US6307798B1 - Circuit and method for multiple match detection in content addressable memories - Google Patents

Circuit and method for multiple match detection in content addressable memories Download PDF

Info

Publication number
US6307798B1
US6307798B1 US09/563,066 US56306600A US6307798B1 US 6307798 B1 US6307798 B1 US 6307798B1 US 56306600 A US56306600 A US 56306600A US 6307798 B1 US6307798 B1 US 6307798B1
Authority
US
United States
Prior art keywords
signal
input
level
differential amplifier
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/563,066
Other languages
English (en)
Inventor
Abdullah Ahmed
Valerie L. Lines
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nvidia Corp
OL Security LLC
Original Assignee
Mosaid Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
US case filed in California Northern District Court litigation Critical https://portal.unifiedpatents.com/litigation/California%20Northern%20District%20Court/case/3%3A20-cv-03522 Source: District Court Jurisdiction: California Northern District Court "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mosaid Technologies Inc filed Critical Mosaid Technologies Inc
Assigned to MOSAID TECHNOLOGIES INCORPORATED reassignment MOSAID TECHNOLOGIES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHMED, ABDULLAH, LINES, VALERIE L.
Priority to US09/960,364 priority Critical patent/US6538947B2/en
Application granted granted Critical
Publication of US6307798B1 publication Critical patent/US6307798B1/en
Priority to US10/315,118 priority patent/US6667924B2/en
Assigned to PORTALPLAYER, INC. reassignment PORTALPLAYER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOSAID TECHNOLOGIES INCORPORATED
Assigned to NVIDIA CORPORATION reassignment NVIDIA CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: PORTALPLAYER, INC.
Assigned to NVIDIA CORPORATION reassignment NVIDIA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOSAID TECHNOLOGIES INCORPORATED
Assigned to PORTALPLAYER, INC. reassignment PORTALPLAYER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOSAID TECHNOLOGIES INCORPORATED
Assigned to PORTALPLAYER, LLC reassignment PORTALPLAYER, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PORTALPLAYER, INC.
Assigned to TRACE STEP HOLDINGS, LLC reassignment TRACE STEP HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PORTALPLAYER, LLC
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/04Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type

