US5371327A - Heat-sealable connector sheet - Google Patents
Heat-sealable connector sheet Download PDFInfo
- Publication number
- US5371327A US5371327A US08/017,638 US1763893A US5371327A US 5371327 A US5371327 A US 5371327A US 1763893 A US1763893 A US 1763893A US 5371327 A US5371327 A US 5371327A
- Authority
- US
- United States
- Prior art keywords
- layer
- heat
- electroconductive
- particles
- connector sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 claims abstract description 119
- 229920005989 resin Polymers 0.000 claims abstract description 38
- 239000011347 resin Substances 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 239000000853 adhesive Substances 0.000 claims abstract description 21
- 230000001070 adhesive effect Effects 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 239000010410 layer Substances 0.000 claims description 98
- 239000000463 material Substances 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 239000002344 surface layer Substances 0.000 claims description 11
- 239000010419 fine particle Substances 0.000 claims description 6
- 239000012777 electrically insulating material Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 abstract description 4
- 239000004033 plastic Substances 0.000 abstract description 4
- 239000011362 coarse particle Substances 0.000 abstract description 2
- 239000011810 insulating material Substances 0.000 abstract 1
- -1 poly(ethylene terephthalate) Polymers 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000007650 screen-printing Methods 0.000 description 10
- 229920001568 phenolic resin Polymers 0.000 description 9
- 239000005011 phenolic resin Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 239000004840 adhesive resin Substances 0.000 description 4
- 229920006223 adhesive resin Polymers 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 2
- FFWSICBKRCICMR-UHFFFAOYSA-N 5-methyl-2-hexanone Chemical compound CC(C)CCC(C)=O FFWSICBKRCICMR-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- KPAPHODVWOVUJL-UHFFFAOYSA-N 1-benzofuran;1h-indene Chemical compound C1=CC=C2CC=CC2=C1.C1=CC=C2OC=CC2=C1 KPAPHODVWOVUJL-UHFFFAOYSA-N 0.000 description 1
- LRMMVQKUKLVVFR-UHFFFAOYSA-N 1-methoxyhexan-3-one Chemical compound CCCC(=O)CCOC LRMMVQKUKLVVFR-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- BJINVQNEBGOMCR-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethyl acetate Chemical compound COCCOCCOC(C)=O BJINVQNEBGOMCR-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 1
- OABBSNOOKZYMNQ-UHFFFAOYSA-N 6,6,7-trichloro-oxacycloundecane Chemical compound ClC1C(CCCCOCCCC1)(Cl)Cl OABBSNOOKZYMNQ-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 239000002174 Styrene-butadiene Chemical group 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- IPTNXMGXEGQYSY-UHFFFAOYSA-N acetic acid;1-methoxybutan-1-ol Chemical compound CC(O)=O.CCCC(O)OC IPTNXMGXEGQYSY-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical group C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- YFNONBGXNFCTMM-UHFFFAOYSA-N butoxybenzene Chemical compound CCCCOC1=CC=CC=C1 YFNONBGXNFCTMM-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- WMQWGIITGJKGNO-UHFFFAOYSA-K chromium(3+);2,2,2-trifluoroacetate Chemical compound FC(F)(F)C(=O)O[Cr](OC(=O)C(F)(F)F)OC(=O)C(F)(F)F WMQWGIITGJKGNO-UHFFFAOYSA-K 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical class C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid group Chemical group C(\C=C/C(=O)O)(=O)O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- WHIVNJATOVLWBW-UHFFFAOYSA-N n-butan-2-ylidenehydroxylamine Chemical compound CCC(C)=NO WHIVNJATOVLWBW-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000011115 styrene butadiene Chemical group 0.000 description 1
- 229920003048 styrene butadiene rubber Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
- H05K3/361—Assembling flexible printed circuits with other printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/04—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/095—Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0212—Resin particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0263—Details about a collection of particles
- H05K2201/0272—Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10954—Other details of electrical connections
- H05K2201/10977—Encapsulated connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/06—Lamination
- H05K2203/066—Transfer laminating of insulating material, e.g. resist as a whole layer, not as a pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1189—Pressing leads, bumps or a die through an insulating layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/303—Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
- H05K3/305—Affixing by adhesive
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
Definitions
- the present invention relates to a heat-sealable connector sheet or, more particularly, to a connector sheet for making electrical connection between the electrode terminals on an electronic device, such as liquid crystal display units, electroluminescence display units, light-emitting diodes, electrochromic display units, plasma display units and the like, and the electrode terminals of the driving circuit therefor formed on a circuit board or between two sets of electrode terminals on different electric circuit boards.
- an electronic device such as liquid crystal display units, electroluminescence display units, light-emitting diodes, electrochromic display units, plasma display units and the like
- the heat-sealable connector sheets of this type cannot fully comply with the demand in the modern electronic technology which is constantly under a trend toward more and more compact design of the electronic instruments in which the pitch of the line-wise patterned electrode terminals in an array is decreasing to 0.3 mm, to 0.2 mm or even finer.
- electrical connection is made between such finely patterned electrode terminals by using a heat-sealable connector sheet of the above described type, namely, short-circuiting is sometimes unavoidable between adjacent two terminals as a consequence of displacement of the electroconductive particles out of the proper position.
- the electroconductive particles dispersed in the insulating adhesive matrix to form a conductive paste are usually formed from a metal or a carbonaceous material having high rigidity so that the particles cannot comply with the deformation or displacement of the insulating flexible substrate, electroconductive layer and the insulating overcoating adhesive layer in conducting heat-sealing with heating under pressure.
- the particles also may be subject to a microscopic displacement due to the residual stress in the layers after heat sealing. Therefore, troubles are sometimes caused in the assembly of electrode terminals constructed by using such a heat-sealable connector sheet such as failure of electrical connection, increase in the electric resistance between the thus connected terminals and the like during use resulting in a loss of reliability of the electric connection.
