US7910678B2 - Copolymers having 1-methyl-2-methoxyethyl moieties - Google Patents

Copolymers having 1-methyl-2-methoxyethyl moieties Download PDF

Info

Publication number
US7910678B2
US7910678B2 US11/942,700 US94270007A US7910678B2 US 7910678 B2 US7910678 B2 US 7910678B2 US 94270007 A US94270007 A US 94270007A US 7910678 B2 US7910678 B2 US 7910678B2
Authority
US
United States
Prior art keywords
range
polymer
copolymers
coating
biocompatible polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/942,700
Other languages
English (en)
Other versions
US20080125560A1 (en
Inventor
Stephen Pacetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Laboratories
Original Assignee
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Laboratories filed Critical Abbott Laboratories
Priority to US11/942,700 priority Critical patent/US7910678B2/en
Assigned to ABBOTT LABORATORIES reassignment ABBOTT LABORATORIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PACETTI, STEPHEN
Publication of US20080125560A1 publication Critical patent/US20080125560A1/en
Application granted granted Critical
Publication of US7910678B2 publication Critical patent/US7910678B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices

Definitions

  • Embodiments of the invention relate to polymeric coatings for coating implantable medical devices. More particularly, embodiments of the invention relate to copolymers that include a 1-methyl-2-methoxyethyl moiety and medical devices coated with the copolymers.
  • Implantable medical devices can be coated with polymers to give the implantable device beneficial properties when used in living tissue.
  • Implant coatings typically need to simultaneously fulfill many criteria.
  • desirable properties for implant coating properties include: adhesion to the implant (e.g., adhesion to stent struts) to prevent delamination; adequate elongation to accommodate implant deformation without buckling or cracking; sufficient hardness to withstand crimping operations without excessive damage; sterilizability; ability to control the release rate of a drug; biocompatibility including hemocompatibility and chronic vascular tissue compatibility; in the case of durable or permanent coatings, the polymer needs to be sufficiently biostable to avoid biocompatibility concerns; processability (e.g. production of stent coatings that are microns thick); reproducible and feasible polymer synthesis; and an adequately defined regulatory path.
  • methacrylate polymers exhibit several of the forgoing properties. However, most, if not all, methacrylate homopolymers lack a desired property or a combination of desired properties. For example, homopolymers of methyl methacrylate and ethyl methacrylate are too brittle. Homopolymers of n-butyl methacrylate (PBMA) are typically too hydrophobic for adequate drug elution (water absorption is only 0.4%).
  • PBMA n-butyl methacrylate
  • the polymer coatings of the invention include a hydrophobic monomer and a 1-methyl-2-methoxyethyl acrylate monomer (“MMOEA”) or a 1-methyl-2-methoxyethyl methacrylate monomer.
  • MOEA 1-methyl-2-methoxyethyl acrylate monomer
  • copolymers of the invention are biocompatible and suitable for use as coatings on implantable medical devices.
  • a copolymer according to the invention has the following formula.
  • m is in a range from about 0.1 to about 0.995
  • n is in a range from 0.005 to 0.9
  • R 1 is a straight chain, branched, unsaturated, or cyclic hydrocarbon having one to sixteen carbon atoms
  • R 2 and R 3 are independently a methyl or a hydrogen.
  • the combination of the MMOEA monomer with a hydrophobic monomer gives the copolymers of the invention good mechanical properties and useful drug permeability.
  • the polymer coating can be thermoplastic without cross-linking, which is beneficial for the elongation properties of the coating.
  • FIG. 1A illustrates an example of a stent coated with a co-polymer according to one embodiment of the invention
  • FIG. 1B is a cross-section of a strut of the stent of FIG. 1A .
  • Embodiments of the invention relate to copolymers suitable for use on implantable medical devices.
  • the copolymers include a hydrophobic monomer and an acryloyl or methacryloyl ester of a propylene glycol monomethyl ether, also referred to as 1-methyl-2-methoxyethyl acrylate (“MMOEA”).
  • MOEA 1-methyl-2-methoxyethyl acrylate
  • acrylate monomer includes, but is not limited to, methacrylates and acrylates.
  • the combination of the hydrophobic monomer and the MMOEA monomer advantageously provides desired mechanical strength, biocompatibility, and drug permeability in the copolymers of the invention.
  • the hydrophobic monomer is an acrylate monomer that includes hydrophobic groups attached through an ester linkage.
  • the hydrophobic group can be a straight chained, branched, unsaturated, or cyclic hydrocarbon.
  • the hydrophobic group is typically selected to give the copolymer a suitable water absorption, glass transition temperature, and mechanical strength without cross-linking.
  • hydrophobic monomers include, but are not limited to, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, 2-ethyl-hexyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, n-hexyl methacrylate, isobornyl methacrylate, trimethylcyclohexyl methacrylate, combinations of these, and the like.
  • the MMEOA monomer is selected to increase water adsorption without adversely affecting the T g of the polymer coating.
  • the MMEOA monomer increases the water adsorption of the polymer coating because of the moderately polar groups in the side chain.
  • the MMEOA monomer can be an acrylate or a methacrylate.
  • the chemical structure of 1-methyl-2-methoxyethyl methacrylate (“MMEOM”) is shown below.
  • the alkoxy structure of the 1-methoxy-2-ethoxyethyl side group confers a degree of hydrophilicity that can be used to vary the water swelling property of the polymer. Varying the water swelling varies the drug permeability of the polymer coating.
  • the MMEOA monomer is copolymerized with a hydrophobic monomer.
  • the copolymer has the following formula.
  • the ratio of MMEOA monomer “n” to hydrophobic monomer “m” is selected to yield a copolymer with sufficient mechanical strength for use as a coating on an implantable medical device.
  • the concentration of MMEOA monomer is in a range from 10% to 99% and the concentration of hydrophobic monomer is in a range from 1% to 90%.
  • the copolymer can be tuned by adjusting the specific monomer ratio to achieve a desired mechanical strength and elongation.
  • the monomers shown in the chemical formula above and other chemical formulas herein can be in any order within the copolymer molecule and the monomer linkages shown in the chemical formulas only represent that the monomers are part of the same copolymer molecule.
  • the polymeric molecules can include monomers other than those shown in the chemical formulas.
  • the hydrophobic monomer is selected to yield a thermoplastic copolymer that is substantially free of cross-linking. While cross-linking can prevent excessive water swelling, cross-linking can be disadvantageous because it limits elongation, which leads to cracking of the polymer coating. Another benefit of a thermoplastic system is that it is simple to process compared to thermoset polymers.
  • the copolymers of the invention can also be made mechanically robust by increasing the copolymer's molecular weight.
  • the molecular weight of the copolymer can be increased as much as possible so long as processability is not compromised.
  • a high molecular weight yields a higher ultimate elongation for the polymer, which improves coating integrity.
  • high molecular weight typically yields better mechanical properties.
  • MMOEA monomer of the invention Another advantage of the MMOEA monomer of the invention is its biocompatibility. As shown in the chemical structure, the side group of MMOEA has the smallest PEG-type group possible, a single methoxyethyl group. PEG is known for its non-fouling or protein repelling properties.
  • the PMEA coating is the most hemocompatible of the polymers tested.
  • Kocakular et al. investigated the blood compatibility of PMEA coated extracorporeal circuits (Kocakular M., et al., J Bioactive and Compatible Polymers Vol. 17, September 2002, p. 343). Hollow fiber oxygenators coated with PMEA were evaluated during twenty clinical procedures requiring cardiopulmonary bypass. The operations were compared to twenty operations with uncoated hollow fiber oxygenators. PMEA coatings were found to reduce both platelet adhesion and fibrinogen/albumin absorption.
  • a coating of PEMA known as the X coating®, is used in the CAPIOX RX blood oxygenator sold by Terumo.
  • MMOEA Another benefit of MMOEA is the benign nature of its hydrolysis product.
  • the ester bond in MMOEA can potentially hydrolyze in vivo to form 1-methoxy-2-propanol, which is a solvent commonly known as “Dowanol PM”.
  • Dowanol PM The structure of 1-methoxy-2-propanol is shown below.
  • MMOE 1-methyl-2-methoxyethyl moiety