Definitions

  • the present invention generally relates to semiconductor memory devices and more specifically to detecting multiple matches between search and stored data in highdensity Content Addressable Memory (CAM) systems.
  • CAM Content Addressable Memory
  • CAM Content Addressable Memory
  • CAM In addition to the rows and columns of memory cells, that are common to most memory systems, CAM also has a matchline and a matchline detection circuit (DTC).
  • the DTC is a sense amplifier that senses the changes in the logic state of a matchline for the cells in that row.
  • the DTC detects a match or a mismatch during a CAM search and compare operation.
  • Distinguishing between a match and mismatch condition is as simple as declaring a threshold voltage or current level between the match and mismatch levels, and determining on which side of the threshold the matchline level was. This cannot be done with the presence of multiple matches, as the effect that it has is simply to increase the decay rate of the voltage or current level.
  • matchlines In a typical CAM system, various memory cells, arranged in a row, are connected by a matchline to a detection circuit (DTC).
  • DTC detection circuit
  • Matchlines Running orthogonal to the matchlines are search lines which carry loaded search data to compare with stored data in the columns of CAM cells.
  • matchlines are precharged to a matchline precharge voltage, for example, VDD. If a search result is a match, i.e. search data on the search line matches stored data in the CAM cell, then there is no change in the matchline voltage level, i.e. it remains at its precharge state, VDD. In the case of a mismatch, a direct current path is established between the respective matchline and VSS via the CAM cell and the voltage level on that matchline begins to decrease.
  • each DTC associated with each matchline, must detect whether a differing voltage level develops as a result of the search and compare operation.
  • U.S. Pat. No. 5,012,448 to Matsuoka et al describes a method for detecting a voltage level in a multilevel read only memory (ROM cell. As shown in FIG. 1, the method and apparatus described therein use a pair of CMOS inverters that are operated as small signal amplifiers with an NMOS device used for current sensing. Both reference and active side sources are also fed into a current mirror. Though this design accomplishes the desired task of multilevel sensing, it does so at the cost of increased heat dissipation, and a limited output voltage swing. This increase in heat is a direct result of high power consumption by the discrete components and is a limiting factor in the attempt to shrink the component size so that it occupies less circuit area.
  • U.S. Pat. No. 5,446,686 to Bosnyak and Santoro describes a method and an apparatus for detecting multiple address matches in a CAM.
  • the described apparatus as shown in FIGS. 2 a , 2 b and 2 c uses a pair of ‘hit’ and ‘dhit’ lines that are connected to the power supply terminal (VDD) through a pair of pull-up PMOS transistors.
  • a set of NMOS devices N 0 -N 3 on the ‘hit’ line operate in saturation since the voltages across the drain and source terminals are always above a threshold compared to the gate-to-source voltage (Vgs) of these devices.
  • the reference transistor has a width to length ratio that is 1.5 times in dimension relative to any one of the NMOS devices N 0 -N 3 to provide a 1.5 times saturation current
  • the reference transistor Nref also operates in its saturation region.
  • the Vgs of the Nref device is generated using a rather complex reference circuit to ensure appropriate compensation for temperature and voltage characteristics.
  • the described apparatus uses a comparator to compare the current difference generated on the ‘hit’ and ‘dhit’ lines for a single and multiple match generation.
  • the comparator is a two-stage area-intensive component that uses bipolar transistors and resistors for achieving the desired output.
  • One limitation of this application is as follows. In order to operate the NMOS devices N 0 -N 3 and Nref in saturation, the pull-up PMOS devices connecting the ‘hit’ and ‘dhit’ lines to the power supply terminal have to have relatively low resistivity such that the voltage drop is not significant across them while the devices N 0 -N 3 and Nref turn on during sensing. This is required to ensure that the voltage across the drain-to-source channel does not change significantly. This is achieved at the cost of relatively high current consumption through the ‘hit’ and ‘dhit’ lines during the entire operation, which presents a limitation for multiple-match detection within high density CAMs.
  • DRAM dynamic random access memories
  • CAM content addressable memory
  • an apparatus specifically a signal detection circuit, that comprises a differential amplifier having a sense node and a reference node, an activation means for switching the differential amplifier between an inactive phase and an active phase, an input means for providing the sense node with an input signal permitted to start changing from a predetermined precharge level towards a discharge level during said inactive phase, and a reference means for providing the reference node with a reference signal that starts changing from said precharge level towards a predetermined reference level during said inactive phase, whereby the differential amplifier provides a complementary output corresponding to the difference between the discharge and the reference levels when the difference between the input signal and the reference signal exceeds a detectable level during the active phase.
  • the differential amplifier comprises a latching circuit for providing the complementary output.
  • the input and reference signals start changing from the precharge level at approximately the same time, whereas the active phase begins after a predetermined time delay from the time the input and reference signals start changing from the precharge level, said time delay being sufficient to permit building up a detectable difference between the input and reference signals.
  • the signal detection circuit can be used for detecting a multiplicity of n match conditions on a plurality of m matchlines in a high density content addressable memory, where 2 ⁇ n ⁇ m wherein the input signal is derived from the matchlines.
  • the input means is coupled to a plurality of m matchlines, such that the discharge level is determined by the number of the match conditions, and the reference level falls between discharge level corresponding to n ⁇ 1 match conditions and that corresponding to n match conditions.
  • the input means comprises a plurality of similarly sized m matchline devices connected in parallel to the sense node, wherein each matchline device is responsive to a corresponding one of the m matchlines and the reference means comprises a reference device and a plurality of m dummy devices connected in parallel to the reference node, wherein each dummy device corresponds to and has substantially similar electrical characteristics to one of the m matchline devices, and wherein the reference device has a size between that of first and second parallel combinations of n ⁇ 1 and n matchline devices respectively.
  • n 2.
  • the reference device is turned on by an enable signal to permit a change in the reference signal from the precharge level, at approximately the same time as the matchline devices receive their respective match data
  • the sense node and the reference node are separately coupled to a first power supply terminal through a pair of respective clamping devices having substantially similar electrical characteristics to one another and a sufficient size for precharging the sense node and the reference node during the inactive phase and for preventing the sense node and the reference node from reaching a voltage level lower than the threshold voltage of any one of the matchline devices.
  • the clamping devices are preferred to have respective sizes suitable for limiting the current flow through the matchline devices, the dummy devices and the reference device substantially below saturation.
  • Another embodiment of the present invention further comprises a logic circuit for turning off the pair of clamping circuits upon the differential amplifier switching to a latched state during the active phase.
  • the activation means preferably comprises a circuit for enabling the differential amplifier only during the active phase.
  • an apparatus specifically a signal detection circuit for detecting a multiplicity of n match conditions occurring among a plurality of m matchlines within a CAM array where 2 ⁇ n ⁇ m comprising a differential amplifier having a sense node for receiving a time-varying input signal and a reference node for receiving a time-varying reference signal, activation means for switching the differential amplifier between an inactive phase and an active phase, precharge means for precharging the sense node and the input node to a predetermined precharge level, during the inactive phase, input means for deriving the input signal from the m matchlines, such that said input signal starts changing during the inactive phase from the precharge level to a discharge level determined by the number of the match conditions and reference means for generating the reference signal which starts changing during the inactive phase from the precharge level towards a reference level falling between the discharge levels corresponding to n and n ⁇ 1 match conditions wherein the differential amplifier compares the input signal with the reference signal during the active phase and provides a
  • a method of detecting a multiplicity of n match conditions occurring among a plurality of m matchlines within a CAM array, where 2 ⁇ n ⁇ m comprising the steps of providing a differential amplifier, turning said differential amplifier into an inactive state, deriving an input signal from the m matchlines, such that said input signal starts changing from a predetermined precharge level towards a discharge level determined by the number of the match conditions, generating a reference signal that starts changing from the precharge level towards a reference level falling between the discharge level corresponding to n match conditions and that corresponding to n ⁇ 1 match conditions, and turning the differential amplifier into an active state for comparing the input signal with the reference signal to obtain an indication whether the number of match conditions is below n or whether it is equal to or exceeds n.
  • the invention avoids the otherwise conventional requirement for operating in saturation mode the devices driving the multiple hit lines and the reference line, thereby minimizing power consumption in the overall circuit
  • the differential amplifier detects a difference between voltages on the multiple-hit line and the reference line, as opposed to the prior art method of current detection.
  • the circuit consumes relatively negligible current without requiring additional stages for boosting signal levels to be detected, as in prior art solutions.
  • FIG. 1 shows a conventional sense amplifier for a multilevel sensing
  • FIGS. 2 a , 2 b , and 2 c show a prior art apparatus for detecting multiple address matches in a CAM
  • FIG. 3 is a schematic diagram illustrating the structure of a multiple-hit-line to be sensed and a reference multiple-hit-line; as part of an embodiment of this invention
  • FIG. 4 is a schematic diagram illustrating a differential amplifier and associated circuits for use with the structure shown in FIG. 3, as a first embodiment of the present invention
  • FIG. 5 is a schematic diagram illustrating a differential application and associated circuits for use with the structure shown in FIG. 3, in a second embodiment of the present invention
  • FIG. 6 is a timing diagram of the multiple match detection operation performed by the first embodiment
  • FIG. 7 is a timing diagram of the multiple match detection operation performed by the second embodiment.
  • FIGS. 8 a , 8 b and 8 c are timing diagrams to illustrate the three cases of multiple, single and no hit respectively in the second embodiment.
  • FIG. 3 illustrates the structure of a multiple hit line MHL and a reference line MHLb as part of one embodiment of the present invention.
  • the multiple hit line MHL is coupled to a number (128 in this embodiment) of matchlines ML 1 -ML 128 , in parallel, via NMOS matchline devices MD 1 -MD 128 , which all have similar dimensions and operating characteristics.
  • Each of these matchline devices MD 1 -MD 128 is setup so that its source is connected to VSS, its drain is connected to MHL, and its gate is connected to the respective matchline thereby allowing the voltage level on MHL to be controlled by the multiple pull-down paths provided by the matchline devices MD 1 -MD 128 .
