JP4190513B2 - カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル - Google Patents

カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル Download PDF

Info

Publication number
JP4190513B2
JP4190513B2 JP2005147324A JP2005147324A JP4190513B2 JP 4190513 B2 JP4190513 B2 JP 4190513B2 JP 2005147324 A JP2005147324 A JP 2005147324A JP 2005147324 A JP2005147324 A JP 2005147324A JP 4190513 B2 JP4190513 B2 JP 4190513B2
Authority
JP
Japan
Prior art keywords
balloon
catheter
layer
tube
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005147324A
Other languages
English (en)
Other versions
JP2005246097A (ja
Inventor
壽延 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2005147324A priority Critical patent/JP4190513B2/ja
Publication of JP2005246097A publication Critical patent/JP2005246097A/ja
Application granted granted Critical
Publication of JP4190513B2 publication Critical patent/JP4190513B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、カテーテル用バルーンおよびバルーンカテーテルに関する。特に、血管などの管状器官の狭窄部を拡張するためのバルーンおよびバルーンカテーテルもしくは血管拡張用カテーテルに関する。
近年心筋梗塞、あるいは狭心症の治療としてバルーンの付いたカテーテル(血管拡張用バルーンカテーテル)により、冠動脈の病変部(狭窄部)を押し広げる方法が一般的に行われる様になってきている。
血管拡張用バルーンカテーテルの一般的な構造は、本体シャフトと、この本体シャフト先端近傍に取り付けられた拡張用バルーン、及び本体シャフト基部に取り付けられたハブよりなる。
拡張用バルーンの材質としては、ポリオレフィン、PET、ポリアミド等が使用され、それぞれに異なった性質をもっている。
ポリオレフィンとしては低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖低密度ポリエチレン(LLDPE)、エチレン−酢酸ビニル共重合体(EVA)等が使用され、一般的にシャフトに熱融着ができ柔軟性はあるが耐圧性が比較的弱く、又バルーンを拡張する圧力の変化に対し、バルーン径の変化が大きいという性質(コンプライアンスが大きい)を持っている。
ポリエチレンテレフタレート(以下、PET)は、一般的に高強度で耐圧が高く、コンプライアンスが小さい。このため、バルーン自体が硬くトラッカビリティー(蛇行した血管に対し、バルーンが追随して進む事ができる性質)が低い傾向にある。これを避ける為バルーンの肉厚を薄くすると、柔軟性は向上するものの、耐圧は低くなり、更にピンホールが生じ易くなってしまう。
ナイロン又はポリアミドのバルーンは、ポリオレフィンとPETのほぼ中間的な性質を持っているが、肉厚を薄くすれば耐圧、ピンホールの面で不利になり、厚くすればバルーンが硬くなりトラッカビリティーの面で満足なものではない。
これらバルーン素材の欠点、特にPETを素材とした場合の欠点を補う為、PETをベースポリマーとし、ポリエチレン等で多層化したバルーンが特開平3−205064号公報(特許文献1)あるいは特表平6−507101号公報(特許文献2)に示されている。これらは、PETをバルーン素材として使用した場合のシャフトへの熱融着性の改善、あるいは耐ピンホール性の改善を目的としており、柔軟性に対する改善は全く考慮していない。
特開平3−205064号公報 特表平6−507101号公報
上記公報に開示のバルーンでは、強度的(耐圧的)に高いバルーンを得ようとした場合、バルーン自体が硬くなりトラッカビリティーが劣る物となり、また柔軟なバルーンを得ようとし肉薄とすると、強度的に不十分な物となり、耐ピンホール性の点にも問題があった。
本発明の目的は、十分な強度(耐圧性)を持ち、かつ、トラッカビリティーに優れかつ柔軟なカテーテル用バルーンおよびバルーンカテーテルを提供するものである。
上記目的を達成するものは、以下のものである。
上記課題を解決するものは、筒状部と、カテーテル接合部とを備えるカテーテル用バルーンであって、該バルーンは、基材層形成樹脂からなる基材層と、該基材層の外面に形成された前記基材層形成樹脂より柔軟な被覆層形成樹脂からなる被覆層を有する多層構造のカテーテル用バルーンであって、
前記バルーンは、前記基材層形成樹脂がポリアミドであり、前記被覆層形成樹脂がハードセグメントがポリアミドでソフトセグメントがポリエーテルのポリアミドエラストマーであり、かつ、前記基材層と前記被覆層がともに二軸延伸された二軸延伸バルーンであり、該二軸延伸バルーン内に最大内圧をかけた状態における内圧による応力の10%以上が前記被覆層にかかるものであり、前記筒状部の肉厚が25μm以下であり、さらに、前記バルーンの前記被覆層形成樹脂により形成された前記被覆層の外面には、親水性樹脂がコーティングまたは固定されていることを特徴とするカテーテル用バルーンである。
そして、バルーン内に最大内圧をかけた状態における内圧による応力の20%以上、さらには30%以上が前記被覆層にかかるものであることが好ましい。
そして、前記基材層が内層であり前記被覆層が外層であってもよい。このようにすれば、バルーンの外面への抗血栓性材料もしくは親水性樹脂のコーティングが容易である。また、前記基材層が外層であり、前記被覆層が内層であってもよい。このようにすれば、被覆層形成樹脂は基材層形成樹脂より通常融点が低いため、バルーンをカテーテルシャフトに熱融着することが容易となる。そして、前記基材層形成樹脂と前記被覆層形成樹脂は、両者が熱融着可能であることが好ましい。さらに、前記バルーンは、前記筒状部の先端側と先端側カテーテル接合部の間に形成された先端側テーパー部と、前記筒状部の基端側と基端側カテーテル接合部との間に形成された基端側テーパー部を備えていることが好ましい。また、基材層形成樹脂と被覆層形成樹脂との引張破断強度の相違が、30%以下であることが好ましい。さらに、基材層形成樹脂と被覆層形成樹脂との引っ張り破断強度(言い換えれば、破壊点伸び)の相違が、30%以下であることが好ましい。
また、上記課題を解決するものは、上記のバルーンを備えるバルーンカテーテルである。
また、上記課題を解決するものは、先端が開口している第1のルーメンを有する内管と、該内管に同軸的に設けられ、該内管の先端より所定長後退した位置に先端を有し、該内管の外面との間に第2のルーメンを形成する外管と、先端部が前記内管に固定され、基端部が前記外管に固定され、内部が前記第2のルーメンと連通する折り畳み可能なバルーンとを備える血管拡張用カテーテルであって、前記バルーンが、上述のカテーテル用バルーンである血管拡張用カテーテルである。
本発明のカテーテル用バルーンは、筒状部と、カテーテル接合部とを備えるカテーテル用バルーンであって、該バルーンは、基材層形成樹脂からなる基材層と、該基材層の少なくとも一面に形成された前記基材層形成樹脂より柔軟な被覆層形成樹脂からなる被覆層を有する多層構造バルーンであり、かつ、バルーン内に最大内圧をかけた状態における内圧による応力の10%以上が前記被覆層にかかるものであり、前記筒状部の肉厚が25μm以下である。このように、基材層形成樹脂と基材層形成樹脂より柔軟な被覆層形成樹脂の多層バルーンとすることにより、被覆層が上述のように最大内圧をかけた状態における内圧による応力の10%以上を担保するので、被覆層形成樹脂がバルーン全体の強度向上に十分機能し、柔軟で高強度のバルーンが得られる。さらに、基材層形成樹脂のバルーンに対し比較的肉厚にできる為、ピンホールの発生も少ない。また、バルーンを血管内さらにはガイドカテーテル内への挿入を容易にする。
本発明のカテーテル用バルーンおよびバルーンカテーテルを図面に示した実施例を用いて説明する。
図1は、本発明のカテーテル用バルーンの一実施例の断面図である。図4は、バルーン成型用金型の説明図であり、図5は、バルーン成型用延伸装置の説明図である。図2および図3は、他の実施例のカテーテル用バルーンの断面図である。
図1を用いて、本発明のカテーテル用バルーンを具体的に説明する。
カテーテル用バルーン1は、筒状部5と、該筒状部の両端に設けられたカテーテル接合部とを備える。さらに、バルーン1は、高強度ポリマー(基材層形成樹脂)からなる基材層2と、基材層2の少なくとも一面に形成された高強度ポリマー(基材層形成樹脂)より柔軟な柔軟性ポリマー(被覆層形成樹脂)からなる被覆層3を有し、筒状部の肉厚が25μm以下となっている。
また、このバルーン1は、高強度ポリマー(基材層形成樹脂)からなる基材層2と、基材層2の少なくとも一面に形成された高強度ポリマー(基材層形成樹脂)より柔軟な柔軟性ポリマー(被覆層形成樹脂)からなる被覆層3を有する多層構造バルーンであり、かつ、バルーン内に最大内圧をかけた状態における内圧による応力の10%以上が前記被覆層にかかるものでもある。
バルーン1は、折り畳み可能なものであり、拡張させない状態では、カテーテルの本体チューブの外周に折り畳まれた状態となることができるものである。そして、バルーン1は、血管、尿管、胆管などの体内管腔の狭窄部を拡張するためのほぼ均一外径を有する筒状部5を有している。筒状部5は、完全な円筒でなくてもよく、多角柱状のものであってもよい。