- the present invention accordingly has an object to provide a novel heat-sealable connector sheet which is free from the above described problems and disadvantages in the conventional heat-sealable connector sheets in which the electrically conducting patterned layer is formed from an electroconductive paste compounded with conductive fine particles and is capable of making electrical connection between electrode terminals with very high reliability even under adverse ambient conditions after heat-sealing.
- the heat-sealable connector sheet of the invention comprises:
- the electrically insulating particles dispersed and embedded in the electroconductive paste have a porous structure.
- an additional electroconductive layer of an electroconductive paste is interposed between the patterned electroconductive layer containing the electrically insulating particles and the substrate sheet so that the patterned electroconductive layer has a double-layered structure consisting of an underlying layer of an electroconductive paste containing no insulating particles and a surface layer of an electroconductive paste compounded with insulating particles.
- FIG. 1 is a cross sectional view of an embodiment of the inventive heat-sealable connector sheet as cut perpendicularly to the plane of the sheet.
- FIG. 2 illustrates a cross section of the heat-sealable connector sheet of FIG. 1 after heat-sealing to a circuit board having electrode terminals.
- FIG. 3 is a cross sectional view of an embodiment of the inventive heat-sealable connector sheet as cut perpendicularly to the plane of the sheet in which the patterned electroconductive layer has a double-layered structure.
- the most characteristic feature of the inventive heat-sealable connector sheet consists in the unique composite structure of the patterned electroconductive layer containing the insulating particles dispersed and embedded in the electroconductive paste to form the layer in a specified fashion.
- the unique structure of the electroconductive patterned layer greatly improved reliability can be obtained by the use of the inventive connector sheet in the electrical connection between electrode terminals.
- the electrically insulating substrate, on which the patterned electroconductive layer is formed in such a pattern to match the arrangement of the electrode terminals to be connected therewith preferably has flexibility so that the material thereof is selected usually from various kinds of polymeric materials in the form of a film or sheet having a thickness of 10 to 50 ⁇ m though not particularly limitative depending on the intended application of the inventive connector sheet.
- polymeric materials or plastic resins suitable for the substrate include polyimide resins, poly(ethylene terephthalate) resins, poly(ethylene naphthalate) resins, poly(butylene terephthalate) resins, polycarbonate resins, poly(phenylene sulfide) resins, poly(1,4-cyclohexane dimethylene terephthalate) resins, polyallylate resins, liquid-crystalline polymers and the like.
- the electroconductive paste in which the insulating particles are dispersed, is in itself a composite material consisting of an organic insulating binder resin as the matrix and fine particles having electric conductivity by forming a dispersed phase in the matrix of the insulating binder.
- the type of the binder resin as the matrix phase of the electroconductive paste is not particularly limitative including thermoplastic and thermosetting resins, of which thermosetting ones are preferred in respect of the good heat resistance and mechanical stability after curing to withstand the compressive force encountered in the connecting work of electrode terminals by using the inventive connector sheet as compared with thermoplastic ones. It is optional according to need to admix the matrix resin with various kinds of known additives such as curing accelerators, levelling agents, dispersion stabilizers, antifoam agents, thixotropy-imparting agents and the like.
- the above described binder resin to form the matrix of the paste is compounded with electroconductive particles in order that the paste is imparted with electroconductivity.
- the material of the particles is usually selected from metals, e.g., silver, copper, gold, nickel, palladium and the like as well as alloys of these metals. Silver- or gold-plated particles of copper or other base metals as well as plastic resins are also suitable.
- the average particle diameter of the conductive particles should preferably be in the range from 0.1 to 10 ⁇ m.
- the particle configuration of the conductive particles is not particularly limitative including irregularly granular, spherical, flaky, platelet-like, dendritic, cubic and the like.
- the amount of the conductive particles dispersed in the matrix of the binder resin is usually in the range from 10 to 950% by weight based on the binder resin in order to impart the paste with a sufficiently high electric conductivity.
- An electroconductive paste can be prepared by uniformly blending, in a specified proportion, the above described insulating binder resin and the electroconductive fine particles, if necessary, with dilution by the addition of an organic solvent.
- the electro-conductive paste must be further blended with electrically insulating particles of either an inorganic or organic material, of which polymeric materials more or less having elasticity are preferred such as poly(methyl methacrylate) resins, polyamide resins, polystyrenes, benzoguanamine resins, phenolic resins, epoxy resins, aramid resins, acrylonitrile-butadiene copolymeric rubbers, polychloroprene rubbers, silicone rubbers and the like.
- Polyamide and related resins such as nylons, aramid resins and polyimide resins are particularly preferable in respect of the good balance relative to the solvent resistance, elastic modulus, shapability into particles, oil-absorptivity, adhesion behavior and the like. It is also important that the polymeric material forming the insulating particles has a melting point of 80° C. or higher or, preferably, 120° C. or higher in order that the particles retain their particulate configuration even in the heat sealing works usually conducted under pressure at a temperature of 80° C. or higher.
- the particle configuration of the insulating particles is also not particularly limitative including irregularly granular, spherical, flaky, platelet-like, dendritic cubic ones. It is sometimes preferable that at least the surface layer of the insulating particle has a porous structure with a porosity in the range, for example, from 5 to 80%.
- the material assuming that it is a polymeric material, forming the insulating particles or at least the surface layer thereof has a value of solubility parameter not greater or not smaller by 2 or more or, more preferably, by 1 or more than the value of the binder resin forming the matrix phase of the electroconductive paste in order to ensure good compatibility between the matrix phase and the insulating particles dispersed therein.