  • the number of matchline devices used in an array of CAM cells is equal to the number of rows of CAM cells in that array, which in this embodiment is 128.
  • each matchline is connected to a row of CAM cells, which use the matchline to report the incidence of a hit (or a match) and a miss (or a mismatch).
  • each of the matchlines ML 1 -ML 128 carries match or mismatch information about the cells in its row.
  • the corresponding matchline is pulled down to VSS (low), from a precharged state of VDD (high) by a corresponding matchline sense amplifier (not shown) whereas a match between search and stored data will result in that matchline remaining at the precharged VDD level.
  • MHL will be discharged towards VSS through at least one matchline device. Having more than one matchline reporting a hit (i.e. remaining at VDD) results in MHL discharging towards VSS faster.
  • MHL remains at VDD because all the matchlines are low and none of the matchline devices turn on.
  • the purpose of this embodiment is to distinguish a multiple hit condition from a non-multiple hit condition where only one or no match occurs on MHL.
  • the second line used by this embodiment is a reference line denoted by MHLb.
  • This reference line has an equal number (128 in this embodiment) of NMOS dummy devices DD 1 -DD 128 as the number of matchline devices MD 1 -MD 128 , connected in a similar parallel manner, except that the gates are connected to the VSS line rather than the actual matchlines ML 1 -ML 128 , thereby each dummy device simulating a mismatch condition
  • These dummy devices DD 1 -DD 128 are chosen so as to have electrical characteristics similar to the matchline devices MD 1 -MD 128 for this purpose, and thus provide the same parasitic capacitance and resistive loading on MHLb as is present on MHL for noise reduction.
  • NMOS reference device RD on MHLb whose channel width falls between one and two times (in this embodiment 3/2) the channel width of any one of the matchline devices MD 1 -MD 128 .
  • the gate of this reference device RD is connected to a matchline sense enable signal MLSEN which also activates the matchline sense amplifiers (not shown) each of which senses and latches relevant matchline data on its corresponding matchline.
  • Match data is established on the matchlines ML 1 -ML 128 within a very short time after MLSEN is driven to VDD.
  • one of the gates of the matchline devices MD 1 -MD 128 will be driven to VDD at approximately the same time the gate of the reference device RD is driven to VDD by MLSEN.
  • the timing signal MLSEN is used to ensure that both MHL and MHLb start to change their voltages almost simultaneously. This allows for the current through MHL and MHLb to be controlled and limited, as opposed to the prior art solutions, wherein a constant current is continuously drawn.
  • MHL and MHLb are both clamped to VDD using two PMOS voltage clamping devices, shown in FIG. 4 as M 1 and M 2 .
  • MHL will be pulled down, after a brief settling time, by the matchline that indicates the hit to a voltage level slightly higher than MHLb. This is due to the fact that the matchline device that indicates the single hit will be on simultaneously with the clamping device M 1 thereby setting up a voltage divider. Since the width of the reference device RD is 3/2 times the width of any of the matchline devices MD 1 -MD 128 , MHLb will be driven lower than MHL.
  • MHL will reach a voltage level lower than that of MHLb, after the brief settling time, since the combined width of the matchline devices whose gates are at VDD is larger than that of the reference device RD.
  • the gates of all the matchline devices MD 1 -MD 128 are at VSS, thus MHL will stay at the precharged level while MHLb is driven to a lower voltage.
  • FIG. 4 shows a differential amplifier DA and associated circuits used with the structure shown in FIG. 3 as a first embodiment of this invention.
  • the PMOS clamping devices M 1 and M 2 are used for clamping MHL and MHLb to VDD.
  • the gates of M 1 and M 2 are connected to VSS making both devices conduct as soon as the voltage level on MHL and MHLb drops below VDD-Vtp (the threshold voltage of a PMOS device).
  • the source terminals of M 1 and M 2 are connected to VDD and the drain terminal of M 1 is connected to MHL while the drain of M 2 is connected MHLb.
  • each combination of a PMOS device (M 1 or M 2 ) with at least one NMOS device (MD 1 -MD 128 or RD, DD 1 -DD 128 respectively) provide a resistive voltage divider that develops the respective voltage levels on both MHL and MHLb to be detected by the differential amplifier DA.
  • the PMOS devices are relatively small thereby reducing the current flow therethrough.
  • the ratio of transistor sizes (channel widths) of M 1 and any of the matchline devices MD 1 -MD 128 shown in FIG. 3, determines the voltage level to which MHL will get discharged when a match occurs.
  • the ratio of transistor sizes of M 2 and RD determines the voltage level MHLb will reach when RD turns on.
  • An activation circuit that switches the differential amplifier DA between an inactive phase and an active phase is formed by three activation transistor devices M 5 , M 10 , and M 11 , the gates of which are connected together to an activation signal SHL.
  • the inactive phase coincides with SHL being low and the MHL and MHLb being precharged to VDD, whereas the active phase coincides with SHL being high and MHL and MHLb being sensed.
  • SHL is turned high after MLSEN is turned high by a specific time delay sufficient to allow the voltage difference between MHL and MHLb to reach a level detectable by the differential amplifier DA. This is to avoid DA responding to spurious voltages while MHL and MHLb are discharging towards their respective target levels. It is to be noted that even during the active phase, the differential amplifier DA being of a latching type draws current only during the switching of the latching circuit M 6 -M 9 , and that such switching occurs rather rapidly due to the positive feedback connections within the CMOS latching circuit M 6 -M 9 .
  • the circuit of FIG. 4 also includes an additional conventional output latch circuit LC driven by the LATCH signal through a switch SW which is turned on and off by a delay unit DU in response to the SHL signal.
  • the delay unit provides two control signals SHL_DLY and SHL_DLYb which are time delayed versions of SHL. When SHL goes to a low voltage level the path to the latch circuit LC through the switch SW is disabled, while a high voltage level MSHL enables the latch circuit.
  • FIG. 6 illustrates the relative timing sequence of the detection operation performed by the first embodiment combining the circuits of FIGS. 3 and 4.
  • first and second output nodes of the differential amplifier out and outb respectively are both precharged to VDD by M 10 and M 11 .
  • SHL is driven to VDD to switch the differential amplifier DA into the active phase at the time when both MHL and MHLb have reached their respective voltage levels as determined by the match data on the matchlines ML 1 -ML 128 which ensure sufficient differential sensing margin.
  • SHL goes to VDD and M 5 turns on with its gate driven to VDD.
  • MHL settles to a lower voltage than MHLb, and the first sensing device M 3 being driven by MHL is turned on slightly while the second sensing device M 4 being driven by MHLb is turned on strongly.
  • M 4 and M 7 which are connected together in series
  • M 3 and M 6 which are also connected together in series.
  • the resulting differential current in the two paths rapidly switches, i.e. flips the latching circuit due to the positive feedback between its four latch transistors M 6 -M 9 .
  • the first output node out is driven to VSS while the second output node outb stays high.
  • Two pairs of output buffer transistor devices M 12 , M 13 and M 14 , M 15 provide first and second inverting buffers BUF 1 and BUF 2 respectively between the first and second output nodes out and outb, producing first and second respective output signals LATCH and LATCHb to be used in subsequent signal processing.
  • MHL is at a higher voltage level than MHLb, causing the first sensing transistor M 3 to turn on harder than the second sensing transistor M 4 .
  • a differential current is generated in an opposite manner as the second output node outb is driven down to VSS while the first output node out stays high.
  • the first output node out drives the first inverting buffer BUF 1 to provide the first output signal LATCH, which holds the information for further processing.
  • the activation signal SHL remains at VDD only for the time duration it takes the sensed data to drive the latching circuit M 6 -M 9 (active phase). Since the first output node out provides the information on multiple hits in a relatively short time, current consumption through M 1 and M 2 is also for a relatively short time. This is clearly shown in FIG. 6, which illustrates the timing of a multiple-hit detection operation. As a result, the current flowing through the differential amplifier DA is only present during the switching of the latching circuit M 6 -M 9 .
  • FIG. 5 shows a differential amplifier and associated circuits used with the structure shown in FIG. 3 as a second embodiment of the present invention wherein separate first and second PMOS precharge devices M 16 and M 17 respectively are provided in addition to the clamping devices M 1 and M 2 .
  • the differential amplifier circuit consisting of M 3 , M 4 and M 6 -M 9 is the same as that shown in FIG. 4 .
  • Another difference between the first and second embodiments is that the pair of voltage clamping devices M 1 and M 2 have their respective gates controlled by the output of an inverter INV whose input gate is driven by the output of a NOR logic gate NLG.
  • a first input of NLG is connected to the first output signal LATCH provided by the first inverting buffer BUF 1 formed by the first pair of buffer devices M 12 and M 13
  • a second input of NLG is connected to the second output signal LATCHb provided by the second inverting buffer BUF 2 formed by the second pair of buffer devices M 14 and M 15 .
  • This connection of the gates of the voltage clamping devices M 1 and M 2 provides self-timing to turn off M 1 and M 2 as soon as the differential amplifier DA has latched the data and switched from its precharge state. This provides further reduction in power consumption since M 1 and M 2 are turned on only for a very limited time during the sensing interval.
  • the transient current required for precharging MHL and MHLb through any PMOS transistor would be larger than the current needed to develop the voltage levels on these two lines, since in the second embodiment, M 1 and M 2 can be mininmum sized transistors. Therefore, if M 1 and M 2 were used to perform the precharge, their required larger device sizes would result in a larger DC current power dissipation when developing the voltage levels on MHL and MHLb during the active phase. In order to address this larger power dissipation, the second embodiment of FIG. 5 uses the precharge transistors M 16 and M 17 to perform the. precharge more efficiently.
  • FIG. 7 illustrates the detection operation performed by the second embodiment combining the circuits of FIGS. 3 and 5 in the case of a single hit.
  • both lines begin to be discharged towards VSS by virtue of the feedback circuit from the two amplifier outputs out and outb vial the logic gate NLG and the inverter INV.
  • FIGS. 8 a , 8 b and 8 c illustrate the three possible outcomes of the search and compare operation on the circuitry described above for the first and second embodiments in FIG. 6 .
  • FIG. 8 a illustrates the case of a multiple hit where the search and compare operation has resulted in more than one hit (or match) between search data and stored data in a particular row of the CAM. Note that after a brief period of time, MHL's voltage level decreases substantially below that of MHLb, as described earlier, due to the combined pull-down action of multiple matchline devices from ML 1 -ML 128 (shown in FIG. 3) being turned on simultaneously.
  • matchline devices corresponding to the multiple hits have a combined width which is greater than the width of the reference device RD and therefore pull MHL to a voltage level lower than that of MHLb. Detection of the voltage difference between MHL and MHLb occurs once the two lines are sufficiently far apart in voltage to be sensed by the sensing devices M 3 and M 4 . Shortly thereafter, the second output node outb obtains a corresponding signal from the differential amplifier as described above, MHL and MHLb are both discharged to VSS, and then MHL and MHLb are precharged once again in preparation for the next sensing operation during the next active phase. Similarly, in FIG. 8 b , the case of a single hit is illustrated. Note that the outcome is opposite to that shown in FIG.

