WO1988006188A1 - Process for preparing d-alanine - Google Patents

Process for preparing d-alanine Download PDF

Info

Publication number
WO1988006188A1
WO1988006188A1 PCT/JP1988/000139 JP8800139W WO8806188A1 WO 1988006188 A1 WO1988006188 A1 WO 1988006188A1 JP 8800139 W JP8800139 W JP 8800139W WO 8806188 A1 WO8806188 A1 WO 8806188A1
Authority
WO
WIPO (PCT)
Prior art keywords
alanine
culture
genus
medium
candida
Prior art date
Application number
PCT/JP1988/000139
Other languages
English (en)
French (fr)
Inventor
Noriko Ito
Shinzo Imamura
Haruyo Sato
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP88901636A priority Critical patent/EP0301107B1/en
Priority to DE3851108T priority patent/DE3851108T2/de
Publication of WO1988006188A1 publication Critical patent/WO1988006188A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/001Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by metabolizing one of the enantiomers

Definitions

  • the present invention relates to a method for industrially producing D-alanine by a fermentation method.
  • a method for producing D-alanine by culturing yeast in a medium containing glucose and DL-alanine is disclosed in “Fermentation and Metabolism,” Vol. 5, No. 5, pp. 89-94 (966). Have been. Also, a method of co-producing D-alanine and pyruvate in the same amount from glucose or the like and DL-alanine using a microorganism having the ability to oxidize L-alanine is disclosed in Japanese Patent Publication No. 42-06883. I have.
  • the former clearly shows that when the concentration of D L -alanine is set to more than 202 ZJ2, not only the growth of ⁇ is inhibited but also the selective resolution is reduced. In other words, since the concentration of DL-alanine in the original family is limited to not more than 203 Zi2, the yield of D-alanine is only ⁇ O3Zi2 at most, even if stoichiometric. Not a method.
  • the concentration of DL — alanine was at most 50 g Z j2 and the yield of D — alanine was at most 1. Low.
  • the time required for culturing the bacteria and oxidizing the alanine is as long as 72 hours, which is not an industrially sufficient method.
  • D-alanine can be obtained at a concentration of at least several + j2 by culturing in a medium containing a specific nitrogen source.N.
  • One object of the present invention is to provide a selective assimilation method using microorganisms.
  • An object of the present invention is to provide a method for obtaining D-alanine from D-alanine in high yield, that is, almost in stoichiometric amount.
  • Another object of the present invention is to provide a method for obtaining a high yield of D-alanine by supplying a high concentration of DL-alanine to a medium without inhibiting the growth of the bacterium and without reducing the selective resolution. To provide.
  • Another object of the present invention is to provide a method in which other organic by-products and impurities are scarcely present in the medium at the end of the culture.
  • An object of the present invention is to provide an efficient method in which the time required for assimilating nin in half is shortened.
  • yeasts used in the present invention include yeasts belonging to the genera Candida, Saccharomycopsis, Pichia, Trolopsis, Cryptococcus, Hansenula or Trichosporium. Of these yeasts, DL-alanine is used as the sole carbon and nitrogen source. In the present invention, an enzyme capable of growing in a medium containing L-aranan and capable of assimilating L-alanin and substantially not assimilating D-alanine is used.
  • yeast that does not substantially assimilate D—alanine is an enzyme S that assimilates D—alanine only in a slightly cloudy state as long as the effect of the present invention is not substantially inhibited.
  • yeasts that assimilate D-alanin under the absence of L-alanine are also included.
  • substantially DL- Aranin the ⁇ one-carbon source Contact Yopi single - to ⁇ is cultured in a medium containing a nitrogen source other words, in the present invention, a carbon source and a nitrogen source in the medium
