US5561093A - Catalyst useful for the polymerization of olefins - Google Patents

Catalyst useful for the polymerization of olefins Download PDF

Info

Publication number
US5561093A
US5561093A US08/445,556 US44555695A US5561093A US 5561093 A US5561093 A US 5561093A US 44555695 A US44555695 A US 44555695A US 5561093 A US5561093 A US 5561093A
Authority
US
United States
Prior art keywords
group
component
catalyst
hydrocarbyl group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/445,556
Other languages
English (en)
Inventor
Takashi Fujita
Toshihiko Sugano
Hideshi Uchino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16552552&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5561093(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to US08/445,556 priority Critical patent/US5561093A/en
Assigned to MITSUBISHI CHEMICAL CORPORATION reassignment MITSUBISHI CHEMICAL CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MITSUBISHI PETROCHEMICAL COMPANY LIMITED
Priority to US08/678,686 priority patent/US6143911A/en
Application granted granted Critical
Publication of US5561093A publication Critical patent/US5561093A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to a catalyst for use in the production of stereoregular polyolefins. More specifically, the present invention relates to a catalyst which is useful for the polymerization of olefins and comprises a specific metallocene compound which is a novel asymmetric transition metallic compound having bis-substituted-cyclopentadienyl-bridge-type bidentate ligands of bridge structure, and alumoxane.
  • Kaminsky catalyst comprising a metallocene compound and alumoxane has been well known as a homogeneous catalyst useful for the polymerization of olefins.
  • This catalyst is characterized in that it brings about extremely high polymerization activity, and that it can produce a polymer with a narrow molecular weight distribution.
  • Ethylenebis(indenyl)zirconium dichloride and ethylenebis(4,5,6,7-tetrahydroindenyl)zirconium dichloride have been known as transition metallic compounds useful for the production of isotactic polyolefins. They are, however, disadvantageous in that they produce polyolefins having low molecular weights, and that they can produce polyolefins having high molecular weights if the production is conducted at a low temperature, but, in this case, the polymerization activity is low.
  • An object of the present invention is to provide a polymerization method by which a propylene polymer having a high molecular weight (number-average molecular weight: 70,000 or more), capable of being subjected to both extrusion molding and injection molding, can be obtained in high yield.
  • the catalyst useful for the polymerization of olefins according to the present invention comprises the following component (A) and component (B):
  • R 1 s may be the same or different, and represent a monovalent hydrocarbyl group having 1 to 6 carbon atoms, or a monovalent hydrocarbyl group having 1 to 6 carbon atoms and containing silicon;
  • two R 2 s may be the same or different, and represent a divalent hydrocarbyl group having 4 to 20 carbon atoms, or a divalent hydrocarbyl group having 4 to 20 carbon atoms and containing silicon, which residue is bonded to two adjacent carbon atoms of the five-membered cyclic ligand;
  • R 3 represents a divalent hydrocarbyl group having 1 to 30 carbon atoms in total, or a divalent hydrocarbyl group having 1 to 30 carbon atoms in total and containing silicon or germanium;
  • X and Y independently represent hydrogen, halogen, a monovalent hydrocarbyl group having 1 to 20 carbon atoms, or a monovalent hydrocarbyl group having 1 to 20 carbon atoms and containing nitrogen, oxygen or silicon,
  • the two five-membered cyclic ligands each having the substituents R 1 and R 2 are asymmetric about a plane containing M when viewed from their relative position in terms of the group R 3 .
  • a stereoregular polyolefin having a high molecular weight can be produced in high yield.
  • the present invention relates to a catalyst useful for the polymerization of olefins, comprising component (A) and component (B) as shown below.
  • component (A) and component (B) as shown below.
  • the expression "comprising component (A) and component (B)” herein means that it is possible to use a third component other than components (A) and (B) as long as it does not impair the effects of the present invention.
  • Component (A) which is used as one component of the catalyst of the present invention is a transition metallic compound represented by the- following formula [I]: ##STR5## wherein M represents a transition metal selected from the group consisting of titanium, zirconium and hafnium;
  • two R 1 s may be the same or different, and represent a monovalent hydrocarbyl group having 1 to 6, preferably 1 to 4 carbon atoms, or a monovalent hydrocarbyl group having 1 to 6, preferably 1 to 4 carbon atoms, and containing silicon;
  • two R 2 s may be the same or different, and represent a divalent hydrocarbyl group having 4 to 20, preferably 4 to 8 carbon atoms, or a divalent hydrocarbyl group having 4 to 20, preferably 4 to 8 carbon atoms, and containing silicon, which residue is bonded to two adjacent carbon atoms of the five-membered cyclic ligand;
  • R 3 represents a divalent hydrocarbyl group having 1 to 30, preferably 2 to 20 carbon atoms in total, or a divalent hydrocarbyl group having 1 to 30, preferably 2 to 20 carbon atoms in total, containing silicon or germanium;
  • X and Y independently represent hydrogen, halogen, a monovalent hydrocarbyl group having 1 to 20, preferably 1 to 7 carbon atoms, or a monovalent hydrocarbyl group having 1 to 20, preferably 1 to 7 carbon atoms, containing nitrogen, oxygen or silicon.