- This condition is also favorable to prevent piercing of the electroconductive patterned layer by the points of the insulating particles by virtue of the good adhesion between the phases.
- the particle diameter d which the insulating particles should have depends on the thickness t of the electroconductive patterned layer, which is usually in the range from 5 to 30 ⁇ m, formed from the electroconductive paste.
- the particle diameter d of the insulating particles should be at least one third or, more preferably, at least equal to t which is the thickness of the patterned layer formed from the electroconductive paste as measured at the point having no insulating particles therein.
- the particle diameter d of the insulating particles should not exceed five times or, preferably, twice of the thickness of the layer t.
- the width w of the patterned line-wise electroconductive layer should also be taken into consideration in the selection of the particle diameter d when the value of w is small.
- the particle diameter d should be smaller than the line width w or, preferably, a half of the line width w.
- the insulating particles should have a particle diameter in the range from 1 to 100 ⁇ m.
- the amount of the insulating particles to be blended with the electroconductive paste is also important. Namely, it is preferable that the insulating particles are distributed uniformly throughout the area of the electroconductive patterned layer in a density of at least 20 particles or, more preferably, at least 50 particles per square millimeter on an assumption that no overlapping of particles is formed within the layer in the direction perpendicular to the plane of the layer. As a rough measure, the insulating particles are Compounded in an amount of 5 to 500 parts by volume or, preferably, 5 to 100 parts by volume per 100 parts by volume of the electroconductive paste.
- the patterned electroconductive layer of the inventive heat-sealable connector sheet is formed from the above described composite conductive paste containing the insulating particles by a known method which is most conveniently a method of screen printing by using an appropriate screen having a mesh opening wide enough to pass the relatively coarse insulating particles.
- a known method which is most conveniently a method of screen printing by using an appropriate screen having a mesh opening wide enough to pass the relatively coarse insulating particles.
- the portions of the layer not supported by the insulating particles therein come to have a decreased thickness or to shrink along with evaporation of the solvent contained in the paste because the portions raised by the insulating particles cannot shrink so much even by evaporation of the solvent resulting in formation of protrusions there. It is important in this case that none of the insulating particles are exposed bare without being covered by the layer of the electroconductive paste. In other words, the surface of the patterned conductive layer is formed from the conductive paste throughout with no insulating particles exposed bare. In this connection, the thickness of the covering layer of the electroconductive paste on the surface of the insulating particles in the protruded portions should be in the range from 0.1 to 50 ⁇ m.
- the patterned electroconductive layer formed in the above described manner on one surface of the insulating substrate is overcoated with a layer of a melt-flowable insulating adhesive resin, which overcoating layer may optionally extend to the surface of the insulating substrate not bearing the patterned electroconductive layer.
- FIG. 1 of the accompanying drawing illustrates such a connector sheet by a cross sectional view as cut perpendicularly to the plane of the sheet.
- the substrate 1 is provided on one surface with lines 2 as a patterned electroconductive layer which consists of an electroconductive paste 2a forming the matrix phase and insulating particles 2b embedded in the paste 2a but forming protrusions on the surface of the patterned electroconductive layer 2.
- the patterned lines 2 of the electroconductive layer are overcoated with a layer 4 of a melt-flowable insulating adhesive, which, in this figure, is not limited to the surface of the patterned electroconductive layer 2 but extends to the surface of the substrate 1 not bearing the patterned electroconductive layer 2.
- melt-flowable insulating adhesive resins can be used for forming the overcoating layer 4 on the surface of the patterned electroconductive layer 2 having protrusions raised by the insulating particles 2b.
- the principal ingredient of such an adhesive can be selected from the group consisting of copolymers of ethylene and vinyl acetate unmodified or modified with carboxyl groups, copolymers of ethylene and an alkyl acrylate, e.g., ethyl acrylate and isobutyl acrylate, polyamide resins, polyester resins, poly(methyl methacrylate) resins, poly(vinyl ether) resins, poly(vinyl butyral) resins, polyurethanes, copolymeric SBS rubbers unmodified or modified with carboxyl groups, S-I-S type copolymers of styrene and isoprene, SEBS-type copolymeric resins of styrene, ethylene and butyrene modified or unmod
- the insulating adhesive for the overcoating layer 4 is admixed with a known tackifier according to need.
- suitable tackifiers include rosins, and derivatives thereof, terpene resins, copolymers of terpene and phenol, petroleum resins, coumarone-indene resins, styrene-based resins, isoprene-based resins, alkylphenol resins, phenolic resins and the like and they can be used either singly or as a combination of two kinds or more.
- reaction aids or crosslinking agents such as phenolic resins, polyols, isocyanates, melamine resins, urea resins, urotropine compounds, amines, acid anhydrides, organic peroxides, metal oxides, metal salts of an organic acid such as chromium trifluoroacetate, alkoxides of titanium, zirconium or aluminum, organometallic compounds such as dibutyltin oxide, photopolymerization initiators such as 2,2-diethoxy acetophenone and benzil, sensitizers such as amines, phosphorus compounds and chlorine compounds as well as curing agents, vulcanizing agents, modifiers, aging retarders, heat-resistance improvers, heat-conductivity improvers, softening agents, coloring agents, coupling agents, metal sequestering agents and so on.
- reaction aids or crosslinking agents such as phenolic resins, polyols, isocyanates, melamine resins, urea
- the overcoating layer 4 of the melt-flowable insulating adhesive can be formed on the surface of the patterned electroconductive layer 2 by any of known methods including screen printing, gravure printing, roller coating, bar coating, knife coating, spray coating, spin coating and the like because the overcoating layer 4 can extend over the surface areas of the insulating substrate sheet 1 not bearing the patterned electroconductive layer 2 although the method of screen printing is preferred.