Landscapes

  • Dram (AREA)
  • Read Only Memory (AREA)
  • Static Random-Access Memory (AREA)
  • Manipulation Of Pulses (AREA)
  • Amplifiers (AREA)
  • Power Sources (AREA)
US09/563,066 1999-07-12 2000-04-24 Circuit and method for multiple match detection in content addressable memories Expired - Fee Related US6307798B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/960,364 US6538947B2 (en) 1999-07-12 2001-09-24 Method for multiple match detection in content addressable memories
US10/315,118 US6667924B2 (en) 1999-07-12 2002-12-10 Circuit and method for multiple match detection in content addressable memories

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002277717A CA2277717C (en) 1999-07-12 1999-07-12 Circuit and method for multiple match detection in content addressable memories
CA2277717 1999-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/960,364 Continuation US6538947B2 (en) 1999-07-12 2001-09-24 Method for multiple match detection in content addressable memories

Publications (1)

Publication Number Publication Date
US6307798B1 true US6307798B1 (en) 2001-10-23

Family

ID=4163783

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/563,066 Expired - Fee Related US6307798B1 (en) 1999-07-12 2000-04-24 Circuit and method for multiple match detection in content addressable memories
US09/960,364 Expired - Fee Related US6538947B2 (en) 1999-07-12 2001-09-24 Method for multiple match detection in content addressable memories
US10/315,118 Expired - Fee Related US6667924B2 (en) 1999-07-12 2002-12-10 Circuit and method for multiple match detection in content addressable memories

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/960,364 Expired - Fee Related US6538947B2 (en) 1999-07-12 2001-09-24 Method for multiple match detection in content addressable memories
US10/315,118 Expired - Fee Related US6667924B2 (en) 1999-07-12 2002-12-10 Circuit and method for multiple match detection in content addressable memories

Country Status (9)