  • the distinctive feature of the metallocene compound having the formula [I] for use in the present invention is that the two five-membered cyclic ligands contained in the compound, each having the substituents R 1 and R 2 are asymmetric about a plane containing M when viewed from their relative position in terms of the group R 3 .
  • the state of asymmetry can be roughly divided into two types. One of them is such that the relationship between the two substituted five-membered cyclic ligands with respect to a plane containing M, X and Y is not equivalent to that between an object and its mirror image in terms of the positions of R 1 and R 2 . In this case, even if R 1 s and R 2 s contained in the two substituted five-membered cyclic ligands are respectively the same, the relationship between the two substituted ligands is not equivalent to that between an object and its mirror image.
  • Another type of asymmetry is such that although the relationship between the two substituted ligands is equivalent to that between an object and its mirror image in terms of the respective positions of the substituents R 1 and R 2 , at least either R 1 s or R 2 s are not the same between the two five-membered cyclic ligands. For instance, even when the positional relationship between the two R 1 s is equivalent to the relationship between an object and its mirror image, the relationship between the two five-membered cyclic ligands is not equivalent to the relationship between an object and its mirror image because the types of R 1 s are different from each other. In the present invention, only the former type of state is referred to as the state of asymmetry.
  • R 1 is a monovalent hydrocarbyl group having 1 to 6 carbon atoms, or a monovalent hydrocarbyl group having 1 to 6 carbon atoms, containing silicon. More specifically, R 1 is a saturated hydrocarbon group such as alkyl or cycloalkyl, an unsaturated hydrocarbon group such as alkenyl, or a hydrocarbon group containing silicon such as alkylsilyl.
  • R 1 examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-amyl, i-amyl, n-hexyl, cyclopropyl, allyl, trimethylsilyl and dimethylethylsilyl groups.
  • lower alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl and t-butyl are preferred.
  • R 2 is, more specifically, a saturated hydrocarbon group such as alkylene or cycloalkylene, an unsaturated hydrocarbon group such as alkadienylene or arylene, or a hydrocarbon group containing silicon such as alkylsilylalkylene or alkylsilylalkenylene, which forms a 4- to 8-membered ring, preferably a 6-membered ring together with the cyclopentadienyl group to which R 2 is bonded.
  • a saturated hydrocarbon group such as alkylene or cycloalkylene
  • an unsaturated hydrocarbon group such as alkadienylene or arylene
  • a hydrocarbon group containing silicon such as alkylsilylalkylene or alkylsilylalkenylene
  • R 2 examples include butylene, methylbutylene, 2-methylbutylene, 1,2-dimethylbutylene, cyclopropylbutylene, 1,3-butadienylene, methyl-1,3-butadienylene, phenylbutylene, phenyl-1,3-butadienylene, trimethylsilylbutylene, trimethylsilyl-1,3-butadienylene, dimethylethylsilylbutylene, dimethylethylsilyl-1,3-butadienylene groups.
  • alkylene groups such as butylene and methylbutylene, in particular, n-butylene group and, alkadienylene groups such as 1,3-butadienylene and methyl-1,3-butadienylene, in particular, 1,3-butadienylene group are preferred.
  • R 3 is, more specifically, a saturated hydrocarbyl group such as lower alkylene or cycloalkylene, which can be substituted by a hydrocarbyl group, provided that the total number of carbon atom is 1 to 30; an unsaturated hydrocarbyl group such as arylene; or a hydrocarbyl group containing silicon or germanium such as lower alkyl- or arylsilylene, or lower alkyl- or arylgermylene, which may be substituted by a hydrocarbyl group, provided that the total number of carbon atom is 1 to 30.
  • R 3 is a methylene or ethylene group which can be substituted by a lower alkyl or lower alkylsilyl group, or a silylene group which may be substituted by a lower alkyl group.
  • X and Y independently represent, more specifically, hydrogen, a halogen (for example, fluorine, chlorine, bromine and iodine, preferably chlorine), a monovalent hydrocarbyl group having 1 to 20 carbon atoms or a monovalent hydrocarbyl group having 1 to 20 carbon atoms, containing silicon or germanium (preferably any of the hydrocarbyl groups enumerated previously as examples of R 1 , and, in particular, methyl). More preferably, X and Y independently represent a lower alkyl group or a lower alkyl-substituted silyl group.
  • a metallocene compound preferably used in the present invention is the one in which at least one of R 1 , R 2 , R 3 , M, X and Y fulfills the following conditions:
  • R 1 a lower alkyl group
  • R 2 a n-butylene group or a 1,3-butadienylene group
  • R 3 a methylene or ethylene group which may be substituted with a lower alkyl or lower alkylsilyl group, or a silylene group which may be substituted with a lower alkyl group;
  • X and Y independently chlorine, a lower alkyl group or a lower alkyl-substituted silyl group.
  • Nonlimitative examples of the above-described transition metallic compound are as follows. It is noted that although the compounds listed below are described simply by their chemical names, they are, as a matter of course, asymmetry in stereostructure as defined previously.