さらに、バルーン1は、筒状部5の両端にそれぞれ連続するテーパー部6a,6bおよびこのテーパー部6a,6bのそれぞれと連続するカテーテル接合部7a,7bを有している。言い換えれば、バルーンは、筒状部の先端側と先端側カテーテル接合部の間に形成された先端側テーパー部と、筒状部の基端側と基端側カテーテル接合部との間に形成された基端側テーパー部を備えている。
筒状部5は、バルーンの最大径部が続く部分であり、テーパー部6a,6bは、上記の筒状部5と連続し直径が連続的に端部に向かって縮小するように変化している部分である。カテーテル接合部7a,7bは、上記テーパー部6a,6bとそれぞれ連続し、内径がほぼ同一な小径部となっている部分であり、カテーテルへのバルーンの取り付け部分となる部分である。そして、テーパー部6a,6bおよびカテーテル接合部7a,7bは、バルーンの筒状部5の両側にそれぞれあり、それぞれのテーパー部およびそれぞれの接合部の形状は異なっていてもよい。
バルーン1の大きさとしては、拡張したときの筒状部5の外径が、1.0〜35.0mm、好ましくは、1.5〜30.0mmであり、長さが3.0〜80.0mm、好ましくは、10.0〜75.0mmであり、バルーン1の全体の長さが、5.0〜120.0mm、好ましくは、15.0〜100.0mmである。
さらに、バルーンは、少なくとも筒状部5部分の肉厚が、25μm以下となっている。このように、肉厚を薄くすることにより、血管を拡張する部分が柔軟となる。特に、バルーンの肉厚は、10〜20μmが好ましい。本発明のような材料および2層構造であって、10μm以上の肉厚を有すれば、血管狭窄部の拡張を確実に行うことができる。なお、バルーンのカテーテル接合部7a,7b部分の肉厚は、カテーテル(具体的には、後述する内管および外管)への接合作業および固着状態を安定させるために、筒状部5部分の肉厚より厚い(25μm以上)ものとしてもよい。逆に、バルーンの折り畳みを容易にするために、筒状部5部分の肉厚よりさらに薄くしてもよい。なお、バルーンの折り畳みが特に重要であるのは、血管への挿入側である、バルーンの先端側テーパー部6aであるので、バルーンの先端側テーパー部6a部分の一部を筒状部5部分の肉厚より薄くしてもよい。なお、テーパー部を薄くする場合には、1〜5μm程度、筒状部5部分より薄くすればよい。
そして、バルーン1は、二軸延伸されていることが好ましい。二軸延伸とは、バルーン1の長手方向の軸と長手方向に直行する軸のそれぞれの延長方向に延伸されていることである。二軸延伸されることにより、バルーン1を肉薄にできるとともに、バルーン1の強度を高くすることができる。さらに、テーパー部6a,6bは、再延伸されていることが好ましい。再延伸されることにより、テーパー部の肉厚をより薄いものとすることができる。
バルーン1は、高強度ポリマー(基材層形成樹脂)からなる基材層2と、基材層2の少なくとも一面に形成された高強度ポリマー(基材層形成樹脂)より柔軟な柔軟性ポリマー(被覆層形成樹脂)からなる被覆層3を有する多層構造となっている。図1の実施例では、内層が基材層であり、外層が被覆層となっている。
基材層2は、高強度ポリマー(基材層形成樹脂)により形成されている。基材層の形成に用いられる高強度ポリマー(基材層形成樹脂)としては、延伸可能な樹脂であることが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンテレフタレートの主要酸成分あるいは主要グリコール成分を変えたポリエステル(ポリエチレンテレフタレート)、また、上記ポリマーの混合物、ポリアミド(ナイロン12、ナイロン11、MXD6ナイロン)、PPS(ポリフェニレンスルフィド)等のポリアリーレンスルフィド等が使用できる。
そしてポリエステルとしては、主要酸成分として、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、パラフェニレンジカルボン酸、シクロヘキサンジカルボン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、トリメリット酸、ピロメリット酸、スルホイソフタル酸、またそれらの塩を用い、主要グリコール成分としては、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、トリメチロールプロパン、ペンタエリスリトールなどを用いたものが考えられる。
被覆層3は、基材層に使用する高強度ポリマー(基材層形成樹脂)と同系列の柔軟性ポリマー(被覆層形成樹脂)であることが好ましく、さらに、熱可塑性かつ延伸可能であることが好ましい。同系列のポリマーを用いることにより、両層間の熱接着性あるいは密着性が高いものとなる。しかし、柔軟性ポリマー(被覆層形成樹脂)を変性する事により、熱接着性あるいは密着性を高めたものでもよく、また、同系列でなくても、両者が熱接着性あるいは密着性を有するものでもよい。さらに、基材層と被覆層に接着層を設けてもよく、この場合には、同系列でなくてもよい。
被覆層の形成に使用される柔軟性ポリマー(高分子エラストマー)としては、ポリエステルエラストマー(例えば、ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエーテルのポリエステルエラストマー、ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエステルのポリエステルエラストマー)、ポリアミドエラストマー[例えば、ハードセグメントがポリアミド(例えば、ナイロン12)でソフトセグメントが可塑剤、ポリエーテルもしくはポリエステルのポリアミドエラストマー]が使用できる。
破壊点伸びが近いとは、バルーンに成形してこのバルーンを破裂するまで加圧したとき、加圧に伴い観察される基材層の伸びと被覆層の伸びが同程度、言い換えれば、両層間の剥離(一方が伸びすぎると他方が追従できず両者間において剥離が生じる)がほとんど観察されないことを示すものである。このように破壊点伸びを近くするためには、基材層および被覆層を形成する材料を選択する必要がある。その一要素として、引張破断伸びに着目する事ができる。そして、高強度ポリマー(基材層形成樹脂)の引張破断伸びと柔軟性ポリマー(被覆層形成樹脂)の引張破断伸びとの比が、1:0.7〜1:1.3程度であることが好ましい。つまり、両ポリマーの引張破断伸びの相違が、30%以下であれば、両者の破壊点伸びが近く、層間剥離が生じ難い。より好ましくは、両ポリマーの引張破断伸び相違が、20%以下である。また、柔軟性ポリマー(被覆層形成樹脂)としては、引張り破断伸びが、300〜700%、(ASTM D638)であることが好ましい。この範囲内であれば、十分な弾性を示す。より好ましくは、350〜600%(ASTM D638)である。また、高強度ポリマー(基材層形成樹脂)としては、引張り破断伸びが、300〜700%、(ASTM D638)であることが好ましい。より好ましくは、400〜600%(ASTM D638)である。
また、破壊点伸びについての他の要素としては、引張破断強度もある。そして、高強度ポリマー(基材層形成樹脂)の引張破断強度と柔軟性ポリマー(被覆層形成樹脂)の引張破断強度との比が、1:0.7〜1:1.3程度であることが好ましい。つまり、両ポリマーの引張破断強度の相違が、30%以下であることが好ましい。また、柔軟性ポリマー(被覆層形成樹脂)としては、曲げ弾性率が、1000〜15000kg/cm(ASTM D790)であることが好ましい。この範囲内であれば、十分な弾性を示す。より好ましくは、2000〜13000kg/cm(ASTM D790)である。また、引張破断強度が、300〜400kg/cm(ASTM D638)であることが好ましい。これら範囲内であれば、十分な強度を有する。
基材層形成樹脂と被覆層形成樹脂の好ましい組み合わせは、基材層形成樹脂(高強度ポリマー)が、ポリエチレンテレフタレートで、被覆層形成樹脂(柔軟性ポリマー)がポリエステルエラストマーであるもの、また、基材層形成樹脂がポリアミドで、被覆層形成樹脂が、ポリアミドエラストマーであるものとなる。
基材層の厚さとしては、3μm〜15μmであり、特に、4μm〜12μmが好ましく、被覆層の厚さとしては、1μm〜15μmであり、特に、2μm〜12μmである。また、基材層の肉厚:被覆層の肉厚は、1:0.3〜1:2が好ましく、特に、1:0.5〜1:1.5が好ましい。そして、これら層の肉厚は、使用する樹脂を考慮して決定されるが、バルーン内に最大内圧をかけた状態における内圧による応力の10%以上を担保するもの、特に、20%以上、より好ましくは、30%以上が被覆層にかかるものであることが好ましい。バルーン内に最大内圧をかけた状態における内圧による応力の10%以上を担保するとは、基材層と被覆層を備えたバルーンの破裂強度がXkg/cmであり、このバルーンの基材層のみのバルーンの破裂強度がYkg/cmであったとき、Y/X≦0.9であることを示している。
バルーンは、二軸延伸されていることが好ましく、特に、基材層と被覆層ともに二軸延伸されていることが好ましい。
バルーンとしては、上記の実施例に限られず、図2に示すバルーン11のように、外層が基材層2であり、内層が被覆層3であるものでもよい。また、図3に示すバルーン21のように、中間層が基材層2であり、この両面を被覆する外層および内層が被覆層3となっているものでもよい。なお、この実施例の被覆層3は、内層および外層の両者を合わせたものが、バルーン内に最大内圧をかけた状態における内圧による応力の10%以上を担保するものであればよい。
バルーンとしては、上記の実施例に限られず、図9に示すバルーン70のように高強度ポリマー(基材層形成樹脂)からなる基材層2と、基材層2の外面に形成された高強度ポリマー(基材層形成樹脂)と破壊点伸びが近くかつ柔軟な柔軟性ポリマー(被覆層形成樹脂)からなる第1の被覆層3と、第1の被覆層3の外面に形成され、第1の被覆層3を形成する柔軟性ポリマー(被覆層形成樹脂)より柔軟な高柔軟性ポリマーにより形成された第2の被覆層4とを有し、肉厚が25μm以下のものでもよい。