Country Link
US (3) US6307798B1 (zh)
JP (1) JP2003504789A (zh)
KR (1) KR100718031B1 (zh)
CN (2) CN100576339C (zh)
AU (1) AU5959000A (zh)
CA (1) CA2277717C (zh)
DE (1) DE10084797B4 (zh)
GB (1) GB2367931B (zh)
WO (1) WO2001004906A1 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400594B2 (en) * 2000-03-03 2002-06-04 Kawasaki Steel Corporation Content addressable memory with potentials of search bit line and/or match line set as intermediate potential between power source potential and ground potential
US6442054B1 (en) * 2001-05-24 2002-08-27 Integrated Device Technology, Inc. Sense amplifier for content addressable memory
US6510069B2 (en) * 2001-01-19 2003-01-21 Pien Chien Content addressable memory apparatus and method of operating the same
US6538947B2 (en) * 1999-07-12 2003-03-25 Mosaid Technologies Incorporated Method for multiple match detection in content addressable memories
EP1313106A1 (en) * 2001-11-15 2003-05-21 Broadcom Corporation Content addressable memory match line sensing techniques
US6584003B1 (en) * 2001-12-28 2003-06-24 Mosaid Technologies Incorporated Low power content addressable memory architecture
US20030137890A1 (en) * 2001-12-28 2003-07-24 Peter Vlasenko Matchline sensing for content addressable memories
EP1367594A1 (en) * 2002-05-31 2003-12-03 President of Hiroshima University Self-adjusting winner-line-up amplifier
US6707694B2 (en) 2001-07-06 2004-03-16 Micron Technology, Inc. Multi-match detection circuit for use with content-addressable memories
US20040100809A1 (en) * 2002-11-25 2004-05-27 International Business Machines Corporation Circuit for multiple match hit CAM readout
US6744653B1 (en) * 2001-10-04 2004-06-01 Xiaohua Huang CAM cells and differential sense circuits for content addressable memory (CAM)
US20040130924A1 (en) * 2000-05-31 2004-07-08 Ma Stanley Jeh-Chun Multiple match detection circuit and method
US20040196700A1 (en) * 2003-04-01 2004-10-07 International Business Machines Corp. Apparatus for detecting multiple hits in a camram memory array
US6859378B1 (en) 2003-03-10 2005-02-22 Integrated Device Technology, Inc. Multiple match detection logic and gates for content addressable memory (CAM) devices
US20050138279A1 (en) * 2003-10-11 2005-06-23 Madian Somasundaram Memory and power efficient mechanism for fast table lookup
US20050174848A1 (en) * 2001-12-24 2005-08-11 Chow David G. Self-timed sneak current cancellation
US7155563B1 (en) 2003-01-21 2006-12-26 Spans Logic Inc. Circuits to generate a sequential index for an input number in a pre-defined list of numbers
US20070088909A1 (en) * 2005-10-18 2007-04-19 Cisco Technology, Inc., A California Corporation Identifying content-addressable memory entries differing from a lookup word in multiple but less than a predetermined number of bit positions
US20070086227A1 (en) * 2005-10-18 2007-04-19 Cisco Technology, Inc., A California Corporation Error protected ternary content-addressable memories and lookup operations performed thereon
US20070088910A1 (en) * 2005-10-18 2007-04-19 Cisco Technology, Inc., A California Corporation Associative memory cells configured to selectively produce binary or ternary content-addressable memory lookup results
US20070242493A1 (en) * 2006-04-17 2007-10-18 Kuliyampattil Nisha P Match sensing circuit for a content addressable memory device
US20080049522A1 (en) * 2006-08-24 2008-02-28 Cisco Technology, Inc. Content addressable memory entry coding for error detection and correction
US20090083499A1 (en) * 2007-09-24 2009-03-26 Nvidia Corporation Ordered Storage Structure Providing Enhanced Access to Stored Items
US7822916B1 (en) 2006-10-31 2010-10-26 Netlogic Microsystems, Inc. Integrated circuit search engine devices having priority sequencer circuits therein that sequentially encode multiple match signals
US20110026346A1 (en) * 2009-07-31 2011-02-03 Stmicroelectronics (Rousset) Sas Self-timed low power sense amplifier

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357678A (ja) * 2000-06-16 2001-12-26 Hitachi Ltd 半導体集積回路装置
KR20030034748A (ko) * 2001-10-26 2003-05-09 삼성전자주식회사 멀티 연관 기억장치의 추가/삭제방법
US6768659B2 (en) * 2001-12-31 2004-07-27 Mosaid Technologies Incorporated Circuit and method for reducing power usage in a content addressable memory
US6751110B2 (en) * 2002-03-08 2004-06-15 Micron Technology, Inc. Static content addressable memory cell
KR100416623B1 (ko) * 2002-05-03 2004-02-05 삼성전자주식회사 프로세스 트랙킹 회로를 구비하는 감지증폭기 인에이블신호 발생회로 및 이를 구비하는 반도체 메모리장치
US6618281B1 (en) * 2002-05-15 2003-09-09 International Business Machines Corporation Content addressable memory (CAM) with error checking and correction (ECC) capability
US6842358B2 (en) * 2002-08-01 2005-01-11 Netlogic Microsystems, Inc. Content addressable memory with cascaded array
US7100013B1 (en) 2002-08-30 2006-08-29 Nvidia Corporation Method and apparatus for partial memory power shutoff
US7006368B2 (en) * 2002-11-07 2006-02-28 Mosaid Technologies Incorporated Mismatch-dependent power allocation technique for match-line sensing in content-addressable memories
JPWO2004075200A1 (ja) * 2003-02-19 2006-06-01 富士通株式会社 メモリ装置
JP4400081B2 (ja) * 2003-04-08 2010-01-20 エルピーダメモリ株式会社 半導体記憶装置
JP4922932B2 (ja) * 2005-06-28 2012-04-25 スパンション エルエルシー 半導体装置およびその制御方法
US7477076B2 (en) * 2006-12-04 2009-01-13 International Business Machines Corporation Low-voltage, low-power-consumption, and high-speed differential current-sense amplification
US7600071B2 (en) 2006-12-07 2009-10-06 International Business Machines Corporation Circuit having relaxed setup time via reciprocal clock and data gating
US7501854B2 (en) 2006-12-07 2009-03-10 International Business Machines Corporation True/complement generator having relaxed setup time via self-resetting circuitry
US7788443B2 (en) * 2006-12-12 2010-08-31 International Business Machines Corporation Transparent multi-hit correction in associative memories
US7788444B2 (en) * 2006-12-12 2010-08-31 International Business Machines Corporation Multi-hit detection in associative memories
US8254178B2 (en) * 2007-08-27 2012-08-28 Infineon Technologies Ag Self-timed integrating differential current
US9088176B2 (en) * 2007-12-17 2015-07-21 Nvidia Corporation Power management efficiency using DC-DC and linear regulators in conjunction
US8327173B2 (en) * 2007-12-17 2012-12-04 Nvidia Corporation Integrated circuit device core power down independent of peripheral device operation
US9411390B2 (en) 2008-02-11 2016-08-09 Nvidia Corporation Integrated circuit device having power domains and partitions based on use case power optimization
US9423846B2 (en) 2008-04-10 2016-08-23 Nvidia Corporation Powered ring to maintain IO state independent of the core of an integrated circuit device
US8762759B2 (en) * 2008-04-10 2014-06-24 Nvidia Corporation Responding to interrupts while in a reduced power state
KR101416879B1 (ko) 2008-10-06 2014-08-07 삼성전자주식회사 비휘발성 메모리의 동작 방법
KR101094904B1 (ko) * 2009-09-30 2011-12-15 주식회사 하이닉스반도체 기준전압 생성 회로 및 방법, 이를 이용한 상변화 메모리 장치 및 리드 방법
CN101800068B (zh) * 2010-03-10 2013-06-26 上海宏力半导体制造有限公司 一种读出放大电路
CN102403018B (zh) * 2011-11-07 2014-04-30 中国科学院声学研究所 内容可寻址存储器存储单元匹配检测方法和电路
US9471395B2 (en) 2012-08-23 2016-10-18 Nvidia Corporation Processor cluster migration techniques
US20140062561A1 (en) 2012-09-05 2014-03-06 Nvidia Corporation Schmitt receiver systems and methods for high-voltage input signals
KR20160002106A (ko) * 2014-06-30 2016-01-07 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그의 동작방법
CN105070309B (zh) * 2015-07-20 2017-10-20 上海华虹宏力半导体制造有限公司 基于差分存储单元的灵敏放大器
CN107919155A (zh) * 2016-10-11 2018-04-17 复旦大学 一种非易失三态内容寻址存储器及其寻址方法
CN110580231B (zh) * 2018-06-08 2022-03-25 龙芯中科技术股份有限公司 处理电路、缓冲器、存储器及处理器

