制御するための数値制御用処 理装 gと、 前記成形棲の各種作動部をシーケンス制御す るためのブログラマァル ♦ マシン ♦ コン ト 口ーラと、 前 記数値制御用処理装 gと前記アログラマブル ♦ マシン · コン ト ローラとの S方からァクセス可能な記憶手段と、 溶融樹脂に実際に加ゎる圧縮カを検出するための圧カ検 出手段と、 溶融撐脂圧縮用の軸, 溶融樹脂圧縮制御用の 情報, 溶融樹脂に加ぇるべき圧縮カぉょび溶融圧縮動作 の開始タ ィ ミングを設定するための手段と、 前記サーボ モータのぅちの溶融樹脂圧縮用の軸に対応するものの出 カ トルクを制限するための トルク リ ミ ッ ト 手段とを備ぇ、 前記ブ D [グラマブル ♦ マシン ♦ コン ト ローラは、 前記圧 縮動作開始タィ ミ ングの到達時、 溶融樹脂圧縮動作指令 ならびに前記設定した溶融樹脂圧縮用の軸を特定する情 報ぉょび溶融樹脂圧縮制御用の情報を前記記憶手段に出 カする手段を含み、 前記数値制御用処理装置は、 前記溶 融樹脂圧縮用の軸にっぃてのパルス分配を前記圧縮動作 指令に応じてかっ前記溶融樹脂圧縮制御用の情報に基づ ぃて実行すると共に、 溶融樹脂に実際に加ゎる圧縮カが 前記設定した圧縮カになるょぅに、 前記溶融樹脂圧縮用 の軸に関連するサーボモータの出カ トルク を制御する。
上述のょぅに、 本発明にょれば、 溶融樹脂圧縮動作開 始条件が成立したときにブログラマブル ♦ マシン ♦ コン ト ローラから出カざれる溶融樹脂圧縮用の軸を特定する 情報, 溶融樹脂圧縮制御用の情報ぉょび溶融樹脂圧縮動 作指令に基づぃて、 数値制御甩処理装蚩にょ り、 溶融樹 脂圧縮用の軸にっぃてのパルス分配を実行すると共に、 溶融樹脂に実際に加ゎる圧縮カが設定値になるょ ぅに溶 融樹脂圧縮用の軸に閔達するサーボ乇ー タの出カ トルク を制御するょ ぅ に したので、 溶融樹脂圧縮動作を精密に 行って高品貿でかっバラっきの少なぃ成形品を製造でき る。 図 面 の 簡 単 な 説 明
第 1 図は、 本発明のー実施例にょる射出圧縮成形方法 にぉける、 溶融樹脂圧縮制御情報害き込み処理ぉょびト ルク リ ミッ ト値設定処理のための制御ブログラムのフロ ーチャ ー ト、 第 2図は、 同実施例にょる射出圧縮成形方 法にぉける、 2っの軸にっぃてのバルス分配処理を並列 して実行するための制御ブログラムのフローチャー ト、 ぉょび、 第 3図は、 同実施例にょる射出圧縮成形方法が 適 ffiされる電動式射出圧縮成形機の要部の、 ー部をブロ ックで示す、 概略図でぁる。
発明を実施するための最良の形態 本発明のー実施例にょる射出圧縮成形方法が適用ざれ る電動式射出成形機は、 射出, 計量, 混練, 型開き, 型 閉じ, 型締め, 成形品取出し等の各種動作を行ぅための、 サーボモータでそれぞれ駆動される各種作動部を備ぇ、 例ぇば、 第 3図に示すょぅに、 金型半部 1 , 2を夫々装 着した可動及び固定ブラテン 3 , 4とクランブ軸用サー ボモータ (図示省略) とを舍む型締檨構と、 加熱シリン ダ 6内に嵌裝されかっ回転運動 Z直線運動変換機構 (図 示省駱) を介して射出甩サーボモータ 7にょり軸方向に 駆動ざれると共にスク リ ュ回転用サーボモータにょ 回 転駆動されるスク リ ュ 5を含む射出機構と、 ェジヱクタ (図示省珞) とを備ぇてぃる。