  • DL-alanine is substantially used, but as little as possible without impairing the effect of the present invention.
  • salts of metal ions may be added to the culture solution depending on the microorganism used.
  • the metal ion for example, ⁇ & ⁇ , ⁇ ⁇ C a 2 M g 2 ⁇ F e L i 2 +, Z n 2 C o M n 2 + and the like, sulfuric acid these metals ions, hydrochloric acid, Li Salts of various inorganic acids such as an acid can be used.
  • the concentration of DL-alanan in the medium is ⁇ to 250, preferably 60 to 200 ⁇ in ⁇ .
  • concentration of D L-alanine is low, the production efficiency is poor, and when the concentration is high, the incubation time becomes longer. In addition, the growth of some microorganisms may be inhibited.
  • the entire amount of DL-alanine may be initially added to the culture solution, but as the concentration increases, the growth of microorganisms slows down and the cultivation time may increase, so the initial concentration should be 20-50 / 'and the remaining A fed-batch culture method in which DL-aracon is added in portions is preferred.
  • the cultivation is preferably performed under acidic conditions.
  • the culture solution is usually adjusted to ⁇ . ⁇ 5 at the start of cultivation, but ⁇ rises as the culture proceeds. If the culture is performed as it is, the recovery of D-alanine decreases, so it is necessary to control ⁇ ⁇ to the acidic side. It is necessary. When ⁇ becomes alkaline, the recovery of D-alanine decreases due to the activation of alanine ⁇ racemase or the activation of D-alanine aminotransferase. —It is thought that alanine is assimilated.
  • the culture temperature is usually adjusted to 4-6.5, preferably 4.5-6.0.
  • the acid for adjustment for example, a sulfuric acid-free aqueous solution such as phosphoric acid, sulfuric acid, or hydrochloric acid is preferable.
  • the cultivation temperature is usually 20 to 40 ° C, preferably 2530 ° C.
  • the culture is agitated with aeration.
  • Aeration is usually 0.5 to 2.0 WH, preferably 0.61.2 VVM. If the air flow rate is too small, the rate of assimilation of alanine tends to be slow, and the effect remains the same at most, but rather the concentration of the culture solution increases to promote the evaporation of the nutrient solution. Foaming becomes intense, which is not preferable.
  • Total utilization of L-alanine can be determined by monitoring dissolved oxygen (D O) and by analyzing D and L of alanine.
  • D O dissolved oxygen
  • an acid is added during the cultivation in order to neutralize the ammonia produced by L-alanine assimilation, but it is not necessary to add the acid at the end of L-alanine assimilation. It can be known by monitoring the amount.
  • D-alanine may be gradually assimilated, so it is preferable to clearly know the end point of the culture.
  • D-alanine may be isolated by a conventional method.
  • the solution is passed through an ion exchange resin S K— ⁇ B (Mitsubishi Kasei) to adsorb alanine to the resin, and then thoroughly washed. Then, after elution with an aqueous ammonia solution, the eluate may be concentrated. By recrystallizing the crude D-alanine obtained here with water, the produced D-alanine can be obtained.
  • S K— ⁇ B Mitsubishi Kasei
  • the present invention has the following effects.
  • D-alanine can be obtained from DL-alanine in high yield, that is, almost in stoichiometric amount.
  • L-alanine consumed in the gulf is mostly converted to carbon dioxide and water, and since there are almost no other organic by-products and impurities in the medium at the end of the culture, Isolation and purification of alanine is facilitated.
  • a medium (PH5.0) 1 i2 containing DL-alanine ⁇ 00 ⁇ , monopotassium phosphate 2ZJ2, magnesium sulfate .0.5 ⁇ ⁇ , and powdered yeast extract ⁇ 52 / J2 was added to a 3 ⁇ mini- It was charged into a jar armmenter and sterilized to obtain a main culture medium. This was inoculated with the above seed culture solution, and cultured under aeration and stirring at 30 ° C. and 1.0 WH. During the cultivation, the pH was adjusted to 5.0 ⁇ 0.5 with 2N sulfuric acid. In about 70 hours, the total amount of L-alanine in the medium was assimilated, and a culture solution containing 0.2 g of D-alanine and 353 ammonium sulfate was obtained.
