WO1982003339A1 - Ceramic filter,method for manufacturing and utilizing this filter - Google Patents

Ceramic filter,method for manufacturing and utilizing this filter Download PDF

Info

Publication number
WO1982003339A1
WO1982003339A1 PCT/CH1982/000048 CH8200048W WO8203339A1 WO 1982003339 A1 WO1982003339 A1 WO 1982003339A1 CH 8200048 W CH8200048 W CH 8200048W WO 8203339 A1 WO8203339 A1 WO 8203339A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic filter
filter
ceramic
gekenn
foam
Prior art date
Application number
PCT/CH1982/000048
Other languages
English (en)
French (fr)
Inventor
Ag Georg Fischer
Original Assignee
Hofmann Franz
Trapp Hans Guenter
Rietzscher Rolf
Otto Juergen
Kaettlitz Wolfgang
Trinkl Gerd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hofmann Franz, Trapp Hans Guenter, Rietzscher Rolf, Otto Juergen, Kaettlitz Wolfgang, Trinkl Gerd filed Critical Hofmann Franz
Priority to AU82093/82A priority Critical patent/AU8209382A/en
Priority to BR8207248A priority patent/BR8207248A/pt
Priority to IN1086/CAL/82A priority patent/IN158599B/en
Publication of WO1982003339A1 publication Critical patent/WO1982003339A1/de
Priority to FI824075A priority patent/FI824075L/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/084Breaker cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/086Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/088Feeder heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/007Treatment of the fused masses in the supply runners
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • C22B9/023By filtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a ceramic filter with an open-cell foam structure based on Al-O or other highly refractory, in particular high-alumina materials for filtering metal melts, a process for its production and its use for cleaning molten metals and metal alloys, preferably iron .
  • DE-OS 2 848 005 describes a porous ceramic filter with a relatively low permeability for filtering
  • OMPI Aluminum melting known.
  • the main object of the present invention is to provide a ceramic filter which also enables effective cleaning of such metal melts which have a high degree of resistance to temperatures above 1000 ° C., in particular of cast iron.
  • the task is to create a ceramic filter of the aforementioned type, which has a high temperature resistance in the range of 1350 - 1650 C and allows a high potting speed.
  • Another object of the present invention is to provide a method for the production of such a ceramic filter, which both guarantees compliance with the required specifications and also permits rational production for mass production.
  • the invention thus relates to a ceramic filter with an open-cell foam structure based on Al 2 O_ or other highly refractory substances for filtering metal melts, characterized by a flow rate of 200 to 5000 cm 3 of melt per cm 2 of filter area per minute.
  • the flow rate according to the invention can be achieved by a large number of combinations of the main parameters, number of pores per cm / porosity / thickness of the filter, and applies to a position of the pouring funnel above the filter of 15 to 30 cm.
  • the filters according to the invention in particular when casting cast iron, have a significantly improved cleaning effect compared to the previously known agents and, because of their temperature resistance, also have increased operational reliability.
  • the use of the filter according to the invention does not change the composition of the filtered melt.
  • a ceramic filter which is preferably 0.5 to 18 per centimeter in length 0.5 - 8, has pores.
  • the desired coarse toxicity results in a lower porosity compared to known filters, which extends from 0.95 down to 0.3.
  • the porosity P is determined using the following formula:
  • the open-cell foam structure should have a high degree of uniformity. It should be noted here that at most 5%, preferably at most 2%, blocked pores, if possible in a uniform distribution, are present in order to avoid channel formation and thus a reduction in the efficiency of the filter.
  • a large number of materials can be used to manufacture the filter according to the invention.
  • the main constituent is preferably Al 2 O 3 in an amount of 60-95% by weight, preferably 75-80% by weight.
  • highly refractory materials in particular those containing high alumina, can also be used, e.g. Sillimannite, mullite or chamotte.
  • aluminosilicates for example kaolin
  • aluminosilicates for example kaolin
  • Another component is the glow product of a binder, e.g. Monoaluminum phosphate, which by the setting process according to the formula:
  • An open-cell foam structure of an organic material is impregnated with a slurry of a composition containing ceramic aluminum oxide and a binder. The slurry solvent and organic substance are then removed. - 6 -
  • the organic material can be a reticulated.
  • the slurry is preferably an aqueous e.g. with a share of 3 - 8% water.
  • the composition advantageously has a viscosity in the range of 10 4 to 2-104 centipoise at 20 revolutions per minute.
  • the excess slurry is removed from the foam by passing the impregnated foam through a system of pairs of rollers. The foam is then dried to remove the water.
  • the organic substance and the residual water can be removed by heating, for example to above 225 ° C.
  • Particularly effective filters can be produced by subjecting them to a re-impregnation in order to secure the exposed cell webs lying on the surface of the filter against breaking and to give the filter an increased temperature resistance.
  • the dried and impregnated foam described above is subjected to a further impregnation with a ceramic slurry on the surface, dried again and heated to remove the organic substance and at temperatures between 1200 ° C and 1500 ° C, preferably between 1350 C and 1450 ° C calcined.
  • the impregnated ceramic filter is dried at temperatures between 150 ° C. and 600 ° C., preferably between 250 ° C. and 350 ° C.
  • a wetting agent in an amount of, for example, 0.5-2.0% by weight has proven to be advantageous.
  • the thixotropic ceramic material can be produced according to the above in a variety of formulations, but particularly good results are obtained with 65% A1 2 0 3 , 3% kaolin, 1% alkylbenzenesulfonate as wetting agent, 25% monoaluminum phosphate and 6 % Water achieved.
  • the filter earths are used in front of or in the sand mold or the mold, with installation to be as close as possible to the casting.
  • 1 to 6 show partial sections of the cavities of a mold in a perspective view.
  • Fig. 1 shows the arrangement of a ceramic filter 1 in the barrel 2 of a mold, such as a sand mold, where
  • the barrel is arranged between a sprue 3 having a sprue and the mold cavity (not shown).
  • the first part 2a of the barrel branching off from the sprue 3 is arranged in the lower mold part, the ceramic filter 1 being arranged at the other widened end thereof.
  • the second part 2b of the barrel is then arranged in the upper part of the mold and leads from the shown extended end, which is arranged above the ceramic filter 1, to the mold cavity.
  • the melt poured into the sprue 3 thus flows through the ceramic filter from bottom to top, the filtered melt passing through part 2b of the barrel into the mold cavity.
  • FIG 3 shows the arrangement of a ceramic filter 1 designed as a round plate between the sprue 3 and the barrel 2 leading to the mold cavity, the filter 1 likewise being easily insertable into the mold base provided with the barrel 2 and from above is flowed through by the melt below.
  • FIG. 4 shows the arrangement of the ceramic filter 1 between the barrel 2 and a closed feeder 4 - also called ingot - arranged above it in the upper part of the mold, from which the melt directly into the cavity of the mold to be produced Casting 5 arrives.
  • the ceramic filter 1 is flowed through by the melt from bottom to top and can be inserted into the bottom part of the mold from above.
  • the ceramic filter 1 is arranged between the closed feeder 4 and the mold cavity for the casting 5.
  • the plate-shaped ceramic filter 1 is used in a vertical position in the bottom mold part and / or upper mold and also serves as a pre-recorded breaking point - also called refractive core - 'for the separation of the casting 5 from the group consisting of sprue 3, Run 2 and Suiter 4 gating system.
  • FIG. 6 shows the direct use of a ceramic filter 1 between the inlet spigot 3 and the casting 5, the ceramic filter 1 also forming the predetermined breaking point here.
  • the ceramic filter is flowed through by the melt from top to bottom, whereby an arrangement on the lower part of the casting 5 with a flow from bottom to top is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Filtering Materials (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