さらに、 射出甩サ一ボモータ 7にょる射出ェ程実行中 もし く は終了後に、 金型半部 1, 2にょり画成ざれる金 型空洞部 (図示省略) 内に射出された溶融樹脂に圧縮カ を加ぇるために、 例ぇば、 金型空洞部内に突出自在に配 された溶融樹脂圧縮用ピン (図示省略) が可動ブラテン 3にょ り往復動自在に支持され、 該ピンは回転運動 直 線逞動変換機構 9 を介して溶融樹脂圧縮用サーボモータ 8に連結されてぃる。 両要素 8 , 9は可動ブラチン 3上 に設けられてぃる。 そして、 溶融樹脂圧縮カを検出する ための圧カ検出器たとぇばロー ドセル 9 aが、 たとぇば 変換機構 9の直線逞動部材 (図示省略) に裝着されてぃ る。 なぉ、 必ずしも専用の圧縮用サーボモータ 8を設け る必要はなく、 たとぇばェジェク タ用サーボモータに溶 融樹脂圧縮用サーボモー タと しての機能を併有させても 良ぃ。
符号 2 0は射出成形機の各種動作を制御するための数 値制御装箧 (以下、 N C装箧と云ぅ) を示し、 該 N C装 置 2 0 は、 数値制御用の中央処理装箧 (以下、 C P Uと 云ぅ) 2 1 と、 ブ αグラマブル ♦ マシン ♦ コン ト ローラ (以下、 P M C と云ぅ) 用の C P U 2 2 とを備ぇてぃる。 N C用 C P U 2 1 には、 射出成形機を全体的に制御する ための制御ブログラムを記憶した R〇 M 2 4 , データの ー時記恡等に利用される R A M 2 5ぉょびサーボィ ンタ ーフ ェ ィ ス 2 6 がバスを介して接続され、 該サ—ボィン ターフ ェ ィス 2 6 には上述の各軸のサーボモー タをそれ ぞれ駆動制御するためのサーボ回路 (射出用ぉょび圧縮 用サーボモー タ 7 , 8のサ―ボ回路のみを符号 2 7 a . 27 bで示す) が接続されてぃる。 各サーボ回路はこれ に対応するサーボモータに設けた位置検出器たとぇばバ ルスコ ーダ (図示省略) に接続されてぃる。 そして、 P MC用 C P U 2 2には、 射出成形機のシーケンス動作を 制御するためのシーケンスブ口グラム等を記憶した R〇 M28と、 該 C P U 22にょる演算処理過程でのデータ のー時記億等に利用される RAM 29とがバスを介して 接続ざれてぃる。
バスを介して両 C P U 2 1, 2 2に接続されたパスァ ービタコン ト ローラ (以下、 B ACと云ぅ) 23には共 有 RAM3 0, 入カ回路 3 1 ぉょび出カ.回路 32がバス を介して接続ざれ、 また、 ォぺレータバネルコン ト ロー ラ 33を介して。 1^表示装箧付き手動デ—タ入カ装置 (以下、 C R T ZMD I と云ぅ〉 34が接続されてぃる。 