  • the culture is centrifuged at 1 1, 000 rpm for 10 minutes to remove the cells, and then passed through a column filled with ion exchange resin S K- -B (H-type) to adsorb D-alanine. After the column was washed thoroughly with water, D-alanine was eluted with 4% aqueous ammonia, and the eluate was concentrated under reduced pressure to dryness.
  • ion exchange resin S K- -B H-type
  • D-alanine 452 was obtained.
  • the optical purity was 99.6% ee or more.
  • Chemical purity was 99.4%.
  • Example II Culture was performed under the same conditions as in Example I except that the concentration of DL-alanine in the main culture medium was 802 ZJ2. The culture is completed in about 35 hours, and about 2.2 ml of a culture solution containing 38 g of D-alanine and ammonium sulfate is used. Obtained.
  • the culture was centrifuged to remove the cells, and then calcium hydroxide ⁇ 8.3 ⁇ was added and stirred, and salt exchange was performed for about 2 hours.
  • the suspension was concentrated under reduced pressure to a volume of ⁇ Z3, and then filtered to remove inorganic salts.
  • the filtrate was adsorbed by trace amounts of metal ions through a column packed with ion exchange resin SK-1B (ammonium type).
  • the eluate and the washing solution of the column were combined and concentrated and crystallized to obtain D-alanine 323.
  • the optical purity was 99.9% ee and the chemical purity was 99, 9%.
  • a sterile seed culture medium was inoculated with Candida * Humicola ATCC36992, and cultured with shaking at 3 ° C for about 24 hours.
  • the medium ⁇ ⁇ ⁇ J2 was adjusted to 40, and J2 was charged into a 3 J2 mini-jar fermenter and sterilized to obtain the main culture medium, which was inoculated with the seed-fold solution, and cultured with aeration and agitation at 30 ° C and ⁇ .
  • the main culture medium was a medium containing DL-alanine 553, potassium phosphate 22, magnesium sulfate 0.52, and powdered yeast extract 3, 700 / ⁇
  • Culture was performed under the same conditions as in Example 1. After about 20 hours, the addition of an aqueous solution 300 / ⁇ containing DL-alanine 453 was started at a flow rate of 5 i / hr. After the addition was completed at about 20:00 ⁇ S, the culture was continued. The culture was terminated about 6 hours after the start of the culture.
  • D-alanine obtained from the culture solution by the operation shown in Example 2 was similar to Example 1 in terms of yield, optical purity, and chemical purity.
  • Seed medium (PH 5. ⁇ ) 5 consisting of dried bouillon 303 / Q was dispensed into ⁇ 8 ⁇ 180 thigh test tubes and sterilized. A loopful of the yeast shown in Table 1 was inoculated with the yeast, and cultured with shaking at 3 ° C.
  • the main culture medium (H5.0) consisting of 0.5% of powdered yeast extract was dispensed into ⁇ 8 ⁇ ⁇ 80 thigh tubes and sterilized, and the above seed culture solution was inoculated with 5% seed. After 24 hours, the cells were removed by centrifugation to remove the cells, concentrated under reduced pressure, dried to dryness, and dried. The residual ratio of the D-isomer was determined.
  • Example 2 culturing was performed under the same conditions except that Darcos 10 ⁇ Z £ was added to the main culture medium. The culturing was completed in about 54 hours, and about 0.2 J2 of a culture solution containing D-alanine 32 and ammonium sulfate 29 was obtained. The solid content obtained by subjecting 5 ml / ⁇ of this culture solution to the same treatment as in Examples 5 to 4 was analyzed by HPLC. As a result, the optical purity of D-alanine was 99.6 or more. Atsuta.
  • D-alanine is useful as a pharmaceutical ingredient or a raw material for sweetener altame.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