- the overcoating layer 4 of the melt-flowable insulating adhesive should have a thickness in the range from 1 to 50 ⁇ m.
- the thickness thereof When the thickness thereof is too small, the desired effect which should be exhibited by the over-coating insulating adhesive layer cannot be obtained as a matter of course while, when the thickness is too large, failure in electric connection may be caused between the patterned electroconductive layer 2 and the electrode terminal, for example, on a circuit board after heat-sealing.
- the thickness of the overcoating layer 4 of the insulating adhesive formed, for example, by screen printing is controlled by adjusting the viscosity or consistency by diluting the adhesive with an organic solvent.
- organic solvents naturally depend on the type of the adhesive resin but usually is selected from the group consisting of esters, ethers, ether esters, hydrocarbons, chlorinated hydrocarbons, alcohols and the like, of which esters, ketones and ether esters are preferred.
- organic solvent examples include methyl acetate, ethyl acetate, isopropyl acetate, isobutyl acetate, n-butyl acetate, amyl acetate, methyl ethyl ketone, methyl isoamyl ketone, methyl n-amyl ketone, ethyl n-amyl ketone, di(isobutyl) ketone, methoxymethyl pentanone, cyclohexanone, diacetone alcohol, ethyleneglycol monomethyl ether acetate, ethyleneglycol monoethyl ether acetate, ethyleneglycol monobutyl ether acetate, methoxybutyl acetate, diethyleneglycol monomethyl ether acetate, diethyleneglycol monoethyl ether acetate, diethyleneglycol monoethyl ether acetate, diethyleneglycol monobutyl ether acetate, diethyleneg
- FIG. 2 of the accompanying drawing illustrates a circuit board 3 bearing electrode terminals 5 after heat-sealing with the inventive heat-sealable connector sheet by a cross section.
- the inventive heat-sealable connector sheet is pressed with heating against the circuit board 3 in such a disposition that each of the electrode terminals 5 on the circuit board 3 is in contact with one of the lines of the patterned electroconductive layer 2, the melt-flowable insulating resin 4 covering the surface of each of the conductive lines 2 is driven out from the space between the electrode terminal 5 and the conductive line 2 so as to establish electric connection therebetween provided that the thickness of the insulating adhesive overcoating layer 4 is not overly large while the insulating adhesive excluded from the space by melt-flowing is pooled between two conductive lines 2 to establish adhesive bonding of the circuit board 3 and the connector sheet and to ensure electric insulation between the two conductive lines 2 or hence between the two electrode terminals 5 even when flowing deformation of the conductive lines 2 takes place.
- the above described heat-sealable connector sheet of the invention is advantageous in respect of the high reliability of electric connection established therewith and the electric insulation between adjacent terminal electrodes 5.
- a problem in this connector sheet is that, when the width of each of the electrode terminals 5 and the arrangement pitch thereof are decreased finer and finer, formation of the patterned electroconductive layer 2 by screen printing is sometimes incomplete because the electroconductive paste 2a used for printing is compounded with relatively coarse insulating particles 2b.
- the inventors have arrived at a discovery that this problem can be solved when the patterned electroconductive layer 2 has a double-layered structure of which the underlying layer in contact with the substrate sheet 1 is formed from an electroconductive paste 2a containing no insulating particles and the surface layer, which comes into contact with the electrode terminals 5 on the circuit board 3 when the connector sheet is on use, is made from an electroconductive paste 2a compounded with electrically insulating relatively coarse particles 2b.
- a heat-sealable connector sheet of this type is illustrated in FIG. 3 by a cross section as cut perpendicularly to the plane of the sheet.
- the connector sheet of this type is prepared by forming a patterned electroconductive layer 2 on an electrically insulating substrate sheet 1 having flexibility and then providing an overcoating insulating melt-flowable adhesive layer 4 while the patterned electroconductive layer 2 has a double-layered structure consisting of an underlying layer 2A formed from an electroconductive paste and adhesively bonded to the substrate sheet 1 and a surface layer 2B which is formed from an electroconductive paste 2a compounded with insulating particles 2b.
- the patterned electroconductive layer 2 consisting of two layers 2A and 2B can be formed by the method of screen printing in which the underlying patterned layer 2A is first formed by printing with a conventional electroconductive paste or ink and then the surface layer 2B is formed in the same pattern with an electroconductive paste 2a blended with insulating particles 2b.
- the thickness of the underlying conductive layer 2A is preferably in the range from 0.5 to 25 ⁇ m and the thickness of the surface layer 2B is preferably in the range from 0.5 to 25 ⁇ m while the protrusions on the surface of the patterned electroconductive layer should have a height of 2 to 80 ⁇ m.
- the other requirements for the surface layer 2B are about the same as those for the single-layered patterned electroconductive layer 2 illustrated in FIG. 1.
- heat-sealable connector sheet of the invention is illustrated in more detail by way of examples.
- An electroconductive paste for screen printing compounded with insulating particles was prepared in the following manner.
- an electroconductive paste was first prepared by uniformly blending 100 parts by of an epoxy resin of the bisphenol A type as an organic binder with 70 parts by weight of a silver powder consisting of flaky particles having a particle diameter of 1 to 3 ⁇ m, 3 parts by weight of an amine-based curing accelerator for the epoxy resin and each 1 part by weight of a levelling agent, dispersion stabilizer, antifoam agent and thixotropy-imparting agent with dilution by adding a suitable volume of a 7:3 by volume mixture of toluene and methyl ethyl ketone.
- an insulating melt-flowable adhesive composition was prepared by uniformly blending 100 parts by weight of a carboxyl-modified NBR with 40 parts by weight of an alkylphenol-based tackifier and each 1 part by weight of a phenolic resin as an aging retarder, titanium dioxide as a heat-resistance improver and aminosilane-based coupling agent followed by dilution with a 1:1 by volume mixture of petroleum naphtha and butyl Carbitol to give a solid content of 35% by weight.