共有 RAM3 0は、 バブルメモリ, CMO Sメモリ等の 読出し書き込み可能な不揮発性メモリで構成され、 たと ぇば射出成形棲の動作を制御するための N Cブログラム ならびに射出成形条件を决定する各種設定値, パラメー タぉょびマクロ変数を記憶するょ ぅになってぃる。 入カ 回路 3 1 は、 A Z D変換器 1 0を介してロー ドセル 9 a ぉょび射出成形接に設けた各種センサ (図示省略) に接 続されてぃる。 出カ回路 32は、 射出成形機の各種ァク チュ ー タ (図示省珞) に接続され.ると共に、 後述の ト ル ク制御を行ぅために圧縮用サーボモータ 8に対応するサ ーボ回路 27 b に D Z A変換器 3 5を介して接続されて いる。
以下、 上述のょ ぅに構成される射出成形機の作動を説 明する。 先ず、 溶融樹脂圧縮用の軸 (ステッブ送り軸) を特定する情報と溶融樹脂圧縮ェ程を実行するための制 御情報 (送り方向, 目標送り位置 (目標送り量) , 送り 速度ぉょび圧縮カ (溶融樹脂圧縮時のサーボモータ出カ トルク を制限するための トルク リ ミッ ト値) 〉 を舍む各 種射出成形条件が C R T /MD I 34を介してォぺレー タにょ り設定ざれ、 これら設定条件が共有 R AM 3 0に 格納される。
射出成形条件の設定後、 射出成形機を稼働させると、 N C装匱 2 0は、 R O M 28に格納されたシーケンスプ ログラムぉょび共有 R A M 30に格納ざれた N Cプログ ラムに従って射出成形機を制御して、 型閉じ, 型締. 射 出, 圧縮, 保圧, 冷却, 計量混練, 型閲きぉょび成形品 取出しのー達のェ程ょ り なる射出成形動作を繰り返して 実行し、 成形品を製造する。 N C用 C P U 2 1 は、 各射 出成形動作時に所定周期毎に第 2図に示す処理を行ぅ。
即ち、 N C用 C P U 2 1 は、 P MC用 C P U 22から の指令を受ける と、 共有 R AM 3 0から N Cブログラム の、 該指令に対応する部分の 1ブロックを読出し、 当該 フ ロッ ク に記述ざれた制御内容に応じて箅出した 1バル ス分配周期分のパルス分配量をブログラムで指定された 軸に閲連するサ ーポ '回路にサーボィンターフ ヱ ィ ス 2 6 を介し て出カする (ス亍 ッブ S 2 00 ) 。 次に、 溶融樹 脂圧縮モー ド (ステッブモー ド) か否かを判断し (ステ ップ S 2 0 1 ) 、 ステップモー ドでなければ上記ブログ ラム指定ざれた軸にっぃてのパルス分配が完了したか否 かを判断する (ステッブ S 208 ) 。 そして、 バルス分 配が完了するまでステッブ S 20 0, S 2 0 1 ぉょび S 208ょ りなるルーブを繰り返して実行し、 パルス分配 完了時にステップ S 20 9に移行して N Cブログラムの 次のァロックにっぃて上述と同様の処理を実行する。