Keramikfilter, Verfahren zu dessen Herstellung und seine Verwendung
Die Erfindung betrifft einen Keramikfilter mit offen- zelliger Schaumstruktur auf der Basis von Al-O oder sonstigen hochfeuerfesten, insbesondere hochtonerdehaltigen Stoffen zum Filtrieren von Metallschmelzen, ein Verfahren zu dessen Herstellung und seine Verwendung zur Reinigung von geschmolzenen Metallen und Metalllegierungen, vorzugs¬ weise von Eisen.
Beim Vergiessen von Metallen, welche Schmelztemperaturen über 1000 C erfordern, wie z.B. Gusseisen, Stahlguss bzw. Stahlgusslegierungen ist es bekannt, für die Filterung Siebkerne aus gebrannten Schamotten oder Kernsand zu ver¬ wenden. Nachteilig ist hierbei die unzureichende Filter¬ wirkung aufgrund der relativ grossen Löcher der Siebkerne. Auch hochfeuerfeste Glasfasersiebe haben sich in der Praxis nicht bewährt.
Aus der DE-OS 2 848 005 ist ein poröser Keramikfilter relativ geringer Durchlässigkeit zum Filtrieren von
OMPI Aluminiumschmelzen bekannt. Die geringe Durchlässigkeit von 12,7 - 127 cm 3 flüssigen Metalls pro cm2 Filterober¬ fläche und Minute (bei einer Höhe des Eingusstrichters über dem Filter von 15 bis 30 cm) und die beschränkte Temperaturbeständigkeit des für Aluminiumschmelzen mit einer Vergiesstemperatur von ca. 750 C ausgelegten vorbe¬ kannten Keramikfilters macht diesen allerdings ungeeignet für den Einsatz beim Vergiessen von Metallen mit einer deutlich höheren Vergiesstemperatur, wie beispielsweise Eisen und dessen Legierungen.
Hauptaufgabe der vorliegenden Erfindung ist es einen Keramikfilter zu schaffen, der eine wirkungsvolle Reini¬ gung auch von solchen Metallschmelzen ermöglicht, die eeiinnee VVeerrggiieesssstteemmppeerraattuurr *von über 1000 C aufweisen, ins- besondere von Gusseisen.
Im speziellen liegt die Aufgabe in der Schaffung eines Keramikfilters der vorgenannten Art, welcher eine hohe Temperaturbeständigkeit im Bereich von 1350 - 1650 C aufweist und eine hohe Vergiessgeschwindigkeit erlaubt.
Eine weitere Aufgabe bei vorliegender Erfindung besteht in der ZurverfügungsStellung eines Verfahrens zur Her¬ stellung eines solchen Keramikfilters, das sowohl die Einhaltung der erforderlichen Spezifikationen garantiert als auch eine rationelle Fertigung für die Massenproduk¬ tion erlaubt.
"Weitere Aufgaben und Vorteile sind aus der nachstehenden Beschreibung ersichtlich. Erfindungsgemäss werden die Aufgaben nach einem Produkt gemäss Anspruch 1, vorzugsweise gemäss Anspruch 2 und nach einem Verfahren gemäss Anspruch 12 gelöst.
Gegenstand der Erfindung ist somit ein Keramikfilter mit offenzelliger Schaumstruktur auf der Basis von Al20_ oder sonstigen hochfeuerfesten Stoffen zum Filtrieren von Me¬ tallschmelzen, gekennzeichnet durch eine Durchflussge¬ sscchhwwiinnddiiggkkeeiitt vvoonn .200 - 5000 cm 3 Schmelze pro cm2 Filter- fläche pro Minute.
Die erfindungsgemässe Durchflussgeschwindigkeit lässt sich durch eine Vielzahl von Kombinationen der Hauptparameter Porenanzahl pro cm / Porosität / Dicke des Filters er¬ reichen und gilt für eine Lage des Eingusstrichters über dem Filter von 15 bis 30 cm.
Es ist gefunden worden, dass die erfindungsgemässen Filter, insbesondere beim Vergiessen von Gusseisen, gegenüber den bisher bekannten Mitteln eine deutlich verbesserte Reini¬ gungswirkung und wegen ihrer Temperaturbeständigkeit auch eine erhöhte Betriebssicherheit aufweisen. Zudem bewirkt die Verwendung des erfindungsgemässen Filters keine Ver¬ änderung der Zusammensetzung der filtrierten Schmelze.
Zahlreiche Vorteile werden bei der Verwendung des erfin¬ dungsgemässen Filters erreicht, von denen eine Anzahl vorstehend erwähnt sind und nachstehend ausführlicher besprochen werden.