このように、第1の被覆層の外側に、さらに柔軟な第2の被覆層を設けることにより、バルーンの柔軟性、すなわち、トラッカビリテイはより向上する。
高強度ポリマー(基材層形成樹脂)および柔軟性ポリマー(被覆層形成樹脂)については、上述した通りである。また、バルーンの大きさ、肉厚についても、上述したものと同じである。
第2の被覆層4を形成する高柔軟性ポリマーとしては、上述した柔軟性ポリマー(被覆層形成樹脂)より、さらに、柔軟なものが使用される。
高柔軟性ポリマー(高分子エラストマー)としては、ポリエステルエラストマー(例えば、ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエーテルのポリエステルエラストマー、ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエステルのポリエステルエラストマー)、ポリアミドエラストマー[例えば、ハードセグメントがポリアミド(例えば、ナイロン12)でソフトセグメントが可塑剤、ポリエーテルもしくはポリエステルのポリアミドエラストマー]が使用できる。
柔軟性ポリマー(被覆層形成樹脂)の引張破断強度と高柔軟性ポリマーの引張破断強度との比は、1:0.8〜1:1.2程度であることが好ましい。また、高柔軟性ポリマーとしては、曲げ弾性率が、800〜4000kg/cm(ASTM D790)であることが好ましい。この範囲内であれば、十分な高弾性を示す。より好ましくは、1000〜2000kg/cm(ASTM D790)である。また、引張破断強度が、200〜400kg/cm(ASTM D638)であることが好ましい。また、柔軟性ポリマー(被覆層形成樹脂)の引張破断強度と高柔軟性ポリマーの引張破断伸びとの比は、1:0.8〜1:1.2程度であることが好ましい。また、高柔軟性ポリマーとしては、引張り破断伸びが、300〜700%、(ASTM D638)であることが好ましい。この範囲内であれば、十分な高弾性を示す。より好ましくは、350〜600%(ASTM D638)である。
また、このバルーンにおいても、バルーン内に最大内圧をかけた状態における内圧による応力の10%以上、好ましくは20%以上が第1の被覆層にかかるものであることが好ましい。なお、この実施例のバルーンでは、第1の被覆層および第2の被覆層の両者を合わせたものが、バルーン内に最大内圧をかけた状態における内圧による応力の10%以上、好ましくは20%以上を担保するものであってもよい。
さらに、バルーン1の外面には、生体適合性、特に抗血栓性を有する樹脂をコーティングしてもよい。抗血栓性材料としては、例えば、ポリヒドロキシエチルメタアクリレート、ヒドロキシエチルメタアクリレートとスチレンの共重合体(例えば、HEMA−St−HEMAブロック共重合体)などが好適である。
また、バルーン1を血管内さらにはガイドカテーテル内への挿入を容易にするために、バルーン1の外面が血液等と接触した時に、潤滑性を呈するようにするための処理を施すことが好ましい。このような処理としては、例えば、ポリ(2−ヒドロキシエチルメタクリレート)、ポリヒドロキシエチルアクリレート、ヒドロキシプロピルセルロース、メチルビニルエーテル無水マレイン酸共重合体、ポリエチレングリコール、ポリアクリルアミド、ポリビニルピロリドン、ジメチルアクリルアミド−グリシジルメタアクリレートのランダムもしくはブロック共重合体等の親水性樹脂をコーティング、または固定する方法などが挙げられる。
次に、本発明のカテーテル用バルーンの製造方法について説明する。
本発明のバルーンの製造方法は、延伸可能かつ高強度のポリマーとこの柔軟性を有するポリマーからなる二色(二層)もしくは三色(三層)の高分子重合体チューブ(パリソン)を形成する。次いで、このチューブ(パリソン)を両ポリマーの二次転移温度から一次転移温度までの範囲の温度下にて軸方向に延伸し、さらに延伸されたパリソンを半径方向に膨張させて二軸延伸する。そして、膨張されたパリソンを両ポリマーの二次転移温度以下に冷却し、さらに冷却されたパリソンを収縮させて、内径がほぼ均一な筒状部と該筒状部の前後にそれぞれ設けられたテーパー部とテーパー部の前後に設けられたカテーテル接続部とを有する二軸延伸されたバルーンを形成する。そして、必要により、二軸延伸されたバルーンのテーパー部を再延伸してテーパー部の肉厚を薄肉化し、再延伸されたバルーンを膨張させ、膨張状態を維持しながら、バルーンを高分子重合体の二次転移温度以上に加熱した後、バルーンを高分子重合体の二次転移温度以下の温度にまで冷却させる。
そこで、各工程について説明する。
まず、最初に、延伸可能な高分子重合体によりチューブ状パリソンを形成する。具体的には、バルーン1を形成するための二種の高分子重合体からなるチューブ17を形成する。これは、二色(二層)押し出しによる電線被覆法により行うことが好ましい。また、あらかじめ、基材層もしくは被覆層を形成するポリマーによりチューブを形成し、このチューブの上に他方の層を形成するポリマーを被覆する方法によって行ってもよい。ポリマーとしては、上述のものが使用できる。
そして、このチューブ17を図4に示す金型10内に挿入し、チューブ17の一端を閉塞する。閉塞方法としては、加熱溶融、高周波によるシール、鉗子などを用いて閉塞することにより行う。図4は、バルーン成形金型10の断面図であり、この金型10は、加温手段であるヒーター12と冷却手段である冷却管13とを有している。そして、分離型15,16は、組み合わせた状態にて内面形状が、形成するバルーンの基本外面形状となっている。
そして、図4に示すように、ヒーター12を作動させ、バルーン1を形成する部分のチューブ17を高分子重合体の二次転移温度から一次転移温度までの範囲の温度、具体的には、二次転移温度を少し越える温度まで加熱する。チューブ17を加熱された状態に維持し、チューブ17を矢印X,Y方向に延伸し、さらに、矢印Z方向よりチューブ17内に気体を加圧しながら送り、金型10内で加熱されている部分のチューブ17を分離型15,16の内壁面に密着させる。そして、冷却管13内に冷却液を循環し、チューブ17を二次転移温度以下に冷却する。また、この冷却は、冷却液量を循環することなく、単に放置して自然冷却してもよい。その後チューブ17の内部を常圧にし、金型10内より、チューブ17を抜去する。そして、チューブ17の先端部および後端部にてチューブ17を切断することにより、図4に示すようなバルーンの基本形状が形成される。また、上記延伸処理を2回以上行うことによって、目的とする肉厚のバルーンを形成してもよい。
そして、二軸延伸されたバルーンのテーパー部6a,6bを再延伸してテーパー部の肉厚を薄肉化してもよい。図5は、テーパー部6a,6bあるいはテーパー部6a,6bとカテーテル接合部7a,7bを再延伸するための再延伸用治具の断面図であり、この治具20は、2つのバルーン固定用チャック25a,25bを有しており、固定用チャック25bは、支持台28に移動可能に取り付けられており、この固定用チャック25bは、ハンドル22を回転させることにより、前後に移動するように構成されている。
次に、本発明の血管拡張用のバルーンカテーテルを図面に示す実施例を用いて説明する。
図6は、血管拡張用のバルーンカテーテルの外観図であり、図7は、カテーテルの先端部の断面図であり、図8は、カテーテルの基端部の断面図である。
本発明のバルーンカテーテル30は、図6に示すように、カテーテル本体とバルーン1とカテーテル本体の基端に取り付けられたハブ31からなる。
具体的には、バルーンカテーテル30は、図7および図8に示すように、先端が開口している第1のルーメン34を有する内管24と、内管24に同軸的に設けられ、内管24の先端より所定長後退した位置に設けられ、内管24の外面との間に第2のルーメン36を形成する外管35と、カテーテル接合部(バルーン先端部)7a,カテーテル接合部(バルーン基端部)7bを有し、接合部7bが外管35に取り付けられ、接合部7aが内管24に取り付けられ、基端部付近にて第2のルーメン36と連通する折り畳み可能なバルーン1とを具備している。
このバルーンカテーテル30は、血管拡張用カテーテルに応用した実施例である。このカテーテル30は、内管24と外管35と分岐ハブ31とを有するカテーテル本体とバルーン1とにより形成されている。
内管24は、先端が開口した第1のルーメン34を有している。第1のルーメン34は、ガイドワイヤーを挿通するためのルーメンであり、後述する分岐ハブ31に設けられたガイドワイヤーポートを形成する第1の開口部39と連通している。
内管24としては、外径が0.30〜2.50mm、好ましくは0.40〜2.00mmであり、内径が0.20〜2.35mm、好ましくは0.25〜1.70mmである。
内管24の形成材料としては、ある程度の可撓性を有するものが好ましく、例えば、ポリエチレン、ポリプロピレン、エチレンープロピレン共重合体、エチレン−酢酸ビニル共重合体などのポリオレフィン、ポリ塩化ビニル、ポリウレタン、ポリアミド、ポリアミドエラストマー、ポリエステルエラストマー等の熱可塑性樹脂が使用できる。
外管35は、内部に内管24を挿通し、先端が内管の先端よりやや後退した位置に設けられており、この外管35の内面と内管24の外面により第2のルーメン36が形成されている。よって、十分な容積を有するルーメンとすることができる。そして、第2のルーメン36は、その先端において後述するバルーン1内とその後端部において連通し、第2のルーメン36の後端は、バルーンを膨張させるための流体(例えば、血管造影剤)を注入するためのインジェクションポートを形成する分岐ハブ31の第2の開口部41と連通している。
外管35としては、外径が0.50〜4.30mm、好ましくは0.60〜4.00mmであり、内径が0.40〜3.80mm、好ましくは0.50〜3.00mmである。
外管35の形成材料としては、ある程度の可撓性を有するものが好ましく、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリ塩化ビニル、ポリウレタン、ポリアミド、ポリアミドエラストマー、ポリエステルエラストマー等の熱可塑性樹脂が使用できる。