  • the other component (component (B)) for use in the present invention is alumoxane represented by the following formula [II] or [III]: ##STR7## wherein m is a number of 4 to 30, preferably 10 to 25, and R 4 is a hydrocarbyl group, preferably a hydrocarbyl group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the above component (B) is a product obtained from one type of trialkylaluminum or by a reaction between two or more types of trialkylaluminum and water.
  • Specific examples of the component (B) include (a) methylalumoxane, ethylalumoxane, propylalumoxane, butylalumoxane and isobutylalumoxane which are obtainable from one type of trialkylaluminum; and (b) methylethylalumoxane, methylbutylalumoxane and methylisobutylalumoxane which can be obtained by a reaction between two types of trialkylaluminum and water.
  • methylalumoxane and methylisobutylalumoxane are particularly preferred.
  • alumoxanes which are selected from one of the above groups or from both of the groups.
  • the above alumoxanes can be used in combination with other alkylaluminum compound such as trimethylaluminum, triethylaluminum, triisobutylaluminum or dimethylaluminum chloride.
  • alumoxanes can be prepared under the various known conditions. Specifically, the following methods can be mentioned:
  • the catalyst according to the present invention can be prepared by bringing the above-described component (A) and component (B) into contact with each other in the presence or absence of monomers to be polymerized, inside or outside an autoclave.
  • the preferable range of the amount of the component (A) used is from 10 -7 to 10 2 mmol/lit. when calculated on the basis of the transition metal atom. It is preferable that the molar ratio of Al/transition metal be 100 or more, more preferably 500 or more, up to 100,000, most preferably 1000 or more, up to 50,000.
  • the catalyst of the present invention can contain some other components in addition to the components (A) and (B).
  • a third component (optional component) which can be added to the components (A) and (B) include compounds containing active hydrogen such as H 2 O, methanol, ethanol and buthanoi, electron-donor-type compounds such as ether, ester and amine, and compounds containing alkoxyl such as phenyl borate, dimethylmethoxyaluminum, phenyl phosphate, tetraethoxysilane and diphenyldimethoxysilane.
  • active hydrogen such as H 2 O, methanol, ethanol and buthanoi
  • electron-donor-type compounds such as ether, ester and amine
  • alkoxyl such as phenyl borate, dimethylmethoxyaluminum, phenyl phosphate, tetraethoxysilane and diphenyldimethoxysilane.
  • the components (A) and (B) may be introduced into a reaction vessel either separately or after being brought into contact with each other.
  • the catalyst of the present invention is applicable not only to slurry polymerization using a solvent but also to polymerizations using substantially no solvent such as liquid-phase-non-solvent polymerization, gas-phase polymerization and solution polymerization. Moreover, the catalyst of the invention can also be applied to continuous polymerization and batch polymerization.
  • saturated aliphatic and aromatic hydrocarbons such as hexane, heptane, pentane, cyclohexane, benzene and toluene are used as a solvent either singly or in combination of two or more.
  • the approximate range of the polymerization temperature is from -78° to 200° C., preferably from -20° to 100° C.
  • the olefin pressure of the reaction system There is no limitation on the olefin pressure of the reaction system. However, the preferable range of the pressure is from atmospheric pressure to 50 kg/cm 2 G.
  • the molecular weight of the finally obtainable polymer can be controlled by any known method, for instance, by properly selecting the temperature or pressure for the polymerization, or by the introduction of hydrogen.
  • Olefins which can be polymerized by the catalyst of the present invention that is, olefins which are used for the polymerization reaction in the method of the present invention are ⁇ -olefins having 2 to 20, preferably 2 to 10 carbon atoms.
  • ⁇ -olefins include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • propylene is particularly preferred.
  • a mixture of two or more of the above ⁇ -olefins can also be used for the polymerization.
  • the above ⁇ -olefins can also be copolymerized with ethylene.
  • the catalyst of the invention is also useful for the copolymerization of the above ⁇ -olefins and other monomers which can be copolymerized with the ⁇ -olefins, for example, conjugate and non-conjugate dienes such as butadiene, 1,4-hexadiene, 1,8-nonadiene and 1,9-decadiene, and cyclic olefins such as cyclopropene, cyclobutene, cyclohexene, norbornene and dicyclopentadiene.
  • the compound thus obtained was identified to be ethylenebis-(2-methylindenyl)zirconium dichloride, and it was also confirmed that the two 2-methylindenyl groups contained in the compound were asymmetric, that is, the relationship between the two groups with respect to a plane containing zirconium atom was not equivalent to that between an object and its mirror image.
  • a 1.5-liter agitation-type autoclave was thoroughly purged with propylene.
  • 500 ml of toluene which had been thoroughly dehydrated and degassed to remove dissolved oxygen was introduced into the autoclave.
  • 10 mmol (calculated in terms of Al atom) of the above-obtained methylalumoxane and 1.0 ⁇ mol, of the above-prepared ethylenebis-(2-methylindenyl)zirconium dichloride Thereafter, propylene was introduced into the mixture, and polymerized at a temperature of 20° C. for 15 minutes. Propylene was further introduced into the system, and the polymerization was continued for 2 hours at a temperature of 40° C.
  • Example 1 The procedure of Example 1 was repeated except that the ethylenebis-(2-methylindenyl)zirconium dichloride used in Example 1 was replaced by ethylenebis(indenyl)zirconium dichloride, whereby 80.9 g of a polymer was obtained.