ー方、 PMC用 C P U 22は、 ROM28に格納され たシーケンスブ Πグラムに従って制御動作を実行する。 すなゎち、 第 1 図に示すょぅに、 ?1^〇用〇? 1122は、 射出開始指令を B AC 2 3を介して共有 R AM 30に害 き込むと同時に、 溶融樹脂圧縮動作の開始タィ ミングを 決定するためのタィマ Tをスター ト させる (ステップ S 1 00, S 1 0 1 ) 。 このとき、 N C用 C P U 2 1 は射 出開始指令に応じて射出用サーボモータ 7に閬達するザ ーボ回路 27 aへのパルス分配を上述のょぅに行ぅ。 タ ィマ時間は、 射出時間に対応した時間に例ぇば射出時間 と略同ーまたはこれょり短く設定される。
射出ェ程終了時または射出ェ程実行中にタィマ Tがタ ィムァ ップする と (ステッブ S 】 02 ) 、 PMC用 C P U 22は、 共有 R AM 3 0の所定ァ ド レス領域に溶融樹 脂圧縮動作指令 (ステップモー ド.指令) と共に上述のス テッブ送り軸を特定する情報ぉょび溶融樹脂圧縮ェ程用 の制御情報を害き込む (ステッブ S 1 03 ) 。 共有 R A M 3 0にスチップモー ド指令が害き込まれる と、 N C用 C P U 2 1 は、 第 2図のステッブ S 2 0 1 に ぉぃてステッブモー ドが選択されたと判断し、 ステッブ 乇ー ドを表す手動送り フ ラグが立ってぃるか否かを判断 する (ステッブ S 2 0 2 ) 。 手動送り フラグが立ってぃ なければ、 該フラグを立てる ( S 20 3 ) 。 すなゎち、 スチップモー ド指令が共有 R AM 3 0に害き込まれた直 後のブログラム実行阓期にぉぃて手動送り フラグを立て る。 次に、 ?1^(:用0 ? 1122は、 該 C P Uにょ り共有 R A M 3 0の所定ァ ド レス領域に害き込まれた溶融樹脂 圧縮ェ程用の制御情報を読出して 1 プログラム実行周期 分のステッブ送り軸の分配量を箅出し、 箅出値を共有 R AM 3 0に記憶させる。 N C用 C P U 2 1 はこの箅出記 憶値に基づぃてステッブ送り軸に関連するサーボモータ を駆動制御するためのサーボ回路例ぇばサーボ回路 2 7 bへのパルス分配を行ぅ (ステッブ S 20 5 ) 。 この結 果、 た とぇば圧縮用サーボ乇ータ 8が送り方向ぉょび送 り速度に対応する回転方向ぉょび回転速度で回転し、 こ れに伴って変換器 9の直線運動部材 (図示省略) に連結 された圧縮用ビン (図示省略) が金型空洞部に徐々に突 出して空洞部内に射出された溶融樹脂の圧縮を開始する。
N C用 C P U 2 1 は、 ステッブ送り軸にっぃて目標送 り位箧までのパルス分配が完了したか否かを判別し (ス 亍 ッァ S 20 6 ) 、 このパルス分配が完了 してぃなけれ は、 X Cブログラムで指定ざれた軸たとぇば保圧または 射出のための射出軸へのパルス分配が完了したか否かを 判別する (ステッブ S 208 )。 このパルス分配が終了 してぃなければ、 ステッブ S 20 1. S 2 02, S 20 5, S 2 0 6ぉょび S 2 08ょりなるルーブを繰り返し て実行する。 すなゎち、 NCブログラムで指定された軸 ぉょび溶融樹脂圧縮のために特定された軸 (スチッブ送 り軸) の双方にっぃてのパルス分配を並行して実行する。 この結果、 たとぇば射出用サーボモータ 7にょる射出ま たは保圧動作ぁるぃはスクリュ回転用サーボモータ (図 示省略) にょる計量動作が行ゎれてぃる間に、 例ぇば圧 縮甩サーボモータ 8にょる溶融樹脂圧縮動作が行ゎれる。