Vorteilhafterweise wird ein Keramikfilter verwendet, welcher pro Zentimeter Längenausdehnung 0,5 - 18, vorzugsweise 0,5 - 8, Poren aufweist. Die relative Grobporigkeit des erfindungsgemässen Filters zusammen mit einer möglichst geringen Dicke des Filters z.B. 1 cm bewirken eine hohe Durchflussgeschwindigkeit, was eine Schonung des Form¬ stoffes bedeutet.
Durch die gewünschte Grobpoxigkeit ergibt sich gegenüber bekannten Filtern eine geringere Porosität, die sich von 0,95 bis hinunter zu 0,3 erstreckt. Die Porosität P wird dabei nach folgender Formel bestimmt:
" ds
K in der d_ die Dichte der festen keramischen Masse und d_ die Dichte des keramischen Schaumes ist.
um ein wirksames Filter zu erhalten sollte die offen- zellige Schaumstruktur einen hohen Gleichförmigkeitsgrad aufweisen. Dabei ist zu beachten, dass höchstens 5 %, vorzugsweise höchstens 2 % blockierte Poren, möglichst in gleichmässiger Verteilung, vorhanden sind um eine Kanal¬ bildung und damit eine Herabsetzung des Wirkungsgrades des Filters zu vermeiden.
Eine grosse Anzahl von Materialien kann zur Herstellung des erfindungsgemässen Filters verwendet werden.
Hauptbestandteil ist dabei vorzugsweise Al2O3 in einer Menge von 60 - 95 Gew. %, vorzugsweise von 75 - 80 Gew. %.
Es können aber auch andere hochfeuerfeste, insbesondere hochtonerdehaltige Stoffe verwendet werden, wie z.B. Silli- mannit, Mullit oder Schamotte.
'BUREΛ Als besonders vorteilhaft hat sich die Verwendung von Aluminiumoxidpulver erwiesen bei dem mindestens 90 % der Partikel eine maximale Ausdehnung von 4*10 m, vor¬ zugsweise l-lθ" m und eine plättchenförmige Struktur aufweisen.
Weitere Bestandteile des erfindungsgemässen Filters sind Glühprodukte von Alumosilikaten, beispielsweise Kaolin, in einer Menge von 2 - 10 Gew. %, vorzugsweise von 3 - 5 Gew. %.
Ein weiterer Bestandteil ist das Glühprodukt eines Binders, z.B. Monoaluminiumphosphat, der durch den Abbindeprozess nach der Formel:
Al203 + A1(H2P04)3 ^3A1P04 + 3H20
zu Alu iniumorthophosphat umgewandelt wird.
Die Verwendung von Cr20-, wie sie bei bekannten Filtern zur Hochtemperaturbeständigkeit notwendig ist, erübrigt sich beim erfindungsgemässen Filter.
Nach vorliegender Erfindung werden die vorstehenden Auf¬ gaben und die Vorteile in einfacher Weise nach dem folgen¬ den Herstellungsverfahren erhalten.
Eine offenzellige Schaumstruktur eines organischen Mate¬ rials wird mit einer Aufschlämmung einer keramischen Aluminiumoxid enthaltenden Zusammensetzung und einem Binder imprägniert. Anschliessend wird das Lösungsmittel der Aufschlämmung und die organische Substanz entfernt. - 6 -
Das organische Material kann ein retikulierter. Polyurethan¬ schaum auf Polyester- oder Polyätherbasis mit einem εkelettartigen Netz von Zellstegen dreidimensionaler Struktur sein.
Die Aufschlämmung ist vorzugsweise eine wässerige z.B. mit einem Anteil von 3 - 8 % Wasser.
Die wässerige Aufschlämmung der hochthixotropen keramischen
Zusammensetzung weist vorteilhafterweise eine Viskosität im Bereich von 10 4 bis 2-104 Zentipoise bei 20 Umdrehungen pro Minute auf.
Nach der vollständigen Durchtränkung des Schaumstoffes wird die überschüssige Aufschlämmung vom Schaumstoff entfernt, indem der imprägnierte Schaumstoff durch ein System von Walzenpaaren geführt wird. Danach wird der Schaumstoff getrocknet um das Wasser zu entfernen. Die
Entfernung der organischen Substanz und des Restwassers kkaannnn dduurr<ch Erhitzen, beispielsweise auf über 225 C erfolgen.
Besonders wirkungsvolle Filter können dadurch hergestellt werden, dass man sie einer Nach-Iinprägnierung unterwirft um die an der Oberfläche des Filters liegenden exponier¬ ten Zellstege gegen das Abbrechen zu sichern und um dem Filter eine erhöhte Temperaturbeständigkeit zu verleihen. Dazu wird der oben beschriebene, getrocknete und impräg¬ nierte Schaumstoff an der Oberfläche einer weiteren Imprägnierung mit einer keramischen Au schlämmung unter¬ worfen, nochmals getrocknet und zwecks Entfernung der organischen Substanz erhitzt und bei Temperaturen zwischen 1200° C und 1500° C, vorzugsweise zwischen 1350 C und 1450° C calziniert.