  • the catalytic activity was 445 kg-polymer/g ⁇ Zr ⁇ hr.
  • the number-average molecular weight of the polymer was 213 ⁇ 10 4
  • the molecular weight distribution index (Q value) was 2.04, and the melting point of the polymer was approximately 135.2° C.
  • Example 1 The procedure of Example 1 was repeated except that the ethylenebis-(2-methylindenyl)zirconium dichloride used in Example 1 was replaced by ethylenebis(indenyl)hafnium dichloride, whereby 12.1 g of a polymer was obtained.
  • the catalytic activity was 33.6 kg-polymer/g ⁇ Hf ⁇ hr.
  • the number-average molecular weight of the polymer was 120 ⁇ 105 the molecular weight distribution index (Q value) was 2.63, and the melting point of the polymer was 134.8° C.
  • Example 1 The procedure of Example 1 was repeated except that 5 ml of 1-hexene was added before introducing the ethylenebis-(2-methylindenyl)zirconium dichloride, whereby 51.2 g of a polymer was obtained.
  • the catalytic activity was 281 kg-polymer/g ⁇ Zr ⁇ hr.
  • the number-average molecular weight of the polymer was 7.89 ⁇ 10 4 , the molecular weight distribution index (Q value) has 1.90, the hexene content of the polymer was 0.59 mol %, and the melting point of the polymer was 131.4° C.
  • the compound thus obtained was identified to be dimethylsilylenebis-(2-methylindenyl)zirconium dichloride, and it was also confirmed that the two 2-methylindenyl groups contained in the compound were asymmetric.
  • the solution of the aluminum mixture and the toluene containing saturated water were fed, by dropping an equimolar amount of Al and H 2 O, to the reaction system over a period of 3 hours.
  • the temperature of the mixture was raised to 50° C., and a reaction was carried out at the temperature for two hours.
  • the solvent was evaporated under reduced pressure, thereby obtaining 1.9 g of a white solid.
  • the white solid thus obtained was dissolved in toluene, and subjected to 13 C-NMR.
  • the ratio (methyl group) : (isobutyl group) was found to be 1.16:1.
  • a spectrum showing a peak with a half band width of 6196 Hz having a chemical shift of 179 ppm was obtained by 27 Al-NMR.
  • Example 1 The procedure of Example 1 was repeated except that the ethylenebis-(2-methylindenyl)zirconium dichloride used in Example 1 was replaced by the above-obtained dimethylsilylenebis-(2-methylindenyl)zirconium dichloride, and the methylalumoxane used in Example 1 was replaced by the above-synthesized methylisobutylalumoxane, thereby polymerizing propylene.
  • the catalytic activity was 524 kg-polymer/g ⁇ Zr ⁇ hr.
  • the number-average molecular weight of the polymer was 19.0 ⁇ 10 4 ; the molecular weight distribution index (Q value) was 2.04; and the melting point of the polymer was 149.4° C.
  • Example 3 The procedure of Example 3 was repeated except that the polymerization was carried out at a temperature of 70° C., whereby 113.4 g of a polymer was obtained.
  • the catalytic activity was 621 kg-polymer/g ⁇ Zr ⁇ hr.
  • the number-average molecular weight of the polymer was 7.50 ⁇ 10 4 ; the molecular weight distribution index (Q value) was 1.98; and the melting point of the polymer was 139.2° C.
  • Example 3 The procedure of Example 3 was repeated except that the dimethylsilylenebis-(2-methylindenyl)zirconium dichloride used in Example 3 was replaced by dimethylsilylenebis(indenyl)zirconium dichloride, whereby 113 g of a polymer was obtained.
  • The-catalytic activity was 618 kg-polymer/g ⁇ Zr ⁇ hr.
  • the number-average molecular weight of the polymer was 4.06 ⁇ 10 4 ; the molecular weight distribution index (Q value) was 2.06; and the melting point of the polymer was 142.3° C.
  • Example 3 The procedure of Example 3 was repeated except that the dimethylsilylenebis-(2-methylindenyl)zirconium dichloride used in Example 3 was replaced by dimethylsilylene (2,4-dimethylcyclopentadienyl)(3', 5'-dimethylcyclopentadienyl)zirconium dichloride which is the same compound as that used in Example 2 of Japanese Patent Laid-Open Publication No. 12406/1991, thereby polymerizing propylene. As a result, 108 g of a polymer was obtained. The catalytic activity was 593 kg-polymer/g ⁇ Zr ⁇ hr. The number-average molecular weight of the polymer was 4.29 ⁇ 10 4 .
  • Example 3 The procedure of Example 3 was repeated except that the methylisobutylalumoxane used in Example 3 was replaced by the methylalumoxane synthesized in Example 1, thereby polymerizing propylene. As a result, 45.1 g of a polymer was obtained.
  • the catalytic activity was 248 kg-polymer/g ⁇ Zr ⁇ hr.
  • the number-average molecular weight of the polymer was 14.3 ⁇ 10 4 , and the molecular weight distribution index (Q value) was 2.11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
US08/445,556 1991-08-20 1995-05-22 Catalyst useful for the polymerization of olefins Expired - Lifetime US5561093A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/445,556 US5561093A (en) 1991-08-20 1995-05-22 Catalyst useful for the polymerization of olefins
US08/678,686 US6143911A (en) 1991-08-20 1996-07-11 Catalyst useful for the polymerization of olefins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20821391A JP3402473B2 (ja) 1991-08-20 1991-08-20 オレフィン重合用触媒
JP3-208213 1991-08-20
US93321592A 1992-08-20 1992-08-20
US08/445,556 US5561093A (en) 1991-08-20 1995-05-22 Catalyst useful for the polymerization of olefins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US93321592A Continuation 1991-08-20 1992-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/678,686 Division US6143911A (en) 1991-08-20 1996-07-11 Catalyst useful for the polymerization of olefins