- the substrate sheet provided with a patterned electroconductive layer thereon was overcoated with the above prepared insulating melt-flowable adhesive by using a bar coater in a thickness of 10 ⁇ m after drying.
- Heat-sealable connector sheets of the invention were obtained by cutting the above obtained sheet in predetermined dimensions.
- the heat-sealable connector sheets prepared in the above described manner were each heat-sealed to a circuit board having electrode terminals of a transparent electroconductive ITO film, of which the surface resistivity was 30 ohm, by pressing at 140° C. for 12 seconds under a pressure of 30 kgf/cm 2 .
- the thus prepared assembly of the circuit board and the connector sheet was subjected to the measurement of the electric resistance between an electrode terminal on the former and a line of the patterned electroconductive layer on the latter after an aging test carried out in two different ways.
- the assembly was subjected to 1000 times repeated heating and cooling cycle each cycle consisting of a high-temperature stage at 85° C. for 30 minutes and a low temperature stage at -30° C. for 30 minutes.
- the measurement of the electric resistance was undertaken either immediately after the heating and cooling cycles for heat shock or after standing in an atmosphere of a relative humidity of 95% at 60° C. for 240, 500 and 1000 hours to give the values of the electric resistance in ohm shown in Table 1A below including the average value, maximum value and minimum value for each of the measuring conditions.
- the aging test was performed without the heat shock test by keeping the assembly in a high-temperature and high-humidity atmosphere of 95% relative humidity at 60° C. and the measurement of the electric resistance was undertaken either as prepared or after standing for 240, 500 and 1000 hours in the above mentioned atmosphere. The results are shown in Table 1B below.
- Example 1 The same experimental procedure as in Example 1 was repeated excepting replacement of the particles of the cured phenolic resin compounded in the electroconductive paste with the same volume of silver-plated spherical particles of nickel having an average particle diameter of about 20 ⁇ m with a coefficient of variation of the diameter of 8%, of which the compressive strength was 16.3 kgf/mm 2 at 10% deformation.
- Tables 1A and 1B also show the results of the measurement of the electric resistance in ohm carried out in the same manner as in Example 1 after each of the aging tests carried out after the heating and cooling cycles and the high-temperature, high-humidity test, respectively.
- An electroconductive paste was prepared by uniformly blending 100 parts by weight of a curable resin mixture consisting of a saturated copolymeric polyester resin having an average molecular weight of 20,000 to 25,000, hydroxy value of 6.0 mg KOH/g, acid value of 1.0 mg KOH/g and solubility parameter of 9.2 and a blocked isocyanate which was a biuret trimer of hexamethylene diisocyanate blocked with methyl ethyl ketoxime with 870 parts by weight of flaky silver particles having a particle diameter of 1 to 3 ⁇ m and each 5 parts by weight of a polymeric levelling agent and a finely divided silica powder as a thixotropy-imparting agent by dilution with 200 parts by weight of ethyl Carbitol to give an electroconductive paste.
- a curable resin mixture consisting of a saturated copolymeric polyester resin having an average molecular weight of 20,000 to 25,000, hydroxy value of 6.0 mg KOH/g, acid value
- the above prepared electroconductive paste was admixed, per 100 parts by volume of the solid matter in the electroconductive paste, with 45 parts by volume of a nylon powder consisting of spongy porous particles of 30% porosity having a compressive strength of 3.0 kgf/mm 2 at 10% deformation, of which the average particle diameter was about 30 ⁇ m with a coefficient of variation of the particle diameter of 7%, as the insulating particles.
- Heat-sealable connector sheets were prepared in the same manner as in Example 1 by the method of screen printing with the above prepared electroconductive paste compounded with the porous nylon particles and subjected to the same evaluation tests as in Example 1 for the electric resistance between the electrode terminal of the circuit board and the patterned electroconductive layer of the connector sheet.
- Tables 2A and 2B below show the results obtained in these tests giving the values of the resistance in ohm obtained by the measurements after standing in a high-temperature, high-humidity atmosphere either following or before the heat-shock test, respectively.
- Example 3 average particle diameter about 15 ⁇ m ; variation coefficient of particle diameter 4%; porosity 30%
- Example 4 average particle diameter about 80 ⁇ m ; variation coefficient of particle diameter 8%; porosity 30%
- Example 5 average particle diameter about 30 ⁇ m ; variation coefficient of particle diameter 120%; porosity 30%
- a 25 ⁇ m thick PET film as a substrate sheet was provided with a line-wise patterned electroconductive layer of a double-layered structure having a line width of 0.15 mm and a pitch of 0.3 mm by first printing with the electroconductive paste prepared in Example 1 before compounding with the insulating phenolic resin particles and then with the same electroconductive paste after compounding with the insulating phenolic resin particles followed by overcoating with the same insulating melt-flowable adhesive as in Example 1 to complete a heat-sealable connector sheet.
- the thickness of the layers formed by the first and second printings was 10 ⁇ m and 20 ⁇ m, respectively, each after drying and curing.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Conductive Materials (AREA)
- Combinations Of Printed Boards (AREA)
- Adhesive Tapes (AREA)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6966892A JPH0713901B2 (ja) | 1992-02-19 | 1992-02-19 | ヒートシールコネクター |
JP4-069668 | 1992-02-19 | ||
JP4-255801 | 1992-08-31 | ||
JP25580192A JPH0685336B2 (ja) | 1992-08-31 | 1992-08-31 | 熱圧着性接続部材およびその製造方法 |
JP4-282437 | 1992-09-28 | ||
JP4282437A JP2502900B2 (ja) | 1992-09-28 | 1992-09-28 | ヒ―トシ―ルコネクタおよびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5371327A true US5371327A (en) | 1994-12-06 |
Family
ID=27300110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/017,638 Expired - Fee Related US5371327A (en) | 1992-02-19 | 1993-02-12 | Heat-sealable connector sheet |
Country Status (5)
Country | Link |
---|---|
US (1) | US5371327A (enrdf_load_stackoverflow) |
KR (1) | KR970004764B1 (enrdf_load_stackoverflow) |
DE (1) | DE4304747C2 (enrdf_load_stackoverflow) |
GB (1) | GB2265500B (enrdf_load_stackoverflow) |
TW (1) | TW210396B (enrdf_load_stackoverflow) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5600099A (en) * | 1994-12-02 | 1997-02-04 | Augat Inc. | Chemically grafted electrical devices |
US5949029A (en) * | 1994-08-23 | 1999-09-07 | Thomas & Betts International, Inc. | Conductive elastomers and methods for fabricating the same |
WO2001081012A1 (en) * | 2000-04-27 | 2001-11-01 | Add-Vision, Inc. | Screen printing light-emitting polymer patterned devices |
US6331119B1 (en) * | 1999-12-28 | 2001-12-18 | International Business Machines Corporation | Conductive adhesive having a palladium matrix interface between two metal surfaces |
US6404643B1 (en) * | 1998-10-15 | 2002-06-11 | Amerasia International Technology, Inc. | Article having an embedded electronic device, and method of making same |
US20020173145A1 (en) * | 2000-03-23 | 2002-11-21 | Noriyuki Honda | Electrical connection materials and electrical connection method |
WO2002054414A3 (en) * | 2000-12-29 | 2003-01-03 | Magin Display Technologies Ltd | Fat conductor |
US20030183416A1 (en) * | 2002-03-29 | 2003-10-02 | White Jerry L. | Method of electrically coupling an electronic component to a substrate |
US20030218258A1 (en) * | 2002-05-23 | 2003-11-27 | 3M Innovative Properties Company | Nanoparticle filled underfill |
US20040053191A1 (en) * | 2002-09-12 | 2004-03-18 | Ivoclar Vivadent Ag | Light hardening apparatus |
US20040070702A1 (en) * | 2002-04-23 | 2004-04-15 | Siemens Ag | Arrangement with flat display units |
US6809280B2 (en) | 2002-05-02 | 2004-10-26 | 3M Innovative Properties Company | Pressure activated switch and touch panel |
EP1189308A4 (en) * | 2000-03-23 | 2005-06-08 | Sony Corp | ELECTRICAL CONNECTING MATERIAL AND ELECTRICAL CONNECTION METHOD |
US20060019075A1 (en) * | 2004-07-26 | 2006-01-26 | Samsung Electro-Mechanics Co., Ltd. | Rigid-flexible PCB having coverlay made of liquid crystalline polymer and fabrication method thereof |
US20060137462A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Force sensing membrane |
US20060141192A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Adhesive membrane for force switches and sensors |
US20070007661A1 (en) * | 2005-06-09 | 2007-01-11 | Burgess Lester E | Hybrid conductive coating method for electrical bridging connection of RFID die chip to composite antenna |
US20070022828A1 (en) * | 2005-07-29 | 2007-02-01 | 3M Innovative Properties Company | Interdigital force switches and sensors |
US20070228368A1 (en) * | 2006-03-31 | 2007-10-04 | Fujifilm Corporation | Functional device |
US20090297803A1 (en) * | 2008-05-28 | 2009-12-03 | Kriha James A | Conductive Ink Formulations |
US20120048606A1 (en) * | 2007-08-08 | 2012-03-01 | Hitachi Chemical Company, Ltd. | Adhesive composition, film-like adhesive, and connection structure for circuit member |
US20120085579A1 (en) * | 2005-12-26 | 2012-04-12 | Hitachi Chemical Company, Ltd. | Adhesive composition, circuit connecting material and connecting structure of circuit member |
US20140202733A1 (en) * | 2013-01-21 | 2014-07-24 | E I Du Pont De Nemours And Company | Method of manufacturing non-firing type electrode |
US20140202735A1 (en) * | 2013-01-21 | 2014-07-24 | Ei Du Pont De Nemours And Company | Method of manufacturing non-firing type electrode |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9919906D0 (en) * | 1999-08-24 | 1999-10-27 | Central Research Lab Ltd | Gas sensor and method of manufacture |
JP2007141956A (ja) * | 2005-11-15 | 2007-06-07 | Three M Innovative Properties Co | プリント回路基板の接続方法 |
DE102012208304A1 (de) * | 2012-05-16 | 2013-11-21 | Robert Bosch Gmbh | Sinterwerkstoff für eine Verbindungsschicht für Halbleiter mit einstellbarem Porositätsgrad |
DE102023203178A1 (de) * | 2023-04-05 | 2024-10-10 | Volkswagen Aktiengesellschaft | Elektronische Vorrichtung für eine funktionalisierte Oberfläche, Verfahren zum Herstellen einer elektronischen Vorrichtung für eine funktionalisierte Oberfläche und System zur Herstellung einer elektronischen Vorrichtung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4569877A (en) * | 1982-12-20 | 1986-02-11 | Minnesota Mining And Manufacturing Company | Sheet material adapted to provide long-lived stable adhesive-bonded electrical connections |
US4680226A (en) * | 1985-01-28 | 1987-07-14 | Sharp Kabushiki Kaisha | Heat sensitive type adhesive connector |
US4960490A (en) * | 1983-06-13 | 1990-10-02 | Minnesota Mining And Manufacturing Company | Method of making multiple-connector adhesive tape |
US5001302A (en) * | 1988-12-29 | 1991-03-19 | Casio Computer Co., Ltd. | Connecting structure for an electronic part |
US5155301A (en) * | 1989-08-18 | 1992-10-13 | Semiconductor Energy Laboratory Co., Ltd. | Electrical connection and method for making the same |
US5225966A (en) * | 1991-07-24 | 1993-07-06 | At&T Bell Laboratories | Conductive adhesive film techniques |
US5260519A (en) * | 1992-09-23 | 1993-11-09 | International Business Machines Corporation | Multilayer ceramic substrate with graded vias |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5538073A (en) * | 1978-09-12 | 1980-03-17 | Citizen Watch Co Ltd | Electronic watch circuit structure |
JPS5856996A (ja) * | 1981-09-30 | 1983-04-04 | 東芝ライテック株式会社 | 空港用地上形標識灯システム |
US4554033A (en) * | 1984-10-04 | 1985-11-19 | Amp Incorporated | Method of forming an electrical interconnection means |
JPS62154746A (ja) * | 1985-12-27 | 1987-07-09 | Casio Comput Co Ltd | 電子部品の接合方法 |
JPH07103331B2 (ja) * | 1987-10-30 | 1995-11-08 | イビデン株式会社 | 樹脂系導電ペースト |
-
1993
- 1993-02-12 US US08/017,638 patent/US5371327A/en not_active Expired - Fee Related
- 1993-02-15 TW TW082101033A patent/TW210396B/zh active
- 1993-02-17 DE DE4304747A patent/DE4304747C2/de not_active Expired - Fee Related
- 1993-02-18 GB GB9303256A patent/GB2265500B/en not_active Expired - Fee Related
- 1993-02-18 KR KR1019930002268A patent/KR970004764B1/ko not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4569877A (en) * | 1982-12-20 | 1986-02-11 | Minnesota Mining And Manufacturing Company | Sheet material adapted to provide long-lived stable adhesive-bonded electrical connections |
US4960490A (en) * | 1983-06-13 | 1990-10-02 | Minnesota Mining And Manufacturing Company | Method of making multiple-connector adhesive tape |
US4680226A (en) * | 1985-01-28 | 1987-07-14 | Sharp Kabushiki Kaisha | Heat sensitive type adhesive connector |
US5001302A (en) * | 1988-12-29 | 1991-03-19 | Casio Computer Co., Ltd. | Connecting structure for an electronic part |
US5155301A (en) * | 1989-08-18 | 1992-10-13 | Semiconductor Energy Laboratory Co., Ltd. | Electrical connection and method for making the same |
US5225966A (en) * | 1991-07-24 | 1993-07-06 | At&T Bell Laboratories | Conductive adhesive film techniques |
US5260519A (en) * | 1992-09-23 | 1993-11-09 | International Business Machines Corporation | Multilayer ceramic substrate with graded vias |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5949029A (en) * | 1994-08-23 | 1999-09-07 | Thomas & Betts International, Inc. | Conductive elastomers and methods for fabricating the same |
US5600099A (en) * | 1994-12-02 | 1997-02-04 | Augat Inc. | Chemically grafted electrical devices |
US6886246B2 (en) | 1998-10-15 | 2005-05-03 | Amerasia International Technology, Inc. | Method for making an article having an embedded electronic device |
US6404643B1 (en) * | 1998-10-15 | 2002-06-11 | Amerasia International Technology, Inc. | Article having an embedded electronic device, and method of making same |
US6331119B1 (en) * | 1999-12-28 | 2001-12-18 | International Business Machines Corporation | Conductive adhesive having a palladium matrix interface between two metal surfaces |
US20020173145A1 (en) * | 2000-03-23 | 2002-11-21 | Noriyuki Honda | Electrical connection materials and electrical connection method |
EP1189308A4 (en) * | 2000-03-23 | 2005-06-08 | Sony Corp | ELECTRICAL CONNECTING MATERIAL AND ELECTRICAL CONNECTION METHOD |
US7244675B2 (en) | 2000-03-23 | 2007-07-17 | Sony Corporation | Electrical connection materials and electrical connection method |
WO2001081012A1 (en) * | 2000-04-27 | 2001-11-01 | Add-Vision, Inc. | Screen printing light-emitting polymer patterned devices |
US6605483B2 (en) | 2000-04-27 | 2003-08-12 | Add-Vision, Inc. | Screen printing light-emitting polymer patterned devices |
WO2002054414A3 (en) * | 2000-12-29 | 2003-01-03 | Magin Display Technologies Ltd | Fat conductor |
US20030183416A1 (en) * | 2002-03-29 | 2003-10-02 | White Jerry L. | Method of electrically coupling an electronic component to a substrate |
US20040070702A1 (en) * | 2002-04-23 | 2004-04-15 | Siemens Ag | Arrangement with flat display units |
US6809280B2 (en) | 2002-05-02 | 2004-10-26 | 3M Innovative Properties Company | Pressure activated switch and touch panel |
US20030218258A1 (en) * | 2002-05-23 | 2003-11-27 | 3M Innovative Properties Company | Nanoparticle filled underfill |
US7327039B2 (en) | 2002-05-23 | 2008-02-05 | 3M Innovative Properties Company | Nanoparticle filled underfill |
US20080108180A1 (en) * | 2002-05-23 | 2008-05-08 | 3M Innovative Properties Company | Nanoparticle filled underfill |
US7482201B2 (en) | 2002-05-23 | 2009-01-27 | 3M Innovative Properties Company | Nanoparticle filled underfill |
US20040053191A1 (en) * | 2002-09-12 | 2004-03-18 | Ivoclar Vivadent Ag | Light hardening apparatus |
US6991456B2 (en) | 2002-09-12 | 2006-01-31 | Ivoclar Vivadent Ag | Light hardening apparatus |
US7082679B2 (en) * | 2004-07-26 | 2006-08-01 | Samsung Electro-Mechanics Co., Ltd. | Rigid-flexible PCB having coverlay made of liquid crystalline polymer and fabrication method thereof |
US20060019075A1 (en) * | 2004-07-26 | 2006-01-26 | Samsung Electro-Mechanics Co., Ltd. | Rigid-flexible PCB having coverlay made of liquid crystalline polymer and fabrication method thereof |
US20060141192A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Adhesive membrane for force switches and sensors |
US7468199B2 (en) | 2004-12-23 | 2008-12-23 | 3M Innovative Properties Company | Adhesive membrane for force switches and sensors |
US20060137462A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Force sensing membrane |
US7260999B2 (en) | 2004-12-23 | 2007-08-28 | 3M Innovative Properties Company | Force sensing membrane |
US20070007661A1 (en) * | 2005-06-09 | 2007-01-11 | Burgess Lester E | Hybrid conductive coating method for electrical bridging connection of RFID die chip to composite antenna |
US20070022828A1 (en) * | 2005-07-29 | 2007-02-01 | 3M Innovative Properties Company | Interdigital force switches and sensors |
US7509881B2 (en) | 2005-07-29 | 2009-03-31 | 3M Innovative Properties Company | Interdigital force switches and sensors |
US20120085579A1 (en) * | 2005-12-26 | 2012-04-12 | Hitachi Chemical Company, Ltd. | Adhesive composition, circuit connecting material and connecting structure of circuit member |
US20070228368A1 (en) * | 2006-03-31 | 2007-10-04 | Fujifilm Corporation | Functional device |
US7928537B2 (en) * | 2006-03-31 | 2011-04-19 | Fujifilm Corporation | Organic electroluminescent device |
US20120048606A1 (en) * | 2007-08-08 | 2012-03-01 | Hitachi Chemical Company, Ltd. | Adhesive composition, film-like adhesive, and connection structure for circuit member |
US7857997B2 (en) * | 2008-05-28 | 2010-12-28 | Bemis Company, Inc. | Conductive ink formulations |
US20090297803A1 (en) * | 2008-05-28 | 2009-12-03 | Kriha James A | Conductive Ink Formulations |
US20140202733A1 (en) * | 2013-01-21 | 2014-07-24 | E I Du Pont De Nemours And Company | Method of manufacturing non-firing type electrode |
US20140202735A1 (en) * | 2013-01-21 | 2014-07-24 | Ei Du Pont De Nemours And Company | Method of manufacturing non-firing type electrode |
US9093675B2 (en) * | 2013-01-21 | 2015-07-28 | E I Du Pont De Nemours And Company | Method of manufacturing non-firing type electrode |
US9099215B2 (en) * | 2013-01-21 | 2015-08-04 | E I Du Pont De Nemours And Company | Method of manufacturing non-firing type electrode |
Also Published As
Publication number | Publication date |
---|---|
GB9303256D0 (en) | 1993-04-07 |
KR970004764B1 (ko) | 1997-04-03 |
GB2265500B (en) | 1995-11-22 |
KR930019083A (ko) | 1993-09-22 |
DE4304747C2 (de) | 2001-01-25 |
GB2265500A (en) | 1993-09-29 |
TW210396B (enrdf_load_stackoverflow) | 1993-08-01 |
DE4304747A1 (enrdf_load_stackoverflow) | 1993-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5371327A (en) | Heat-sealable connector sheet | |
US5336443A (en) | Anisotropically electroconductive adhesive composition | |
US5183969A (en) | Anisotropically electroconductive adhesive and adhesively bonded structure therewith | |
US5084211A (en) | Anisotropically electroconductive adhesive | |
KR930002935B1 (ko) | 회로접속 구성물 및 그것을 이용한 접속방법 및 반도체 칩의 접속구조 | |
US5470607A (en) | Heat-sealable connector and method for the preparation thereof | |
US6344156B1 (en) | Anisotropic conductive adhesive film | |
CA1220252A (en) | Adhesive electrical interconnecting means | |
JP3741841B2 (ja) | 異方導電性接着剤 | |
JP3420809B2 (ja) | 導電性粒子およびこれを用いた異方導電接着剤 | |
JPH04323290A (ja) | 異方導電性接着剤組成物 | |
JP4107769B2 (ja) | 異方導電性接着剤用導電性付与粒子及びこれを用いた異方導電性接着剤 | |
JP2823799B2 (ja) | 異方導電接着剤 | |
JP3782590B2 (ja) | 導電性微粒子、異方性導電接着剤及び導電接続構造体 | |
JPH0757805A (ja) | 熱圧着性接続部材 | |
JPH11126516A (ja) | 異方性導電接着剤及び導電接続構造体 | |
JP3192549B2 (ja) | ヒートシールコネクタ | |
JP3169506B2 (ja) | ヒートシールコネクタ用絶縁性接着剤組成物およびその製造方法 | |
JPH06318478A (ja) | ヒートシールコネクター | |
KR0178129B1 (ko) | 이방 도전성 필름 | |
JPH11329060A (ja) | 導電性微粒子、異方性導電接着剤及び導電接続構造体 | |
JP2502881B2 (ja) | ヒ―トシ―ルコネクタ― | |
JPH08335472A (ja) | ヒートシールコネクタ | |
JPH07109445A (ja) | 異方性導電接着剤 | |
JPH0676877A (ja) | 熱圧着性接続部材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHIN-ETSU POLYMER CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FUJINAMI, NAOKO;YOSHIDA, KAZUYOSHI;ODASHIMA, SATOSHI;REEL/FRAME:006453/0348 Effective date: 19930205 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20061206 |