  • 1-methoxy-2-propanol is also very similar to 2-ethoxyethanol and 2-methoxyethanol in structure. Although these compounds are known to be teratogens, the toxicity of 1-methoxy-2-propanol is surprisingly in a range more similar to ethanol. A summary of the toxicity of these solvents is shown in Table 1.
  • the MMEOA monomer advantageously includes an alkoxy group, which is moderately hydrophilic, and useful for tuning the drug permeability, and mechanical robustness of the copolymer.
  • the toxicity of 1-methoxy-2-propanol is in a range that is similar to ethanol. Consequently, the MMEOA monomers of the invention can have the desired hydrophilicity and biocompatibility and are particularly suited for polymeric coatings used on permanent implantable devices.
  • the method of manufacturing the copolymers of the invention generally includes selecting or forming an MMEOA monomer and reacting the MMEOA monomer with a hydrophobic monomer to form a copolymer that is suitable for coating implantable medical devices.
  • the ratio of the hydrophobic monomer to the polar monomer By varying the ratio of the hydrophobic monomer to the polar monomer, the properties of the copolymer may be tuned.
  • the reaction mixture includes about 10% to about 99.5% of a hydrophobic monomer and about 0.5% to about 90% of a MMEOA monomer, based on the total moles of monomer in the reaction mixture.
  • the type and ratio of monomers is selected to yield a copolymer that is biocompatible and mechanically robust.
  • the copolymers can be synthesized using free radical polymerization, cationic polymerization, anionic polymerization, atom transfer radical polymerization, iniferter polymerization, or another suitable reaction technique.
  • Free radical polymerization can be carried out in a solvent using an initiator.
  • solvents suitable for carrying out the polymerization reaction include alcoholic solvents, such as, but not limited to, methanol, ethanol, and isopropyl alcohol.
  • suitable initiators for carrying out the polymerization reaction include peroxides, such as, but not limited to, benzoyl peroxide, and azo compounds.
  • a specific example of a suitable initiator is 2,2′-azo-bis(2-methylpropionitrile).
  • An alternate path to synthesizing the polymer includes copolymerizing a functional acrylate monomer and one or more hydrophobic monomers to yield a copolymer and then modifying the copolymer to include the MMOE group.
  • a functional methacrylate monomer and a hydrophobic monomer are reacted to yield the following copolymer.
  • the polymerization of this polymer can be carried out using the polymerization techniques described above. Thereafter, 1-methoxy-2-propanol is coupled to the carboxy groups of the methacrylic acid.
  • Several coupling chemistries are possible including conversion to the acid chloride or use of carbodiimides.
  • a particularly facile technique uses dicyclohexyl carbodiimide (DCC) and 4-(dimethylamino)pyridinium (DPTS) as described in M. Trollsas, J. Hedrick, Macromolecules 1998, 31, 4390-4395.
  • Yet another technique for synthesizing the MMEOA including copolymers begins with the homopolymer of the hydrophobic monomer.
  • the R 1 groups of this homopolymer can be exchanged off by catalytic esterification using an organic acid catalyst such as, but not limited to, p-toluene sulfonic acid in the presence of excess 1-methoxy-2-propanol.
  • an organic acid catalyst such as, but not limited to, p-toluene sulfonic acid in the presence of excess 1-methoxy-2-propanol.
  • the R 1 —OH alcohol so formed to be more volatile than the 1-methoxy-2-propanol (BP 119° C.) to facilitate its removal by distillation to drive the reaction.
  • methacrylates which are esters of methanol, ethanol, n-propanol, and isopropanol are more facile to process by this scheme than, for example, poly(n-butyl methacrylate) as the n-butanol boiling point (117° C.) is very close to that of 1-methoxy-2-propanol.
  • the copolymer compositions are manufactured to have a desired T g , when hydrated.
  • the T g of the copolymer can be calculated by knowing the amount of water absorbed and the T g derived from measurements of the homopolymer of the respective monomers. In an embodiment, the T g is calculated using the Fox equation, which is shown below.
  • T g Polymer W PC T g PC + W Water T g Water + W Methacrylate T g Methacrylate
  • the copolymer T g can be estimated with the desired target.
  • the desired target T g is in a range from about ⁇ 30° C. to about 37° C. when in the fully hydrated state.
  • the T g is between about 0° C. and about 37° C. when hydrated.
  • the copolymers of the invention will have a high degree of polymer mobility when placed in vivo. This feature allows the surface of the polymer to enrich in more hydrophilic MMEOA monomer content, which is advantageous for biocompatibility.
  • the co-polymer is designed to have a desired T g for the polymer in the dry state.
  • the T g of the polymer when dry is in a range from about ⁇ 30° C. to about 100° C. or in a range from about 0° C. to about 70° C.
  • the polymerization reaction can be controlled to produce the copolymers with a desired molecular weight.
  • the number average molecular weight of the copolymer is in the range from about 20K to about 800K, in another embodiment, the molecular weight is in a range from about 100K to about 600K.
  • the molecular weight of the polymer is selected to provide adhesion.
  • the molecular weight can be in a range from about 2K to about 200K.
  • the adhesive polymer can be used on medical devices that benefit from an adhesive polymer coating.
  • the copolymers of the invention are manufactured substantially free of cross-linking.
  • Copolymers manufactured according to the invention can have sufficient mechanical strength when hydrated that crosslinking is not necessary for making a polymer coating suitable for coating an implantable device.
  • the absence of cross-linking in the copolymers of the invention can give the copolymers improved elasticity, particularly when dry, which reduces the likelihood of cracking during assembly and use.
  • the MMEOA monomer can be made by reacting a polymerizable group with an 1-methoxy-2-propanol compound. These reactions are typically carried out using known reaction conditions. An example of a suitable reaction for forming a 1-methoxy-2-propanol substituted monomer is shown below.
  • 1-methoxy-2-propanol is reacted with methacryloyl chloride to yield 1-methyl-2-methoxyethyl methacrylate.
  • 1-methoxy-2-propanol and methacryloyl chloride are commercially available compounds (e.g., 1-methoxy-2-propanol is available from the Dow Chemical Company under the product name of “Dowanol PM”).
  • copolymers are suitable for use on any medical device that is compatible with polymer coatings.
  • the copolymers can be used alone as a coating or can be combined with other polymers or agents to form a polymer coating.
  • the polymers may be blended with poly(vinyl pyrrolidinone), poly(n-butyl methacrylate), poly(n-butyl methacrylate) copolymers, methacrylate polymers, acrylate polymers, and/or a terpolymers of hexyl methacrylate, vinyl acetate, and vinyl pyrrolidinone.
  • the polymer coatings can be applied to a medical device using any techniques known to those skilled in the art or those that may be developed for applying a coating to a medical device. Examples of suitable techniques for applying the coating to the medical device include spraying, dip coating, roll coating, spin coating, inkjet printing, powder coating, and direct application by brush or needle. One skilled in the art will appreciate the many different techniques in powder coating.
  • the copolymers can be applied directly to the surface of the implant device, or they can be applied over a primer or other coating material.
  • the polymer coatings are applied to a medical device using a solvent-based technique.
  • the polymer can be dissolved in the solvent to form a solution, which can be more easily applied to the medical device using one or more of the above mentioned techniques or another technique. Thereafter substantially all or a portion of the solvent can be removed to yield the polymer coating on a surface of the medical device.
  • suitable solvents include, but are not limited to, dimethylacetamide (DMAC), dimethylformamide (DMF), tetrahydrofuran (THF), dimethylsulfoxide (DMSO), cyclohexanone, xylene, toluene, acetone, i-propanol, methyl ethyl ketone, propylene glycol monomethyl ether, methyl t-butyl ketone, methyl isobutyl ketone, ethyl acetate, n-butyl acetate, n-butanol, ethanol, methanol, chloroform, trichloroethylene, 1,1,1-trichloreoethane, methylene chloride, cyclohexane, octane, n-hexane, pentane, and dioxane.
  • DMAC dimethylacetamide
  • DMF dimethylformamide
  • THF tetrahydrofuran
  • Solvent mixtures can be used as well.
  • Representative examples of the mixtures include, but are not limited to, DMAC and methanol (50:50 w/w); i-propanol and DMAC (80:20, 50:50, or 20:80 w/w); acetone and cyclohexanone (80:20, 50:50, or 20:80 w/w); acetone and xylene (50:50 w/w); acetone, xylene and F LUX R EMOVER AMS® (93.7% 3,3-dichloro-1,1,1,2,2-pentafluoropropane and 1,3-dichloro-1,1,2,2,3-pentafluoropropane, and the balance is methanol with trace amounts of nitromethane; Tech Spray, Inc.) (10:40:50 w/w); and 1,1,2-trichloroethane and chloroform (80:20 w/w).
  • suitable implantable devices that can be coated with the copolymers of the invention include coronary stents, peripheral stents, catheters, arterio-venous grafts, by-pass grafts, pacemaker and defibrillator leads, anastomotic clips, arterial closure devices, patent foramen ovale closure devices, and drug delivery balloons.
  • the copolymers are particularly suitable for permanently implanted medical devices.
  • the implantable device can be made of any suitable biocompatible materials, including biostable and bioabsorbable materials.
  • suitable biocompatible metallic materials include, but are not limited to, stainless steel, tantalum, titanium alloys (including nitinol), and cobalt alloys (including cobalt-chromium-nickel and cobalt-chromium-tungsten alloys).
  • Suitable nonmetallic biocompatible materials include, but are not limited to, polyamides, fluoropolymers, polyolefins (i.e. polypropylene, polyethylene etc.), nonabsorbable polyesters (i.e. polyethylene terephthalate), and bioabsorbable aliphatic polyesters (i.e. homopolymers and copolymers of lactic acid, glycolic acid, lactide, glycolide, para-dioxanone, trimethylene carbonate, ⁇ -caprolactone, and the like, and combinations of these).
  • the copolymers are particularly advantageous as a coating for stents due to their elongation properties, which allows the coated stent to be crimped and expanded without cracking the coating.
  • the stents can be composed of wire structures, flat perforated structures that are subsequently rolled to form tubular structures, or cylindrical structures that are woven, wrapped, drilled, etched or cut.
  • FIG. 1A shows an example stent 10 coated with a copolymer including MMEOA monomers.
  • Stent 10 includes a generally tubular body 12 with a lumen.
  • the struts of body 12 e.g. strut 14
  • FIG. 1B illustrates a cross-section of the stent of FIG. 1A coated with a polymer coating 16 .
  • the polymer coating 16 can be conformal as in FIG. 1B .
  • the coating can be ablumenal, luminal, or any combination thereof.
  • the copolymers of the invention are elastic at body temperatures and can therefore expand without cracking as the stent expands during use.
  • the polymer coated stents of the invention can be self-expanding or balloon expandable.
  • the copolymer coatings of the invention can be particularly advantageous for self-expanding stents.
  • Self-expanding stents are typically restrained by a sheath that is removed during deployment of the stent.
  • the copolymers of the invention can have improved mechanical strength to better withstand the friction exerted on the polymer as the sheath is removed.
  • a bioactive agent is associated with the coated medical devices of the invention.
  • the bioactive agent can be associated with a base coat, top coat, mixed with the novel copolymers of the invention, and/or incorporated or otherwise applied to a supporting structure of the medical device.
  • the bioactive agent can have any therapeutic effect.
  • suitable therapeutic properties include anti-proliferative, anti-inflammatory, antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic and antioxidant properties.
  • bioactive agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, DNA and RNA nucleic acid sequences, antisense oligonucleotides, antibodies, receptor ligands, enzymes, adhesion peptides, blood clot agents, including streptokinase and tissue plasminogen activator, antigens, hormones, growth factors, ribozymes, retroviral vectors, anti-proliferative agents including rapamycin (sirolimus), 40-O-(2-hydroxyethyl)rapamycin (everolimus), 40-O-(3-hydroxypropyl)rapamycin, 40-O-(2-hydroxyethyoxy)ethylrapamycin, 40-O-tetrazolylrapamycin (zotarolimus, ABT-578), 40-epi-(N-1-tetrazolyl)-rapamycin, 40-O-[2-(2-hydroxy)
  • a coated stent can be used in, but is not limited to use in, neurological, carotid, coronary, aorta, renal, biliary, ureter, iliac, femoral, and popliteal vessels.
  • copolymers of MMEOM monomers and hydrophobic monomers are specific examples of copolymers of MMEOM monomers and hydrophobic monomers.
  • the following copolymers are useful for coating implantable medical devices.
  • Example 1 describes a copolymer of poly(1-methyl-2-methoxyethyl methacrylate-co-n-butyl methacrylate) (poly(MMOEM-co-n-butyl methacrylate)).
  • the poly(MMOEM-co-n-butyl methacrylate) polymer has the following formula.
  • m is in a range from 0.25 to 0.995 and n is in a range from 0.005 to 0.75.
  • poly(n-butyl methacrylate) monomer is particularly advantageous since the homopolymer of PBMA is currently being used in implantable medical devices and is thus known to be biocompatible.
  • Example 2 describes a copolymer of poly(1-methyl-2-methoxyethyl methacrylate-co-ethyl methacrylate) (poly(MMOEM-co-ethyl methacrylate)).
  • poly(MMOEM-co-ethyl methacrylate) The chemical formula of poly(MMOEM-co-ethyl methacrylate) is shown below.
  • m is in a range from 0.25 to 0.99 and n is in a range from 0.01 to 0.75.
  • T g of the alkyl methacrylate monomer enables a harder, stronger coating at the expense of elasticity as compared to the copolymer of Example 1.
  • Example 3 describes a method for manufacturing a coated stent using the polymers of Examples 1 and/or 2.
  • a primer coating is applied to the stent.
  • a primer solution including between about 0.1 mass % and about 15 mass %, (e.g., about 2.0 mass %) of poly(n-butyl methacrylate) (PBMA) and the balance, a solvent mixture of acetone and cyclohexanone (having about 70 mass % of acetone and about 30 mass % of cyclohexanone) is prepared.
  • PBMA poly(n-butyl methacrylate)
  • the solution is applied onto a stent to form a primer layer.
  • a spray apparatus e.g., Sono-Tek MicroMist spray nozzle, manufactured by Sono-Tek Corporation of Milton, N.Y.
  • the spray apparatus is an ultrasonic atomizer with a gas entrainment stream.
  • a syringe pump is used to supply the coating solution to the nozzle.
  • the composition is atomized by ultrasonic energy and applied to the stent surfaces.
  • a useful nozzle to stent distance is about 20 mm to about 40 mm at an ultrasonic power of about one watt to about two watts.
  • the stent is optionally rotated about its longitudinal axis, at a speed of 100 to about 600 rpm, for example, about 400 rpm.
  • the stent is also linearly moved along the same axis during the application.
  • the primer solution is applied to a 15 mm Triplex, N stent (available from Abbott Vascular Corporation) in a series of 20-second passes, to deposit, for example, 20 ⁇ g of coating per spray pass. Between the spray passes, the stent is allowed to dry for about 10 seconds to about 30 seconds at ambient temperature. Four spray passes can be applied, followed by baking the primer layer at about 80° C. for about 1 hour. As a result, a primer layer can be formed having a solids content of about 80 ⁇ g.
  • Solids means the amount of the dry residue deposited on the stent after all volatile organic compounds (e.g., the solvent) have been removed.
  • a copolymer solution is prepared.
  • the copolymer solution includes the copolymer of Examples 1 and/or Example 2.
  • the solution is prepared by dissolving between about 0.1 mass % and about 15 mass %, (e.g., about 2.0 mass %) of the copolymer in a solvent.
  • the solvent can be a mixture of about 70 mass % acetone and about 30 mass % cyclohexanone.
  • the copolymer solution is applied to a stent. Twenty spray passes are performed with a coating application of 10 ug per pass, with a drying time between passes of 10 seconds, followed by baking the copolymer layer at about 60° C. for about 1 hour, to form a layer having a solids content between about 30 ⁇ g and 750 ⁇ g, (e.g., about 200 ⁇ g).
  • Example 4 describes a method for manufacturing a drug eluting stent according to the invention.
  • the medical device is manufactured using the same method as in Example 3, except that instead of the copolymer solution, a polymer-therapeutic solution is prepared and applied using the following formula.
  • a drug-including formulation is prepared that includes:
  • the drug-including formulation is applied to the stent in a manner similar to the application of the copolymer solution in Example 3.
  • the process results in the formation of a drug-polymer reservoir layer having a solids content between about 30 ⁇ g and 750 ⁇ g, (e.g., about 200 ⁇ g), and a drug content of between about 10 ⁇ g and about 250 ⁇ g, (e.g., about 67 ⁇ g).
US11/942,700 2006-11-21 2007-11-19 Copolymers having 1-methyl-2-methoxyethyl moieties Expired - Fee Related US7910678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/942,700 US7910678B2 (en) 2006-11-21 2007-11-19 Copolymers having 1-methyl-2-methoxyethyl moieties

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US86679606P 2006-11-21 2006-11-21
US86680506P 2006-11-21 2006-11-21
US86679806P 2006-11-21 2006-11-21
US86679206P 2006-11-21 2006-11-21
US86680206P 2006-11-21 2006-11-21
US86680006P 2006-11-21 2006-11-21
US86680406P 2006-11-21 2006-11-21
US86679706P 2006-11-21 2006-11-21
US11/942,700 US7910678B2 (en) 2006-11-21 2007-11-19 Copolymers having 1-methyl-2-methoxyethyl moieties

Publications (2)

Publication Number Publication Date
US20080125560A1 US20080125560A1 (en) 2008-05-29
US7910678B2 true US7910678B2 (en) 2011-03-22

Family

ID=39430498

Family Applications (15)

Application Number Title Priority Date Filing Date
US11/942,700 Expired - Fee Related US7910678B2 (en) 2006-11-21 2007-11-19 Copolymers having 1-methyl-2-methoxyethyl moieties
US11/942,695 Expired - Fee Related US7928176B2 (en) 2006-11-21 2007-11-19 Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US11/942,693 Expired - Fee Related US7781551B2 (en) 2006-11-21 2007-11-19 Zwitterionic copolymers, method of making and use on medical devices
US11/942,696 Expired - Fee Related US7622537B2 (en) 2006-11-21 2007-11-19 Methods for manufacturing amino acid mimetic copolymers and use of same
US11/942,707 Expired - Fee Related US8063151B2 (en) 2006-11-21 2007-11-19 Methods for manufacturing copolymers having 1-methyl-2-methoxyethyl moieties and use of same
US11/942,705 Expired - Fee Related US7928177B2 (en) 2006-11-21 2007-11-19 Amino acid mimetic copolymers and medical devices coated with the copolymers
US11/942,704 Expired - Fee Related US8101156B2 (en) 2006-11-21 2007-11-19 Methods of manufacturing copolymers with zwitterionic moieties and dihydroxyphenyl moieties and use of same
US12/575,720 Expired - Fee Related US8658749B2 (en) 2006-11-21 2009-10-08 Methods for manufacturing amino acid mimetic copolymers and use of same
US12/575,744 Expired - Fee Related US8197880B2 (en) 2006-11-21 2009-10-08 Methods for manufacturing amino acid mimetic copolymers and use of same
US13/045,467 Expired - Fee Related US8569435B2 (en) 2006-11-21 2011-03-10 Amino acid mimetic copolymers and medical devices coated with the copolymers
US13/045,452 Expired - Fee Related US8202956B2 (en) 2006-11-21 2011-03-10 Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US13/045,464 Expired - Fee Related US8071705B2 (en) 2006-11-21 2011-03-10 Amino acid mimetic copolymers and medical devices coated with the copolymers
US13/045,465 Expired - Fee Related US8048975B2 (en) 2006-11-21 2011-03-10 Amino acid mimetic copolymers and medical devices coated with the copolymers
US13/045,450 Expired - Fee Related US8399584B2 (en) 2006-11-21 2011-03-10 Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US13/403,777 Expired - Fee Related US8846839B2 (en) 2006-11-21 2012-02-23 Copolymers having zwitterionic moieties and dihdroxyphenyl moieties and medical devices coated with the copolymers

Family Applications After (14)

Application Number Title Priority Date Filing Date
US11/942,695 Expired - Fee Related US7928176B2 (en) 2006-11-21 2007-11-19 Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US11/942,693 Expired - Fee Related US7781551B2 (en) 2006-11-21 2007-11-19 Zwitterionic copolymers, method of making and use on medical devices
US11/942,696 Expired - Fee Related US7622537B2 (en) 2006-11-21 2007-11-19 Methods for manufacturing amino acid mimetic copolymers and use of same
US11/942,707 Expired - Fee Related US8063151B2 (en) 2006-11-21 2007-11-19 Methods for manufacturing copolymers having 1-methyl-2-methoxyethyl moieties and use of same
US11/942,705 Expired - Fee Related US7928177B2 (en) 2006-11-21 2007-11-19 Amino acid mimetic copolymers and medical devices coated with the copolymers
US11/942,704 Expired - Fee Related US8101156B2 (en) 2006-11-21 2007-11-19 Methods of manufacturing copolymers with zwitterionic moieties and dihydroxyphenyl moieties and use of same
US12/575,720 Expired - Fee Related US8658749B2 (en) 2006-11-21 2009-10-08 Methods for manufacturing amino acid mimetic copolymers and use of same
US12/575,744 Expired - Fee Related US8197880B2 (en) 2006-11-21 2009-10-08 Methods for manufacturing amino acid mimetic copolymers and use of same
US13/045,467 Expired - Fee Related US8569435B2 (en) 2006-11-21 2011-03-10 Amino acid mimetic copolymers and medical devices coated with the copolymers
US13/045,452 Expired - Fee Related US8202956B2 (en) 2006-11-21 2011-03-10 Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US13/045,464 Expired - Fee Related US8071705B2 (en) 2006-11-21 2011-03-10 Amino acid mimetic copolymers and medical devices coated with the copolymers
US13/045,465 Expired - Fee Related US8048975B2 (en) 2006-11-21 2011-03-10 Amino acid mimetic copolymers and medical devices coated with the copolymers
US13/045,450 Expired - Fee Related US8399584B2 (en) 2006-11-21 2011-03-10 Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US13/403,777 Expired - Fee Related US8846839B2 (en) 2006-11-21 2012-02-23 Copolymers having zwitterionic moieties and dihdroxyphenyl moieties and medical devices coated with the copolymers

Country Status (4)

Country Link
US (15) US7910678B2 (US07910678-20110322-C00002.png)
EP (1) EP2097119A4 (US07910678-20110322-C00002.png)
JP (1) JP5557373B2 (US07910678-20110322-C00002.png)
WO (1) WO2008064058A2 (US07910678-20110322-C00002.png)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100022663A1 (en) * 2006-11-21 2010-01-28 Abbott Laboratories Methods for manufacturing amino acid mimetic copolymers and use of same
US20100063570A1 (en) * 2008-09-05 2010-03-11 Pacetti Stephen D Coating on a balloon comprising a polymer and a drug
US20100275431A1 (en) * 2001-01-11 2010-11-04 Abbott Laboratories Drug delivery from stents
US8431665B2 (en) 2006-11-21 2013-04-30 Abbott Cardiovascular Systems Inc. Zwitterionic terpolymers, method of making and use on medical devices
US9180225B2 (en) 2007-05-14 2015-11-10 Abbott Laboratories Implantable medical devices with a topcoat layer of phosphoryl choline acrylate polymer for reduced thrombosis, and improved mechanical properties
US9468706B2 (en) 2004-03-22 2016-10-18 Abbott Cardiovascular Systems Inc. Phosphoryl choline coating compositions
CN110612107A (zh) * 2017-05-12 2019-12-24 微仙美国有限公司 医疗器械
WO2020072481A1 (en) * 2018-10-01 2020-04-09 Microvention, Inc. Medical devices

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329413B1 (en) * 2003-11-06 2008-02-12 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof
PT1988910T (pt) 2006-02-28 2018-02-07 Kodiak Sciences Inc Acriloiloxietilfosforilcolina contendo conjugados de polímeros e sua preparação
US8951630B2 (en) 2006-12-01 2015-02-10 Rolex S.A. Ultra-thin hydrophobic and oleophobic layer, method of manufacture and use in watchmaking as an epilame and in mechanical engineering as a barrier film
EP1927648A1 (fr) * 2006-12-01 2008-06-04 Rolex Sa Couche ultra-mince hydrophobe et oléophobe, procédé de fabrication et utilisation en horlogerie comme épilame
US20080251106A1 (en) * 2007-04-12 2008-10-16 Stefano Scialla Process of cleaning a hard surface with zwitterionic copolymer
US20080314767A1 (en) * 2007-06-22 2008-12-25 Bausch & Lomb Incorporated Ophthalmic Solutions
US8216600B2 (en) 2007-11-14 2012-07-10 Cordis Corporation Polymeric materials for medical devices
US20100094407A1 (en) * 2008-10-10 2010-04-15 Medtronic Vascular, Inc. Multiple Bioactive Agent Eluting Stents
BR112012006678A2 (pt) * 2009-09-25 2016-05-10 Origene Technologies Inc método para criar um arranjo proteico, arranjo proteico e métodos para determinar a especificidade da ligação de um anticorpo ou preparação de anticorpos, para determinar biomarcadores de doenças, para diagnosticar uma doença, para monitorar as vias de transdução de sinais e para determinar interações entre pequenas moléculas e proteínas
WO2011075185A1 (en) 2009-12-18 2011-06-23 Oligasis Targeted drug phosphorylcholine polymer conjugates
MX365521B (es) * 2010-04-15 2019-06-06 Oligasis Star Polimeros que contienen zwiteriones de alto peso molecular.
CN101892475B (zh) * 2010-06-24 2012-05-23 苏州大学 一种在不锈钢表面接枝聚合物链的方法
US20120310210A1 (en) * 2011-03-04 2012-12-06 Campbell Carey V Eluting medical devices
US9415193B2 (en) 2011-03-04 2016-08-16 W. L. Gore & Associates, Inc. Eluting medical devices
CA2839313C (en) 2011-06-13 2018-03-13 Hitachi Chemical Company, Ltd. Agent for improving cancer cell adhesiveness
WO2012174422A2 (en) 2011-06-17 2012-12-20 Berry Plastics Corporation Insulated container with molded brim
TW201309354A (zh) * 2011-06-23 2013-03-01 Toray Industries 醫療材料
US9541480B2 (en) 2011-06-29 2017-01-10 Academia Sinica Capture, purification, and release of biological substances using a surface coating
US20150004083A1 (en) * 2012-01-26 2015-01-01 International Engine Intellectual Property Company, Llc Injector boss and system and method of injecting liquid into a gas stream
EP2672269A1 (en) * 2012-06-07 2013-12-11 Solarwell Enhanced affinity ligands
US9901715B2 (en) 2012-09-05 2018-02-27 W. L. Gore Associates, Inc. Retractable sheath devices, systems, and methods
US9788765B2 (en) 2012-09-28 2017-10-17 Dexcom, Inc. Zwitterion surface modifications for continuous sensors
WO2014066761A1 (en) 2012-10-26 2014-05-01 Berry Plastics Corporation Polymeric material for an insulated container
US9840049B2 (en) 2012-12-14 2017-12-12 Berry Plastics Corporation Cellular polymeric material
US10046021B2 (en) 2013-02-05 2018-08-14 Tpcera Ltd. Phosphorylcholine conjugates and uses thereof
CN105102485B (zh) 2013-02-05 2019-04-19 特普塞拉公司 磷酸胆碱缀合物及其用途
US9957365B2 (en) 2013-03-13 2018-05-01 Berry Plastics Corporation Cellular polymeric material
US10597540B2 (en) * 2013-05-27 2020-03-24 Jsr Corporation Surface treatment agent for surface configured from inorganic material, tool and device having modified surface, and method for manufacturing tool and device
PL3041513T3 (pl) 2013-09-08 2021-01-25 Kodiak Sciences Inc. Obojnaczojonowe polimerowe koniugaty czynnika viii
WO2015069662A1 (en) * 2013-11-06 2015-05-14 The Board Of Trustees Of The Leland Stanford Junior University Methods for modifying a hydrophobic polymer surface and devices thereof
KR20150066974A (ko) * 2013-12-09 2015-06-17 삼성전자주식회사 내오염성 화합물, 내오염성 막, 및 내오염성 막의 제조 방법
WO2015153816A2 (en) 2014-04-01 2015-10-08 Academia Sinica Methods and systems for cancer diagnosis and prognosis
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
US10414864B2 (en) * 2014-07-22 2019-09-17 The University Of Akron Degradable amino acid-based poly (ester urea) copolymer adhesives
US10112198B2 (en) 2014-08-26 2018-10-30 Academia Sinica Collector architecture layout design
US9469726B2 (en) * 2014-10-06 2016-10-18 International Business Machines Corporation Water soluble polycarbonates for medical applications
EP3207128B1 (en) 2014-10-17 2022-07-27 Kodiak Sciences Inc. Butyrylcholinesterase zwitterionic polymer conjugates
CN107106309B (zh) * 2014-10-28 2019-11-08 株式会社Jimro 药物洗脱支架
KR101759998B1 (ko) 2014-11-11 2017-07-20 한국에너지기술연구원 카테콜 그룹을 갖는 이온교환고분자, 이의 제조방법 및 응용
KR101745679B1 (ko) 2014-11-27 2017-06-09 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
KR101752384B1 (ko) 2014-11-27 2017-06-30 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
US10513589B2 (en) 2015-01-23 2019-12-24 Berry Plastics Corporation Polymeric material for an insulated container
EP3380536B1 (en) * 2015-11-26 2021-05-19 Agency For Science, Technology And Research A polymeric composition
TWI662370B (zh) * 2015-11-30 2019-06-11 南韓商羅門哈斯電子材料韓國公司 與外塗佈光致抗蝕劑一起使用之塗料組合物
RU2744860C2 (ru) 2015-12-30 2021-03-16 Кодиак Сайенсиз Инк. Антитела и их конъюгаты
WO2017117472A1 (en) * 2015-12-30 2017-07-06 Dexcom, Inc. Biointerface layer for analyte sensors
US10792477B2 (en) 2016-02-08 2020-10-06 Orbusneich Medical Pte. Ltd. Drug eluting balloon
US10107726B2 (en) 2016-03-16 2018-10-23 Cellmax, Ltd. Collection of suspended cells using a transferable membrane
AU2017317423B2 (en) * 2016-08-25 2019-08-15 Terumo Kabushiki Kaisha Hydrophilic copolymer and medical device
EP3290451B1 (fr) * 2016-09-01 2021-08-18 The Swatch Group Research and Development Ltd. Substrat comprenant une surface recouverte d'un agent épilame et procédé d'épilamage d'un tel substrat
US10543299B2 (en) * 2016-10-03 2020-01-28 Microvention, Inc. Surface coatings
WO2018106666A1 (en) * 2016-12-05 2018-06-14 Isp Investments Llc Oral care copolymers and compositions and methods for use
CN111565768B (zh) * 2018-02-20 2022-09-02 泰尔茂株式会社 医疗器械
CN109172877B (zh) * 2018-08-28 2021-07-13 杭州忻元医疗科技合伙企业(有限合伙) 一种仿生抗凝血乳液及其制备方法和使用方法
US20210338905A1 (en) * 2018-09-06 2021-11-04 Biomodics Aps A medical tubular device
CA3157509A1 (en) 2019-10-10 2021-04-15 Kodiak Sciences Inc. Methods of treating an eye disorder
CN111138580B (zh) * 2019-12-31 2022-04-26 江汉大学 末端含二硫代酯的pvp化合物、拓扑聚合物及其制备方法
JP2021122484A (ja) * 2020-02-05 2021-08-30 Ykk株式会社 撥水製品、撥水製品の製造方法

Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5155252A (en) * 1989-08-14 1992-10-13 Mitsubishi Rayon Co., Ltd. Material for dentistry
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5879713A (en) 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6096070A (en) 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6214901B1 (en) 1998-04-27 2001-04-10 Surmodics, Inc. Bioactive agent release coating
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US20010007083A1 (en) 1999-12-29 2001-07-05 Roorda Wouter E. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US6262034B1 (en) 1994-03-15 2001-07-17 Neurotech S.A. Polymeric gene delivery system
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6383509B1 (en) 2000-06-02 2002-05-07 Allergan Sales, Inc. Biodegradable neurotoxin implant
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US20020165608A1 (en) 2001-05-07 2002-11-07 Llanos Gerard H. Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020176849A1 (en) 2001-02-09 2002-11-28 Endoluminal Therapeutics, Inc. Endomural therapy
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US20030028243A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030036794A1 (en) 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20030039689A1 (en) 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US20030060877A1 (en) 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US6613432B2 (en) 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
US6663662B2 (en) 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US7005137B1 (en) 2002-06-21 2006-02-28 Advanceed Cardiovascular Systems, Inc. Coating for implantable medical devices
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US7094256B1 (en) 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7247313B2 (en) 2001-06-27 2007-07-24 Advanced Cardiovascular Systems, Inc. Polyacrylates coatings for implantable medical devices
US20080118541A1 (en) 2006-11-21 2008-05-22 Abbott Laboratories Use of a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug eluting coatings on medical devices
US20080124450A1 (en) 2006-11-21 2008-05-29 Abbott Laboratories Methods for manufacturing amino acid mimetic copolymers and use of same
US7396539B1 (en) 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US7560492B1 (en) 2003-11-25 2009-07-14 Advanced Cardiovascular Systems, Inc. Polysulfone block copolymers as drug-eluting coating material
US7563454B1 (en) 2003-05-01 2009-07-21 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US7700659B2 (en) 2005-03-24 2010-04-20 Advanced Cardiovascular Systems, Inc. Implantable devices formed of non-fouling methacrylate or acrylate polymers

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141874A (en) 1975-11-15 1979-02-27 Daikin Kogyo Co., Ltd. Fluorine-containing elastomeric copolymers, process for preparing the same and composition containing the same
US4172934A (en) * 1978-02-08 1979-10-30 Minnesota Mining And Manufacturing Company Acrylic functional aminocarboxylic acids and derivatives as components of pressure sensitive adhesives
US4668506A (en) 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
GB8728884D0 (en) 1987-12-10 1988-01-27 Ici Plc Aqueous-based fluoropolymer compositions
JPH0859950A (ja) * 1994-08-19 1996-03-05 Nippon Paint Co Ltd 高い濃度増粘率を有する水性樹脂組成物およびそれを含む水性塗料組成物
WO1996023446A1 (en) 1995-02-02 1996-08-08 Boston Scientific Corporation Surgical wire basket extractor
JP4190513B2 (ja) * 1995-10-11 2008-12-03 テルモ株式会社 カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル
GB9521253D0 (en) 1995-10-17 1995-12-20 Luthra Ajay K Biocompatible lubricious hydrophilic materials for medical devices
US5859174A (en) * 1996-07-22 1999-01-12 Ppg Industries, Inc. Amide functional monomers and acrylic polymers with amide functionality
US5780559A (en) * 1996-07-22 1998-07-14 Ppg Industries, Inc. Curable film-forming compositions containing amide functional polymers
US5873713A (en) * 1996-09-13 1999-02-23 Osterhues; Konrad Fuel/air supply assembly for gas burners
GB9624130D0 (en) 1996-11-20 1997-01-08 Biocompatibles Ltd Biocompatible compositions
JP3779422B2 (ja) * 1997-05-15 2006-05-31 スリーエム カンパニー 装飾用フィルム、装飾された物品及びその製造方法
US5908704A (en) 1997-06-30 1999-06-01 Norton Performance Plastics Corporation Interlayer film for protective glazing laminates
AU8782098A (en) 1997-08-13 1999-03-08 Boston Scientific Limited Loading and release of water-insoluble drugs
US6015815A (en) 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6133391A (en) 1998-03-17 2000-10-17 3M Innovative Properties Company Adhesive compositions and adhesive tapes comprising zwitterionic copolymers, and novel zwitterionic copolymers
FR2776289B1 (fr) * 1998-03-20 2001-02-02 Oreal Composition de teinture d'oxydation contenant un coupleur cationique, procedes de teinture, nouveaux coupleurs cationiques
US6165338A (en) * 1998-12-21 2000-12-26 Basf Corporation Cathodic electrocoat having a carbamate functional resin
US6706819B1 (en) 1999-06-30 2004-03-16 Daikin Industries, Ltd. Flexible fluorine-containing material having heat resistance and non-tackiness
DE10004647C1 (de) 2000-02-03 2001-07-26 Infineon Technologies Ag Verfahren zum Herstellen eines Halbleiterbauelementes mit einem Multichipmodul und einem Silizium-Trägersubstrat
JP2002069246A (ja) * 2000-06-08 2002-03-08 Daikin Ind Ltd 高疎水性エラストマー組成物
JP3975049B2 (ja) * 2000-07-10 2007-09-12 株式会社リコー 転写装置及び画像形成装置
US20060222756A1 (en) * 2000-09-29 2006-10-05 Cordis Corporation Medical devices, drug coatings and methods of maintaining the drug coatings thereon
DE60124285T3 (de) * 2000-09-29 2011-03-17 Cordis Corp., Miami Lakes Beschichtete medizinische geräte
AU2002214160A1 (en) 2000-11-16 2002-05-27 Biocompatibles Uk Limited Polymers and polymerisation processes
JP3651387B2 (ja) * 2000-11-22 2005-05-25 日産自動車株式会社 白線検出装置
KR100389625B1 (ko) * 2000-12-15 2003-06-27 삼성전기주식회사 포커스 구동모터를 이용한 디지털 스틸 카메라의 마이크로모드구현장치
US7618937B2 (en) * 2001-07-20 2009-11-17 Northwestern University Peptidomimetic polymers for antifouling surfaces
ATE352171T1 (de) 2002-01-22 2007-02-15 Microsoft Corp Verfahren zum ermöglichen von direktzugriff und spleissen in einem verschlüsselten videostrom
US20050220880A1 (en) 2002-03-07 2005-10-06 Lewis Andrew L Drug carriers comprising amphiphilic block copolymers
US6811696B2 (en) * 2002-04-12 2004-11-02 Pall Corporation Hydrophobic membrane materials for filter venting applications
TWI310137B (en) 2002-04-19 2009-05-21 Microsoft Corp Methods and systems for preventing start code emulation at locations that include non-byte aligned and/or bit-shifted positions
WO2003094795A1 (en) * 2002-05-10 2003-11-20 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7485141B2 (en) 2002-05-10 2009-02-03 Cordis Corporation Method of placing a tubular membrane on a structural frame
US7436328B2 (en) 2003-07-09 2008-10-14 Texas Instruments Incorporated Video coding with start code emulation prevention
WO2005044939A1 (en) * 2003-10-07 2005-05-19 E.I. Du Pont De Nemours And Company Fluoropolymer low reflecting layers for polastic lenses and devices
US6986947B2 (en) 2003-10-09 2006-01-17 3M Innovative Properties Company Method of modifying a fluoropolymer and articles thereby
FR2863617B1 (fr) 2003-12-15 2006-01-21 Rhodia Chimie Sa Polymeres zwitterioniques comprenant des unites de type betaine et utilisation de polymeres zwitterioniques dans des fluides de forage.
US8110211B2 (en) * 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US20070010623A1 (en) * 2005-07-06 2007-01-11 Addison Clear Wave Llc Low-refractive index layer, AR coatings having such a layer and methods for producing them
US20070173787A1 (en) * 2005-11-01 2007-07-26 Huang Mark C T Thin-film nitinol based drug eluting stent
US7676632B2 (en) * 2006-07-18 2010-03-09 Via Technologies, Inc. Partial cache way locking
FR2903989B1 (fr) * 2006-07-19 2008-09-05 Arkema France Polymere fluore a activite antibacterienne
US7622533B2 (en) * 2006-08-04 2009-11-24 Nerites Corporation Biomimetic compounds and synthetic methods therefor
US7713541B1 (en) 2006-11-21 2010-05-11 Abbott Cardiovascular Systems Inc. Zwitterionic terpolymers, method of making and use on medical devices
US7974307B2 (en) 2006-11-30 2011-07-05 Vestel Elektronik Sanayi Ve Ticaret A.S. Methods and apparatus for data decoding/encoding and for searching for/inserting stuffing bytes
CN101206343A (zh) * 2006-12-19 2008-06-25 鸿富锦精密工业(深圳)有限公司 面光源
US7815927B2 (en) 2007-03-08 2010-10-19 Medtronic Vascular, Inc. Terpolymers for controlled release of bioactive agents from implantable medical devices

Patent Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US5616338A (en) 1988-02-11 1997-04-01 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5155252A (en) * 1989-08-14 1992-10-13 Mitsubishi Rayon Co., Ltd. Material for dentistry
US5607467A (en) 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US6475779B2 (en) 1994-03-15 2002-11-05 Neurotech S.A. Polymeric gene delivery
US6262034B1 (en) 1994-03-15 2001-07-17 Neurotech S.A. Polymeric gene delivery system
US6620617B2 (en) 1994-03-15 2003-09-16 Brown University Research Foundation Polymeric gene delivery system
US5879713A (en) 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US20030028243A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US6096070A (en) 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US20030036794A1 (en) 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US5873904A (en) 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US6277449B1 (en) 1995-10-19 2001-08-21 Omprakash S. Kolluri Method for sequentially depositing a three-dimensional network
US5962138A (en) 1995-12-19 1999-10-05 Talison Research, Inc. Plasma deposited substrate structure
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6306176B1 (en) 1997-01-27 2001-10-23 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6524347B1 (en) 1997-05-28 2003-02-25 Avantis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6482834B2 (en) 1997-05-28 2002-11-19 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6528526B1 (en) 1997-05-28 2003-03-04 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6270788B1 (en) 1998-04-03 2001-08-07 Medtronic Inc Implantable medical device
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US7008667B2 (en) 1998-04-27 2006-03-07 Surmodics, Inc. Bioactive agent release coating
US6344035B1 (en) 1998-04-27 2002-02-05 Surmodics, Inc. Bioactive agent release coating
US6214901B1 (en) 1998-04-27 2001-04-10 Surmodics, Inc. Bioactive agent release coating
US6890583B2 (en) 1998-04-27 2005-05-10 Surmodics, Inc. Bioactive agent release coating
US6730064B2 (en) 1998-08-20 2004-05-04 Cook Incorporated Coated implantable medical device
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US6613432B2 (en) 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20010007083A1 (en) 1999-12-29 2001-07-05 Roorda Wouter E. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6383509B1 (en) 2000-06-02 2002-05-07 Allergan Sales, Inc. Biodegradable neurotoxin implant
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6663662B2 (en) 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US20020176849A1 (en) 2001-02-09 2002-11-28 Endoluminal Therapeutics, Inc. Endomural therapy
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US20030039689A1 (en) 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20020165608A1 (en) 2001-05-07 2002-11-07 Llanos Gerard H. Local drug delivery devices and methods for maintaining the drug coatings thereon
US7247313B2 (en) 2001-06-27 2007-07-24 Advanced Cardiovascular Systems, Inc. Polyacrylates coatings for implantable medical devices
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US20030060877A1 (en) 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US7396539B1 (en) 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7005137B1 (en) 2002-06-21 2006-02-28 Advanceed Cardiovascular Systems, Inc. Coating for implantable medical devices
US7094256B1 (en) 2002-12-16 2006-08-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical device containing polycationic peptides
US7563454B1 (en) 2003-05-01 2009-07-21 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US7560492B1 (en) 2003-11-25 2009-07-14 Advanced Cardiovascular Systems, Inc. Polysulfone block copolymers as drug-eluting coating material
US7700659B2 (en) 2005-03-24 2010-04-20 Advanced Cardiovascular Systems, Inc. Implantable devices formed of non-fouling methacrylate or acrylate polymers
US20080125560A1 (en) 2006-11-21 2008-05-29 Abbott Laboratories Copolymers having 1-methyl-2-methoxyethyl moieties
US20080146696A1 (en) 2006-11-21 2008-06-19 Abbott Laboratories Methods for manufacturing copolymers having 1-methyl-2-methoxyethyl moieties and use of same
US20080147178A1 (en) 2006-11-21 2008-06-19 Abbott Laboratories Zwitterionic copolymers, method of making and use on medical devices
US20080153923A1 (en) 2006-11-21 2008-06-26 Abbott Laboratories Methods of manufacturing copolymers with zwitterionic moieties and dihydroxyphenyl moieties and use of same
US20080139746A1 (en) 2006-11-21 2008-06-12 Abbott Laboratories Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US20080125514A1 (en) 2006-11-21 2008-05-29 Abbott Laboratories Amino acid mimetic copolymers and medical devices coated with the copolymers
US20080124450A1 (en) 2006-11-21 2008-05-29 Abbott Laboratories Methods for manufacturing amino acid mimetic copolymers and use of same
US20080118541A1 (en) 2006-11-21 2008-05-22 Abbott Laboratories Use of a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug eluting coatings on medical devices

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Huang et al., "Synthesis and Characterization of Self-Assembling Block Copolymers Containing Bioadhesive End Groups", Biomacromolecules 3, pp. 397-406 (2002).
Kocakulak et al., "Investigation of Blood Compatibility of PMEA Coated Extracorporeal Circuits", J. of Bioactive and Compatible Polymers vol. 17, pp. 343-356 (2002).
Lee et al., "Synthesis and Gelation of DOPA-Modified Poly(ethylene glycol) Hydrogels", Biomacromolecules 3, pp. 1038-1047 (2002).
Tanaka et al., "Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)-relationship between protein adsorption and platelet adhesion on PMEA surface", Biomaterials 21, pp. 1471-1481 (2000).
Trollsas et al., "Hyperbranched Poly(epsilon-caprolactone) Derived from Interinsically Branched AB2 Macromonomers", Macromolecules 31, pp. 4390-4395 (1998).
Trollsas et al., "Hyperbranched Poly(ε-caprolactone) Derived from Interinsically Branched AB2 Macromonomers", Macromolecules 31, pp. 4390-4395 (1998).
U.S. Appl. No. 10/376,348, filed Feb. 26, 2003, Ding et al.
U.S. Appl. No. 11/939,512, filed Nov. 13, 2007, Pacetti et al.

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465758B2 (en) 2001-01-11 2013-06-18 Abbott Laboratories Drug delivery from stents
US8753659B2 (en) 2001-01-11 2014-06-17 Abbott Laboratories Drug delivery from stents
US20100275431A1 (en) * 2001-01-11 2010-11-04 Abbott Laboratories Drug delivery from stents
US9468706B2 (en) 2004-03-22 2016-10-18 Abbott Cardiovascular Systems Inc. Phosphoryl choline coating compositions
US8431665B2 (en) 2006-11-21 2013-04-30 Abbott Cardiovascular Systems Inc. Zwitterionic terpolymers, method of making and use on medical devices
US8658749B2 (en) 2006-11-21 2014-02-25 Abbott Laboratories Methods for manufacturing amino acid mimetic copolymers and use of same
US20110160331A1 (en) * 2006-11-21 2011-06-30 Abbott Laboratories Amino acid mimetic copolymers and medical devices coated with the copolymers
US20110166250A1 (en) * 2006-11-21 2011-07-07 Abbott Laboratories Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US8048975B2 (en) 2006-11-21 2011-11-01 Abbott Laboratories Amino acid mimetic copolymers and medical devices coated with the copolymers
US8071705B2 (en) 2006-11-21 2011-12-06 Abbott Laboratories Amino acid mimetic copolymers and medical devices coated with the copolymers
US8197880B2 (en) 2006-11-21 2012-06-12 Abbott Laboratories Methods for manufacturing amino acid mimetic copolymers and use of same
US8202956B2 (en) 2006-11-21 2012-06-19 Abbott Laboratories Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US8846839B2 (en) 2006-11-21 2014-09-30 Abbott Laboratories Copolymers having zwitterionic moieties and dihdroxyphenyl moieties and medical devices coated with the copolymers
US8399584B2 (en) 2006-11-21 2013-03-19 Abbott Laboratories Copolymers having zwitterionic moieties and dihydroxyphenyl moieties and medical devices coated with the copolymers
US20100022663A1 (en) * 2006-11-21 2010-01-28 Abbott Laboratories Methods for manufacturing amino acid mimetic copolymers and use of same
US20110160391A1 (en) * 2006-11-21 2011-06-30 Abbott Laboratories Amino acid mimetic copolymers and medical devices coated with the copolymers
US8569435B2 (en) 2006-11-21 2013-10-29 Abbott Laboratories Amino acid mimetic copolymers and medical devices coated with the copolymers
US20110160417A1 (en) * 2006-11-21 2011-06-30 Abbott Laboratories Amino acid mimetic copolymers and medical devices coated with the copolymers
US8722826B2 (en) 2006-11-21 2014-05-13 Abbott Cardiovascular Systems Inc. Zwitterionic terpolymers, method of making and use on medical devices
US20100183798A1 (en) * 2006-11-21 2010-07-22 Abbott Laboratories Methods for manufacturing amino acid mimetic copolymers and use of same
US9180225B2 (en) 2007-05-14 2015-11-10 Abbott Laboratories Implantable medical devices with a topcoat layer of phosphoryl choline acrylate polymer for reduced thrombosis, and improved mechanical properties
US8367090B2 (en) * 2008-09-05 2013-02-05 Abbott Cardiovascular Systems Inc. Coating on a balloon comprising a polymer and a drug
US20100063570A1 (en) * 2008-09-05 2010-03-11 Pacetti Stephen D Coating on a balloon comprising a polymer and a drug
CN110612107A (zh) * 2017-05-12 2019-12-24 微仙美国有限公司 医疗器械
US11439494B2 (en) 2017-05-12 2022-09-13 Microvention, Inc. Medical devices
WO2020072481A1 (en) * 2018-10-01 2020-04-09 Microvention, Inc. Medical devices
CN112789065A (zh) * 2018-10-01 2021-05-11 微仙美国有限公司 医疗设备
US11590267B2 (en) * 2018-10-01 2023-02-28 Microvention, Inc. Medical devices
US20230330309A1 (en) * 2018-10-01 2023-10-19 Microvention, Inc. Medical devices

Also Published As

Publication number Publication date
US20120157602A1 (en) 2012-06-21
US8048975B2 (en) 2011-11-01
US8399584B2 (en) 2013-03-19
WO2008064058A3 (en) 2008-12-24
US20110160382A1 (en) 2011-06-30
US8071705B2 (en) 2011-12-06
JP5557373B2 (ja) 2014-07-23
WO2008064058A2 (en) 2008-05-29
US20080153923A1 (en) 2008-06-26
US20110160331A1 (en) 2011-06-30
US8101156B2 (en) 2012-01-24
US20080147178A1 (en) 2008-06-19
US8063151B2 (en) 2011-11-22
US20080125514A1 (en) 2008-05-29
US8202956B2 (en) 2012-06-19
EP2097119A2 (en) 2009-09-09
WO2008064058A9 (en) 2008-10-30
US8197880B2 (en) 2012-06-12
US20100183798A1 (en) 2010-07-22
US20080124450A1 (en) 2008-05-29
US8658749B2 (en) 2014-02-25
US8846839B2 (en) 2014-09-30
US20080146696A1 (en) 2008-06-19
EP2097119A4 (en) 2012-10-17
US7928176B2 (en) 2011-04-19
US20080139746A1 (en) 2008-06-12
US20080125560A1 (en) 2008-05-29
JP2010509998A (ja) 2010-04-02
US20100022663A1 (en) 2010-01-28
US7622537B2 (en) 2009-11-24
US20110166250A1 (en) 2011-07-07
US20110160417A1 (en) 2011-06-30
US8569435B2 (en) 2013-10-29
US7781551B2 (en) 2010-08-24
US20110160391A1 (en) 2011-06-30
US7928177B2 (en) 2011-04-19

Similar Documents

Publication Publication Date Title
US7910678B2 (en) Copolymers having 1-methyl-2-methoxyethyl moieties
US7713541B1 (en) Zwitterionic terpolymers, method of making and use on medical devices
ES2335422T3 (es) Composiciones de recubrimiento de fosfolipido y resistentes al ensuciamiento.
JP5368703B2 (ja) 医療器具のためのメタクリレートコポリマー
WO2006060235A2 (en) Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
JP2008517719A (ja) コーティング特性の調節のためのポリ(エステルアミド)フィラーブレンド
JP2008534062A (ja) 非汚染性メタクリレート又はアクリレートポリマーから形成された埋め込み型デバイス
JP2009542852A (ja) メタクリレート及びアクリレートのランダムコポリマー

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT LABORATORIES, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PACETTI, STEPHEN;REEL/FRAME:020691/0218

Effective date: 20080131

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230322