バルーン1は、折り畳み可能なものであり、拡張させない状態では、内管24の外周に折り畳まれた状態となることができるものである。そして、バルーン1は、血管の狭窄部を容易に拡張できるように少なくとも一部が円筒状となっているほぼ同径の筒状部5を有する折り畳み可能なものである。上記の筒状部は、完全な円筒でなくてもよく、多角柱状のものであってもよい。そして、バルーン1は、その接合部7bが外管35の先端部に接着剤または熱融着などにより液密に固着されている。接合部7aも、内管24の先端部に同様に液密に固着されている。
バルーン1は、図7に示すように、バルーン1の内面と内管24の外面との間に拡張空間45を形成する。この拡張空間45は、後端部ではその全周において第2のルーメン36と連通している。このように、バルーン1の後端に比較的大きい容積を有する第2のルーメンを連通させたので、第2のルーメンよりバルーン1内への膨張用流体を注入するのが容易である。
バルーン1としては、上述したものが使用される。
また、バルーン1の筒状部5の位置をX線造影により確認できるようにするために、内管24の外面に、マーカー44を一つ以上設けることが好ましい。マーカー44は、図7に示すように、バルーン1の内管24との固着部より後端側近傍の位置およびバルーン1と外管35との固着部より先端側近傍の位置、つまり、バルーン1の筒状部5の両端に位置する部分に両端部を有し、バルーン1の筒状部5の長さと同等の長さを有するものとすることが好ましい。マーカー44は、X線不透過材料(例えば、金、白金、タングステンあるいはそれらの合金、あるいは銀−パラジウム合金等)により形成されることが好ましい。さらに、マーカー44の形態は、図7に示すように、コイルスプリングからなることが好ましく、マーカー44の両端からそれぞれ1〜4mm、好ましくは2〜3mmが密に巻かれていることがより好ましい。これは、X線透視下でバルーン1の位置を容易に確認可能とするためであり、さらに、スプリング状とすることにより、バルーン内に位置する内管の屈曲部位における折れ曲がり、つぶれを防止する補強体を形成し好ましい。
特に、マーカー44を、1本のスプリングコイルで形成し、これを内管24の外周に密着巻きにて巻装すれば、外力に対する耐力は、より強固なものとなる。また、このコイル状の線状体の断面形状を円、方形もしくは楕円のいずれかの形状をなすようにすれば、外力に対する耐力は、より強固なものとなる。
分岐ハブ31は、第1のルーメン34と連通しガイドワイヤーポートを形成する第1の開口部39を有し、内管24に固着された内管ハブ52と、第2のルーメンと連通しインジェクションポートを形成する第2の開口部41を有し、外管35に固着された外管ハブ53とからなっている。そして、外管ハブ53と内管ハブ52とは、固着されている。この分岐ハブの形成材料としては、ポリカーボネート、ポリアミド、ポリサルホン、ポリアリレート、メタクリレート−ブチレン−スチレン共重合体等の熱可塑性樹脂が好適に使用できる。
そして、図8に示す実施例では、外管35の末端部には、折曲がり防止用チューブ50を有している。折曲がり防止用チューブ50は、熱収縮性を有するものにて、熱収縮後の内径が外管35の外径より若干小さくなるように形成し、熱収縮性を有するチューブ50を外管35の末端部に被嵌し、加熱(例えば、熱風をあてる)させて収縮させることにより容易に取り付けることができる。そして、折曲がり防止用チューブ50は、外管ハブ53に止めピン61により固定されている。この固定方法は、外管35の後端に後端部分以外の部分の外径が外管35の内径とほぼ等しく、拡径した後端部分を有する止めピン61を差し込み、外管35をその先端から外管ハブ53に挿入し、外管ハブ53の内面に設けられた突起54を止めピン61の後端部分が越えるまで押し込むことにより行われている。さらに、外管ハブ53と折曲がり防止用チューブ50との接触面に接着剤を塗布して固着してもよい。外管ハブの形成材料としては、ポリカーボネート、ポリアミド、ポリサルホン、ポリアリレート、メタクリレート−ブチレン−スチレン共重合体等の熱可塑性樹脂が好適に使用できる。
また、内管24の末端部には、折曲がり防止用チューブ60を有している。このチューブ60は、熱収縮性を有するものにて、熱収縮後の内径が内管24の外径より若干小さくなるように形成し、熱収縮性を有するチューブ60を内管24の末端部に被嵌し、加熱(例えば、熱風をあてる)させて収縮させることにより容易に取り付けることができる。そして、折曲がり防止用チューブ60を取り付けた内管24は、内管ハブ52に固定されている。この固定方法は、内管24の後端に後端部分以外の部分の外径が内管24の内径とほぼ等しく、拡径した後端部分を有する止めピン62を差し込み、内管24をその先端から内管ハブ52に挿入し、内管ハブ52の内面に設けられた突起64を止めピン62の後端部分が越えるまで押し込むことにより行われている。さらに、内管ハブ52と折曲がり防止用チューブ60との接触面に接着剤を塗布して固着してもよい。内管ハブの形成材料としては、ポリカーボネート、ポリアミド、ポリサルホン、ポリアリレート、メタクリレート−ブチレン−スチレン共重合体等の熱可塑性樹脂が好適に使用できる。そして、図8に示すように、内管ハブ52と外管ハブ53とは固定されている。この固定は、外管35の基端部に取り付けられた外管ハブ53の後端から内管24をその先端から挿入し接合することにより行われている。またこの時、内管ハブ52と外管ハブ53との接合部に接着剤を塗布して行うことにより確実に両者を固着することができる。
また、分岐ハブを設けず、第1のルーメン、第2のルーメンそれぞれに、例えば後端に開口部を形成するポート部材を有するチューブを液密に取り付けるようにしてもよい。また、カテーテルの構造は、上述したようなオーバーザワイヤータイプのものに限定されるものではなく、オンザワイヤータイプのものでもよい。
以下、本発明のカテーテル用バルーンの基本構成具体例を説明する。
(実施例1)
基材層形成ポリマー(基材層形成樹脂、内層形成ポリマー、高強度ポリマー)として、固有粘度数約1.1の高分子量ポリエチレンテレフタレートPET[日本ユニペット株式会社製,商品名ユニペットRT580CA、引張破断強度600kg/cm(ASTMD638)、曲げ弾性率24000kg/cm(ASTMD790)、引張破壊伸び500%(ASTMD638)]を用いた。被覆層形成ポリマー(被覆層形成樹脂、外層形成ポリマー,柔軟性ポリマー)として、ポリエステルエラストマー[東洋紡績株式会社製、商品名ペルプレンP−150B,ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエーテルのポリエステルエラストマー、引張破断強度390kg/cm(ASTMD638)、曲げ弾性率2,950kg/cm(ASTMD790)、引張破壊伸び550%(ASTMD638)]を用いた。
これらを用いて、常法の電線被覆法による共押出を行い、内層がPETで外層がポリエステルエラストマーの二層チューブを作製した。チューブの内径は、0.45mm(内層の肉厚は、0.11mm)であり、外径は0.85mm(外層の肉厚は、0.09mm)であり、内外層の断面積比(バルーンの肉厚比になる)は内層/外層=1/1であった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に約2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンの基本形状を作製した。なお、筒状部の径方向の延伸率は内径が約6倍、外径が約3倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.85mmであり、バルーンの最大外径部(筒状部分)での肉厚は10μmであった。また、バルーン最外径部でのPET層の肉厚は5μmであった。
(実施例2)
被覆層形成ポリマー(被覆層形成樹脂、外層形成ポリマー、柔軟性ポリマー)として、ポリエステルエラストマー[東洋紡績株式会社製、商品名ペルプレンP−450B,ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエーテルのポリエステルエラストマー、引張破断強度354kg/cm(ASTMD638)、曲げ弾性率12,930kg/cm(ASTMD790)、引張破壊伸び440%(ASTMD638)]を用いた以外は、実施例1と同様に行い、同寸法の二層のチューブを成形した。このチューブを用いて、実施例1と同様に行いバルーンを作成した。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.85mmであり、バルーンの最大外径部(筒状部分)での肉厚は10μmであった。
(実施例3)
実施例1と同じ材料を用いて、チューブの内径0.45mm(内層の肉厚は、0.11mm)であり、外径は0.91mm(外層の肉厚は、0.12mm)であり、内外層の断面積比は内層/外層=1/1.5のものを作成し、実施例1と同様の方法にバルーンを作成した。バルーン最外径部でのポリエチレンテレフタレート層の肉厚5μm、ポリエステルエラストマー層の肉厚7.5μm、1kg/cm加圧時の外径が2.85mmであった。
(実施例4)
基材層形成ポリマー(基材層形成樹脂)および被覆層形成ポリマーとしては、実施例1と同じものを用いた。これらを用いて、基材層が外層で被覆層が内層となるように、常法の電線被覆法による共押出を行い、外層がポリエチレンテレフタレートで内層がポリエステルエラストマーの二層チューブを作製した。チューブの内径は、0.45mm(内層の肉厚は、0.11mm)であり、外径は0.85mm(外層の肉厚は、0.09mm)であり、内外層の断面積比は内層/外層=1/1であった。このチューブを用いて、実施例1と同様の方法にて、バルーンを作製した。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.85mmであり、バルーンの最大外径部(筒状部分)での肉厚は10μmであった。
(実施例5)