D —ァラニンの製造法
技 術 分 野
本発明は D—ァラニンを発酵法によって工業的に製造 する方法に関するおのである。
冃 技
グルコースなどと D L —ァラニンを含有する培地中で 酵母を培養することにより D—ァラニンを製造する方法 は、 「発酵と代謝」 第 Ί 5号 8 9 〜 9 4ページ ( 9 6 7年) に開示されている。 また、 グルコースなどと D L ーァラニンから L —ァラニン酸化能を有する微生物を用 いて D —ァラニンとピルビン酸を同量程度併産する方法 は特公昭 4 2— 2 0 6 8 3号公報に開示されている。
従来の方法はともに安価な D L — ァラニンから、 高 i な D —ァラニンを高純度で得る方法として優れている。
しかしながら、 前者には D L —ァラニン濃度を 2 0 2 Z J2以上にすると菡の生育が阻害されるばかりでなく選 択的分解能も低下することが明示されている。 つまり、 原科の D Lーァラニン濃度が 2 0 3 Z i2以下に制限され るため、 D —ァラニンの収量は量論量とれたとしても高 々 Ί 0 3 Z i2 に過ぎず、 工業的に有利な方法とはいえな い。
また、 後者において-も D L —ァラニン濃度は高々 5 0 g Z j2であり、 D —ァラニンの収量も高々 1 と 低い。 しかも菌の培養およびし一ァラニンの酸化に要す る時間は合計 7 2時間と長く、 工業的に十分な方法とは いえない。
しかも、 後者の方法では、 D —ァラニンを取得するた めには大量のピルビン酸の分雛除去が不可避となり、 ェ 業的に不利である。
発 明 の 開 示
本発明者らは、 上記問題点を解決することができ、 ェ 業的に有利な D —ァラニンの製造法を提供することを目 的として鋭意研究した結果、 特定の酵母を特定炭素源お よび特定窒素源の培地で培養することにより数 + j2 以上の睿積濃度で D —ァラニンが得られることを見出し ナ一 本発明の つの目的は、 微生物を用いた選択資化法に よ.り、 Dしーァラニンから D —ァラニンを高収率で、 す なわち、 ほぼ量論量で取得する方法を提供することにあ る。
本発明のもう 1 つの目的は、 菌の生育を阻害すること なくかつ選択的分解能も低下させることなぐ、 高濃度の D L—ァラニンを培地に供給して高収量の D —ァラニン を取得する方法を提供することにある。
本発明の他の目的は、 培養終了時の培地中に他の有機 副生物およぴ有鏺不純物がほとんど存在しない方法を提 供することにある。
本発明のさらなる目的は、 菌の培養および D L —ァラ ニンの半量資化に要する時間が短縮された効率のよい方 法を提供することにある。 ―
本発明のこれらおよび他の目的は、 以下の詳細説明か ら明らかとなる。
これらの目的は実質的に D L—ァラニンを単一炭素源 および単一窒素源として含有する培地中で、 キャンディ ダ属、 サッカロマイコプシス属、 ピキア属、 卜ルロプシ ス属、 クリプ卜コッ カス属、 ハンゼヌラ属または 卜 リコ スポロン属に属しかつ Lーァラニンを資化し D —アラこ
10 ンを実質的に資化しない能力を有する酵母を培養し、 培 養物から D—ァラニンを採取することを特徴とする D— ァラニンの製造法により達成される。
発明を実施するための最良の形態
以下、 本発明の構成を詳述する。
本発明で使用する酵母としては、 キャンディダ属、 サ ッカロマイコプシス属、 ピキア属、 卜ルロプシス属、 ク リブ卜コッカス属、 ハンゼヌラ属または 卜 リコスポ口ン 属に属する酵母が挙げられる。 これらの酵母のうち実質 的に D L —ァラニンを単一炭素源および単一窒素源とし
Figure imgf000005_0001
て含有する培地中で生育可能であって、 かつ L 一ァラニ ン資化能を有し、 D —ァラニンを実質的に資化しない酵 母が本発明では甩いられる。
ここで、 D —ァラニンを実質的に資化しない酵母とは、 本発明の効果を実質的に阻害しない範囲において D —ァ ラニンを少曇のみ資化する酵 S、 あるいはし一ァラニン の資化後、 L—ァラニンの不存在条件下では D—ァラニ ンを資化する酵母も含まれる。 - - - たとえば、 キャンディダ♦ フミコーラ( anciida
umicola) AT C C 3 699 2、 キャンディダ · ルゴ一 ザ(Candida rugosa) A T C C 1 057 1 、 サヅカロマイ コプシス ♦ リポリティ力(Sacciaromycopsis I i ρο I yt i ca)