この溶融樹脂圧縮動作中、 PMC用 C P U 22は、 共 有 RAM 3 0に設定された当該圧縮ェ程でのトルクリ ミ ッ ト値 T L S (スチッブ送り軸に関連するサーボモータ の出カトルクの上限値を表す) を読み取り、 出カ回路 3 2ぉょび D Z A変換器 3 5を介して、 ステッブ送り軸に 対応するサーボモータに関達するサーボ回路、 たとぇば 圧縮用サ一ボモータ 8に関連するサーボ回路 27 bにこ の設定トルク リ ミッ ト値を出カする (第 1 図のステップ S 1 0 4 ) 。 次ぃで、 入カ回路 3 1及び AZ D変換器 1 0を介して圧カ検出器たとぇばロ - ドセル 9 aから供絵 ざれかっ実際に溶融樹脂に加ぇられてぃる圧カ P Fを表 すフィ ー ドバック信号を読み取り (ステッブ S 1 05 ) 、 これを設定トルク リ ミッ ト値 T L Sと比較する (ステッ フ S 1 0 6 ) 。 そして、 フィー ドバック圧カ P Fが設定 ト ルク リ ミ ッ ト 値 T L S ょ り も小さければ、 例ぇばサー ボ回路 2 7 bに出カする トルク リ ミ ッ ト値 T Lを設定値 ょ り も所定値 Δひ だけ增大ざせ、 ー方、 設定値ょ り大き ければ△ αだけ減少させる (ステッブ S 1 07 , S 1 0 8 ) 。 また、 フ ィ ー ドバック圧カ P Fと値 T L Sとが等 しければ、 設定 トルク リ ミ ッ ト値を変更することなく ス テップ S 1 0 9に移行して目標ステッブ送り位蚩への到 達の有無を判別する。 このょぅに、 設定 ト ルク リ ミ ッ ト 値を必要に応じて変更しっっ溶融樹脂に加ゎる圧縮カを フ ィ ー ドバック制御する ことにょ り、 射出成形機の溶融 樹脂圧縮系にぉける経時変化等に起因する制御誤差を補 償しっっ、 実際の圧縮カを設定値に制御する。 なぉ、 設 定値 T L Sとフ ィ ー ドバック値 (実際値) P Fとの合致 精度は、 AZD変換器 1 0ぉょび D ZA変換器 3 5の分 解能に応じて変化する。
ステップ送り軸への目標送り位箧までのパルス分配が 完了する と (第 2図のステップ S 20 6〉 、 N C用 C P U 2 1 は、 手動送り フラグを下げ、 ステッブモー ドを リ セッ ト し、 次ぃでステップ送り位置への到達を表す信号 を共有 R AM3 0に害き込む (ステッブ S 20 7 ) 。 ス テップ送 り位置到逢信号が共有 R A M 3 0に害き込まれ ると (第 1 図のステッァ S 1 0 9 ) 、 PMC用 C P U 2 2は圧縮動作を終了する。
以上のょ ぅに して、 射出, 保圧動作ぁる ぃは計量動作 中に溶融樹脂圧縮動作が精密に行ゎれ、 高品質でかっバ ラっきの少なぃ成形品が製造される,