基材層形成ポリマー(基材層形成樹脂)および被覆層形成ポリマーとしては、実施例1と同じものを用いた。これらを用いて、基材層が中間層で被覆層が基材層の両面を被覆するように、常法の電線被覆法による3色押出を行い、中間層がポリエチレンテレフタレートで内層および外層がポリエステルエラストマーの3層チューブを作製した。チューブの内径は、0.45mm(内層の肉厚は、0.05mm)であり、外径は0.85mm(中間層の肉厚は、0.10mm,外層の肉厚は0.05mm)であり、内外層の断面積比は中間層/(内層+外層)=1/1であった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンを作製した。なお、筒状部の径方向の延伸率は内径が約6倍、外径が約3倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.85mmであり、バルーンの最大外径部(筒状部分)での肉厚は10μmであった。
(比較例1)
実施例1に用いたポリエチレンテレフタレートを用いて、電線被覆法にて内径0.45mm、外径0.67mm(肉厚0.11mm)の単層のチューブを成形した。このチューブを用いて、実施例1と同様にバルーンを作成した。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.85mmであり、バルーンの最大外径部(筒状部分)での肉厚は5μmであった。
(比較例2)
被覆層形成ポリマー(外層素材)として直鎖低密度ポリエチレン(三菱化学株式会社製、商品名三菱ポリエチC6,SF520、引張破壊伸び800%(ASTMD638)を用いた以外は、実施例1と同様に行い、同寸法の二層のチューブを成形した。このチューブを用いて、ヒートセット温度を105℃とした以外は、実施例1と同様に行いバルーンを作成した。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.85mmであり、バルーンの最大外径部(筒状部分)での肉厚は10μmであった。
[実験1]
実施例1〜実施例5、比較例1および比較例2のバルーンを37℃の水中において、内部に窒素を1kg/cm刻みで吹き込んで行った時の破裂強度を測定した。
その結果は、表1に示す通りであった。
(表1)
┌──────┬──────────┬───────────────┐
│ │ 破裂強度 │ 被覆層の破裂時の応力負担率 │
├──────┼──────────┼───────────────┤
│ 実施例1 │ 18kg/cm │ 28% │
├──────┼──────────┼───────────────┤
│ 実施例2 │ 19kg/cm │ 32% │
├──────┼──────────┼───────────────┤
│ 実施例3 │ 20kg/cm │ 35% │
├──────┼──────────┼───────────────┤
│ 実施例4 │ 18kg/cm │ 28% │
├──────┼──────────┼───────────────┤
│ 実施例5 │ 18kg/cm │ 28% │
├──────┼──────────┼───────────────┤
│ 比較例1 │ 13kg/cm │ −−− │
├──────┼──────────┼───────────────┤
│ 比較例2 │ 14kg/cm │ 7% │
└──────┴──────────┴───────────────┘
実施例1、比較例1および比較例2において、ポリエチレンテレフタレート層(基材層)の厚さがそれぞれ5μmである為、実施例1におけるポリエステルエラストマー(被覆層)にかかる応力はそれぞれ5kg/cmであり、比較例2における直鎖低密度ポリエチレン(被覆層)にかかる応力は1kg/cmである。全応力に対する被覆層が担保する応力を比率にするとそれぞれ約28%と7%であった。同様に、他の実施例および比較例についても応力負担率を算出した。
これより下記に示す公知の膜方程式(特公平2−28341号公報、特開昭63−183070号公報参照)にてバルーンの各層の壁面の強度を算出すると、ポリエステルエラストマーの強度は、1425kg/cmであり、直鎖低密度ポリエチレンの強度は、285kg/cmであった。
S=1000PD/2t (膜方程式)
S:壁強度(kg/cm)、P:破裂時の内圧(kg/cm
D:1kg/cm加圧時バルーン外径(mm)
t:バルーン最外径部肉厚(μm)
ポリエステルエラストマーは十分な強度を示したが、直鎖低密度ポリエチレンはカタログ上の破壊点強度(390kg/cm)にはるかに及ばず、降伏点強度(140kg/cm)と破壊点強度の中間程度の強度しか示さなかった。これは、ポリエチレンテレフタレートと直鎖低密度ポリエチレンの最大伸び(破壊点伸び)がポリエチレンテレフタレートの方が小さい為、バルーンに応力をかけていった時(加圧した時)、直鎖低密度ポリエチレン層の最大伸び(破壊点伸び)に達する以前にポリエチレンテレフタレート層が最大伸びに達してしまい、破壊してしまう為と考える。この為直鎖低密度ポリエチレンの強度としては降伏点強度と破壊点強度の中間程度の値しか示さなかったものと考える。
一方、ポリエステルエラストマーは最大伸び(破壊点伸び)が、ポリエチレンテレフタレートに近く、又更にバルーンに成形する時の温度がポリエステルエラストマーの融点より低い為、バルーンの状態で二軸延伸された状態で固定されていると考えられ、この為計算強度がカタログ上の破壊点強度よりはるかに大きくなっているものと推定される。
(実施例6)
基材層形成ポリマー(基材層形成樹脂、内層形成ポリマー)として、ポリアミド[ナイロン12、商品名グリルアミド L25、EMS−CHEMIE AG社製、引張破断強度500kg/cm(ASTMD638)、曲弾性率12000kg/cm(ASTMD790)、引張破壊伸び270%(ASTMD638)]を用い、被覆層形成ポリマー(外層形成ポリマー)として、ポリアミドエラストマー(アトケム株式会社製、商品名ペバックス 6333SA01,ハードセグメントがポリアミドでソフトセグメントが脂肪族ポリエーテルのポリアミドエラストマー、引張破断強度520kg/cm(ASTMD638)、曲げ弾性率3,500kg/cm(ASTMD790)、引張破壊伸び300%(ASTMD638)]を用いた。
これらを用いて、常法の電線被覆法による共押出を行い、内層がポリアミドで外層がポリアミドエラストマーの二層チューブを作製した。チューブの内径は、0.45mm(内層の肉厚は、0.18mm)であり、外径は0.90mm(外層の肉厚は、0.045mm)であり、内外層の断面積比は内層/外層=3/1であった。このチューブを、図4に示す金型内に入れ、140℃に加熱し、軸方向に1.8倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンの基本形状を作製した。なお、筒状部の延伸率は内径が約5.5倍、外径が約2.8倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.52mmであり、バルーンの最大外径部(筒状部分)での肉厚は20μmであった。
(実施例7)
実施例6と同じ材料を用いて、チューブの内径0.45mm(内層の肉厚は、0.24mm)であり、外径は0.98mm(外層の肉厚は、0.085mm)であり、内外層の断面積比は内層/外層=3/2のものを作成し、実施例6と同様の方法にバルーンを作成した。バルーン最外径部でのポリアミド層の肉厚15μm、ポリアミドエラストマー層の肉厚10μm、1kg/cm加圧時の外径が2.52mmであった。
(実施例8)
基材層形成ポリマー(基材層形成樹脂)および被覆層形成ポリマーとしては、実施例6と同じものを用いた。これらを用いて、基材層が外層で被覆層が内層となるように、常法の電線被覆法による共押出を行い、外層がポリアミドで内層がポリアミドエラストマーの二層チューブを作製した。チューブの内径は、0.45mm(内層の肉厚は、0.075mm)であり、外径は0.90mm(外層の肉厚は、0.15mm)であり、内外層の断面積比は内層/外層=1/3であった。このチューブを用いて、実施例6と同様方法にて、バルーンを作製した。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.52mmであり、バルーンの最大外径部(筒状部分)での肉厚は20μmであった。
(実施例9)
基材層形成ポリマー(基材層形成樹脂)および被覆層形成ポリマーは、実施例6と同じものを用いた。これらを用いて、基材層が中間層で被覆層が基材層の両面を被覆するように、常法の電線被覆法による三色押出を行い、中間層がポリアミドで内層および外層がポリアミドエラストマーの三層チューブを作製した。チューブの内径は、0.45mm(内層の肉厚は、0.025mm)であり、外径は0.90mm(中間層の肉厚は、0.17mm,外層の肉厚は0.03mm)であり、内外層の断面積比は中間層/(内層+外層)=3/1であった。このチューブを用いて、実施例6と同様の方法にてバルーンを作成した。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.52mmであり、バルーンの最大外径部(筒状部分)での肉厚は20μmであった。
(比較例3)
実施例6に用いたポリアミドを用いて、電線被覆法にて内径0.45mm、外径0.81mm(肉厚0.18mm)の単層のチューブを成形した。このチューブを用いて、実施例6と同様にバルーンを作成した。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.52mmであり、バルーンの最大外径部(筒状部分)での肉厚は15μmであった。
[実験2]
実施例6〜実施例9および比較例3のバルーンを37℃の水中において、内部に窒素を1kg/cm刻みで吹き込んで行った時の破裂強度を測定した。また、この結果より、応力負担率を算出した。
その結果は、表2に示す通りであった。
(表2)
┌─────┬──────────┬────────────────┐
│ │ 破裂強度 │ 被覆層の破裂時の応力負担率 │