A T〇 C 20306、 サッカロマイコプシス ♦ リポリテ ィ力(Saccharomycopsi s 11 polyt ica) I 厂 0 07 1 1 , クリプ卜コッカス ♦ ラウレンティ (じ ryputococcus
!au rent i ί ) A T C C 3 683 2、 卜ルロプシス ♦ キャン ディダ(Toru lopsis Candida) A T C C 20284. 卜ル ロプシス ♦ グラプラタ(Toru I opsi s g i abrata j I F 0
0ひ 05、 ピキア ♦ プルトニ一(Pichia burton i i ) A T
C C 202 79、 ピキア ♦ ノ\。ス 卜リス(Pi eh i a pastoris) I F 0 0948、 ハンゼヌラ · ボリモルファ
(Hansenu la polymorphs) A丁 G G 2 60 Ί 2、 ハンゼ ヌラ カプスラータ (Hansenu I a capsu I ata ) A T C C
67 53、 卜リコスポロン ♦ ベィゲリ一(Trichosporon beige! i i ) A丁 C C 3 6993などが挙げられる。
本発明では、 実質的に D L—ァラニンを阜一炭素源お ょぴ単一-窒素源として含有する培地中で培養を行う α す なわち、 本発明では、 培地中の炭素源および窒素源とし て、 実質的に D L—ァラニンを用いるが、 本発明の効杲 を阻害しない範囲内で少 たとえば、 Ί 0 gノ
の範囲内で、 他の炭素源および /または窒素源を含有し ていてちょい · ' : 培養液中に炭素源としてグルコースを Ί 0 / ]2以上 共存させると L—ァラニンの資化速度が遅くなるので、 グルコースはできるだけ含有させないようにすることが 好ま しい。
また、 培養液中には、 使用する微生物に応じて、 金属 イオンの塩類を添加してもよい。 金属イオンとしては、 たとえば Ν & τ、 κ ÷ C a 2 M g 2\ F e L i 2 +、 Z n 2 C o M n2 +などが挙げられ、 これらの 金属イオンの硫酸、 塩酸、 リ ン酸など各種の無機酸の塩 を用いることができる。
培地中の D L—ァラニン濃度は. Ί ώ中に Ί〜 250 、 好ましくは 60〜 200 ^である。 D L—ァラニン濃度 が低いと生産効率が悪く、 逆に濃度が高いと培養時問が 長くなる。 また、 微生物によっては微生物の生育が阻害 される場合もある。
D L—ァラニンは始めから培養液に全量仕込んでもよ いが、 濃度が高くなると微生物の生育が遅くなり培養時 間が長くなることもあるので、 初濃度を 20〜 50 /' な にし、 残りの D L—アラこンを分割添加する流加培養 法が好ましい。
培養は酸性で実施するのが好ま しい。 培養液は通常培 養開始時に Ρ.Η 5に調整するが、 培養が進むにつれて Ηが上昇する。 そのままで培養すると D—ァラニンの回 収率が低下するので ρ Ηを酸性側にコン 卜口一ルする必 要がある。 Ρ Ηがアルカリ側になると D —ァラニンの回 収率が低下する原因として、 ァラニン ♦ ラセマーゼが活 性化されること、 または D —ァラニンアミノ 卜ランスフ エラ一ゼが活性化されることなどにより、 D—ァラニン が資化されるものと考えられる。
これらの理由から、 培養時の Ρ Ηは通常 4〜 6 . 5、 好ましくは 4 . 5〜 6 . 0に調整する。 調整用の酸とし ては、 たとえば、 リン酸、 硫酸、 塩酸などの無璣酸水溶 液が好ましい。
前記 「発酵と代謝」 には、 培養時の Ρ Ηが高い側で選 択分解が行われ、 低 、側ではむしろ選択性が劣るもので あることが、 要約に、 結論として記載されている σ たと えば前記 「発酵と代謝」 図 4には 卜ルロプシス ♦ ファメ ータによる選択分解が Ρト! 8 . 5で完結した例が示され ている。
本発明のごとく培養時の Ρ Ηが 6 . 5以下の場合には 通常の細菌が生育しにくいため、 培養中に錐菌に汚染さ れにくいという利点も生じる。
培養温度は通常 2 0〜 4 0 °C 好ましくは 2 5 3 0 Όである。