Diese Oberflächenimprägnierung kann entweder vor oder nach dem Brennvorgang erfolgen. Nach erfolgtem Brennvorgang wird der nachimprägnierte Keramikfilter bei Temperaturen zwischen 150° C und 600° C, vorzugsweise zwischen 250 C und 350 C getrocknet.
Bei der Imprägnierung und Nachimprägnierung hat sich die Verwendung eines Netzmittels in einer Menge von beispiels¬ weise 0,5 - 2,0 Gew. % als vorteilhaft erwiesen.
Das thixotrope keramische Material kann gemäss vorstehen¬ den Ausführungen in einer Vielzahl von Rezepturen herge¬ stellt werden, besonders gute Resultate werden jedoch mit 65 % A1203, 3 % Kaolin, 1 % Alkylbenzolsulfonat als Netz¬ mittel, 25 % Monoaluminiumphosphat und 6 % Wasser erzielt.
Die Filter- erden vor oder in der Sandform bzw. der Kokille verwendet, wobei ein Einbau möglichst nahe am Gussstück er¬ folgen soll.
In den beiliegenden Zeichnungen sind unterschiedliche Anordnungen eines Keramikfilters in einer Giessform dar¬ gestellt.
Die Fig. 1 bis 6 zeigen Teilausschnitte der Hohlräume einer Form in perspektivischer Darstellung.
Die Fig. 1 zeigt die Anordnung eines Keramikfilters 1 im Lauf 2 einer Giessform, wie z.B. einer Sandform, wobei
OMPI der Lauf zwischen einem, einen Eingusstrichter aufweisenden Einguss 3 und dem weiter nicht dargestellten Formhohlraum angeordnet ist. Der vom Einguss 3 abzweigende erste Teil 2a des Laufes ist im Formunterteil angeordnet, wobei an dessen anderem erweiterten Ende der Keramikfilter 1 ange¬ ordnet ist. Der zweite Teil 2b des Laufes ist dann im Formoberteil angeordnet und führt von dem gezeigten er¬ weiterten, über dem Keramikfilter 1 angeordneten einem Ende zum Formhohlraum. Die in den Einguss 3 eingegossene Schmelze durchfliesst somit den Keramikfilter von unten nach oben wobei die gefilterte Schmelze durch den Teil 2b des Laufes in den Formhohlraum gelangt.
Die Fig. 2 zeigt eine Anordnung, bei welcher der erste Teil 2a des Laufes 2 im Formoberteil und der zweite Teil 2b des Laufes 2 mit dem Keramikfilter 1 im Formunterteil angeordnet ist, wodurch die Schmelze den Keramikfilter von oben nach unten durchfliesst. In beiden Fällen ist der Keramikfilter sehr einfach von oben in den Formunter¬ teil einsetzbar.
Fig. 3 zeigt die Anordnung eines als runde Platte ausge¬ bildeten Keramikfilters 1 zwischen dem Einguss 3 und dem zum Formhohlraum führenden Lauf 2, wobei der Filter 1 ebenfalls leicht in den mit dem Lauf 2 versehenen Form- - unterteil einsetzbar ist und von oben nach unten von der Schmelze durchflössen wird.
Fig. 4 zeigt die Anordnung des Keramikfilters 1 zwischen dem Lauf 2 und einem darüber im Formoberteil angeordneten geschlossenen Speiser 4 - genannt auch Massel - von welchem die Schmelze direkt in den Formhohlraum des herzustellenden Gussstückes 5 gelangt. Der Keramikfilter 1 wird von der Schmelze von unten nach oben durchflössen und ist von oben in den Formunterteil einsetzbar.
In dem in Fig. 5 gezeigten Ausführungsbeispiel ist der Keramikfilter 1 zwischen dem geschlossenen Speiser 4 und dem Formhohlraum für das Gussstück 5 angeordnet. Der plattenförmige Keramikfilter 1 ist in senkrechter Lage in den Formunterteil und/oder Formoberteil einsetzbar und dient gleichzeitig als vorgezeichnete Brechstelle - auch Brechkern genannt -' zur Trennung des Gussstückes 5 von dem aus Einguss 3, Lauf 2 und Speiser 4 bestehenden Eingusssystem.
Fig. 6 zeigt den direkten Einsatz eines Keramikfilters 1 zwischen dem Einlaufzapfen 3 und dem Gussstück 5, wobei hier ebenfalls der Keramikfilter 1 die vorgezeichnete Brechstelle bildet. Der Keramikfilter wird wie aus Fig. 6 ersichtlich von oben nach unten von der Schmelze durch¬ flössen wobei eine Anordnung am unteren Teil des Guss¬ stückes 5 mit Durchfluss von unten nach oben ebenfalls möglich ist.