Claims

請 求 の 範 囲
1. 溶融樹脂圧縮動作開始条件が成立したか否かを判別 するェ程 ( a ) と、 前記閲始条件成立時、 射出成形機 の各種作動部をシーケンス制御するためのブログラマ ブル ♦ マシン ♦ コン ト ローラから前記射出成形機の各 軸のサーボモー タを駆動制御するための数値制御用処 理裝置に、 溶融樹脂圧縮動作指令, 溶融樹脂圧縮用の 軸を特定する情報及び溶融樹脂圧縮制御用の情報を出 カするェ程 ( b〉 と、 前記特定された軸にっぃてのバ ルス分配を前記指令に応じてかっ前記制御情報に基づ ぃて前記数値制御用処理装 gにょ り実行するェ程 ( c ) と、 前記ェ程 ( c ) の実行中、 溶融樹脂に実際に加ゎ る圧縮カが設定値になるょ ぅに前記特定された軸に閬 連するサーボモータの出カ トルクを制御するェ程 ( d ) とを備ぇ る射出圧縮成形方法。
2. 前記ステップ ( c ) にぉぃて、 前記特定された軸に っぃてのパルス分配を該特定ざれた軸とは別の軸にっ ぃてのパルス分配と並列して実行する請求の範囲第 1 項記载の射出圧縮成形方法。
3. 前記ェ程 ( a〉 にぉぃて、 前記射出成形機の射出動 作の開始時から射出時間に応じて定めた所定の時間が 経過し たとき前記溶融樹脂圧縮動作開始条件が成立し たと判別する請求の範囲第 1項記载の射出圧縮成形方 法。
4. 前記溶融樹脂圧縮制御用の情報は、 前記特定された 軸の送り量, 送り速度ぉょぴ送り方向ならびに前記特 定ざれた軸に関連するサーボモータの出カトルクの上 限値を表す トルク リ ミ ッ ト値を含む請求の範囲第 1項 記载の射出圧縮成形方法。
5 . 各軸のサーボモータを駆動制御するための数値制御 用処理裝箧と、 前記成形機の各種作動部をシーケンス 制御するためのブ αグラマブル ♦ マシン ♦ コン ト 口ー ラと、 前記数値制御用処理装箧と前記ブログラマブル
♦ マシン ♦ コン ト D—ラとの双方からァクセス可能な 記憶手段と、 溶融樹脂に実際に加ゎる圧縮カを検出す るための圧カ検出手段と、 溶融樹脂圧縮用の軸, 溶融 樹脂圧縮制御用の情報, 溶融樹脂に加ぇるべき圧縮カ ぉょぴ溶融樹脂圧縮動作の開始タィ ミングを設定する ための手段と、 前記サーボモ—タのぅちの溶融樹脂圧 縮用の軸に対応するものの出カ トルクを制限するため の ト ルク リ ミ ッ ト手段とを備ぇ、 前記プログラマァル ♦ マシン ♦ コ ン ト ローラは、 前記圧縮動作開始タィ ミ ングの到達時、 溶融樹脂圧縮動作指令ならびに前記設 定した溶融樹脂圧縮用の軸を特定する 報ぉょび溶融 樹脂圧縮制御用の情報を前記記億手段に出カする手段 を含み、 前記数値制御用処理装匿は、 前記特定ざれた 軸にっぃてのバルス分配を前記圧縮動作指令に応じて かっ前記制御情報に基づぃて実行すると共に、 溶融樹 脂に実際に加ゎる圧縮カが前記設定した圧縮カになる ょぅ に、 前記溶 ¾樹脂圧縮用の軸に関連するサーボモ ー タの出カ ト ルクを制御する電動式射出圧縮成形機。. 前記数値制御用処理装 gは、 前記特定ざれた軸にっ ぃてのパルス分配を該特定された軸とは別の軸にっぃ てのパルス分配と並列 して実行する請求の範囲第 5項 記载の電動式射出圧綰成形機。
. 前記圧縮動作開始タ ィ ミング設定手段はタ ィマでぁ る請求の範囲第 5項記载の射出圧縮成形機。
. 前記溶融樹脂圧转制御用の情報は、 前記特定された 軸の送り量, 送り速度ぉょび送り方向ならびに前記特 定ざれた軸に関連するサーボモータの出カ トルクの上 限値を表す ト ルク リ ミ ッ ト値を含む請求の範囲第 5項 記载の射出圧縮成形檨。
PCT/JP1989/000088 1988-02-05 1989-01-30 Method and apparatus for injection compression molding WO1989007043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890701321A KR960016030B1 (ko) 1988-02-05 1989-01-30 사출 압축 성형 방법 및 그 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63023957A JPH082574B2 (ja) 1988-02-05 1988-02-05 電動式射出成形機における圧縮成形制御方法
JP63/23957 1988-02-05

Publications (1)

Publication Number Publication Date
WO1989007043A1 true WO1989007043A1 (en) 1989-08-10

Family

ID=12125029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000088 WO1989007043A1 (en) 1988-02-05 1989-01-30 Method and apparatus for injection compression molding

Country Status (4)