培養は通気しながら攛拌 る 通気きは通常 0 . 5〜 2 . 0 WH 、 好ましくは 0 . 6 1 . 2 VVM である。 通 気量が少なすぎるとしーァラニン資化速度が遅くなる傾 向となり、 また、 多くても効果に変わりなく、 むしろ 養液の蒸発を促進するために培養液濃度が高くなつたり 発泡が激しくなり好ましくない。
—ァラニンがすべて資化された時点で通常、 培養を 終了する。 L —ァラニンの全量資化は溶存酸素 ( D O ) をモニターすることにより、 また、 ァラニンの D、 Lを 分析することにより知ることができる。 また、 Lーァラ ニンの資化によって生じるアンモニアを中和するために、 培養中に酸を添加するが、 Lーァラニンの資化終了とと もに酸の添加は不要となるので、 その酸の添加量をモニ ターすることにより知ることちできる。
Lーァラニンがすべて資化されたのち、 さらに培養を 続けると D —ァラニンも徐々に資化される場合もあるの で、 培養の終点を明確に知ることが好ま しい。
かく して得られた培養液を遠心分離により菌体を除去 したのち、 通常の方法によって D —ァラニンを単離すれ ばよい。
たとえば、 イオン交換樹脂 S K— Ί B (三菱化成製) に通液してァラニンを樹脂に吸着させたのちよく洗淨す る。 次いでアンモニア水溶液で溶出させたのち、 溶出液 を濃縮すればよい。 ここで得られた粗 D —ァラニンを水 で再結晶すれば 製された D -ァラニンが得られる。
本発明は次の効果を発揮する。
( 1 ) D L —ァラニンから D —ァラニンを高収率で、 すな わち、 ほぼ量論量で取得することができる。
( 2 ) さらに、 菌の生育を阻害することなくかつ選択的分 解能をも低下させることなく高濃度の D L —ァラニン を培地に供給して高収量の D—ァラニンを取椁するこ とができる _。
加えて、 湾費された L -ァラニンは、 ほとんど炭酸 ガスと水にまで変換されて、 培養終了時の培地中に他 の有機副生物およぴ有璣不純 ¾がほとんど存在しない ため、 D—ァラニンの単離および精製が容易となる。
(4) さらに、 菌の培養および D L—ァラニンの半量資化 に要する時間が短縮され効率よく D—ァラニンを取得 できる。
(5) 培養を P H 6. 5以下の酸性条件で実施するため、 培養中に雜菌に汚染されにくい。
以下、 実施例によって本発明を具体的に説明する 実施例においてァラニンの D L分析は、 濃縮乾燥した Dーァラニン含..有粉末をメタノール一塩酸 よりメチル- エステル化したのち 3 , 5—ジニ卜口フエ二ルイソシァ ネー卜と反応させたのちこれを次の条件により H P L C で分析する方法によって行つた。
カラム : OA— Ί 000 (住友化学)
π—へキサン : ジクロルメタン : エタノール
( 20 : 8 : 1 )
ί I
検 出 じ V 254 nm
実施例 1
乾燥プイヨン 30 ?Zi2 ( P H 6, 0〉 を含む培地 5 0 /H5を Ί il三角フラスコに分注し、 20 °C 20分問 滅菌し、 種培養培地とし こ。'これにキャンディダ ♦ フミ コーラ AT〇〇 36992を一白金耳植菌し、 30°Cで 一日振とう培養した。 一方、 D L—ァラニン Ί 00 ^ 、 リ ン酸一カリウム 2 Z J2、 硫酸マグネシウム◦ . 5 ^Ζ 、 粉末酵母エキス〇 . 52 / J2を含む培地 ( P H 5. 0 ) 1 i2を 3 ώのミニジャーフアーメンターに仕 込み滅菌して主培養培地とした。 これに先の種培養液を 接種し、 30°C、 1 . 0 WH 通気攪拌培養をした。 なお 培養中は 2 N硫酸により P H 5. 0 ± 0. Ί に調整を行 つた。 約 70時間で培地中の L—ァラニンは全量資化さ れ、 D—ァラニン 48 g、 硫酸アンモニゥム 353を含 む培養液約 Ί . 2 ]2を得た。
この培養液を— 1 〇, 000 rpm 1 0分間遠心分離して 菌体を除いたのち、 イオン交換樹脂 S K- - つ B ( H型〉 を充塡したカラムにとおし、 D—ァラニンを吸着させた , このカラムを十分水洗したのち 4 %アンモニア水で D— ァラニンを溶出した。 この溶出液を減圧濃縮し乾固して
D—ァラニン 452を得た。 H P L Cにより分析したと ころ、 光学純度は 99. 6%ee以上であった。 化学純度 は 99. 4 %であった。
実施例 2