Claims

P a t e n t a n s p r ü c h e
1. Keramikfilter mit offenzelliger Schaumstruktur auf der Basis von Al-0- oder sonstigen hochfeuerfesten Stoffen zum Filtrieren von Metallschmelzen, gekenn¬ zeichnet durch eine Durchflussgeschwindigkeit von
200 - 5000 cm 3 Schmelze pro cm2 Filterfläche pro
Minute.
2. Keramikfilter nach Anspruch 1, gekennzeichnet durch eine Durchflussgeschwindigkeit von 1000 - 400O cm
2
Schmelze pro cm Filterfläche pro Minute, vorzugs¬ weise von 1300 bis 3700 cm/min.
3. Keramikfilter nach Anspruch 1 oder 2, gekennzeichnet durch eine Porenanzahl von 0,5 - 18 pro cm Längen- ausdehnung des Filters, vorzugsweise von 0,5 — 8 pro cm.
4. Keramikfilter nach Anspruch 1 bis 3, gekennzeichnet durch eine Porosität von 0,3 - 0,95, vorzugsweise von 0,3 - 0,8.
5. Keramikfilter nach Anspruch 1 bis 4, gekennzeichnet
"BU REΛ ∑ durch einen Gehalt an hochtonerdehaltigen Stoffen, vor¬ zugsweise an Al-0- von 60 - 95 Gew. %, vorzugsweise von 75 - 80 Gew. %.
6. Keramikfilter nach Anspruch 1 bis 5, gekennzeichnet durch einen Gehalt an Glühprodukten von Alumosilikaten beispielsweise Kaolin, von 1 - 10 Gew. %, vorzugsweise von 1 - 5 Gew. %.
7. Keramikfilter nach Anspruch 1 bis 6, dadurch gekenn¬ zeichnet, dass mindestens 90 % der A120_ - Partikel eine maximale Ausdehnung von 4*10 m, vorzugsweise von 1*10 m aufweisen.
8. Keramikfilter nach Anspruch 1 bis 7, dadurch gekenn¬ zeichnet, dass die Dicke des Filters 5 bis 30 mm be¬ trägt.
9. Keramikfilter nach Anspruch 2, gekennzeichnet durch eine Durchflussmenge von 2 - 40, vorzugsweise von 18 -
28 kg Schmelze pro cm 2 Filterfläche pro -Minute.
10. Keramikfilter nach Anspruch 1 bis 9, dadurch gekenn¬ zeichnet, dass es weniger als 5 %, vorzugsweise weniger als 2 % blockierte Poren aufweist die in regelmässigen Abständen angeordnet sind.
11. Keramikfilter nach Anspruch 1 bis 10, dadurch gekenn¬ zeichnet, dass es keine chromhaltigen Substanzen, ins¬ besondere kein Cr.O-, enthält.
12. Verfahren zur Herstellung eines Keramikfilters nach
"BυREΛt p .pi iPO Anspruch 1 bis 11, dadurch gekennzeichnet, dass man eine offenzellige Schaumstruktur eines organischen Materials mit einer Aufschlämmung einer keramischen, Al-O- - enthaltenden Zusammensetzung und einem Binder imprägniert und anschliessend das Lösungsmittel der Aufschlämmung und die organische Substanz entfernt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man eine offenzellige Schaumstruktur eines organi¬ schen Materials mit einer wässerigen Aufschlämmung von Al-O, - Partikeln, vorzugsweise in einer Menge von 60 - 70 Gew. % und AKH-PO.),, vorzugsweise in einer Menge von 10 - 30 Gew. % imprägniert und an¬ schliessend das Wasser und die organische Substanz, vorzugsweise durch Erhitzen auf über 225 C, entfernt.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekenn¬ zeichnet, dass das organische Material aus einem retikulierten Polyurethanschaum auf Polyester- oder Polyätherbasis mit einem skelettartigen Netz von Zellstegen dreidimensionaler Struktur besteht.
15. Verfahren nach Anspruch 12 bis 14, dadurch gekenn¬ zeichnet, dass man ein offenzelliges organisches Polymerisat mit einer wässerigen Aufschlämmung einer hochthixotropen keramischen Zusammensetzung mit einer Viskosität im Bereich von 10*10 bis 20*10 Centipoise bei 20 D/min. bis zur vollständigen Durchtränkung des Schaumstoffes imprägniert und danach überschüssige Aufschlämmung von dem Schaumstoff entfernt, indem der imprägnierte Schaumstoff durch ein System von Walzen¬ paaren geführt wird und anschliessend den Schaumstoff trocknet.
16. Verfahren nach Anspruch 12 bis 15, dadurch gekenn¬ zeichnet, dass der getrocknete und imprägnierte Schaumstoff an der Oberfläche einer Nachimprägnie¬ rung mit einer keramischen Aufschlämmung unter¬ worfen, getrocknet, zum Entfernen der organischen Substanz erhitzt und bei Temperaturen zwischen 800 C und 1500° C, vorzugsweise zwischen 1200 C und 1450 C, calziniert wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass man die Nachimprägnierung nach dem Brennvorgang vornimmt und danach den Keramikfilter bei Temperaturen zwischen 150 C und 600 C, vorzugsweise zwischen 250° C und 350° C, trocknet.
18. Verfahren nach Anspruch 12 bis 17, dadurch gekenn¬ zeichnet, dass bei der Imprägnierung ein Netzmittel, vorzugsweise ein "organisches Derivat der Sulfonsäure in einer Menge von vorzugsweise 0,5 - 2 Gew. % ver¬ wendet wird.
19. Verwendung eines Keramikfilters nach Anspruch 1 bis 11 zur Reinigung von geschmolzenen Metallen.,und Metall¬ legierungen, vorzugsweise von Eisen, mit einer Ver¬ giesstemperatur von über lOOO C, insbesondere beim Vergiessen in Sandformen oder Kokillen.
20. Verwendung nach Anspruch 19, dadurch gekennzeichnet, dass die Metallschmelze eine Gusseisenschmelze, vor¬ zugsweise eine kugelgraphitisch erstarrende, ist.
21. Verwendung nach Anspruch 19 oder 20, dadurch gekenn- zeichnet, dass der Keramikfilter (1) im Lauf (2) der Form angeordnet ist.
22. Verwendung nach Anspruch 19 oder 20, dadurch gekenn¬ zeichnet, dass der Keramikfilter (1) zwischen Einguss
(3) und Lauf (2) angeordnet ist.
23. Verwendung nach Anspruch 19 oder 20, dadurch gekenn¬ zeichnet, dass der Keramikfilter (1) zwischen Lauf
(2) und Speiser (4) angeordnet ist.
24. Verwendung nach Anspruch 19 oder 20, dadurch gekenn¬ zeichnet, dass der Keramikfilter (1) zwischen Speiser
(4) und Gussstück (5) angeordnet ist und gleichzeitig als vorgezeichnete Bruchstelle (Brechkern) verwendet wird.
25. Verwendung nach Anspruch 19 oder 20, dadurch gekenn¬ zeichnet, dass der Keramikfilter (1) zwischen dem, vorzugsweise als Speiser dienenden Einlaufzapfen
(3) und dem Gussstück (5) angeordnet ist und gleich¬ zeitig als vorgezeichnete Bruchstelle (Brechkern) verwendet wird.
PCT/CH1982/000048 1981-03-27 1982-03-26 Ceramic filter,method for manufacturing and utilizing this filter WO1982003339A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU82093/82A AU8209382A (en) 1981-03-27 1982-03-26 Ceramic filter, method for manufacturing and using this filter
BR8207248A BR8207248A (pt) 1981-03-27 1982-03-26 Filtro de ceramica processo para sua producao e uso do mesmo
IN1086/CAL/82A IN158599B (de) 1981-03-27 1982-09-20
FI824075A FI824075L (fi) 1981-03-27 1982-11-26 Keramikfilter, foerfarande foer dess framstaellning och dess anvaendning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2089/81810327 1981-03-27
CH208981 1981-03-27