Publications (1)

Publication Number Publication Date
US5561093A true US5561093A (en) 1996-10-01

Family

ID=16552552

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/445,556 Expired - Lifetime US5561093A (en) 1991-08-20 1995-05-22 Catalyst useful for the polymerization of olefins
US08/678,686 Expired - Lifetime US6143911A (en) 1991-08-20 1996-07-11 Catalyst useful for the polymerization of olefins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/678,686 Expired - Lifetime US6143911A (en) 1991-08-20 1996-07-11 Catalyst useful for the polymerization of olefins

Country Status (5)

Country Link
US (2) US5561093A (fr)
EP (2) EP0529908B2 (fr)
JP (1) JP3402473B2 (fr)
DE (2) DE69232193T2 (fr)
FI (1) FI105193B (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770753A (en) * 1992-06-27 1998-06-23 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US5830821A (en) * 1991-11-30 1998-11-03 Targor Gmbh Process for olefin preparation using metallocenes having benzo-fused indenyl derivatives as ligands
US5840948A (en) * 1991-11-30 1998-11-24 Targor Gmbh Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts
US5932669A (en) * 1991-11-30 1999-08-03 Targor Gmbh Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts
US6057408A (en) * 1995-12-01 2000-05-02 Targor Gmbh High molecular weight copolymers of propylene and olefins having 2 or 4 to 32 carbon atoms
US6063358A (en) * 1997-04-04 2000-05-16 Board Of Trustees Of The University Of Arkansas High surface area alumina and other aluminum products method of preparing by Schiff base mediated hydrolysis products made thereof
US6084043A (en) * 1994-08-17 2000-07-04 Mitsubishi Chemical Corporation Catalyst component for polymerization of alpha-olefins and process for producing alpha-olefin polymers using the same
US6344577B1 (en) 1987-04-03 2002-02-05 Fina Technology, Inc. Process for making silicon bridged metallocene compounds and metallocene catalysts
US6613921B2 (en) 2000-06-30 2003-09-02 Dow Global Technologies Inc. Polycyclic, fused ring compounds, metal complexes and polymerization process
US6787618B1 (en) 1995-12-01 2004-09-07 Basell Polypropylen Gmbh Metallocene compound and high molecular weight copolymers of propylene and olefins having two or four to thirty-two carbon atoms
US6806327B2 (en) 2000-06-30 2004-10-19 Dow Global Technologies Inc. Substituted polycyclic, fused ring compounds, metal complexes and polymerization process
USRE39156E1 (en) 1992-08-15 2006-07-04 Basell Polyolefine Gmbh Process for the preparation of polyolefins
USRE39532E1 (en) 1990-11-12 2007-03-27 Basell Polyolefine Gmbh Metallocenes containing ligands of 2-substituted indenyl derivatives, process for their preparation, and their use as catalysts
US20100168364A1 (en) * 2006-04-18 2010-07-01 Borealis Technology Oy Multi-branched polypropylene