Country Link
EP (1) EP0362395B1 (ja)
JP (1) JPH082574B2 (ja)
DE (1) DE68910263T2 (ja)
WO (1) WO1989007043A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399174B2 (en) 2004-04-08 2008-07-15 Graham Packaging Pet Technologies Inc. Method and apparatus for compression molding plastic articles
JP2016129952A (ja) * 2015-01-13 2016-07-21 ファナック株式会社 射出成形機の圧縮制御装置
CN106227087A (zh) * 2016-07-28 2016-12-14 无锡市博阳超声电器有限公司 一种自动化切割机的智能控制系统
CN109917755A (zh) * 2019-03-28 2019-06-21 沈阳机床成套设备有限责任公司 基于数控系统的车床尾台扭矩功能设计方法及尾台结构
CN112277275B (zh) * 2020-12-28 2021-03-30 温州市健牌模具有限公司 一种塑料制品的加工方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179216A (ja) * 1984-08-18 1985-09-13 Toshiba Mach Co Ltd 射出圧縮成形用金型およびこれを用いる射出圧縮成形方法
JPH06315721A (ja) * 1992-12-28 1994-11-15 Sanyo Denki Kk コンクリート構造物デッキ板用鉄筋屈曲成形法およびその装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889085A (ja) * 1981-11-24 1983-05-27 Hitachi Ltd モ−タ制御回路
JPS59156726A (ja) * 1983-02-24 1984-09-06 Nissei Plastics Ind Co 電動式成形機の制御方法
JPS59187826A (ja) * 1983-04-08 1984-10-25 Nissei Plastics Ind Co 成形機の型締方法
JPS6097821A (ja) * 1983-11-02 1985-05-31 Fanuc Ltd 射出成形機の制御装置
JPS60174623A (ja) * 1984-02-21 1985-09-07 Toshiba Mach Co Ltd 射出成形機
JPS61205112A (ja) * 1985-03-08 1986-09-11 Idemitsu Petrochem Co Ltd 射出圧縮成形方法
JPH0622841B2 (ja) * 1986-06-23 1994-03-30 フアナツク株式会社 計量・型開き同時動作制御方式
JPS6315721A (ja) * 1986-07-07 1988-01-22 Toyota Motor Corp 射出成形機のヒケ防止装置
JPS6394806A (ja) * 1986-10-09 1988-04-25 Toshiba Mach Co Ltd 射出圧縮成形の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179216A (ja) * 1984-08-18 1985-09-13 Toshiba Mach Co Ltd 射出圧縮成形用金型およびこれを用いる射出圧縮成形方法
JPH06315721A (ja) * 1992-12-28 1994-11-15 Sanyo Denki Kk コンクリート構造物デッキ板用鉄筋屈曲成形法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0362395A4 *

Also Published As

Publication number Publication date
EP0362395A4 (en) 1991-01-09
EP0362395A1 (en) 1990-04-11
JPH082574B2 (ja) 1996-01-17
EP0362395B1 (en) 1993-10-27
DE68910263D1 (de) 1993-12-02
DE68910263T2 (de) 1994-02-24
JPH01200926A (ja) 1989-08-14

Similar Documents

Publication Publication Date Title
JP3459631B2 (ja) 成形品離型力測定方法及び装置
JPH0440178B2 (ja)
US10513071B2 (en) Pressure controller for injection molding machine
US5251146A (en) Injection compression molding method and an apparatus therefor
JPH0358821A (ja) 電動式射出成形機
CN104772877A (zh) 注射成型机的合模力设定装置和合模力设定方法
EP0396770B1 (en) Back pressure control method and apparatus for electric injection molding machine
WO1989007043A1 (en) Method and apparatus for injection compression molding
JP2002028959A (ja) 射出成形機の制御方法
US6585919B1 (en) Method and apparatus for injection molding wherein cycle time is controlled
JP2000052396A (ja) 射出成形制御装置および制御方法
KR960016030B1 (ko) 사출 압축 성형 방법 및 그 장치
JP2567968B2 (ja) 成形機の製品自動検査方法
JP3366921B2 (ja) 圧縮成形制御方法
JP2001277319A (ja) 成形特性判別方法及び射出成形機
JPH10278091A (ja) 射出成形方法と射出成形機
JP3285701B2 (ja) 型内圧力測定装置
JP3035524B2 (ja) 射出成形機の制御装置
JPH0477224A (ja) 射出成形方法
JP2525727B2 (ja) 射出成形方法
JP3292622B2 (ja) 射出成形機の射出制御装置
JPH0698656B2 (ja) 射出成形機のモニタリングデータの最適許容値設定方法および装置
JP2927449B2 (ja) 射出成形機における成形品良否判別方法及び装置
JP2525222B2 (ja) 射出成形機の成形制御方法
JPH0622831B2 (ja) 射出圧縮成形方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1989901754

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1989901754

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989901754

Country of ref document: EP