Publications (1)

Publication Number Publication Date
WO1982003339A1 true WO1982003339A1 (en) 1982-10-14

Family

ID=4225633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1982/000048 WO1982003339A1 (en) 1981-03-27 1982-03-26 Ceramic filter,method for manufacturing and utilizing this filter

Country Status (7)

Country Link
EP (1) EP0074978A1 (de)
JP (1) JPS58500434A (de)
BR (1) BR8207248A (de)
ES (1) ES8306625A1 (de)
IT (1) IT1151368B (de)
WO (1) WO1982003339A1 (de)
ZA (1) ZA822136B (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305445A1 (de) * 1983-02-11 1984-08-16 Schweizerische Aluminium Ag, Chippis Keramischer, mit poren versehener filterkoerper und ein verfahren zum herstellen desselben
EP0126847A1 (de) * 1984-02-17 1984-12-05 Georg Fischer Aktiengesellschaft Keramikfilter
EP0159963A2 (de) * 1984-04-23 1985-10-30 Alusuisse-Lonza Services Ag Filter aus Keramik mit offenzelliger Schaumstruktur
EP0234825A1 (de) * 1986-02-25 1987-09-02 Foseco International Limited Giessen von flüssigen Eisenmetallen und deren Giessformen
EP0243217A1 (de) * 1986-03-19 1987-10-28 Ceramiques Et Composites Verfahren zur Herstellung eines Filters für flüssige Metalle
US4713180A (en) * 1984-02-15 1987-12-15 Georg Fischer Aktiengesellschaft Ceramic filter and method for using same
WO1988004587A1 (en) * 1986-12-15 1988-06-30 Schweizerische Aluminium Ag Casting funnel for molten metals
EP0294970A2 (de) * 1987-06-10 1988-12-14 Foseco International Limited Modelle für Metallguss
DE3901602A1 (de) * 1988-02-12 1989-08-24 Fischer Ag Georg Speisereingusssystem fuer eine giessform
DE3905080C1 (en) * 1989-02-18 1989-11-30 Georg Fischer Ag, Schaffhausen, Ch Ceramic filter for filtering metal melts
FR2641475A1 (fr) * 1989-01-11 1990-07-13 Fischer Ag Georg Filtre ceramique pour la filtration de metaux en fusion
US5033531A (en) * 1989-07-26 1991-07-23 Foseco International Limited Casting of molten iron and filters for use therein
EP0507463A2 (de) * 1991-04-05 1992-10-07 Foseco International Limited Filter zur Filtration von Leichtmetallen
US7963402B2 (en) 2005-09-05 2011-06-21 Sud-Chemie Hi-Tech Ceramics Inc. Filter device for molten metal filtration and method for producing such filters
CN103203431A (zh) * 2013-05-04 2013-07-17 日月重工股份有限公司 铸造用过滤器
CN105689650A (zh) * 2016-04-28 2016-06-22 江苏锡华铸造有限公司 一种铸造用带集渣包的浇注系统
CN110862269A (zh) * 2019-12-10 2020-03-06 萍乡市恒升特种材料有限公司 一种高强度泡沫陶瓷的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090094A (en) * 1961-02-21 1963-05-21 Gen Motors Corp Method of making porous ceramic articles
GB1377691A (en) * 1973-01-03 1974-12-18 Foseco Int Porous ceramic materials
US3893917A (en) * 1974-01-02 1975-07-08 Alusuisse Molten metal filter
FR2305407A1 (fr) * 1975-03-28 1976-10-22 Alusuisse Filtre en mousse ceramique, notamment pour la filtration du metal fondu
FR2409785A1 (fr) * 1977-11-25 1979-06-22 Alusuisse Procede et dispositif pour filtrer du metal fondu
GB2027688A (en) * 1978-08-12 1980-02-27 Bridgestone Tire Co Ltd Ceramic porous body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090094A (en) * 1961-02-21 1963-05-21 Gen Motors Corp Method of making porous ceramic articles
GB1377691A (en) * 1973-01-03 1974-12-18 Foseco Int Porous ceramic materials
US3893917A (en) * 1974-01-02 1975-07-08 Alusuisse Molten metal filter
FR2305407A1 (fr) * 1975-03-28 1976-10-22 Alusuisse Filtre en mousse ceramique, notamment pour la filtration du metal fondu
FR2409785A1 (fr) * 1977-11-25 1979-06-22 Alusuisse Procede et dispositif pour filtrer du metal fondu