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061999A (en) 1975-12-29 1977-12-06 Mostek Corporation Dynamic random access memory system
EP0363332A2 (en) 1988-10-06 1990-04-11 STMicroelectronics S.r.l. High resolution, fully differential CMOS comparator
US5012448A (en) 1985-12-13 1991-04-30 Ricoh Company, Ltd. Sense amplifier for a ROM having a multilevel memory cell
US5258669A (en) 1991-02-15 1993-11-02 Nec Corporation Current sense amplifier circuit
US5428565A (en) 1994-03-11 1995-06-27 Intel Corporation Single stage sensing apparatus for a content addressable memory
US5446686A (en) 1994-08-02 1995-08-29 Sun Microsystems, Inc. Method and appartus for detecting multiple address matches in a content addressable memory
US5543738A (en) 1994-12-27 1996-08-06 United Microelectronics Corp. Multi-stage sense amplifier for read-only memory having current comparators
US5610573A (en) 1995-09-13 1997-03-11 Lsi Logic Corporation Method and apparatus for detecting assertion of multiple signals
US5673221A (en) 1995-03-23 1997-09-30 Sgs-Thomson Microelectronics S.R.L. Circuit and method for reading a memory cell that can store multiple bits of data
US5726942A (en) 1992-01-10 1998-03-10 Kawasaki Steel Corporation Hierarchical encoder including timing and data detection devices for a content addressable memory
US5726935A (en) 1996-01-26 1998-03-10 Hyundai Electronics Industries Co., Ltd. Flash memory device
US5740108A (en) 1995-12-12 1998-04-14 Ricoh Company, Ltd. Series-structured read-only memory having word lines arranged independently for each row of a memory cell array
US5748546A (en) 1994-06-02 1998-05-05 Intel Corporation Sensing scheme for flash memory with multilevel cells
US5751632A (en) 1996-11-19 1998-05-12 Lg Semicon Co., Ltd. Device for and method of sensing data of multi-bit memory cell
US5818786A (en) * 1995-05-24 1998-10-06 Kawasaki Steel Corporation Layout method of semiconductor memory and content-addressable memory
US5838612A (en) 1995-03-31 1998-11-17 Sgs-Thomson Microelectronics S.R.L. Reading circuit for multilevel non volatile memory cell devices
US5999435A (en) * 1999-01-15 1999-12-07 Fast-Chip, Inc. Content addressable memory device
US6012131A (en) * 1996-11-06 2000-01-04 Hyundai Electronics Industries. Co., Ltd. High speed translation lookaside buffer employing content address memory
US6058038A (en) * 1997-12-26 2000-05-02 Hitachi, Ltd Semiconductor device
US6181591B1 (en) * 1998-10-29 2001-01-30 International Business Machines Corporation High speed CAM cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354257A (en) * 1980-05-23 1982-10-12 Fairchild Camera And Instrument Corporation Sense amplifier for CCD memory
JPH02201797A (ja) * 1989-01-31 1990-08-09 Toshiba Corp 半導体メモリ装置
JP3037377B2 (ja) * 1990-08-27 2000-04-24 沖電気工業株式会社 半導体記憶装置
JPH07153279A (ja) * 1993-12-01 1995-06-16 Mitsubishi Electric Corp 多重一致検出装置
JPH0973795A (ja) * 1995-09-05 1997-03-18 Oki Electric Ind Co Ltd 有意レベル数弁別回路及び連想メモリ装置
DE19612456C2 (de) * 1996-03-28 2000-09-28 Siemens Ag Halbleiterspeichervorrichtung
JP3190868B2 (ja) * 1997-11-21 2001-07-23 エヌイーシーマイクロシステム株式会社 連想メモリ装置
JPH11273364A (ja) * 1998-03-18 1999-10-08 Kawasaki Steel Corp 連想メモリ
KR100371022B1 (ko) * 1998-11-26 2003-07-16 주식회사 하이닉스반도체 다중비트 메모리셀의 데이터 센싱장치
CA2277717C (en) * 1999-07-12 2006-12-05 Mosaid Technologies Incorporated Circuit and method for multiple match detection in content addressable memories
US6195277B1 (en) * 1999-09-13 2001-02-27 Lara Technology, Inc. Multiple signal detection circuit
JP4732596B2 (ja) * 2000-03-03 2011-07-27 川崎マイクロエレクトロニクス株式会社 連想メモリ装置
US7177181B1 (en) * 2001-03-21 2007-02-13 Sandisk 3D Llc Current sensing method and apparatus particularly useful for a memory array of cells having diode-like characteristics
US6525586B1 (en) * 2001-11-09 2003-02-25 Genesis Microchip, Inc. Programmable delay element using differential technique
US6597598B1 (en) * 2002-04-30 2003-07-22 Hewlett-Packard Development Company, L.P. Resistive cross point memory arrays having a charge injection differential sense amplifier