実施例 Ί に示した操作のうち、 主培養培地中の D L— ァラニン濃度を 802 Z J2 とし、 他は同じ条件で培養を 行った。 約 35時間で培養は終了し、 D—ァラニン 38 g、 硫酸アンモニゥ厶 を含む培養液約つ . 2 ώを 得た。
この培養液を遠心分雛して菌体を除いたのち、 水酸化 カルシウム Ί 8. 3 ^を加えて攪拌し、 約 2時間塩交換 を行った。 この懸濁液を Ί Z3量まで減圧濃縮したのち 瀘過して無機塩を除いた。 瀘液は、 イオン交換樹脂 S K - 1 B (アンミニゥム型) を充塡したカラムにとおし、 微量の金属イオンを吸着させた。 溶出液とカラムの洗淨 液を合せ、 濃縮晶析させ、 D—ァラニン 323を得た。 光学純度 99. 9%ee、 化学純度 99 , 9%であった。 実施例 3
D L—ァラニン 2 0 ^ ZJ 、 リン酸一カリウム 2 3 J2、 硫酸マグネシウム〇 . 5 gZi 、 粉末酵母エキス 0 5 S ZJ2を含む培地 ( Ρ H 5. 0〉 を 1 J2三角フ ラスコに分注し、 滅菌して種培養培地とした。 これにキ ヤンディダ * フミコーラ ATCC36992を一白金耳 植菌し、 3〇°Cで約 24時間振とう培養した。 一方、 上 記培地組成のうち、 D L—ァラニンを 4 0 とした 培地 Ί J2を 3 J2のミニジャーファーメンターに仕込み減 菌し主培養培地とした。 これに先の種倍溶液を接種し、 30°C、 Ί . で通気攪拌培養をした。 培養中は、
2 硫酸により P H 5. 0 ± 0. に調整を行つた。 約 20時間後、 培地中の L—ァラニンの約 80 %が資化さ れたところで、 この培養液を同じ構成成分の斩しい主培 養培地 Ί ώに 5%シードで接種し、 先ほどと同条件で通 気攪拌培養を行った。 再び約 20時間培養したところで 次にこの垲養液を D L—ァラニン 802 /J2を含有し他 成分は前回までと同様である主培養培地 Ί J2に 5 %シ一 ドで接種した。 同条件で通気 IS拌培養を約 6〇時間行う と、 培地中の Lーァラニンが全量資化された。 培養終了 後実施例 2に示した操作により得られた D—ァラニンの 収量、 光学純度、 化学純度は実施例 2とほぼ同様であつ た。
実施例 4
実施例つ に示した操作のうち、 主培養培地を D L—ァ ラニン 553、 リ ン酸一カ リ ウム 22、 硫酸マグネシゥ ム 0. 52、 粉末酵母エキス Ί 3を含む培地 700/ ^と し、 実施例 1 と同条件で培養を行った。 約 20時間後、 D L—ァラニン 4 53を含む水溶液 300/ ^を 5 i / hrの流速で添加を始めた。 約 20時^ Sで添加を終えたの ちも、 さらに培養を続けた。 培養を始めてから約 6〇時 間で培養は終結した。
培養液から実施例 Ί に示した操作で得られた D—ァラ ニンは収量、 光学純度、 化学純度ともに実施例 1 と同様 であった。
実施例 5 Ί 4
乾燥ブイ ヨン 303 / Q,からなる種培地 ( P H 5. 〇 ) 5 を Ί 8 X 1 80腿の試験管に分注し、 滅菌した。 こ れに表 1 に示した酵母を一白金耳植菌し、 3〇°Cで 1 2曰振とう培養した。 一方、 D L—ァラニン 1 0 ^ / d リン酸— 力リ ゥム 2 ^ Z J2、 硫酸マグネシウム〇 . 5 g 、 粉末酵母エキス 0. 5 Ζώよりなる主培養培地 ( H 5. 0〉 を Ί 8 Χ Ί 80腿試験管に分注して 滅菌した。 これに先の種培養液を 5 %シードで接種し、 30°Cで振とう培養した。 24時間後、 遠心分離して菌 体を除いたのち減圧濃縮して乾固ののち乾燥した。 得ら れた固形分について H P L Cにより残存したァラニンの L体、 D体の残存率を求めた。
結果を表 1に示す。
Figure imgf000015_0001
比較例
実施例 2に示した操作のうち、 主培養培地にダルコ一 ス 1 0 ^ Z £を加え他は同じ条件で培養を行つた。 培養 は約 5 4時間で終了し、 D—ァラニン 3 2 、 硫酸アン モニゥム 2 9 を含む培養液約 Ί . 2 J2を得た。 この培 養液の 5 ϋ /^を実施例 5〜 Ί 4 と同様の処理をして得ら れた固形分を H P L Cにより分析した結果、 D—ァラニ ンの光学純度は 9 9 . 6 以上であつた。
産業上の利用可能性
D—ァラニンは医薬品原料または甘味料 ァリテーム の原料として有用である。