GB2027688A (en) * 1978-08-12 1980-02-27 Bridgestone Tire Co Ltd Ceramic porous body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Foundry Management Technology, Vol. 7, No, 102, 1974, D.C. SWANSON 'New Method of Filtering Molten Aluminium' pages 94, 96, see the whole document *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305445A1 (de) * 1983-02-11 1984-08-16 Schweizerische Aluminium Ag, Chippis Keramischer, mit poren versehener filterkoerper und ein verfahren zum herstellen desselben
US4713180A (en) * 1984-02-15 1987-12-15 Georg Fischer Aktiengesellschaft Ceramic filter and method for using same
EP0126847A1 (de) * 1984-02-17 1984-12-05 Georg Fischer Aktiengesellschaft Keramikfilter
EP0159963A3 (en) * 1984-04-23 1988-09-07 Schweizerische Aluminium Ag Ceramic filter with an open cells foam structure
EP0159963A2 (de) * 1984-04-23 1985-10-30 Alusuisse-Lonza Services Ag Filter aus Keramik mit offenzelliger Schaumstruktur
EP0234825A1 (de) * 1986-02-25 1987-09-02 Foseco International Limited Giessen von flüssigen Eisenmetallen und deren Giessformen
AU583446B2 (en) * 1986-02-25 1989-04-27 Foseco International Limited Casting of molten ferrous metal and moulds for use therein
EP0466215A3 (en) * 1986-03-19 1992-03-11 Ceramiques Et Composites Filter for liquid metals, based on alveolar ceramic material, process for the production thereof, and its use in filtering liquid metals or alloys having high melting points
FR2599990A1 (fr) * 1986-03-19 1987-12-18 Ceramiques Composites Filtre pour metaux liquides a base de materiau ceramique alveolaire, son procede de preparation et son application a la filtration de metaux ou d'alliages liquides de tres haut point de fusion
EP0243217A1 (de) * 1986-03-19 1987-10-28 Ceramiques Et Composites Verfahren zur Herstellung eines Filters für flüssige Metalle
EP0466215A2 (de) * 1986-03-19 1992-01-15 Ceramiques Et Composites Filter für flüssige Metalle auf der Basis von zelliger Keramik, Verfahren zu seiner Herstellung und seine Verwendung zum Filtrieren von flüssigen Metallen und Legierungen mit hohem Schmelzpunkt
WO1988004587A1 (en) * 1986-12-15 1988-06-30 Schweizerische Aluminium Ag Casting funnel for molten metals
EP0294970A2 (de) * 1987-06-10 1988-12-14 Foseco International Limited Modelle für Metallguss
EP0294970A3 (en) * 1987-06-10 1989-11-29 Foseco International Limited Metal casting patterns
DE3901602A1 (de) * 1988-02-12 1989-08-24 Fischer Ag Georg Speisereingusssystem fuer eine giessform
BE1002969A5 (fr) * 1989-01-11 1991-10-08 Fischer Ag Georg Filtre ceramique pour la filtration de metaux en fusion.
FR2641475A1 (fr) * 1989-01-11 1990-07-13 Fischer Ag Georg Filtre ceramique pour la filtration de metaux en fusion
DE3905080C1 (en) * 1989-02-18 1989-11-30 Georg Fischer Ag, Schaffhausen, Ch Ceramic filter for filtering metal melts
US5033531A (en) * 1989-07-26 1991-07-23 Foseco International Limited Casting of molten iron and filters for use therein
EP0507463A2 (de) * 1991-04-05 1992-10-07 Foseco International Limited Filter zur Filtration von Leichtmetallen
EP0507463A3 (en) * 1991-04-05 1993-03-17 Foseco International Limited Filters for light metals
US7963402B2 (en) 2005-09-05 2011-06-21 Sud-Chemie Hi-Tech Ceramics Inc. Filter device for molten metal filtration and method for producing such filters
CN103203431A (zh) * 2013-05-04 2013-07-17 日月重工股份有限公司 铸造用过滤器
CN105689650A (zh) * 2016-04-28 2016-06-22 江苏锡华铸造有限公司 一种铸造用带集渣包的浇注系统
CN110862269A (zh) * 2019-12-10 2020-03-06 萍乡市恒升特种材料有限公司 一种高强度泡沫陶瓷的制备方法