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2090209T3 (es) 1990-11-12 1996-10-16 Hoechst Ag Metalocenos con ligandos basados en derivados de indenilo sustituidos en posicion 2, procedimiento para su preparacion y su empleo como catalizadores.
TW300901B (fr) * 1991-08-26 1997-03-21 Hoechst Ag
DE59210001D1 (de) * 1991-10-15 2005-02-17 Basell Polyolefine Gmbh Verfahren zur Herstellung eines Olefinpolymers unter Verwendung von Metallocenen mit speziell substituierten Indenylliganden
AU651915B2 (en) * 1991-11-30 1994-08-04 Basell Polyolefine Gmbh Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts
EP0582194B1 (fr) * 1992-08-03 1998-05-06 TARGOR GmbH Procédé de préparation de polymères utilisant des métallocènes avec des ligands indényl substituées d'une manière spécifique
JP3307704B2 (ja) * 1993-02-19 2002-07-24 三菱化学株式会社 α‐オレフィン重合体の製造法
JP3293927B2 (ja) * 1993-02-19 2002-06-17 三菱化学株式会社 α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
DE69500979T2 (de) 1994-07-22 1998-03-05 Mitsubishi Chem Corp Katalysatorbestandteil für alpha-Olefinpolymerisation und Verfahren zur Herstellung von alpha-Olefinpolymeren unter Anwendung desselben
US6576306B2 (en) 1996-09-04 2003-06-10 Exxonmobil Chemical Patents Inc. Propylene polymers for films
CN1115360C (zh) * 1996-09-04 2003-07-23 埃克森美孚化学专利公司 改进的用于取向薄膜的丙烯聚合物
US6583227B2 (en) 1996-09-04 2003-06-24 Exxonmobil Chemical Patents Inc. Propylene polymers for films
FI970349A (fi) 1997-01-28 1998-07-29 Borealis As Uudet metalloseeniyhdisteiden aktivaattorisysteemit
FI972230A (fi) 1997-01-28 1998-07-29 Borealis As Uusi homogeeninen olefiinien polymerointikatalysaattorikoostumus
KR100274973B1 (ko) * 1997-11-24 2000-12-15 성재갑 올레핀계 단량체의 중합 촉매
US6395916B1 (en) 1998-07-10 2002-05-28 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
US6307087B1 (en) 1998-07-10 2001-10-23 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
US6228951B1 (en) * 1998-08-24 2001-05-08 Japan Polychem Corporation Polypropylene molding material
CA2420072A1 (fr) * 2000-08-22 2002-02-28 Exxonmobil Chemical Patents Inc. Fibres et tissus de polypropylene
US7098277B2 (en) * 2000-08-22 2006-08-29 Exxonmobil Chemical Patents Inc. Polypropylene films
EP1298148A1 (fr) * 2001-09-27 2003-04-02 Atofina Research S.A. Composant de catalyseur comprenant un métallocène ayant deux ligands tetrahydroindényle pour la préparation d'une polyoléfine
US7176158B2 (en) * 2002-10-25 2007-02-13 Exxonmobil Chemical Patents Inc. Polymerization catalyst composition
US7432336B2 (en) * 2003-04-15 2008-10-07 Exxonmobil Chemical Patents Inc. Catalysts for propylene copolymers
US7026494B1 (en) 2005-01-10 2006-04-11 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high melt index polymers without the use of hydrogen
JP5863157B2 (ja) 2006-12-18 2016-02-16 日東電工株式会社 粘着シート
JP5525847B2 (ja) 2009-03-17 2014-06-18 日本ポリプロ株式会社 プロピレン系多層シートおよびそれを用いた加圧処理用包装袋
US20130237114A1 (en) 2010-11-16 2013-09-12 Adeka Corporation Method for stabilizing polymer for long term, method for producing nonwoven fabric, and method for producing elastomer composition
US20130331515A1 (en) 2011-03-02 2013-12-12 Adeka Corporation Process of producing laminate film and resin composition for coating members
JP2013199551A (ja) 2012-03-23 2013-10-03 Adeka Corp 家電材料用及び自動車内装材料用オレフィン樹脂組成物の製造方法
KR102217316B1 (ko) 2013-10-21 2021-02-17 가부시키가이샤 아데카 안정화된 폴리머의 제조 방법
EP4159439A4 (fr) 2020-06-02 2023-12-06 Japan Polypropylene Corporation Composition de résine à base de polypropylène, stratifié, et procédés de fabrication de ceux-ci

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871705A (en) * 1988-06-16 1989-10-03 Exxon Chemical Patents Inc. Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst
EP0485820A2 (fr) * 1990-11-12 1992-05-20 Hoechst Aktiengesellschaft Procédé de préparation de polymères oléfiniques
US5120867A (en) * 1988-03-21 1992-06-09 Welborn Jr Howard C Silicon-bridged transition metal compounds
US5145819A (en) * 1990-11-12 1992-09-08 Hoechst Aktiengesellschaft 2-substituted disindenylmetallocenes, process for their preparation, and their use as catalysts in the polymerization of olefins
EP0366290B1 (fr) * 1988-10-24 1994-06-29 Chisso Corporation Procédé de production de polymères d'oléfine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL89525A0 (en) * 1988-03-21 1989-09-10 Exxon Chemical Patents Inc Silicon-bridged transition metal compounds
ES2118718T5 (es) * 1988-12-26 2009-11-05 Mitsui Chemicals, Inc. Copolimeros de olefinas y su produccion.
EP0485822B1 (fr) * 1990-11-12 1996-07-03 Hoechst Aktiengesellschaft Procédé de préparation d'un polymère oléfinique à haut poids moléculaire
TW300901B (fr) 1991-08-26 1997-03-21 Hoechst Ag
TW318184B (fr) * 1991-11-30 1997-10-21 Hoechst Ag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120867A (en) * 1988-03-21 1992-06-09 Welborn Jr Howard C Silicon-bridged transition metal compounds
US4871705A (en) * 1988-06-16 1989-10-03 Exxon Chemical Patents Inc. Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst
EP0366290B1 (fr) * 1988-10-24 1994-06-29 Chisso Corporation Procédé de production de polymères d'oléfine
EP0485820A2 (fr) * 1990-11-12 1992-05-20 Hoechst Aktiengesellschaft Procédé de préparation de polymères oléfiniques
US5145819A (en) * 1990-11-12 1992-09-08 Hoechst Aktiengesellschaft 2-substituted disindenylmetallocenes, process for their preparation, and their use as catalysts in the polymerization of olefins
EP0485823B1 (fr) * 1990-11-12 1995-03-08 Hoechst Aktiengesellschaft Bisindénylemétallocènes-2-substitués, procédé de préparation et application comme catalyseurs pour la polymérisation d'oléfines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CA 103:6746q (1985). *
CA 107:218226c (1987). *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344577B1 (en) 1987-04-03 2002-02-05 Fina Technology, Inc. Process for making silicon bridged metallocene compounds and metallocene catalysts
USRE39561E1 (en) 1990-11-12 2007-04-10 Basell Polyoefine Gmbh Metallocenes containing ligands of 2-substituted indenyl derivatives, process for their preparation, and their use as catalysts
USRE39532E1 (en) 1990-11-12 2007-03-27 Basell Polyolefine Gmbh Metallocenes containing ligands of 2-substituted indenyl derivatives, process for their preparation, and their use as catalysts
US5830821A (en) * 1991-11-30 1998-11-03 Targor Gmbh Process for olefin preparation using metallocenes having benzo-fused indenyl derivatives as ligands
US5840948A (en) * 1991-11-30 1998-11-24 Targor Gmbh Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts
US5852142A (en) * 1991-11-30 1998-12-22 Targor Gmbh Process for the preparation of an olefin polymer
US5929264A (en) * 1991-11-30 1999-07-27 Targor Gmbh Process for the preparation of substituted indenes and their use as ligand systems for metallocene catalysts
US5932669A (en) * 1991-11-30 1999-08-03 Targor Gmbh Metallocenes having benzo-fused indenyl derivatives as ligands, processes for their preparation and their use as catalysts
US6051522A (en) * 1991-11-30 2000-04-18 Targor Gmbh Catalyst which can be used for the preparation of olefins during polymerization
US6242544B1 (en) 1992-06-27 2001-06-05 Targor Gmbh Metallocenes containing aryl-substituted indenyl ligands and their use as catalysts
US5770753A (en) * 1992-06-27 1998-06-23 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US6255506B1 (en) 1992-06-27 2001-07-03 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US5840644A (en) * 1992-06-27 1998-11-24 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
US6051727A (en) * 1992-06-27 2000-04-18 Targor Gmbh Metallocenes containing aryl-substituted indenyl derivatives as ligands, process for their preparation, and their use as catalysts
USRE39156E1 (en) 1992-08-15 2006-07-04 Basell Polyolefine Gmbh Process for the preparation of polyolefins
US6084043A (en) * 1994-08-17 2000-07-04 Mitsubishi Chemical Corporation Catalyst component for polymerization of alpha-olefins and process for producing alpha-olefin polymers using the same
US6057408A (en) * 1995-12-01 2000-05-02 Targor Gmbh High molecular weight copolymers of propylene and olefins having 2 or 4 to 32 carbon atoms
US6787618B1 (en) 1995-12-01 2004-09-07 Basell Polypropylen Gmbh Metallocene compound and high molecular weight copolymers of propylene and olefins having two or four to thirty-two carbon atoms
US6063358A (en) * 1997-04-04 2000-05-16 Board Of Trustees Of The University Of Arkansas High surface area alumina and other aluminum products method of preparing by Schiff base mediated hydrolysis products made thereof
US20030216529A1 (en) * 2000-06-30 2003-11-20 Campbell Richard E. Polycyclic, fused ring compounds, metal complexes and polymerization process
US6806327B2 (en) 2000-06-30 2004-10-19 Dow Global Technologies Inc. Substituted polycyclic, fused ring compounds, metal complexes and polymerization process
US6800701B2 (en) * 2000-06-30 2004-10-05 Dow Global Technologies Inc. Polycyclic, fused ring compounds, metal complexes and polymerization process
US6613921B2 (en) 2000-06-30 2003-09-02 Dow Global Technologies Inc. Polycyclic, fused ring compounds, metal complexes and polymerization process
US20100168364A1 (en) * 2006-04-18 2010-07-01 Borealis Technology Oy Multi-branched polypropylene
US8153745B2 (en) 2006-04-18 2012-04-10 Borealis Technology Oy Multi-branched polypropylene

Also Published As

Publication number Publication date
DE69219699D1 (de) 1997-06-19
FI923698A (fi) 1993-02-21
JPH0543616A (ja) 1993-02-23
EP0748822A2 (fr) 1996-12-18
US6143911A (en) 2000-11-07
EP0748822A3 (fr) 1997-04-16
EP0748822B1 (fr) 2001-11-07
EP0529908B2 (fr) 2002-11-06
DE69232193T2 (de) 2002-06-06
FI923698A0 (fi) 1992-08-18
EP0529908A1 (fr) 1993-03-03
DE69219699T3 (de) 2003-04-10
EP0529908B1 (fr) 1997-05-14
DE69232193D1 (de) 2001-12-13
JP3402473B2 (ja) 2003-05-06
FI105193B (fi) 2000-06-30
DE69219699T2 (de) 1997-09-11

Similar Documents

Publication Publication Date Title
US5561093A (en) Catalyst useful for the polymerization of olefins
US5489659A (en) Catalyst component for use in the polymerization of α-olefins and process for producing α-olefin polymers using the same
US5510502A (en) Catalyst component for use in the polymerization of α-olefins and process for producing α-olefin polymers using the same
EP0646137B1 (fr) Catalyseur a support pour la (co)polymerisation d'olefine(s)-1
EP0727443B1 (fr) Catalyseur pour la polymérisation des oléfines et méthode pour la préparation de polymères des oléfines
US5846896A (en) Metallocene catalyst systems
EP0498675B1 (fr) Production de polymères d'alpha-oléfines
US6084043A (en) Catalyst component for polymerization of alpha-olefins and process for producing alpha-olefin polymers using the same
EP0574258B1 (fr) Procédé de préparation de polymères d'alpha-oléfine
JP3323347B2 (ja) α‐オレフィンの重合
JPH09132584A (ja) メタロセン化合物
JP3537234B2 (ja) ポリオレフィン製造用触媒成分、該成分を含むポリオレフィン製造用触媒及びポリオレフィンの製造方法
EP0566349A2 (fr) Procédé de préparation de polymères d'alpha-oléfines
JP3263141B2 (ja) スチレン系ブロック共重合体の製造方法
JP3392205B2 (ja) 新規遷移金属化合物およびこれを用いたオレフィンの重合方法
JP3408594B2 (ja) ポリオレフィンの製造方法
JPH0680683A (ja) 新規遷移金属化合物およびこれを用いたポリオレフィンの製造方法
JP3441443B2 (ja) ポリプロピレン系重合体の製造法
JP3092974B2 (ja) シンジオタクチックポリ−α−オレフィン製造用触媒およびシンジオタクチックポリ−α−オレフィンの製造方法
JP3201802B2 (ja) オレフィンの重合方法
JP3441442B2 (ja) オレフィン重合用触媒成分
JPH0551408A (ja) シンジオタクチツクポリ−α−オレフイン製造用触媒およびシンジオタクチツクポリ−α−オレフインの製造方法
JPH0867709A (ja) オレフィンの重合方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI CHEMICAL CORPORATION, JAPAN

Free format text: MERGER;ASSIGNOR:MITSUBISHI PETROCHEMICAL COMPANY LIMITED;REEL/FRAME:007644/0924

Effective date: 19941221

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12