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061999A (en) 1975-12-29 1977-12-06 Mostek Corporation Dynamic random access memory system
US5012448A (en) 1985-12-13 1991-04-30 Ricoh Company, Ltd. Sense amplifier for a ROM having a multilevel memory cell
EP0363332A2 (en) 1988-10-06 1990-04-11 STMicroelectronics S.r.l. High resolution, fully differential CMOS comparator
US5258669A (en) 1991-02-15 1993-11-02 Nec Corporation Current sense amplifier circuit
US5726942A (en) 1992-01-10 1998-03-10 Kawasaki Steel Corporation Hierarchical encoder including timing and data detection devices for a content addressable memory
US5428565A (en) 1994-03-11 1995-06-27 Intel Corporation Single stage sensing apparatus for a content addressable memory
US5828616A (en) 1994-06-02 1998-10-27 Intel Corporation Sensing scheme for flash memory with multilevel cells
US5748546A (en) 1994-06-02 1998-05-05 Intel Corporation Sensing scheme for flash memory with multilevel cells
US5446686A (en) 1994-08-02 1995-08-29 Sun Microsystems, Inc. Method and appartus for detecting multiple address matches in a content addressable memory
US5543738A (en) 1994-12-27 1996-08-06 United Microelectronics Corp. Multi-stage sense amplifier for read-only memory having current comparators
US5673221A (en) 1995-03-23 1997-09-30 Sgs-Thomson Microelectronics S.R.L. Circuit and method for reading a memory cell that can store multiple bits of data
US5838612A (en) 1995-03-31 1998-11-17 Sgs-Thomson Microelectronics S.R.L. Reading circuit for multilevel non volatile memory cell devices
US5818786A (en) * 1995-05-24 1998-10-06 Kawasaki Steel Corporation Layout method of semiconductor memory and content-addressable memory
US5610573A (en) 1995-09-13 1997-03-11 Lsi Logic Corporation Method and apparatus for detecting assertion of multiple signals
US5740108A (en) 1995-12-12 1998-04-14 Ricoh Company, Ltd. Series-structured read-only memory having word lines arranged independently for each row of a memory cell array
US5726935A (en) 1996-01-26 1998-03-10 Hyundai Electronics Industries Co., Ltd. Flash memory device
US6012131A (en) * 1996-11-06 2000-01-04 Hyundai Electronics Industries. Co., Ltd. High speed translation lookaside buffer employing content address memory
US5751632A (en) 1996-11-19 1998-05-12 Lg Semicon Co., Ltd. Device for and method of sensing data of multi-bit memory cell
US6058038A (en) * 1997-12-26 2000-05-02 Hitachi, Ltd Semiconductor device
US6181591B1 (en) * 1998-10-29 2001-01-30 International Business Machines Corporation High speed CAM cell
US5999435A (en) * 1999-01-15 1999-12-07 Fast-Chip, Inc. Content addressable memory device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Circuit Technique for Optimizing Access Time in Static Random Access Memories" IBM Technical Disclosure Bulletin, US, IBM Corp. New York, vol. 38, No. 5, May 1, 1995, pp. 483-488.
Odagiri H et al: "A New CAM Macro for 622 MBPS ATM Cell Processing" Proceedings of the IEEE Custom Integrated Circuits Conference. (CICC), US, New York, IEEE, vol. Conf. 18, May 5, 1996, pp. 21-24.

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538947B2 (en) * 1999-07-12 2003-03-25 Mosaid Technologies Incorporated Method for multiple match detection in content addressable memories
US6400594B2 (en) * 2000-03-03 2002-06-04 Kawasaki Steel Corporation Content addressable memory with potentials of search bit line and/or match line set as intermediate potential between power source potential and ground potential
US20060083042A1 (en) * 2000-05-31 2006-04-20 Ma Stanley J Multiple match detection circuit and method
US7095640B2 (en) 2000-05-31 2006-08-22 Mosaid Technologies Incorporated Multiple match detection circuit and method
US7298637B2 (en) 2000-05-31 2007-11-20 Mosaid Technologies Incorporated Multiple match detection circuit and method
US20040130924A1 (en) * 2000-05-31 2004-07-08 Ma Stanley Jeh-Chun Multiple match detection circuit and method
US6990001B2 (en) * 2000-05-31 2006-01-24 Mosaid Technologies Incorporated Multiple match detection circuit and method
US20060256601A1 (en) * 2000-05-31 2006-11-16 Mosaid Technologies Incorporated Multiple match detection circuit and method
US6510069B2 (en) * 2001-01-19 2003-01-21 Pien Chien Content addressable memory apparatus and method of operating the same
US6442054B1 (en) * 2001-05-24 2002-08-27 Integrated Device Technology, Inc. Sense amplifier for content addressable memory
US6707694B2 (en) 2001-07-06 2004-03-16 Micron Technology, Inc. Multi-match detection circuit for use with content-addressable memories
US6947302B2 (en) 2001-07-06 2005-09-20 Micron Technology Inc. Multi-match detection circuit for use with content-addressable memories
US20040170042A1 (en) * 2001-07-06 2004-09-02 Zvi Regev Multi-match detection circuit for use with content-addressable memories
US20040228156A1 (en) * 2001-10-04 2004-11-18 Xiaohua Huang CAM cells and differential sense circuits for content addressable memory (CAM)
US6744653B1 (en) * 2001-10-04 2004-06-01 Xiaohua Huang CAM cells and differential sense circuits for content addressable memory (CAM)
US6999331B2 (en) 2001-10-04 2006-02-14 Xiaohua Huang CAM cells and differential sense circuits for content addressable memory (CAM)
US20030174565A1 (en) * 2001-11-15 2003-09-18 Afghahi Morteza Cyrus Content addressable memory match line sensing techniques
US6809945B2 (en) 2001-11-15 2004-10-26 Broadcom Corporation Content addressable memory match line sensing techniques
EP1313106A1 (en) * 2001-11-15 2003-05-21 Broadcom Corporation Content addressable memory match line sensing techniques
US20050174848A1 (en) * 2001-12-24 2005-08-11 Chow David G. Self-timed sneak current cancellation
US7057969B2 (en) * 2001-12-24 2006-06-06 Intel Corporation Self-timed sneak current cancellation
US6584003B1 (en) * 2001-12-28 2003-06-24 Mosaid Technologies Incorporated Low power content addressable memory architecture
US20030137890A1 (en) * 2001-12-28 2003-07-24 Peter Vlasenko Matchline sensing for content addressable memories
US6717876B2 (en) * 2001-12-28 2004-04-06 Mosaid Technologies Incorporated Matchline sensing for content addressable memories
US20030223600A1 (en) * 2002-05-31 2003-12-04 Mattausch Hans Juergen Self-adjusting winner lineup amplifier
EP1367594A1 (en) * 2002-05-31 2003-12-03 President of Hiroshima University Self-adjusting winner-line-up amplifier
US6853251B2 (en) 2002-05-31 2005-02-08 President Of Hiroshima University Self-adjusting winner lineup amplifier
US6804132B2 (en) 2002-11-25 2004-10-12 International Business Machines Corporation Circuit for multiple match hit CAM readout
US20040100809A1 (en) * 2002-11-25 2004-05-27 International Business Machines Corporation Circuit for multiple match hit CAM readout
US7155563B1 (en) 2003-01-21 2006-12-26 Spans Logic Inc. Circuits to generate a sequential index for an input number in a pre-defined list of numbers
US6924994B1 (en) 2003-03-10 2005-08-02 Integrated Device Technology, Inc. Content addressable memory (CAM) devices having scalable multiple match detection circuits therein
US6859378B1 (en) 2003-03-10 2005-02-22 Integrated Device Technology, Inc. Multiple match detection logic and gates for content addressable memory (CAM) devices
US20040196700A1 (en) * 2003-04-01 2004-10-07 International Business Machines Corp. Apparatus for detecting multiple hits in a camram memory array
US6816396B2 (en) 2003-04-01 2004-11-09 International Business Machines Corporation Apparatus for detecting multiple hits in a CAMRAM memory array
US7162572B2 (en) 2003-10-11 2007-01-09 Spans Logic Inc. Memory and power efficient mechanism for fast table lookup
US20050138279A1 (en) * 2003-10-11 2005-06-23 Madian Somasundaram Memory and power efficient mechanism for fast table lookup
US20070088909A1 (en) * 2005-10-18 2007-04-19 Cisco Technology, Inc., A California Corporation Identifying content-addressable memory entries differing from a lookup word in multiple but less than a predetermined number of bit positions
US20070086227A1 (en) * 2005-10-18 2007-04-19 Cisco Technology, Inc., A California Corporation Error protected ternary content-addressable memories and lookup operations performed thereon
US20070088910A1 (en) * 2005-10-18 2007-04-19 Cisco Technology, Inc., A California Corporation Associative memory cells configured to selectively produce binary or ternary content-addressable memory lookup results
US7266004B2 (en) * 2005-10-18 2007-09-04 Cisco Technology, Inc. Identifying content-addressable memory entries differing from a lookup word in multiple but less than a predetermined number of bit positions
US7345897B2 (en) 2005-10-18 2008-03-18 Cisco Technology, Inc. Error protected ternary content-addressable memories and lookup operations performed thereon
US7349230B2 (en) 2005-10-18 2008-03-25 Cisco Technology, Inc. Associative memory cells configured to selectively produce binary or ternary content-addressable memory lookup results
US20070242493A1 (en) * 2006-04-17 2007-10-18 Kuliyampattil Nisha P Match sensing circuit for a content addressable memory device
US7372713B2 (en) * 2006-04-17 2008-05-13 Texas Instruments Incorporated Match sensing circuit for a content addressable memory device
US20080049522A1 (en) * 2006-08-24 2008-02-28 Cisco Technology, Inc. Content addressable memory entry coding for error detection and correction
US7689889B2 (en) 2006-08-24 2010-03-30 Cisco Technology, Inc. Content addressable memory entry coding for error detection and correction
US7822916B1 (en) 2006-10-31 2010-10-26 Netlogic Microsystems, Inc. Integrated circuit search engine devices having priority sequencer circuits therein that sequentially encode multiple match signals
US20090083499A1 (en) * 2007-09-24 2009-03-26 Nvidia Corporation Ordered Storage Structure Providing Enhanced Access to Stored Items
US8255623B2 (en) 2007-09-24 2012-08-28 Nvidia Corporation Ordered storage structure providing enhanced access to stored items
US20110026346A1 (en) * 2009-07-31 2011-02-03 Stmicroelectronics (Rousset) Sas Self-timed low power sense amplifier
US8363499B2 (en) * 2009-07-31 2013-01-29 STMicroelectrics (Rousset) SAS Self-timed low power sense amplifier

Also Published As

Publication number Publication date
CA2277717C (en) 2006-12-05
CA2277717A1 (en) 2001-01-12
CN1311474C (zh) 2007-04-18
GB0200364D0 (en) 2002-02-20
CN1373890A (zh) 2002-10-09
US20030081474A1 (en) 2003-05-01
GB2367931A (en) 2002-04-17
DE10084797B4 (de) 2010-04-01
JP2003504789A (ja) 2003-02-04
CN100576339C (zh) 2009-12-30
AU5959000A (en) 2001-01-30
DE10084797T1 (de) 2002-08-14
WO2001004906A1 (en) 2001-01-18
US6538947B2 (en) 2003-03-25
KR20030009276A (ko) 2003-01-29
US20020009009A1 (en) 2002-01-24
KR100718031B1 (ko) 2007-05-16
US6667924B2 (en) 2003-12-23
GB2367931B (en) 2004-03-10
CN101030438A (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
US6307798B1 (en) Circuit and method for multiple match detection in content addressable memories
US7382638B2 (en) Matchline sense circuit and method
US6990001B2 (en) Multiple match detection circuit and method
US6442090B1 (en) Differential sensing amplifier for content addressable memory
US6597596B2 (en) Content addressable memory having cascaded sub-entry architecture
US6584003B1 (en) Low power content addressable memory architecture
US4062000A (en) Current sense amp for static memory cell
EP0905709B1 (en) Single ended match sense amplifier
US6717876B2 (en) Matchline sensing for content addressable memories
KR100745849B1 (ko) 집적 회로, 감지 증폭기 회로 및 전압 스윙 제한 방법
US5742552A (en) Timing control for clocked sense amplifiers
US4841279A (en) CMOS RAM data compare circuit
US6809945B2 (en) Content addressable memory match line sensing techniques

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOSAID TECHNOLOGIES INCORPORATED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHMED, ABDULLAH;LINES, VALERIE L.;REEL/FRAME:011088/0775;SIGNING DATES FROM 20000823 TO 20000828

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: PORTALPLAYER, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:018700/0050

Effective date: 20061220

AS Assignment

Owner name: NVIDIA CORPORATION, CALIFORNIA

Free format text: MERGER;ASSIGNOR:PORTALPLAYER, INC.;REEL/FRAME:020254/0888

Effective date: 20061106

AS Assignment

Owner name: NVIDIA CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:020986/0375

Effective date: 20080401

AS Assignment

Owner name: PORTALPLAYER, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:021502/0534

Effective date: 20060308

AS Assignment

Owner name: PORTALPLAYER, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:PORTALPLAYER, INC.;REEL/FRAME:021640/0411

Effective date: 20070105

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: TRACE STEP HOLDINGS, LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PORTALPLAYER, LLC;REEL/FRAME:022092/0814

Effective date: 20081023

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20131023