Claims

請 求 の 範 囲
(1) 実質的に D L—ァラニンを単一炭素源および単一窒 素源として含有する培地中で、 キャンディダ(Candida) 属、 サッカロマイコプシス(Saccdaromycops i s)属、 ピ キア(Pichia)属、 卜ルロプシル(Toruiopsis)属、 クリ プトコッカス(C「yptococcus)属、 ノ、ンゼヌラ(Hansenu ra) 属または 卜リコスポ口ン(Torycosporon)属に属し かつ、 Lーァラニンを資化し D—ァラニンを実質的に 資化しない能力を有する酵母を培養し、 培養物から D —ァラニンを採取することを特徴とする D—ァラニン の製造法。
(2) キャンディダ属に属する微生物がキャンディダ属フ ミコーラ種またはキヤンディダ属ルゴ一ザ種に属する 微生物である請求項(1) 記載の方法。
(3) 培養を P H 4〜 6. 5で行う請求項(1) 記載の方法。
PCT/JP1988/000139 1987-02-13 1988-02-12 Process for preparing d-alanine WO1988006188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP88901636A EP0301107B1 (en) 1987-02-13 1988-02-12 Process for preparing d-alanine
DE3851108T DE3851108T2 (de) 1987-02-13 1988-02-12 Verfahren zur herstellung von d-alanin.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62/29709 1987-02-13
JP2970987A JPH088878B2 (ja) 1987-02-13 1987-02-13 D−アラニンの製造法

Publications (1)

Publication Number Publication Date
WO1988006188A1 true WO1988006188A1 (en) 1988-08-25

Family

ID=12283636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000139 WO1988006188A1 (en) 1987-02-13 1988-02-12 Process for preparing d-alanine

Country Status (4)

Country Link
EP (1) EP0301107B1 (ja)
JP (1) JPH088878B2 (ja)
DE (1) DE3851108T2 (ja)
WO (1) WO1988006188A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249598A (ja) * 1988-08-11 1990-02-19 Tanabe Seiyaku Co Ltd 微生物を用いるd−アラニンの製法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121076B2 (ja) * 1972-07-28 1976-06-30

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0301107A4 *

Also Published As

Publication number Publication date
EP0301107A4 (en) 1991-04-10
JPH088878B2 (ja) 1996-01-31
DE3851108T2 (de) 1995-03-02
DE3851108D1 (de) 1994-09-22
EP0301107A1 (en) 1989-02-01
EP0301107B1 (en) 1994-08-17
JPS63198997A (ja) 1988-08-17

Similar Documents

Publication Publication Date Title
JP3109884B2 (ja) D−パントテン酸の製造法
JP2011505822A (ja) コハク酸の製造方法
JPH11113588A (ja) 含酸素化合物の製造方法
HU200752B (en) Process for producing 6-hydroxynicotinic acid in biological way
JP3959403B2 (ja) 有機酸の精製方法
WO1988006188A1 (en) Process for preparing d-alanine
WO2000052189A1 (en) Method for the production of polyhydroxyalkanoate
JPH0767673A (ja) 2−ケト−l−グロン酸の製造方法
JP3116102B2 (ja) L−3,4−ジヒドロキシフェニルアラニンの製造方法
US5422255A (en) Method for producing D-alanine
JP3687497B2 (ja) 微生物培養法による光学活性1,2−ジオール類の製造法
JP2006246791A (ja) D−アラニンの製造法
JPH09154589A (ja) エリスリトールの製造方法
JPH0568576A (ja) コハク酸の製造法
JP2001149090A (ja) 微生物による(s)−3−ハロゲノ−1,2−プロパンジオールの製法
JP2505466B2 (ja) D−セリンの製造法
JP2507465B2 (ja) D−アスパラギン酸の製造法
JP3012990B2 (ja) D―アスパラギン酸の製造法
JP2507443B2 (ja) D−グルタミン酸の製造法
US4859591A (en) Transamination process for producing amino acids
JPH0318872B2 (ja)
JP2530662B2 (ja) D−アスパラギンの製造法
JP2828729B2 (ja) 光学活性1,3―ブタンジオールの製造法
JP3004826B2 (ja) L−アスパラギン酸の連続製造方法
JPS6274294A (ja) L−スレオニンの精製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988901636

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988901636

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988901636

Country of ref document: EP