Also Published As

Publication number Publication date
ES510842A0 (es) 1983-06-01
BR8207248A (pt) 1983-03-01
ZA822136B (en) 1983-03-30
ES8306625A1 (es) 1983-06-01
IT1151368B (it) 1986-12-17
JPS58500434A (ja) 1983-03-24
IT8220410A0 (it) 1982-03-26
EP0074978A1 (de) 1983-03-30

Similar Documents

Publication Publication Date Title
WO1982003339A1 (en) Ceramic filter,method for manufacturing and utilizing this filter
DE3424504C2 (de)
EP0058812B1 (de) Poröser Keramikfilter und Verfahren zu dessen Herstellung
DE3000835C2 (de) Verfahren zur Herstellung von keramischen Schaumfiltern zum Filtrieren von Metallschmelzen
DE2932614C2 (de) Poröse Keramikkörper, Verfahren zu deren Herstellung und deren Anwendung
DE69823473T2 (de) Keramische Filter, Filtereinrichtung und Verfahren zum Filtrieren von Metallschmelzen
EP0554682B1 (de) Verfahren zur Herstellung verschleissfester Oberflächenschichten
DE1262515B (de) Thermisch isolierte Giessformen
EP1604756A2 (de) Verfahren zur Herstellung metallischer Gitterstrukturen
DE2531162C3 (de) Gebrannter, poröser Gegenstand und Verfahren zu seiner Herstellung
DE1205363B (de) Verfahren zum Herstellen poroeser Werkstuecke aus Metallfasern
EP0064474B1 (de) Keramischer Filter zur Filtration von schmelzflüssigen Metallen und Verfahren zu dessen Herstellung
WO2018002027A1 (de) Kern-hülle-partikel zur verwendung als füllstoff für speisermassen
EP0219610A2 (de) Giessform zur Herstellung von Gitterplatten für Bleiakkumulatoren
DE3907500C1 (en) Gas bubble brick with directed porosity and method for its manufacture
EP0159963B1 (de) Filter aus Keramik mit offenzelliger Schaumstruktur
DE4116567C2 (de) Partikelabsorber zum Abtrennen von mitgeführten Partikeln aus einem Metallstrom
DE10221074B4 (de) Gießform zur Herstellung eines Gußteils unter Verwendung von Formgrundstoff und Verwendung einer solchen Gießform
DE3511825A1 (de) Sinterkoerper aus keramischem material
DE102004034802B4 (de) Metallische Dauerform zur Herstellung von Großgussteilen aus Metalllegierungen
WO1998050186A1 (de) Verfahren zur herstellung von porösen formkörpern
EP0206989A1 (de) Asbestfreies Material mit anorganischen Fasern sowie ein Verfahren zur Herstellung des Materials
DE4226276A1 (de) Keramischer gesinterter Filterkörper
DE69636077T2 (de) Filter zur Reinigung von Abgas
DE8226292U1 (de) Keramikfilter

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR FI JP KP SU US

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1982900929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 824075

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1982900929

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1982900929

Country of ref document: EP