├─────┼──────────┼────────────────┤
│ 実施例6│ 22kg/cm│ 13.6% │
├─────┼──────────┼────────────────┤
│ 実施例7│ 25kg/cm│ 24% │
├─────┼──────────┼────────────────┤
│ 実施例8│ 22kg/cm│ 13.6% │
├─────┼──────────┼────────────────┤
│ 実施例9│ 22kg/cm│ 13.6% │
├─────┼──────────┼────────────────┤
│ 比較例3│ 19kg/cm│ −−−− │
└─────┴──────────┴────────────────┘
(実施例10)
基材層形成ポリマー(基材層形成樹脂、内層形成ポリマー、高強度ポリマー)として、固有粘度数約1.1の高分子量ポリエチレンテレフタレートPET[日本ユニペット株式会社製,商品名ユニペットRT580CA、引張破断強度600kg/cm(ASTMD638)、曲げ弾性率24000kg/cm(ASTMD790)、引張破壊伸び500%(ASTMD638)]を用いた。
第1の被覆層形成ポリマー(中間層形成ポリマー,柔軟性ポリマー)として、ポリエステルエラストマー[東洋紡績株式会社製、商品名ペルプレンP−150B,ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエーテルのポリエステルエラストマー、引張破断強度390kg/cm(ASTMD638)、曲げ弾性率2,950kg/cm(ASTMD790)、引張破壊伸び550%(ASTMD638)]を用いた。
第2の被覆層形成ポリマー(外層形成ポリマー,高柔軟性ポリマー)として、ポリエステルエラストマー[東洋紡績株式会社製、商品名ペルプレンP−150M,ハードセグメントが芳香族ポリエステルでソフトセグメントが脂肪族ポリエーテルのポリエステルエラストマー、引張破断強度380kg/cm(ASTMD638)、曲げ弾性率1,200kg/cm(ASTMD790)、引張破壊伸び420%(ASTMD638)]を用いた。
これらを用いて、基材層が内層で第1の被覆層が中間層で、第2の被覆層が外層となるように、常法の電線被覆法による3色押出を行い、内層がポリエチレンテレフタレートで、中間層および外層がポリエステルエラストマーの3層チューブを作製した。チューブの内径は、0.30mm、外径は0.66mm、基材層の肉厚は、0.1mm、中間層(第1の被覆層)の肉厚は、0.03mm,外層(第2の被覆層)の肉厚は、0.05mmであった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンを作製した。なお、筒状部の径方向の延伸率は内径が約6倍、外径が約3倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.0mmであり、バルーンの最大外径部(筒状部分)での肉厚は12μmであり、 基材層の肉厚は、5μm、中間層(第1の被覆層)の肉厚は、2μm,外層(第2の被覆層)の肉厚は5μmであった。
(実施例11)
実施例10と同じ材料を用いて、常法の電線被覆法による3色押出を行い、内層がポリエチレンテレフタレートで、中間層および外層がポリエステルエラストマーの3層チューブを作製した。チューブの内径は、0.42mm、外径は、0.8mm、基材層の肉厚は、0.095mm、中間層(第1の被覆層)の肉厚は、0.025mm,外層(第2の被覆層)の肉厚は、0.07mmであった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンを作製した。なお、筒状部の径方向の延伸率は内径が約6倍、外径が約3倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.5mmであり、バルーンの最大外径部(筒状部分)での肉厚は13.5μmであり、 基材層の肉厚は、6.0μm、中間層(第1の被覆層)の肉厚は、2μm,外層(第2の被覆層)の肉厚は5.5μmであった。
(実施例12)
実施例10と同じ材料を用いて、常法の電線被覆法による3色押出を行い、内層がポリエチレンテレフタレートで、中間層および外層がポリエステルエラストマーの3層チューブを作製した。チューブの内径は、0.45mm、外径は、0.9mm、基材層の肉厚は、0.11mm、中間層(第1の被覆層)の肉厚は、0.035mm,外層(第2の被覆層)の肉厚は、0.08mmであった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンを作製した。なお、筒状部の径方向の延伸率は内径が約6倍、外径が約3倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が2.75mmであり、バルーンの最大外径部(筒状部分)での肉厚は16.0μmであり、 基材層の肉厚は、6.5μm、中間層(第1の被覆層)の肉厚は、2.5μm,外層(第2の被覆層)の肉厚は7μmであった。
(実施例13)
実施例10と同じ材料を用いて、常法の電線被覆法による3色押出を行い、内層がポリエチレンテレフタレートで、中間層および外層がポリエステルエラストマーの3層チューブを作製した。チューブの内径は、0.5mm、外径は、1.0mm、基材層の肉厚は、0.115mm、中間層(第1の被覆層)の肉厚は、0.035mm,外層(第2の被覆層)の肉厚は、0.1mmであった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンを作製した。なお、筒状部の径方向の延伸率は内径が約6倍、外径が約3倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が3.0mmであり、バルーンの最大外径部(筒状部分)での肉厚は17.0μmであり、 基材層の肉厚は、6.5μm、中間層(第1の被覆層)の肉厚は、2.5μm,外層(第2の被覆層)の肉厚は8μmであった。
(実施例14)
実施例10と同じ材料を用いて、常法の電線被覆法による3色押出を行い、内層がポリエチレンテレフタレートで、中間層および外層がポリエステルエラストマーの3層チューブを作製した。チューブの内径は、0.53mm、外径は、1.05mm、基材層の肉厚は、0.12mm、中間層(第1の被覆層)の肉厚は、0.04mm,外層(第2の被覆層)の肉厚は、0.1mmであった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンを作製した。なお、筒状部の径方向の延伸率は内径が約6倍、外径が約3倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が3.25mmであり、バルーンの最大外径部(筒状部分)での肉厚は19.0μmであり、 基材層の肉厚は、7.0μm、中間層(第1の被覆層)の肉厚は、3.0μm,外層(第2の被覆層)の肉厚は9μmであった。
(実施例15)
実施例10と同じ材料を用いて、常法の電線被覆法による3色押出を行い、内層がポリエチレンテレフタレートで、中間層および外層がポリエステルエラストマーの3層チューブを作製した。チューブの内径は、0.55mm、外径は、1.10mm、基材層の肉厚は、0.125mm、中間層(第1の被覆層)の肉厚は、0.05mm,外層(第2の被覆層)の肉厚は、0.1mmであった。このチューブを、図4に示す金型内に入れ、150℃に加熱し、軸方向に2倍延伸するとともに、チューブ(パリソン)内に空気を送り、金型内に密着させてバルーンを作製した。なお、筒状部の径方向の延伸率は内径が約8倍、外径が約3.5倍であった。このバルーンは、37℃の水中において、バルーン内部を窒素により1kg/cmで加圧した時の外径が3.5mmであり、バルーンの最大外径部(筒状部分)での肉厚は20.0μmであり、 基材層の肉厚は、7.5μm、中間層(第1の被覆層)の肉厚は、3.5μm,外層(第2の被覆層)の肉厚は9μmであった。
[実験3]
実施例10〜実施例15のバルーンを37℃の水中において、内部に窒素を1kg/cm刻みで吹き込んで行った時の破裂強度を測定した。
その結果は、表3に示す通りであった。
(表3)
┌──────┬──────────┬───────────────┐
│ │ 破裂強度 │ 被覆層の破裂時の応力負担率 │
├──────┼──────────┼───────────────┤
│ 実施例10│ 24kg/cm │ 23% │
├──────┼──────────┼───────────────┤
│ 実施例11│ 23kg/cm │ 23% │
├──────┼──────────┼───────────────┤
│ 実施例12│ 22kg/cm │ 20% │
├──────┼──────────┼───────────────┤
│ 実施例13│ 21kg/cm │ 24% │
├──────┼──────────┼───────────────┤
│ 実施例14│ 20kg/cm │ 20% │
├──────┼──────────┼───────────────┤
│ 実施例15│ 20kg/cm │ 20% │
└──────┴──────────┴───────────────┘
(なお、被覆層の破裂時の応力負担率は、第1の被覆層と第2の被覆層の応力負担率の和である。)
図1は、本発明のカテーテル用バルーンの一実施例の断面図である。 図2は、他の実施例のカテーテル用バルーンの断面図である。 図3は、他の実施例のカテーテル用バルーンの断面図である。 図4は、バルーン成型用金型の説明図である。 図5は、バルーン成型用延伸装置の説明図である。 図6は、血管拡張用のバルーンカテーテルの外観図である。 図7は、カテーテルの先端部の断面図である。 図8は、カテーテルの基端部の断面図である。 図9は、他の実施例のカテーテル用バルーンの断面図である。
符号の説明
1 カテーテル用バルーン
2 基材層
3 被覆層
4 第2の被覆層(高柔軟性ポリマー)
30 バルーンカテーテル

Claims (8)

  1. 筒状部と、カテーテル接合部とを備えるカテーテル用バルーンであって、該バルーンは、基材層形成樹脂からなる基材層と、該基材層の外面に形成された前記基材層形成樹脂より柔軟な被覆層形成樹脂からなる被覆層を有する多層構造のカテーテル用バルーンであって、
    前記バルーンは、前記基材層形成樹脂がポリアミドであり、前記被覆層形成樹脂がハードセグメントがポリアミドでソフトセグメントがポリエーテルのポリアミドエラストマーであり、かつ、前記基材層と前記被覆層がともに二軸延伸された二軸延伸バルーンであり、該二軸延伸バルーン内に最大内圧をかけた状態における内圧による応力の10%以上が前記被覆層にかかるものであり、前記筒状部の肉厚が25μm以下であり、さらに、前記バルーンの前記被覆層形成樹脂により形成された前記被覆層の外面には、親水性樹脂がコーティングまたは固定されていることを特徴とするカテーテル用バルーン。
  2. 前記バルーン内に最大内圧をかけた状態における内圧による応力の20%以上が前記被覆層にかかるものである請求項1に記載のカテーテル用バルーン。
  3. 前記基材層形成樹脂と前記被覆層形成樹脂との引張破断強度の相違が、30%以下である請求項1または2に記載のカテーテル用バルーン。
  4. 前記基材層形成樹脂と前記被覆層形成樹脂との引張破断伸びの相違が、30%以下である請求項1ないし3のいずれかに記載のカテーテル用バルーン。
  5. 前記バルーンは、前記筒状部の先端側と先端側カテーテル接合部の間に形成された先端側テーパー部と、前記筒状部の基端側と基端側カテーテル接合部との間に形成された基端側テーパー部を備えている請求項1ないしのいずれかに記載のカテーテル用バルーン。
  6. 前記親水性樹脂は、血液と接触した時に、潤滑性を呈するものである請求項1ないしのいずれかに記載のカテーテル用バルーン。
  7. 前記請求項1ないしのいずれかに記載のカテーテル用バルーンを備えるバルーンカテーテル。
  8. 先端が開口している第1のルーメンを有する内管と、該内管に同軸的に設けられ、該内管の先端より所定長後退した位置に先端を有し、該内管の外面との間に第2のルーメンを形成する外管と、先端部が前記内管に固定され、基端部が前記外管に固定され、内部が前記第2のルーメンと連通する折り畳み可能なバルーンとを備える血管拡張用カテーテルであって、前記バルーンが、前記請求項1ないしのいずれかに記載のカテーテル用バルーンであることを特徴とする血管拡張用カテーテル。
JP2005147324A 1995-10-11 2005-05-19 カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル Expired - Fee Related JP4190513B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147324A JP4190513B2 (ja) 1995-10-11 2005-05-19 カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29037795 1995-10-11
JP2005147324A JP4190513B2 (ja) 1995-10-11 2005-05-19 カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28754696A Division JP3742696B2 (ja) 1995-10-11 1996-10-09 カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル

Publications (2)

Publication Number Publication Date
JP2005246097A JP2005246097A (ja) 2005-09-15
JP4190513B2 true JP4190513B2 (ja) 2008-12-03

Family

ID=35027105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147324A Expired - Fee Related JP4190513B2 (ja) 1995-10-11 2005-05-19 カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル

Country Status (1)

Country Link
JP (1) JP4190513B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064058A2 (en) * 2006-11-21 2008-05-29 Abbott Laboratories Use of a terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride in drug eluting coatings
US9265918B2 (en) * 2008-09-03 2016-02-23 Boston Scientific Scimed, Inc. Multilayer medical balloon
JP5886862B2 (ja) * 2011-09-29 2016-03-16 テルモ株式会社 カテーテル用バルーンおよびバルーンカテーテル
JP5891046B2 (ja) * 2012-01-23 2016-03-22 テルモ株式会社 バルーンおよびバルーンカテーテル
JPWO2013145479A1 (ja) * 2012-03-28 2015-12-10 テルモ株式会社 カテーテル用バルーンおよびバルーンカテーテル

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695921A (en) * 1970-09-09 1972-10-03 Nat Patent Dev Corp Method of coating a catheter
US4490421A (en) * 1983-07-05 1984-12-25 E. I. Du Pont De Nemours And Company Balloon and manufacture thereof
JPS60259269A (ja) * 1984-06-04 1985-12-21 テルモ株式会社 医療用具およびその製造方法
US5026607A (en) * 1989-06-23 1991-06-25 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
ES2043289T3 (es) * 1989-09-25 1993-12-16 Schneider Usa Inc La extrusion de capas multiples como procedimiento para hacer balones de angioplastia.
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
AU7524391A (en) * 1990-05-15 1991-11-21 C.R. Bard Inc. Multiple layer high strength balloon for dilatation catheter
JP2516096B2 (ja) * 1990-10-04 1996-07-10 テルモ株式会社 バル―ンおよびバル―ンカテ―テル
US5195969A (en) * 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
EP0549100A1 (en) * 1991-12-20 1993-06-30 Interventional Technologies Inc Catheter balloon formed from a polymeric composite
JP3270183B2 (ja) * 1992-04-06 2002-04-02 テルモ株式会社 バルーンカテーテル用バルーンおよびバルーンを備えたカテーテル
EP0738168B1 (en) * 1993-10-01 2004-01-21 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers

Also Published As

Publication number Publication date
JP2005246097A (ja) 2005-09-15

Similar Documents

Publication Publication Date Title
JP3742696B2 (ja) カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル
US5879369A (en) Catheter balloon and balloon catheter
JP2555298B2 (ja) カテーテル用バルーン、カテーテル用バルーンの製造方法およびバルーンカテーテル
US5833657A (en) Single-walled balloon catheter with non-linear compliance characteristic
JP4336689B2 (ja) 医療用カテーテル及びその形成方法
EP1430925B1 (en) Stent delivery catheter
US6841029B2 (en) Surface modification of expanded ultra high molecular weight polyethylene (eUHMWPE) for improved bondability
EP0745395B1 (en) Adjustable balloon membrane made from peek material
JP4146452B2 (ja) カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル
US9555224B2 (en) Reduced material tip for catheter and method of forming same
JP4190513B2 (ja) カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル
US6878329B2 (en) Method of making a catheter balloon using a polyimide covered mandrel
JP4149460B2 (ja) カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル
JP4146451B2 (ja) カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル
JP4149461B2 (ja) カテーテル用バルーンおよびバルーンカテーテルならびに血管拡張用カテーテル
JP4784035B2 (ja) ステントデリバリーカテーテル
JP2016214821A (ja) モノリシック構造の多層末端外側部材を有するカテーテル
JP2002239009A (ja) バルーンカテーテルおよびバルーンカテーテルの製造方法
JPH07112029A (ja) 医療用バルーン
JP2010035660A (ja) 医療用バルーンカテーテルおよびステントデリバリーカテーテル

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees