US5229331A - Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology - Google Patents
Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology Download PDFInfo
- Publication number
- US5229331A US5229331A US07/837,453 US83745392A US5229331A US 5229331 A US5229331 A US 5229331A US 83745392 A US83745392 A US 83745392A US 5229331 A US5229331 A US 5229331A
- Authority
- US
- United States
- Prior art keywords
- cathode
- layer
- tip
- gate
- depositing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000126 substance Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 53
- 238000005498 polishing Methods 0.000 title claims description 8
- 238000005516 engineering process Methods 0.000 title description 4
- 230000009969 flowable effect Effects 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000004020 conductor Substances 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 230000003647 oxidation Effects 0.000 claims abstract description 8
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 8
- 230000003139 buffering effect Effects 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 26
- 238000000151 deposition Methods 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 229910052682 stishovite Inorganic materials 0.000 claims description 5
- 229910052905 tridymite Inorganic materials 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229910007277 Si3 N4 Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 claims 15
- 150000001875 compounds Chemical class 0.000 claims 2
- 230000003287 optical effect Effects 0.000 claims 1
- 239000011810 insulating material Substances 0.000 abstract description 7
- 238000007517 polishing process Methods 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 13
- 150000004767 nitrides Chemical group 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000005368 silicate glass Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910021357 chromium silicide Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/304—Field emission cathodes
- H01J2201/30403—Field emission cathodes characterised by the emitter shape
- H01J2201/30426—Coatings on the emitter surface, e.g. with low work function materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/319—Circuit elements associated with the emitters by direct integration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2209/00—Apparatus and processes for manufacture of discharge tubes
- H01J2209/02—Manufacture of cathodes
- H01J2209/022—Cold cathodes
- H01J2209/0223—Field emission cathodes
- H01J2209/0226—Sharpening or resharpening of emitting point or edge
Definitions
- This invention relates to field emission devices, and more particularly to processes for creating gate structures which are self-aligned to the emitter tips using chemical mechanical planarization (CMP).
- CMP chemical mechanical planarization
- Cathode ray tube (CRT) displays such as those commonly used in desk-top computer screens, function as a result of a scanning electron beam from an electron gun, impinging on phosphors on a relatively distant screen.
- the electrons increase the energy level of the phosphors.
- the phosphors return to their normal energy level, they release the energy from the electrons as a photon of light, which is transmitted through the glass screen of the display to the viewer.
- a display panel comprising a transparent gas-tight envelope, two main planar electrodes which are arranged within the gas-tight envelope parallel with each other, and a cathodeluminescent panel.
- One of the two main electrodes is a cold cathode, and the other is a low potential anode, gate, or grid.
- the cathode luminescent panel may consist of a transparent glass plate, a transparent electrode formed on the transparent glass plate, and a phosphor layer coated on the transparent electrode.
- the phosphor layer is made of, for example, zinc oxide which can be excited with low energy electrons.
- a potential source is provided with its positive terminal connected to the gate, or grid, and its negative terminal connected to the emitter electrode (cathode conductor substrate).
- the potential source may be made variable for the purpose of controlling the electron emission current.
- An array of points in registry with holes in low potential anode grids are adaptable to the production of cathodes subdivided into areas containing one or more tips from which areas emissions can be drawn separately by the application of the appropriate potentials thereto.
- the clarity, or resolution, of a field emission display is a function of a number of factors, including emitter tip sharpness, alignment and spacing of the gates, or grid openings, which surround the tips, pixel size, as well as cathode-to-gate and cathode-to-screen voltages. These factors are also interrelated.
- the voltage required for electron emission from the emitter tips is a function of both cathode-to-gate spacing and tip sharpness.
- One advantage of the disclosed process is that very narrow cathode-to-gate spacing is possible, which permits the use of threshold voltages that are at least an order of magnitude lower than those previously reported. Since emitted current is proportional to the difference of the applied emitter-to-gate voltage and the emission threshold voltage, for any given emitter-to-gate voltage, a lowered threshold voltage will result in greater current.
- the object of the present invention is create an improved self-aligned process for fabricating field emission displays.
- the disclosed process utilizes multiple, selectively etchable dielectric layers in combination with chemical mechanical planarization to create ultra-fine gate-to-tip spacing which results in emission threshold voltages that are at least an order of magnitude lower than those previously reported in the literature. Since emitted current is proportional to the difference of the applied emitter-to-gate voltage and the emission threshold voltage, for any given emitter-to-gate voltage, a lowered threshold voltage will result in greater current.
- FIG. 1 is a cross-sectional schematic drawing of a flat panel display showing an electron emission tip, or field emission cathode, surrounded by the self-aligned gate structures formed using the process of the present invention.
- FIG. 2 shows an electron emitter tip having a conformal insulating layer and a flowable insulating layer deposited thereon, according to the present invention.
- FIG. 3 shows the electron emitting tip of FIG. 2 following the reflow heating of the flowable insulating layer, at approximately 1000° C., according to the present invention.
- FIG. 4 shows the electron emitting tip of FIG. 3 after the conductive gate layer has been deposited thereon, according to the present invention.
- FIG. 5 shows the electron emitter tip of FIG. 4 after a chemical mechanical planarization (CMP) step has been performed, according to the present invention.
- CMP chemical mechanical planarization
- FIGS. 6A and 6B show the electron emitting tip of FIG. 5 after the insulating layer has undergone a wet etching process to expose the emitter tip, according to the present invention.
- FIG. 6A shows the result if the insulating layer is an oxide.
- FIG. 6B shows the result if the insulating layer is a nitride.
- FIG. 7 is a flow diagram of the steps involved in a gate formation process in accordance with the present invention.
- the substrate 11 can be comprised of glass, for example, or any of a variety of other suitable materials.
- a single crystal silicon layer serves as a substrate 11 onto which a conductive material layer 12, such as doped polycrystalline silicon has been deposited.
- a conical micro-cathode 13 has been constructed on top of the substrate 11.
- a voltage differential, through source 20 is applied between the cathode 13 and the gate 15, a stream of electrons 17 is emitted toward a phosphor coated screen 16.
- Screen 16 is an anode.
- the electron emission tip 13 is integral with the single crystal semiconductor substrate 11, and serves as a cathode conductor.
- Gate 15 serves as a low potential anode or grid structure for its respective cathode 13.
- a dielectric insulating layer 14 is deposited on the conductive cathode layer 12. The insulator 14 also has an opening at the field emission site location.
- FIGS. 2-7 of the drawings depict the initial, intermediate and final structures produced by a series of manufacturing steps according to the invention.
- a single crystal P-type silicon wafer having formed therein (by suitable known doping pretreatment) a series of elongated, parallel extending opposite N-type conductivity regions, or wells.
- Each N-type conductivity strip has a width of approximately 10 microns, and a depth of approximately 3 microns. The spacing of the strips is arbitrary and can be adjusted to accommodate a desired number of field emission cathode sites to be formed on a given size silicon wafer substrate.
- Processing of the substrate to provide the P-type and N-type conductivity regions may be by may well-known semiconductor processing techniques, such as diffusion and/or epitaxial growth.) If desired the P-type and N-type regions, of course, can be reversed through the use of a suitable starting substrate and appropriate dopants.
- a field emission cathode microstructure can be manufactured using an underlying single crystal, semiconductor substrate.
- the semiconductor substrate may be either P or N-type and is selectively masked on one of its surfaces where it is desired to form field emission cathode sites.
- the masking is done in a manner such that the masked areas define islands on the surface of the underlying semiconductor substrate.
- selective sidewise removal of the underlying peripheral surrounding regions of the semiconductor substrate beneath the edges of the masked island areas results in the production of a centrally disposed, raised, single crystal semiconductor field emitter tip in the region immediately under each masked island area defining a field emission cathode site.
- the removal of underlying peripheral surrounding regions of the semiconductor substrate be closely controlled by oxidation of the surface of the semiconductor substrate surrounding the masked island areas with the oxidation phase being conducted sufficiently long to produce sideways growth of the resulting oxide layer beneath the peripheral edges of the masked areas to an extent required to leave only a non-oxidized tip of underlying, single crystal substrate beneath the island mask.
- the oxide layer is differentially etched away at least in the regions immediately surrounding the masked island areas to result in the production of a centrally disposed, raised, single crystal semiconductor field emitter tip integral with the underlying single, crystal semiconductor substrate at each desired field emission cathode site.
- the tip of the electron emitter may be sharpened through an oxidation process (FIG. 7).
- the surface of the silicon wafer (Si) 11 and the emitter tip 13 are oxidized to produce an oxide layer of SiO 2 , which is then etched to sharpen the tip.
- Any conventional, known oxidation process may be employed in forming the SiO 2 , and etching the tip.
- a selectively etchable material layer is deposited.
- a conformally deposited silicon nitride layer is used.
- other materials which are selectively etchable with respect to the flowable insulative layer may be used, (e.g., SiO 2 , and silicon oxynitride)
- a nitride layer is particularly effective against oxygen diffusion and, therefore, can be used for layers as thin as 1000 ⁇ , but preferably greater than 1000 ⁇ . This is particularly advantageous, since small gate 15 to cathode 13 distances result in lower emitter drive voltages.
- the thickness of the insulating dielectric layer 18 will determine the gate 15 to cathode 13 spacing.
- the nitride insulating layer 18, as shown in FIG. 2, is a conformal insulating layer.
- the nitride layer is deposited on the emitter tip 13 in a manner such that the nitride layer conforms to the conical shape of the cathode emitter tip 13.
- the next step is the deposition of the flowable insulating layer 14, as shown in FIG. 2.
- the flowable insulating layer 14 may be comprised of spin-on-glass (SOG), borophosphosilicate glass (BPSG), or a polyimide, or other suitable material, including, but not limited to, other spin on dielectrics or flowable dielectrics. Under certain conditions, such materials flow easily over the surface of the wafer, resulting in a densified planarized layer.
- the thickness of the flowable insulating layer 14, together with the conformal insulating layer 18 will determine the gate 15 to substrate 11 spacing; the conformal insulating layer 18 alone substantially determines the gate 15 to cathode 13 spacing.
- the preferred embodiment uses BPSG.
- the BPSG layer may be initially deposited by a technique such as chemical vapor deposition (CVD) using a phosphorous source such as phosphine (PH 3 ) gas.
- the wafer surface may also be exposed to a boron source such as diborane (B 2H 6) gas.
- B 2H 6 diborane
- the resultant BPSG layer 14 initially may cover the cathode tip 13, and it may then be reflowed.
- the BPSG reflow is performed at a temperature in the range of 700° C. to 1050° C. In practice, the upper limit of the reflow temperature will be controlled by the effects of the reflow on the substrate and other related structures.
- the BPSG layer is heated to a temperature of approximately 1000° C. to cause a slight flow of the flowable insulating material, preferably, to a substantially uniform level below the emitter tip 13, as shown in FIG. 3.
- a technique described in U.S. Pat. No. 4,732,658, describes the use of a CVD method.
- a silicate glass such as BPSG is deposited over a region of a semiconductor wafer as an approximately uniform thickness layer.
- the glass is deposited by CVD in an atmospheric system.
- a review of suitable atmospheric systems is given in W. Kern, G. L. Schnable, RCA Review, Vol. 43, pgs. 423-457, Sept. 1982.
- PECVD plasma-enhanced CVD
- another insulating nitride material layer may optionally be deposited at this stage on top of the flowable insulating material 14 to further adjust the spacing between the gate 15 and the tip 13.
- deposition of the conformal insulating dielectric layer may be delayed until this stage in the gate forming process, i.e., after the deposition and reflow of the flowable insulating material layer 14.
- the flowable insulating layer 14 may be deposited first, followed by the deposition of the conformal insulating layer. After the reflow step, the emitter tip 13 would be exposed, thereby providing an opportunity to deposit a conformal insulating layer prior to the deposition of the conductive gate material layer 15.
- the next step in the process is the deposition of the conductive gate material 15.
- the gate 15 is formed from a conductive layer.
- the conductive material layer may comprise a metal such as chromium or molybdenum, but the preferred material for this process is deemed to be doped polysilicon.
- a buffer material may be deposited to prevent the undesired etching of the lower-lying portions of the conductive gate material layer during the chemical mechanical polishing (CMP) step which follows.
- CMP chemical mechanical polishing
- a buffering layer is an optional step.
- a suitable buffering material is a thin layer of Si 3 N 4 .
- the nitride buffer layer has the effect of protecting the tip 13, which is one advantage of performing this optional step.
- the buffering layer substantially impedes the progress of the CMP into the layer on which the buffering material is deposited.
- the next step in the gate formation process is the chemical mechanical planarization (CMP), also referred to in the art as chemical mechanical polishing (CMP).
- CMP chemical mechanical planarization
- the buffer material as well as any other layers e.g. the conductive material layer, the conformal insulating layer
- the buffer material are "polished" away.
- CMP involves holding or rotating a wafer of semiconductor material against a wetted polishing surface under controlled chemical slurry, pressure, and temperature conditions.
- a chemical slurry containing a polishing agent such as alumina or silica may be utilized as the abrasive medium. Additionally, the chemical slurry may contain chemical etchants. This procedure may be used to produce a surface with a desired endpoint or thickness, which also has a polished and planarized surface.
- Such apparatus for polishing are disclosed in U.S. Pat. Nos. 4,193,226 and 4,811,522. Another such apparatus is manufactured by Westech Engineering and is designated as a Model 372 Polisher.
- CMP will be performed substantially over the entire wafer surface, and at a high pressure. Initially, CMP will proceed at a very fast rate, as the peaks are being removed, then the rate will slow dramatically after the peaks have been substantially removed.
- the removal rate of the CMP is proportionally related to the pressure and the hardness of the surface being planarized.
- FIG. 5 illustrates the intermediate step in the gate formation process following the chemical mechanical planarization CMP. A substantially planar surface is achieved, and the conformal insulating layer 18 is thereby exposed.
- FIG. 5 shows the means by which the conformal insulating layer 18 defines the gate 15 to cathode 13 spacing, as well as the means by which the gate 15 becomes self-aligned.
- the next process step is a wet etching of the selectively-etchable material layer 18 to expose the emitter tip 13.
- the insulating layer 18 is selectively etchable with respect to the flowable material layer 14.
- FIGS. 6A and 6B illustrate the field emitter device after the insulating cavity has been so etched.
- FIG. 6A depicts the resultant structure when the insulating layer 18 is an oxide
- FIG. 6B depicts the resultant structure when the insulating layer 18 is a nitride.
- the cathode tip 13 may, optionally, be coated with a low work-function material (FIG. 7).
- Low work function materials include, but are not limited to cermet (Cr 3 Si+ SiO 2 ), cesium, rubidium, tantalum nitride, barium, chromium silicide, titanium carbide, molybdenum, and niobium. Coating of the emitter tips may be accomplished in one of many ways.
- the low work-function material or its precursor may be deposited through sputtering or other suitable means on the tips 13. Certain metals (e.g., titanium or chromium) may be reacted with the silicon of the tips to form silicide during a rapid thermal processing (RTP) step.
- RTP rapid thermal processing
- any unreacted metal is removed from the tip 13.
- deposited tantalum may be converted during RTP to tantalum nitride, a material having a particularly low work function.
- the coating process variations are almost endless. This results in an emitter tip 13 that may not only be sharper than a plain silicon tip, but that also has greater resistance to erosion and a lower work function.
- the silicide is formed by the reaction of the refractory metal with the underlying polysilicon by an anneal step.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cold Cathode And The Manufacture (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/837,453 US5229331A (en) | 1992-02-14 | 1992-02-14 | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
DE4304103A DE4304103C2 (de) | 1992-02-14 | 1993-02-11 | Verfahren zum Bilden selbstausgerichteter Gatestrukturen |
JP4716293A JP2836802B2 (ja) | 1992-02-14 | 1993-02-15 | 化学・機械研磨法を用いた冷陰極エミッタ先端部の周囲にセルフアライン型のゲート構造体を形成する方法 |
US08/053,794 US5372973A (en) | 1992-02-14 | 1993-04-27 | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
US08/300,616 US5696028A (en) | 1992-02-14 | 1994-09-02 | Method to form an insulative barrier useful in field emission displays for reducing surface leakage |
US08/918,766 US5831378A (en) | 1992-02-14 | 1997-08-25 | Insulative barrier useful in field emission displays for reducing surface leakage |
US08/949,931 US6066507A (en) | 1992-02-14 | 1997-10-14 | Method to form an insulative barrier useful in field emission displays for reducing surface leakage |
JP1069298A JP3098483B2 (ja) | 1992-02-14 | 1998-01-22 | 化学・機械研磨法を用いた冷陰極エミッタ先端部の周囲にセルフアライン型のゲート構造体を形成する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/837,453 US5229331A (en) | 1992-02-14 | 1992-02-14 | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/053,794 Continuation US5372973A (en) | 1992-02-14 | 1993-04-27 | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
Publications (1)
Publication Number | Publication Date |
---|---|
US5229331A true US5229331A (en) | 1993-07-20 |
Family
ID=25274487
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/837,453 Expired - Lifetime US5229331A (en) | 1992-02-14 | 1992-02-14 | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
US08/053,794 Expired - Lifetime US5372973A (en) | 1992-02-14 | 1993-04-27 | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/053,794 Expired - Lifetime US5372973A (en) | 1992-02-14 | 1993-04-27 | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
Country Status (3)
Country | Link |
---|---|
US (2) | US5229331A (de) |
JP (2) | JP2836802B2 (de) |
DE (1) | DE4304103C2 (de) |
Cited By (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329207A (en) * | 1992-05-13 | 1994-07-12 | Micron Technology, Inc. | Field emission structures produced on macro-grain polysilicon substrates |
US5372973A (en) * | 1992-02-14 | 1994-12-13 | Micron Technology, Inc. | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
US5391259A (en) * | 1992-05-15 | 1995-02-21 | Micron Technology, Inc. | Method for forming a substantially uniform array of sharp tips |
US5394006A (en) * | 1994-01-04 | 1995-02-28 | Industrial Technology Research Institute | Narrow gate opening manufacturing of gated fluid emitters |
US5396150A (en) * | 1993-07-01 | 1995-03-07 | Industrial Technology Research Institute | Single tip redundancy method and resulting flat panel display |
US5401676A (en) * | 1993-01-06 | 1995-03-28 | Samsung Display Devices Co., Ltd. | Method for making a silicon field emission device |
US5448132A (en) * | 1989-12-18 | 1995-09-05 | Seiko Epson Corporation | Array field emission display device utilizing field emitters with downwardly descending lip projected gate electrodes |
US5451175A (en) * | 1992-02-05 | 1995-09-19 | Motorola, Inc. | Method of fabricating electronic device employing field emission devices with dis-similar electron emission characteristics |
US5455196A (en) * | 1991-12-31 | 1995-10-03 | Texas Instruments Incorporated | Method of forming an array of electron emitters |
US5461009A (en) * | 1993-12-08 | 1995-10-24 | Industrial Technology Research Institute | Method of fabricating high uniformity field emission display |
WO1996008028A1 (en) * | 1994-09-07 | 1996-03-14 | Fed Corporation | Field emission display device |
US5503582A (en) * | 1994-11-18 | 1996-04-02 | Micron Display Technology, Inc. | Method for forming spacers for display devices employing reduced pressures |
US5509839A (en) * | 1994-07-13 | 1996-04-23 | Industrial Technology Research Institute | Soft luminescence of field emission display |
WO1996014650A1 (en) * | 1994-11-04 | 1996-05-17 | Micron Display Technology, Inc. | Method for sharpening emitter sites using low temperature oxidation processes |
US5527423A (en) * | 1994-10-06 | 1996-06-18 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers |
US5531880A (en) * | 1994-09-13 | 1996-07-02 | Microelectronics And Computer Technology Corporation | Method for producing thin, uniform powder phosphor for display screens |
US5536193A (en) | 1991-11-07 | 1996-07-16 | Microelectronics And Computer Technology Corporation | Method of making wide band gap field emitter |
US5551903A (en) | 1992-03-16 | 1996-09-03 | Microelectronics And Computer Technology | Flat panel display based on diamond thin films |
US5552659A (en) * | 1994-06-29 | 1996-09-03 | Silicon Video Corporation | Structure and fabrication of gated electron-emitting device having electron optics to reduce electron-beam divergence |
US5576594A (en) * | 1993-06-14 | 1996-11-19 | Fujitsu Limited | Cathode device having smaller opening |
FR2734946A1 (fr) * | 1995-05-31 | 1996-12-06 | Nec Corp | Dispositif a cathode froide du type a emission de champ, a electrode emettrice conique, et procede de fabrication de ce dispositif |
US5587623A (en) * | 1993-03-11 | 1996-12-24 | Fed Corporation | Field emitter structure and method of making the same |
US5591352A (en) * | 1995-04-27 | 1997-01-07 | Industrial Technology Research Institute | High resolution cold cathode field emission display method |
US5600200A (en) | 1992-03-16 | 1997-02-04 | Microelectronics And Computer Technology Corporation | Wire-mesh cathode |
US5601966A (en) | 1993-11-04 | 1997-02-11 | Microelectronics And Computer Technology Corporation | Methods for fabricating flat panel display systems and components |
US5601751A (en) * | 1995-06-08 | 1997-02-11 | Micron Display Technology, Inc. | Manufacturing process for high-purity phosphors having utility in field emission displays |
US5607341A (en) | 1994-08-08 | 1997-03-04 | Leach; Michael A. | Method and structure for polishing a wafer during manufacture of integrated circuits |
US5612587A (en) * | 1992-03-27 | 1997-03-18 | Futaba Denshi Kogyo K.K. | Field emission cathode |
US5612712A (en) | 1992-03-16 | 1997-03-18 | Microelectronics And Computer Technology Corporation | Diode structure flat panel display |
US5624872A (en) * | 1996-04-08 | 1997-04-29 | Industrial Technology Research Institute | Method of making low capacitance field emission device |
US5627427A (en) * | 1991-12-09 | 1997-05-06 | Cornell Research Foundation, Inc. | Silicon tip field emission cathodes |
US5628659A (en) * | 1995-04-24 | 1997-05-13 | Microelectronics And Computer Corporation | Method of making a field emission electron source with random micro-tip structures |
US5633560A (en) * | 1995-04-10 | 1997-05-27 | Industrial Technology Research Institute | Cold cathode field emission display with each microtip having its own ballast resistor |
US5634585A (en) * | 1995-10-23 | 1997-06-03 | Micron Display Technology, Inc. | Method for aligning and assembling spaced components |
US5641706A (en) * | 1996-01-18 | 1997-06-24 | Micron Display Technology, Inc. | Method for formation of a self-aligned N-well for isolated field emission devices |
US5653619A (en) * | 1992-03-02 | 1997-08-05 | Micron Technology, Inc. | Method to form self-aligned gate structures and focus rings |
US5656525A (en) * | 1994-12-12 | 1997-08-12 | Industrial Technology Research Institute | Method of manufacturing high aspect-ratio field emitters for flat panel displays |
US5663107A (en) * | 1994-12-22 | 1997-09-02 | Siemens Aktiengesellschaft | Global planarization using self aligned polishing or spacer technique and isotropic etch process |
US5665654A (en) * | 1995-02-10 | 1997-09-09 | Micron Display Technology, Inc. | Method for forming an electrical connection to a semiconductor die using loose lead wire bonding |
US5675216A (en) | 1992-03-16 | 1997-10-07 | Microelectronics And Computer Technololgy Corp. | Amorphic diamond film flat field emission cathode |
US5679043A (en) | 1992-03-16 | 1997-10-21 | Microelectronics And Computer Technology Corporation | Method of making a field emitter |
US5683282A (en) * | 1995-12-04 | 1997-11-04 | Industrial Technology Research Institute | Method for manufacturing flat cold cathode arrays |
US5693235A (en) * | 1995-12-04 | 1997-12-02 | Industrial Technology Research Institute | Methods for manufacturing cold cathode arrays |
US5695658A (en) * | 1996-03-07 | 1997-12-09 | Micron Display Technology, Inc. | Non-photolithographic etch mask for submicron features |
US5696028A (en) * | 1992-02-14 | 1997-12-09 | Micron Technology, Inc. | Method to form an insulative barrier useful in field emission displays for reducing surface leakage |
US5697825A (en) * | 1995-09-29 | 1997-12-16 | Micron Display Technology, Inc. | Method for evacuating and sealing field emission displays |
US5731228A (en) * | 1994-03-11 | 1998-03-24 | Fujitsu Limited | Method for making micro electron beam source |
US5733175A (en) | 1994-04-25 | 1998-03-31 | Leach; Michael A. | Polishing a workpiece using equal velocity at all points overlapping a polisher |
US5753130A (en) * | 1992-05-15 | 1998-05-19 | Micron Technology, Inc. | Method for forming a substantially uniform array of sharp tips |
US5756390A (en) * | 1996-02-27 | 1998-05-26 | Micron Technology, Inc. | Modified LOCOS process for sub-half-micron technology |
US5763997A (en) | 1992-03-16 | 1998-06-09 | Si Diamond Technology, Inc. | Field emission display device |
US5772488A (en) * | 1995-10-16 | 1998-06-30 | Micron Display Technology, Inc. | Method of forming a doped field emitter array |
US5785569A (en) * | 1996-03-25 | 1998-07-28 | Micron Technology, Inc. | Method for manufacturing hollow spacers |
US5785873A (en) * | 1996-06-24 | 1998-07-28 | Industrial Technology Research Institute | Low cost field emission based print head and method of making |
US5788881A (en) * | 1995-10-25 | 1998-08-04 | Micron Technology, Inc. | Visible light-emitting phosphor composition having an enhanced luminescent efficiency over a broad range of voltages |
US5807154A (en) * | 1995-12-21 | 1998-09-15 | Micron Display Technology, Inc. | Process for aligning and sealing field emission displays |
US5827102A (en) * | 1996-05-13 | 1998-10-27 | Micron Technology, Inc. | Low temperature method for evacuating and sealing field emission displays |
US5844251A (en) * | 1994-01-05 | 1998-12-01 | Cornell Research Foundation, Inc. | High aspect ratio probes with self-aligned control electrodes |
US5857884A (en) * | 1996-02-07 | 1999-01-12 | Micron Display Technology, Inc. | Photolithographic technique of emitter tip exposure in FEDS |
US5866979A (en) * | 1994-09-16 | 1999-02-02 | Micron Technology, Inc. | Method for preventing junction leakage in field emission displays |
US5874808A (en) * | 1996-12-15 | 1999-02-23 | Busta; Heinz H. | Low turn-on voltage volcano-shaped field emitter and integration into an addressable array |
US5882533A (en) * | 1996-07-15 | 1999-03-16 | Industrial Technology Research Institute | Field emission based print head |
WO1999016134A1 (en) * | 1997-09-25 | 1999-04-01 | Fed Corporation | High aspect ratio gated emitter structure, and method of making |
US5902491A (en) * | 1996-10-07 | 1999-05-11 | Micron Technology, Inc. | Method of removing surface protrusions from thin films |
US5923956A (en) * | 1996-01-30 | 1999-07-13 | Nec Corporation | Method of securing a semiconductor chip on a base plate and structure thereof |
US5930590A (en) * | 1997-08-06 | 1999-07-27 | American Energy Services | Fabrication of volcano-shaped field emitters by chemical-mechanical polishing (CMP) |
US5931713A (en) * | 1997-03-19 | 1999-08-03 | Micron Technology, Inc. | Display device with grille having getter material |
US5949182A (en) * | 1996-06-03 | 1999-09-07 | Cornell Research Foundation, Inc. | Light-emitting, nanometer scale, micromachined silicon tips |
US5949185A (en) * | 1997-10-22 | 1999-09-07 | St. Clair Intellectual Property Consultants, Inc. | Field emission display devices |
US5952771A (en) * | 1997-01-07 | 1999-09-14 | Micron Technology, Inc. | Micropoint switch for use with field emission display and method for making same |
US5956611A (en) * | 1997-09-03 | 1999-09-21 | Micron Technologies, Inc. | Field emission displays with reduced light leakage |
US5977698A (en) * | 1995-11-06 | 1999-11-02 | Micron Technology, Inc. | Cold-cathode emitter and method for forming the same |
US5975975A (en) * | 1994-09-16 | 1999-11-02 | Micron Technology, Inc. | Apparatus and method for stabilization of threshold voltage in field emission displays |
US5994834A (en) * | 1997-08-22 | 1999-11-30 | Micron Technology, Inc. | Conductive address structure for field emission displays |
WO1999063568A1 (en) * | 1998-05-29 | 1999-12-09 | The Regents Of The University Of California | Gate-and emitter array on fiber electron field emission structure |
US6008063A (en) * | 1999-03-01 | 1999-12-28 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6010935A (en) * | 1997-08-21 | 2000-01-04 | Micron Technology, Inc. | Self aligned contacts |
US6010917A (en) * | 1996-10-15 | 2000-01-04 | Micron Technology, Inc. | Electrically isolated interconnects and conductive layers in semiconductor device manufacturing |
US6015323A (en) * | 1997-01-03 | 2000-01-18 | Micron Technology, Inc. | Field emission display cathode assembly government rights |
US6017772A (en) * | 1999-03-01 | 2000-01-25 | Micron Technology, Inc. | Field emission arrays and method of fabricating emitter tips and corresponding resistors thereof with a single mask |
US6018215A (en) * | 1996-11-22 | 2000-01-25 | Nec Corporation | Field emission cold cathode having a cone-shaped emitter |
US6022256A (en) * | 1996-11-06 | 2000-02-08 | Micron Display Technology, Inc. | Field emission display and method of making same |
US6042746A (en) * | 1997-01-17 | 2000-03-28 | Micron Technology, Inc. | Specialized phosphors prepared by a multi-stage grinding and firing sequence |
US6048763A (en) * | 1997-08-21 | 2000-04-11 | Micron Technology, Inc. | Integrated capacitor bottom electrode with etch stop layer |
US6051477A (en) * | 1995-11-01 | 2000-04-18 | Hyundai Electronics Industries Co., Ltd. | Method of fabricating semiconductor device |
US6059625A (en) * | 1999-03-01 | 2000-05-09 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines |
US6064149A (en) * | 1998-02-23 | 2000-05-16 | Micron Technology Inc. | Field emission device with silicon-containing adhesion layer |
US6068750A (en) * | 1996-01-19 | 2000-05-30 | Micron Technology, Inc. | Faceplates having black matrix material |
US6084345A (en) * | 1997-05-06 | 2000-07-04 | St. Clair Intellectual Property Consultants, Inc. | Field emission display devices |
US6127773A (en) | 1992-03-16 | 2000-10-03 | Si Diamond Technology, Inc. | Amorphic diamond film flat field emission cathode |
US6130106A (en) * | 1996-11-14 | 2000-10-10 | Micron Technology, Inc. | Method for limiting emission current in field emission devices |
US6153358A (en) * | 1996-12-23 | 2000-11-28 | Micorn Technology, Inc. | Polyimide as a mask in vapor hydrogen fluoride etching and method of producing a micropoint |
US6175184B1 (en) * | 1998-02-12 | 2001-01-16 | Micron Technology, Inc. | Buffered resist profile etch of a field emission device structure |
US6174449B1 (en) | 1998-05-14 | 2001-01-16 | Micron Technology, Inc. | Magnetically patterned etch mask |
US6176752B1 (en) | 1998-09-10 | 2001-01-23 | Micron Technology, Inc. | Baseplate and a method for manufacturing a baseplate for a field emission display |
US6180521B1 (en) * | 1999-01-06 | 2001-01-30 | International Business Machines Corporation | Process for manufacturing a contact barrier |
US6190223B1 (en) | 1998-07-02 | 2001-02-20 | Micron Technology, Inc. | Method of manufacture of composite self-aligned extraction grid and in-plane focusing ring |
US6197607B1 (en) | 1999-03-01 | 2001-03-06 | Micron Technology, Inc. | Method of fabricating field emission arrays to optimize the size of grid openings and to minimize the occurrence of electrical shorts |
US6204834B1 (en) | 1994-08-17 | 2001-03-20 | Si Diamond Technology, Inc. | System and method for achieving uniform screen brightness within a matrix display |
US6215243B1 (en) | 1997-05-06 | 2001-04-10 | St. Clair Intellectual Property Consultants, Inc. | Radioactive cathode emitter for use in field emission display devices |
US6224447B1 (en) | 1998-06-22 | 2001-05-01 | Micron Technology, Inc. | Electrode structures, display devices containing the same, and methods for making the same |
US6228538B1 (en) | 1998-08-28 | 2001-05-08 | Micron Technology, Inc. | Mask forming methods and field emission display emitter mask forming methods |
US6232705B1 (en) | 1998-09-01 | 2001-05-15 | Micron Technology, Inc. | Field emitter arrays with gate insulator and cathode formed from single layer of polysilicon |
US6255769B1 (en) | 1997-12-29 | 2001-07-03 | Micron Technology, Inc. | Field emission displays with raised conductive features at bonding locations and methods of forming the raised conductive features |
US6271139B1 (en) * | 1997-07-02 | 2001-08-07 | Micron Technology, Inc. | Polishing slurry and method for chemical-mechanical polishing |
US6296740B1 (en) | 1995-04-24 | 2001-10-02 | Si Diamond Technology, Inc. | Pretreatment process for a surface texturing process |
US6323594B1 (en) | 1997-05-06 | 2001-11-27 | St. Clair Intellectual Property Consultants, Inc. | Electron amplification channel structure for use in field emission display devices |
US20010045794A1 (en) * | 1996-01-19 | 2001-11-29 | Alwan James J. | Cap layer on glass panels for improving tip uniformity in cold cathode field emission technology |
US20020000548A1 (en) * | 2000-04-26 | 2002-01-03 | Blalock Guy T. | Field emission tips and methods for fabricating the same |
US6344378B1 (en) | 1999-03-01 | 2002-02-05 | Micron Technology, Inc. | Field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors |
US6369497B1 (en) | 1999-03-01 | 2002-04-09 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough by employing two masks |
US6384520B1 (en) * | 1999-11-24 | 2002-05-07 | Sony Corporation | Cathode structure for planar emitter field emission displays |
US6392334B1 (en) | 1998-10-13 | 2002-05-21 | Micron Technology, Inc. | Flat panel display including capacitor for alignment of baseplate and faceplate |
US6391670B1 (en) * | 1999-04-29 | 2002-05-21 | Micron Technology, Inc. | Method of forming a self-aligned field extraction grid |
US6394871B2 (en) * | 1998-09-02 | 2002-05-28 | Micron Technology, Inc. | Method for reducing emitter tip to gate spacing in field emission devices |
US6417016B1 (en) | 1999-02-26 | 2002-07-09 | Micron Technology, Inc. | Structure and method for field emitter tips |
US6417605B1 (en) | 1994-09-16 | 2002-07-09 | Micron Technology, Inc. | Method of preventing junction leakage in field emission devices |
US20020113536A1 (en) * | 1999-03-01 | 2002-08-22 | Ammar Derraa | Field emitter display (FED) assemblies and methods of forming field emitter display (FED) assemblies |
US6464550B2 (en) | 1999-02-03 | 2002-10-15 | Micron Technology, Inc. | Methods of forming field emission display backplates |
US6469436B1 (en) | 2000-01-14 | 2002-10-22 | Micron Technology, Inc. | Radiation shielding for field emitters |
US6504291B1 (en) * | 1999-02-23 | 2003-01-07 | Micron Technology, Inc. | Focusing electrode and method for field emission displays |
US6507328B1 (en) | 1999-05-06 | 2003-01-14 | Micron Technology, Inc. | Thermoelectric control for field emission display |
US6537427B1 (en) | 1999-02-04 | 2003-03-25 | Micron Technology, Inc. | Deposition of smooth aluminum films |
US6558570B2 (en) | 1998-07-01 | 2003-05-06 | Micron Technology, Inc. | Polishing slurry and method for chemical-mechanical polishing |
US20030205061A1 (en) * | 1997-02-06 | 2003-11-06 | Elledge Jason B. | Differential pressure process for fabricating a flat-panel display face plate with integral spacer support structures |
US6692323B1 (en) | 2000-01-14 | 2004-02-17 | Micron Technology, Inc. | Structure and method to enhance field emission in field emitter device |
US20040036401A1 (en) * | 2000-08-25 | 2004-02-26 | Kazuo Konuma | Field electron emission apparatus and method for manufacturing the same |
US6710538B1 (en) | 1998-08-26 | 2004-03-23 | Micron Technology, Inc. | Field emission display having reduced power requirements and method |
US20040201345A1 (en) * | 2003-04-08 | 2004-10-14 | Yoshinobu Hirokado | Cold cathode light emitting device, image display and method of manufacturing cold cathode light emitting device |
US20050057168A1 (en) * | 2003-08-27 | 2005-03-17 | Song Yoon Ho | Field emission device |
US20050067935A1 (en) * | 2003-09-25 | 2005-03-31 | Lee Ji Ung | Self-aligned gated rod field emission device and associated method of fabrication |
US7033238B2 (en) * | 1998-02-27 | 2006-04-25 | Micron Technology, Inc. | Method for making large-area FED apparatus |
US20070024178A1 (en) * | 1999-08-26 | 2007-02-01 | Ammar Derraa | Field emission device having insulated column lines and method of manufacture |
US20070029911A1 (en) * | 2005-07-19 | 2007-02-08 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US20070085459A1 (en) * | 2005-07-19 | 2007-04-19 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US7235493B2 (en) | 2004-10-18 | 2007-06-26 | Micron Technology, Inc. | Low-k dielectric process for multilevel interconnection using mircocavity engineering during electric circuit manufacture |
US20070235772A1 (en) * | 2004-10-06 | 2007-10-11 | Sungho Jin | Field emitter array with split gates and method for operating the same |
USRE40490E1 (en) | 1999-09-02 | 2008-09-09 | Micron Technology, Inc. | Method and apparatus for programmable field emission display |
US20080290777A1 (en) * | 2007-05-25 | 2008-11-27 | Sony Corporation | Electron emitter structure and associated method of producing field emission displays |
US20140159566A1 (en) * | 2012-12-06 | 2014-06-12 | Hon Hai Precision Industry Co., Ltd. | Field emission cathode device and field emission equipment using the same |
US9190237B1 (en) | 2014-04-24 | 2015-11-17 | Nxp B.V. | Electrode coating for electron emission devices within cavities |
EP3035372A1 (de) * | 2003-03-26 | 2016-06-22 | Alcatel Lucent | Gruppe-iii-nitrid-schichten mit strukturierten oberflächen |
CN108098516A (zh) * | 2017-12-21 | 2018-06-01 | 大连理工大学 | 一种圆柱顶尖在机修研工装 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532177A (en) * | 1993-07-07 | 1996-07-02 | Micron Display Technology | Method for forming electron emitters |
JP2735009B2 (ja) * | 1994-10-27 | 1998-04-02 | 日本電気株式会社 | 電界放出型電子銃の製造方法 |
KR970023568A (ko) * | 1995-10-31 | 1997-05-30 | 윤종용 | 전계 방출 표시소자와 그 구동 방법 및 제조 방법 |
US5916004A (en) * | 1996-01-11 | 1999-06-29 | Micron Technology, Inc. | Photolithographically produced flat panel display surface plate support structure |
US5804910A (en) * | 1996-01-18 | 1998-09-08 | Micron Display Technology, Inc. | Field emission displays with low function emitters and method of making low work function emitters |
US5688438A (en) * | 1996-02-06 | 1997-11-18 | Micron Display Technology, Inc. | Preparation of high purity silicate-containing phosphors |
US6054807A (en) * | 1996-11-05 | 2000-04-25 | Micron Display Technology, Inc. | Planarized base assembly and flat panel display device using the planarized base assembly |
US5779920A (en) * | 1996-11-12 | 1998-07-14 | Micron Technology, Inc. | Luminescent screen with mask layer |
US5770919A (en) * | 1996-12-31 | 1998-06-23 | Micron Technology, Inc. | Field emission device micropoint with current-limiting resistive structure and method for making same |
US5893787A (en) * | 1997-03-03 | 1999-04-13 | Chartered Semiconductor Manufacturing, Ltd. | Application of fast etching glass for FED manufacturing |
US6171464B1 (en) | 1997-08-20 | 2001-01-09 | Micron Technology, Inc. | Suspensions and methods for deposition of luminescent materials and articles produced thereby |
US6004830A (en) * | 1998-02-09 | 1999-12-21 | Advanced Vision Technologies, Inc. | Fabrication process for confined electron field emission device |
US6004686A (en) * | 1998-03-23 | 1999-12-21 | Micron Technology, Inc. | Electroluminescent material and method of making same |
US6060219A (en) * | 1998-05-21 | 2000-05-09 | Micron Technology, Inc. | Methods of forming electron emitters, surface conduction electron emitters and field emission display assemblies |
KR20000002661A (ko) * | 1998-06-22 | 2000-01-15 | 김영남 | 전계방출표시소자의 형성방법 |
US6278229B1 (en) | 1998-07-29 | 2001-08-21 | Micron Technology, Inc. | Field emission displays having a light-blocking layer in the extraction grid |
JP2000090811A (ja) * | 1998-09-16 | 2000-03-31 | Agency Of Ind Science & Technol | 冷電子放出素子とその製造方法 |
US6095882A (en) | 1999-02-12 | 2000-08-01 | Micron Technology, Inc. | Method for forming emitters for field emission displays |
US6229325B1 (en) | 1999-02-26 | 2001-05-08 | Micron Technology, Inc. | Method and apparatus for burn-in and test of field emission displays |
US6843697B2 (en) * | 1999-06-25 | 2005-01-18 | Micron Display Technology, Inc. | Black matrix for flat panel field emission displays |
US6426233B1 (en) * | 1999-08-03 | 2002-07-30 | Micron Technology, Inc. | Uniform emitter array for display devices, etch mask for the same, and methods for making the same |
US7105997B1 (en) * | 1999-08-31 | 2006-09-12 | Micron Technology, Inc. | Field emitter devices with emitters having implanted layer |
US6742257B1 (en) * | 2001-10-02 | 2004-06-01 | Candescent Technologies Corporation | Method of forming powder metal phosphor matrix and gripper structures in wall support |
JP4763973B2 (ja) * | 2004-05-12 | 2011-08-31 | 日本放送協会 | 冷陰極素子及びその製造方法 |
GB2461243B (en) * | 2007-12-03 | 2012-05-30 | Tatung Co | Cathode planes for field emission devices |
US10943760B2 (en) * | 2018-10-12 | 2021-03-09 | Kla Corporation | Electron gun and electron microscope |
US10896874B2 (en) | 2019-03-25 | 2021-01-19 | Globalfoundries Inc. | Interconnects separated by a dielectric region formed using removable sacrificial plugs |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3665241A (en) * | 1970-07-13 | 1972-05-23 | Stanford Research Inst | Field ionizer and field emission cathode structures and methods of production |
US3755704A (en) * | 1970-02-06 | 1973-08-28 | Stanford Research Inst | Field emission cathode structures and devices utilizing such structures |
US3812559A (en) * | 1970-07-13 | 1974-05-28 | Stanford Research Inst | Methods of producing field ionizer and field emission cathode structures |
US3875442A (en) * | 1972-06-02 | 1975-04-01 | Matsushita Electric Ind Co Ltd | Display panel |
US3921022A (en) * | 1974-09-03 | 1975-11-18 | Rca Corp | Field emitting device and method of making same |
US3970887A (en) * | 1974-06-19 | 1976-07-20 | Micro-Bit Corporation | Micro-structure field emission electron source |
US3998678A (en) * | 1973-03-22 | 1976-12-21 | Hitachi, Ltd. | Method of manufacturing thin-film field-emission electron source |
JPS56160740A (en) * | 1980-05-12 | 1981-12-10 | Sony Corp | Manufacture of thin-film field type cold cathode |
US4666553A (en) * | 1985-08-28 | 1987-05-19 | Rca Corporation | Method for planarizing multilayer semiconductor devices |
US4746629A (en) * | 1986-07-11 | 1988-05-24 | Yamaha Corporation | Process of fabricating semiconductor device involving planarization of a polysilicon extrinsic base region |
US4943343A (en) * | 1989-08-14 | 1990-07-24 | Zaher Bardai | Self-aligned gate process for fabricating field emitter arrays |
US5036015A (en) * | 1990-09-24 | 1991-07-30 | Micron Technology, Inc. | Method of endpoint detection during chemical/mechanical planarization of semiconductor wafers |
US5143820A (en) * | 1989-10-31 | 1992-09-01 | International Business Machines Corporation | Method for fabricating high circuit density, self-aligned metal linens to contact windows |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5436828B2 (de) * | 1974-08-16 | 1979-11-12 | ||
JPS52119164A (en) * | 1976-03-31 | 1977-10-06 | Toshiba Corp | Manufacture of flat cathode |
US4671851A (en) * | 1985-10-28 | 1987-06-09 | International Business Machines Corporation | Method for removing protuberances at the surface of a semiconductor wafer using a chem-mech polishing technique |
US4857799A (en) * | 1986-07-30 | 1989-08-15 | Sri International | Matrix-addressed flat panel display |
GB8720792D0 (en) * | 1987-09-04 | 1987-10-14 | Gen Electric Co Plc | Vacuum devices |
US4874981A (en) * | 1988-05-10 | 1989-10-17 | Sri International | Automatically focusing field emission electrode |
FR2641412B1 (fr) * | 1988-12-30 | 1991-02-15 | Thomson Tubes Electroniques | Source d'electrons du type a emission de champ |
JPH0711937B2 (ja) * | 1989-12-22 | 1995-02-08 | 日本電気株式会社 | 微小真空三極管とその製造方法 |
US4964946A (en) * | 1990-02-02 | 1990-10-23 | The United States Of America As Represented By The Secretary Of The Navy | Process for fabricating self-aligned field emitter arrays |
US5055158A (en) * | 1990-09-25 | 1991-10-08 | International Business Machines Corporation | Planarization of Josephson integrated circuit |
US5057047A (en) * | 1990-09-27 | 1991-10-15 | The United States Of America As Represented By The Secretary Of The Navy | Low capacitance field emitter array and method of manufacture therefor |
US5266530A (en) * | 1991-11-08 | 1993-11-30 | Bell Communications Research, Inc. | Self-aligned gated electron field emitter |
US5229331A (en) * | 1992-02-14 | 1993-07-20 | Micron Technology, Inc. | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
US5259799A (en) * | 1992-03-02 | 1993-11-09 | Micron Technology, Inc. | Method to form self-aligned gate structures and focus rings |
US5186670A (en) * | 1992-03-02 | 1993-02-16 | Micron Technology, Inc. | Method to form self-aligned gate structures and focus rings |
US5232549A (en) * | 1992-04-14 | 1993-08-03 | Micron Technology, Inc. | Spacers for field emission display fabricated via self-aligned high energy ablation |
-
1992
- 1992-02-14 US US07/837,453 patent/US5229331A/en not_active Expired - Lifetime
-
1993
- 1993-02-11 DE DE4304103A patent/DE4304103C2/de not_active Expired - Fee Related
- 1993-02-15 JP JP4716293A patent/JP2836802B2/ja not_active Expired - Fee Related
- 1993-04-27 US US08/053,794 patent/US5372973A/en not_active Expired - Lifetime
-
1998
- 1998-01-22 JP JP1069298A patent/JP3098483B2/ja not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755704A (en) * | 1970-02-06 | 1973-08-28 | Stanford Research Inst | Field emission cathode structures and devices utilizing such structures |
US3665241A (en) * | 1970-07-13 | 1972-05-23 | Stanford Research Inst | Field ionizer and field emission cathode structures and methods of production |
US3812559A (en) * | 1970-07-13 | 1974-05-28 | Stanford Research Inst | Methods of producing field ionizer and field emission cathode structures |
US3875442A (en) * | 1972-06-02 | 1975-04-01 | Matsushita Electric Ind Co Ltd | Display panel |
US3998678A (en) * | 1973-03-22 | 1976-12-21 | Hitachi, Ltd. | Method of manufacturing thin-film field-emission electron source |
US3970887A (en) * | 1974-06-19 | 1976-07-20 | Micro-Bit Corporation | Micro-structure field emission electron source |
US3921022A (en) * | 1974-09-03 | 1975-11-18 | Rca Corp | Field emitting device and method of making same |
JPS56160740A (en) * | 1980-05-12 | 1981-12-10 | Sony Corp | Manufacture of thin-film field type cold cathode |
US4666553A (en) * | 1985-08-28 | 1987-05-19 | Rca Corporation | Method for planarizing multilayer semiconductor devices |
US4746629A (en) * | 1986-07-11 | 1988-05-24 | Yamaha Corporation | Process of fabricating semiconductor device involving planarization of a polysilicon extrinsic base region |
US4943343A (en) * | 1989-08-14 | 1990-07-24 | Zaher Bardai | Self-aligned gate process for fabricating field emitter arrays |
US5143820A (en) * | 1989-10-31 | 1992-09-01 | International Business Machines Corporation | Method for fabricating high circuit density, self-aligned metal linens to contact windows |
US5036015A (en) * | 1990-09-24 | 1991-07-30 | Micron Technology, Inc. | Method of endpoint detection during chemical/mechanical planarization of semiconductor wafers |
Cited By (334)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5448132A (en) * | 1989-12-18 | 1995-09-05 | Seiko Epson Corporation | Array field emission display device utilizing field emitters with downwardly descending lip projected gate electrodes |
US5814924A (en) * | 1989-12-18 | 1998-09-29 | Seiko Epson Corporation | Field emission display device having TFT switched field emission devices |
US5861707A (en) | 1991-11-07 | 1999-01-19 | Si Diamond Technology, Inc. | Field emitter with wide band gap emission areas and method of using |
US5536193A (en) | 1991-11-07 | 1996-07-16 | Microelectronics And Computer Technology Corporation | Method of making wide band gap field emitter |
US5627427A (en) * | 1991-12-09 | 1997-05-06 | Cornell Research Foundation, Inc. | Silicon tip field emission cathodes |
US5455196A (en) * | 1991-12-31 | 1995-10-03 | Texas Instruments Incorporated | Method of forming an array of electron emitters |
US5451175A (en) * | 1992-02-05 | 1995-09-19 | Motorola, Inc. | Method of fabricating electronic device employing field emission devices with dis-similar electron emission characteristics |
US5831378A (en) * | 1992-02-14 | 1998-11-03 | Micron Technology, Inc. | Insulative barrier useful in field emission displays for reducing surface leakage |
US5372973A (en) * | 1992-02-14 | 1994-12-13 | Micron Technology, Inc. | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology |
US5696028A (en) * | 1992-02-14 | 1997-12-09 | Micron Technology, Inc. | Method to form an insulative barrier useful in field emission displays for reducing surface leakage |
US6066507A (en) * | 1992-02-14 | 2000-05-23 | Micron Technology, Inc. | Method to form an insulative barrier useful in field emission displays for reducing surface leakage |
US5653619A (en) * | 1992-03-02 | 1997-08-05 | Micron Technology, Inc. | Method to form self-aligned gate structures and focus rings |
US5763997A (en) | 1992-03-16 | 1998-06-09 | Si Diamond Technology, Inc. | Field emission display device |
US5551903A (en) | 1992-03-16 | 1996-09-03 | Microelectronics And Computer Technology | Flat panel display based on diamond thin films |
US5600200A (en) | 1992-03-16 | 1997-02-04 | Microelectronics And Computer Technology Corporation | Wire-mesh cathode |
US5679043A (en) | 1992-03-16 | 1997-10-21 | Microelectronics And Computer Technology Corporation | Method of making a field emitter |
US5675216A (en) | 1992-03-16 | 1997-10-07 | Microelectronics And Computer Technololgy Corp. | Amorphic diamond film flat field emission cathode |
US6127773A (en) | 1992-03-16 | 2000-10-03 | Si Diamond Technology, Inc. | Amorphic diamond film flat field emission cathode |
US5703435A (en) | 1992-03-16 | 1997-12-30 | Microelectronics & Computer Technology Corp. | Diamond film flat field emission cathode |
US5686791A (en) | 1992-03-16 | 1997-11-11 | Microelectronics And Computer Technology Corp. | Amorphic diamond film flat field emission cathode |
US6629869B1 (en) | 1992-03-16 | 2003-10-07 | Si Diamond Technology, Inc. | Method of making flat panel displays having diamond thin film cathode |
US5612712A (en) | 1992-03-16 | 1997-03-18 | Microelectronics And Computer Technology Corporation | Diode structure flat panel display |
US5612587A (en) * | 1992-03-27 | 1997-03-18 | Futaba Denshi Kogyo K.K. | Field emission cathode |
DE4315731B4 (de) * | 1992-05-13 | 2006-04-27 | Micron Technology, Inc. (N.D.Ges.D. Staates Delaware) | Halbleiteranordnung mit Makrokorn-Substrat und Verfahren zu dessen Herstellung |
US5438240A (en) * | 1992-05-13 | 1995-08-01 | Micron Technology, Inc. | Field emission structures produced on macro-grain polysilicon substrates |
US5329207A (en) * | 1992-05-13 | 1994-07-12 | Micron Technology, Inc. | Field emission structures produced on macro-grain polysilicon substrates |
US5391259A (en) * | 1992-05-15 | 1995-02-21 | Micron Technology, Inc. | Method for forming a substantially uniform array of sharp tips |
US5753130A (en) * | 1992-05-15 | 1998-05-19 | Micron Technology, Inc. | Method for forming a substantially uniform array of sharp tips |
US6423239B1 (en) | 1992-05-15 | 2002-07-23 | Micron Technology, Inc. | Methods of making an etch mask and etching a substrate using said etch mask |
US6165374A (en) * | 1992-05-15 | 2000-12-26 | Micron Technology, Inc. | Method of forming an array of emitter tips |
US6080325A (en) * | 1992-05-15 | 2000-06-27 | Micron Technology, Inc. | Method of etching a substrate and method of forming a plurality of emitter tips |
US6126845A (en) * | 1992-05-15 | 2000-10-03 | Micron Technology, Inc. | Method of forming an array of emmitter tips |
US5401676A (en) * | 1993-01-06 | 1995-03-28 | Samsung Display Devices Co., Ltd. | Method for making a silicon field emission device |
US5587623A (en) * | 1993-03-11 | 1996-12-24 | Fed Corporation | Field emitter structure and method of making the same |
US5663608A (en) * | 1993-03-11 | 1997-09-02 | Fed Corporation | Field emission display devices, and field emisssion electron beam source and isolation structure components therefor |
US5534743A (en) * | 1993-03-11 | 1996-07-09 | Fed Corporation | Field emission display devices, and field emission electron beam source and isolation structure components therefor |
US6140760A (en) * | 1993-06-14 | 2000-10-31 | Fujitsu Limited | Cathode device having smaller opening |
US5576594A (en) * | 1993-06-14 | 1996-11-19 | Fujitsu Limited | Cathode device having smaller opening |
US5396150A (en) * | 1993-07-01 | 1995-03-07 | Industrial Technology Research Institute | Single tip redundancy method and resulting flat panel display |
US5652083A (en) | 1993-11-04 | 1997-07-29 | Microelectronics And Computer Technology Corporation | Methods for fabricating flat panel display systems and components |
US5601966A (en) | 1993-11-04 | 1997-02-11 | Microelectronics And Computer Technology Corporation | Methods for fabricating flat panel display systems and components |
US5614353A (en) | 1993-11-04 | 1997-03-25 | Si Diamond Technology, Inc. | Methods for fabricating flat panel display systems and components |
US5461009A (en) * | 1993-12-08 | 1995-10-24 | Industrial Technology Research Institute | Method of fabricating high uniformity field emission display |
US5394006A (en) * | 1994-01-04 | 1995-02-28 | Industrial Technology Research Institute | Narrow gate opening manufacturing of gated fluid emitters |
US5844251A (en) * | 1994-01-05 | 1998-12-01 | Cornell Research Foundation, Inc. | High aspect ratio probes with self-aligned control electrodes |
US5731228A (en) * | 1994-03-11 | 1998-03-24 | Fujitsu Limited | Method for making micro electron beam source |
US6188167B1 (en) | 1994-03-11 | 2001-02-13 | Fujitsu Limited | Micro electron beam source and a fabrication process thereof |
US5733175A (en) | 1994-04-25 | 1998-03-31 | Leach; Michael A. | Polishing a workpiece using equal velocity at all points overlapping a polisher |
US5552659A (en) * | 1994-06-29 | 1996-09-03 | Silicon Video Corporation | Structure and fabrication of gated electron-emitting device having electron optics to reduce electron-beam divergence |
US5509839A (en) * | 1994-07-13 | 1996-04-23 | Industrial Technology Research Institute | Soft luminescence of field emission display |
US5723052A (en) * | 1994-07-13 | 1998-03-03 | Industrial Technology Research Institute | Soft luminescence of field emission display |
US5836807A (en) | 1994-08-08 | 1998-11-17 | Leach; Michael A. | Method and structure for polishing a wafer during manufacture of integrated circuits |
US5702290A (en) | 1994-08-08 | 1997-12-30 | Leach; Michael A. | Block for polishing a wafer during manufacture of integrated circuits |
US5607341A (en) | 1994-08-08 | 1997-03-04 | Leach; Michael A. | Method and structure for polishing a wafer during manufacture of integrated circuits |
US6204834B1 (en) | 1994-08-17 | 2001-03-20 | Si Diamond Technology, Inc. | System and method for achieving uniform screen brightness within a matrix display |
WO1996008028A1 (en) * | 1994-09-07 | 1996-03-14 | Fed Corporation | Field emission display device |
US5531880A (en) * | 1994-09-13 | 1996-07-02 | Microelectronics And Computer Technology Corporation | Method for producing thin, uniform powder phosphor for display screens |
US5866979A (en) * | 1994-09-16 | 1999-02-02 | Micron Technology, Inc. | Method for preventing junction leakage in field emission displays |
US7629736B2 (en) | 1994-09-16 | 2009-12-08 | Micron Technology, Inc. | Method and device for preventing junction leakage in field emission devices |
US6987352B2 (en) | 1994-09-16 | 2006-01-17 | Micron Technology, Inc. | Method of preventing junction leakage in field emission devices |
US20060186790A1 (en) * | 1994-09-16 | 2006-08-24 | Hofmann James J | Method of preventing junction leakage in field emission devices |
DE19526042C2 (de) * | 1994-09-16 | 2003-07-24 | Micron Technology Inc N D Ges | Anordnung zum Verhindern eines Grenzübergang-Reststroms in Feldemission-Anzeigevorrichtungen |
US7098587B2 (en) | 1994-09-16 | 2006-08-29 | Micron Technology, Inc. | Preventing junction leakage in field emission devices |
US5975975A (en) * | 1994-09-16 | 1999-11-02 | Micron Technology, Inc. | Apparatus and method for stabilization of threshold voltage in field emission displays |
US20060226761A1 (en) * | 1994-09-16 | 2006-10-12 | Hofmann James J | Method of preventing junction leakage in field emission devices |
US20030184213A1 (en) * | 1994-09-16 | 2003-10-02 | Hofmann James J. | Method of preventing junction leakage in field emission devices |
US6417605B1 (en) | 1994-09-16 | 2002-07-09 | Micron Technology, Inc. | Method of preventing junction leakage in field emission devices |
US7268482B2 (en) | 1994-09-16 | 2007-09-11 | Micron Technology, Inc. | Preventing junction leakage in field emission devices |
US6676471B2 (en) | 1994-09-16 | 2004-01-13 | Micron Technology, Inc. | Method of preventing junction leakage in field emission displays |
US6712664B2 (en) | 1994-09-16 | 2004-03-30 | Micron Technology, Inc. | Process of preventing junction leakage in field emission devices |
US6398608B1 (en) | 1994-09-16 | 2002-06-04 | Micron Technology, Inc. | Method of preventing junction leakage in field emission displays |
US6186850B1 (en) | 1994-09-16 | 2001-02-13 | Micron Technology, Inc. | Method of preventing junction leakage in field emission displays |
US6020683A (en) * | 1994-09-16 | 2000-02-01 | Micron Technology, Inc. | Method of preventing junction leakage in field emission displays |
US5527423A (en) * | 1994-10-06 | 1996-06-18 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers |
WO1996014650A1 (en) * | 1994-11-04 | 1996-05-17 | Micron Display Technology, Inc. | Method for sharpening emitter sites using low temperature oxidation processes |
KR100287271B1 (ko) * | 1994-11-04 | 2001-04-16 | 마이크론 테크놀로지 인코포레이티드 | 저온 산화공정을 사용하여 이미터 사이트를 예리하게 하는 방법 |
US6312965B1 (en) | 1994-11-04 | 2001-11-06 | Micron Technology, Inc. | Method for sharpening emitter sites using low temperature oxidation process |
US5923948A (en) * | 1994-11-04 | 1999-07-13 | Micron Technology, Inc. | Method for sharpening emitter sites using low temperature oxidation processes |
US5503582A (en) * | 1994-11-18 | 1996-04-02 | Micron Display Technology, Inc. | Method for forming spacers for display devices employing reduced pressures |
US5656525A (en) * | 1994-12-12 | 1997-08-12 | Industrial Technology Research Institute | Method of manufacturing high aspect-ratio field emitters for flat panel displays |
US5663107A (en) * | 1994-12-22 | 1997-09-02 | Siemens Aktiengesellschaft | Global planarization using self aligned polishing or spacer technique and isotropic etch process |
US5665654A (en) * | 1995-02-10 | 1997-09-09 | Micron Display Technology, Inc. | Method for forming an electrical connection to a semiconductor die using loose lead wire bonding |
US5633560A (en) * | 1995-04-10 | 1997-05-27 | Industrial Technology Research Institute | Cold cathode field emission display with each microtip having its own ballast resistor |
US5628659A (en) * | 1995-04-24 | 1997-05-13 | Microelectronics And Computer Corporation | Method of making a field emission electron source with random micro-tip structures |
US6296740B1 (en) | 1995-04-24 | 2001-10-02 | Si Diamond Technology, Inc. | Pretreatment process for a surface texturing process |
US5591352A (en) * | 1995-04-27 | 1997-01-07 | Industrial Technology Research Institute | High resolution cold cathode field emission display method |
FR2734946A1 (fr) * | 1995-05-31 | 1996-12-06 | Nec Corp | Dispositif a cathode froide du type a emission de champ, a electrode emettrice conique, et procede de fabrication de ce dispositif |
US5601751A (en) * | 1995-06-08 | 1997-02-11 | Micron Display Technology, Inc. | Manufacturing process for high-purity phosphors having utility in field emission displays |
US5906771A (en) * | 1995-06-08 | 1999-05-25 | Micron Technology, Inc. | Manufacturing process for high-purity phosphors having utility in field emission displays |
US5997378A (en) * | 1995-09-29 | 1999-12-07 | Micron Technology, Inc. | Method for evacuating and sealing field emission displays |
US5788551A (en) * | 1995-09-29 | 1998-08-04 | Micron Technology, Inc. | Field emission display package and method of fabrication |
US5697825A (en) * | 1995-09-29 | 1997-12-16 | Micron Display Technology, Inc. | Method for evacuating and sealing field emission displays |
US7492086B1 (en) | 1995-10-16 | 2009-02-17 | Micron Technology, Inc. | Low work function emitters and method for production of FED's |
US5772488A (en) * | 1995-10-16 | 1998-06-30 | Micron Display Technology, Inc. | Method of forming a doped field emitter array |
US6057638A (en) * | 1995-10-16 | 2000-05-02 | Micron Technology, Inc. | Low work function emitters and method for production of FED's |
US6515414B1 (en) | 1995-10-16 | 2003-02-04 | Micron Technology, Inc. | Low work function emitters and method for production of fed's |
US5634585A (en) * | 1995-10-23 | 1997-06-03 | Micron Display Technology, Inc. | Method for aligning and assembling spaced components |
US5788881A (en) * | 1995-10-25 | 1998-08-04 | Micron Technology, Inc. | Visible light-emitting phosphor composition having an enhanced luminescent efficiency over a broad range of voltages |
US6090309A (en) * | 1995-10-25 | 2000-07-18 | Micron Technology, Inc. | Visible light-emitting phosphor composition having an enhanced luminescent efficiency over a broad range of voltages |
US6051477A (en) * | 1995-11-01 | 2000-04-18 | Hyundai Electronics Industries Co., Ltd. | Method of fabricating semiconductor device |
US6372530B1 (en) | 1995-11-06 | 2002-04-16 | Micron Technology, Inc. | Method of manufacturing a cold-cathode emitter transistor device |
US5977698A (en) * | 1995-11-06 | 1999-11-02 | Micron Technology, Inc. | Cold-cathode emitter and method for forming the same |
US5693235A (en) * | 1995-12-04 | 1997-12-02 | Industrial Technology Research Institute | Methods for manufacturing cold cathode arrays |
US5791962A (en) * | 1995-12-04 | 1998-08-11 | Industrial Technology Research Institute | Methods for manufacturing flat cold cathode arrays |
US5820433A (en) * | 1995-12-04 | 1998-10-13 | Industrial Technology Research Institute | Methods for manufacturing flat cold cathode arrays |
US5683282A (en) * | 1995-12-04 | 1997-11-04 | Industrial Technology Research Institute | Method for manufacturing flat cold cathode arrays |
US5807154A (en) * | 1995-12-21 | 1998-09-15 | Micron Display Technology, Inc. | Process for aligning and sealing field emission displays |
US6036567A (en) * | 1995-12-21 | 2000-03-14 | Micron Technology, Inc. | Process for aligning and sealing components in a display device |
US5641706A (en) * | 1996-01-18 | 1997-06-24 | Micron Display Technology, Inc. | Method for formation of a self-aligned N-well for isolated field emission devices |
US5911615A (en) * | 1996-01-18 | 1999-06-15 | Micron Technology, Inc. | Method for formation of a self-aligned N-well for isolated field emission devices |
US6296750B1 (en) | 1996-01-19 | 2001-10-02 | Micron Technology, Inc. | Composition including black matrix material |
US6596141B2 (en) | 1996-01-19 | 2003-07-22 | Micron Technology, Inc. | Field emission display having matrix material |
US6068750A (en) * | 1996-01-19 | 2000-05-30 | Micron Technology, Inc. | Faceplates having black matrix material |
US20010045794A1 (en) * | 1996-01-19 | 2001-11-29 | Alwan James J. | Cap layer on glass panels for improving tip uniformity in cold cathode field emission technology |
US6117294A (en) * | 1996-01-19 | 2000-09-12 | Micron Technology, Inc. | Black matrix material and methods related thereto |
US6224730B1 (en) | 1996-01-19 | 2001-05-01 | Micron Technology, Inc. | Field emission display having black matrix material |
US5923956A (en) * | 1996-01-30 | 1999-07-13 | Nec Corporation | Method of securing a semiconductor chip on a base plate and structure thereof |
US5857884A (en) * | 1996-02-07 | 1999-01-12 | Micron Display Technology, Inc. | Photolithographic technique of emitter tip exposure in FEDS |
US5756390A (en) * | 1996-02-27 | 1998-05-26 | Micron Technology, Inc. | Modified LOCOS process for sub-half-micron technology |
US5695658A (en) * | 1996-03-07 | 1997-12-09 | Micron Display Technology, Inc. | Non-photolithographic etch mask for submicron features |
US5811020A (en) * | 1996-03-07 | 1998-09-22 | Micron Technology, Inc. | Non-photolithographic etch mask for submicron features |
US5785569A (en) * | 1996-03-25 | 1998-07-28 | Micron Technology, Inc. | Method for manufacturing hollow spacers |
US5624872A (en) * | 1996-04-08 | 1997-04-29 | Industrial Technology Research Institute | Method of making low capacitance field emission device |
US5827102A (en) * | 1996-05-13 | 1998-10-27 | Micron Technology, Inc. | Low temperature method for evacuating and sealing field emission displays |
US5949182A (en) * | 1996-06-03 | 1999-09-07 | Cornell Research Foundation, Inc. | Light-emitting, nanometer scale, micromachined silicon tips |
US5929887A (en) * | 1996-06-24 | 1999-07-27 | Industrial Technology Research Institute | Low cost field emission based print head |
US5785873A (en) * | 1996-06-24 | 1998-07-28 | Industrial Technology Research Institute | Low cost field emission based print head and method of making |
US5882533A (en) * | 1996-07-15 | 1999-03-16 | Industrial Technology Research Institute | Field emission based print head |
US5902491A (en) * | 1996-10-07 | 1999-05-11 | Micron Technology, Inc. | Method of removing surface protrusions from thin films |
US6407499B1 (en) | 1996-10-07 | 2002-06-18 | Micron Technology, Inc. | Method of removing surface protrusions from thin films |
US6620496B2 (en) | 1996-10-07 | 2003-09-16 | Micron Technology, Inc. | Method of removing surface protrusions from thin films |
US6010917A (en) * | 1996-10-15 | 2000-01-04 | Micron Technology, Inc. | Electrically isolated interconnects and conductive layers in semiconductor device manufacturing |
US6022256A (en) * | 1996-11-06 | 2000-02-08 | Micron Display Technology, Inc. | Field emission display and method of making same |
US6181060B1 (en) | 1996-11-06 | 2001-01-30 | Micron Technology, Inc. | Field emission display with plural dielectric layers |
US6509578B1 (en) | 1996-11-14 | 2003-01-21 | Micron Technology, Inc. | Method and structure for limiting emission current in field emission devices |
US6130106A (en) * | 1996-11-14 | 2000-10-10 | Micron Technology, Inc. | Method for limiting emission current in field emission devices |
US6432732B1 (en) | 1996-11-14 | 2002-08-13 | Micron Technology, Inc. | Method and structure for limiting emission current in field emission devices |
US6018215A (en) * | 1996-11-22 | 2000-01-25 | Nec Corporation | Field emission cold cathode having a cone-shaped emitter |
US5874808A (en) * | 1996-12-15 | 1999-02-23 | Busta; Heinz H. | Low turn-on voltage volcano-shaped field emitter and integration into an addressable array |
US6162585A (en) * | 1996-12-23 | 2000-12-19 | Micron Technology, Inc. | Polyimide as a mask in vapor hydrogen fluoride etching |
US7128842B1 (en) | 1996-12-23 | 2006-10-31 | Micron Technology, Inc. | Polyimide as a mask in vapor hydrogen fluoride etching |
US6153358A (en) * | 1996-12-23 | 2000-11-28 | Micorn Technology, Inc. | Polyimide as a mask in vapor hydrogen fluoride etching and method of producing a micropoint |
US6015323A (en) * | 1997-01-03 | 2000-01-18 | Micron Technology, Inc. | Field emission display cathode assembly government rights |
US6831403B2 (en) | 1997-01-03 | 2004-12-14 | Micron Technology, Inc. | Field emission display cathode assembly |
US6509686B1 (en) | 1997-01-03 | 2003-01-21 | Micron Technology, Inc. | Field emission display cathode assembly with gate buffer layer |
US5952771A (en) * | 1997-01-07 | 1999-09-14 | Micron Technology, Inc. | Micropoint switch for use with field emission display and method for making same |
US6042746A (en) * | 1997-01-17 | 2000-03-28 | Micron Technology, Inc. | Specialized phosphors prepared by a multi-stage grinding and firing sequence |
US6813904B2 (en) | 1997-02-06 | 2004-11-09 | Micron Technology, Inc. | Differential pressure process for fabricating a flat-panel display faceplate with integral spacer support structures |
US20030205061A1 (en) * | 1997-02-06 | 2003-11-06 | Elledge Jason B. | Differential pressure process for fabricating a flat-panel display face plate with integral spacer support structures |
US5931713A (en) * | 1997-03-19 | 1999-08-03 | Micron Technology, Inc. | Display device with grille having getter material |
US6429582B1 (en) | 1997-03-19 | 2002-08-06 | Micron Technology, Inc. | Display device with grille having getter material |
US6054808A (en) * | 1997-03-19 | 2000-04-25 | Micron Technology, Inc. | Display device with grille having getter material |
US6323594B1 (en) | 1997-05-06 | 2001-11-27 | St. Clair Intellectual Property Consultants, Inc. | Electron amplification channel structure for use in field emission display devices |
US6215243B1 (en) | 1997-05-06 | 2001-04-10 | St. Clair Intellectual Property Consultants, Inc. | Radioactive cathode emitter for use in field emission display devices |
US6127774A (en) * | 1997-05-06 | 2000-10-03 | St. Clair Intellectual Property Consultants, Inc. | Field emission display devices |
US6111353A (en) * | 1997-05-06 | 2000-08-29 | St. Clair Intellectual Property Consultants, Inc. | Luminescent display device with protective barrier layer |
US6087766A (en) * | 1997-05-06 | 2000-07-11 | St. Clair Intellectual Property Consultants, Inc. | Field emission display devices |
US6147456A (en) * | 1997-05-06 | 2000-11-14 | St. Clair Intellectual Property Consultants, Inc. | Field emission display with amplification layer |
US6084345A (en) * | 1997-05-06 | 2000-07-04 | St. Clair Intellectual Property Consultants, Inc. | Field emission display devices |
US6271139B1 (en) * | 1997-07-02 | 2001-08-07 | Micron Technology, Inc. | Polishing slurry and method for chemical-mechanical polishing |
US5930590A (en) * | 1997-08-06 | 1999-07-27 | American Energy Services | Fabrication of volcano-shaped field emitters by chemical-mechanical polishing (CMP) |
US6057581A (en) * | 1997-08-21 | 2000-05-02 | Micron Technology, Inc. | Self-aligned contacts |
US6048763A (en) * | 1997-08-21 | 2000-04-11 | Micron Technology, Inc. | Integrated capacitor bottom electrode with etch stop layer |
US6010935A (en) * | 1997-08-21 | 2000-01-04 | Micron Technology, Inc. | Self aligned contacts |
US6303953B1 (en) | 1997-08-21 | 2001-10-16 | Micron Technology, Inc. | Integrated capacitor bottom electrode with etch stop layer |
US5994834A (en) * | 1997-08-22 | 1999-11-30 | Micron Technology, Inc. | Conductive address structure for field emission displays |
US5956611A (en) * | 1997-09-03 | 1999-09-21 | Micron Technologies, Inc. | Field emission displays with reduced light leakage |
US6136621A (en) * | 1997-09-25 | 2000-10-24 | Emagin Corporation | High aspect ratio gated emitter structure, and method of making |
US5965898A (en) * | 1997-09-25 | 1999-10-12 | Fed Corporation | High aspect ratio gated emitter structure, and method of making |
WO1999016134A1 (en) * | 1997-09-25 | 1999-04-01 | Fed Corporation | High aspect ratio gated emitter structure, and method of making |
US5949185A (en) * | 1997-10-22 | 1999-09-07 | St. Clair Intellectual Property Consultants, Inc. | Field emission display devices |
US6255769B1 (en) | 1997-12-29 | 2001-07-03 | Micron Technology, Inc. | Field emission displays with raised conductive features at bonding locations and methods of forming the raised conductive features |
US6190930B1 (en) * | 1998-02-12 | 2001-02-20 | Micron Technology, Inc. | Buffered resist profile etch of a field emission device structure |
US6175184B1 (en) * | 1998-02-12 | 2001-01-16 | Micron Technology, Inc. | Buffered resist profile etch of a field emission device structure |
US6727637B2 (en) | 1998-02-12 | 2004-04-27 | Micron Technology, Inc. | Buffered resist profile etch of a field emission device structure |
US6139385A (en) * | 1998-02-23 | 2000-10-31 | Micron Technology Inc. | Method of making a field emission device with silicon-containing adhesion layer |
US6545407B1 (en) | 1998-02-23 | 2003-04-08 | Micron Technology, Inc. | Electron emission apparatus |
US6137214A (en) * | 1998-02-23 | 2000-10-24 | Micron Technology, Inc. | Display device with silicon-containing adhesion layer |
US6064149A (en) * | 1998-02-23 | 2000-05-16 | Micron Technology Inc. | Field emission device with silicon-containing adhesion layer |
US20060189244A1 (en) * | 1998-02-27 | 2006-08-24 | Cathey David A | Method for making large-area FED apparatus |
US7462088B2 (en) | 1998-02-27 | 2008-12-09 | Micron Technology, Inc. | Method for making large-area FED apparatus |
US7033238B2 (en) * | 1998-02-27 | 2006-04-25 | Micron Technology, Inc. | Method for making large-area FED apparatus |
US6174449B1 (en) | 1998-05-14 | 2001-01-16 | Micron Technology, Inc. | Magnetically patterned etch mask |
US6124670A (en) * | 1998-05-29 | 2000-09-26 | The Regents Of The University Of California | Gate-and emitter array on fiber electron field emission structure |
WO1999063568A1 (en) * | 1998-05-29 | 1999-12-09 | The Regents Of The University Of California | Gate-and emitter array on fiber electron field emission structure |
US6422907B2 (en) | 1998-06-22 | 2002-07-23 | Micron Technology, Inc. | Electrode structures, display devices containing the same, and methods for making the same |
US6630781B2 (en) | 1998-06-22 | 2003-10-07 | Micron Technology, Inc. | Insulated electrode structures for a display device |
US6900586B2 (en) | 1998-06-22 | 2005-05-31 | Micron Technology, Inc. | Electrode structures, display devices containing the same |
US20040027051A1 (en) * | 1998-06-22 | 2004-02-12 | Benham Moradi | Electrode structures, display devices containing the same |
US6224447B1 (en) | 1998-06-22 | 2001-05-01 | Micron Technology, Inc. | Electrode structures, display devices containing the same, and methods for making the same |
US20050168130A1 (en) * | 1998-06-22 | 2005-08-04 | Benham Moradi | Electrode structures, display devices containing the same |
US6726518B2 (en) | 1998-06-22 | 2004-04-27 | Micron Technology, Inc. | Electrode structures, display devices containing the same, and methods for making the same |
US7504767B2 (en) | 1998-06-22 | 2009-03-17 | Micron Technology, Inc. | Electrode structures, display devices containing the same |
US6259199B1 (en) | 1998-06-22 | 2001-07-10 | Micron Technology, Inc. | Electrode structures, display devices containing the same, and methods of making the same |
US6558570B2 (en) | 1998-07-01 | 2003-05-06 | Micron Technology, Inc. | Polishing slurry and method for chemical-mechanical polishing |
US6428378B2 (en) | 1998-07-02 | 2002-08-06 | Micron Technology, Inc. | Composite self-aligned extraction grid and in-plane focusing ring, and method of manufacture |
US6445123B1 (en) | 1998-07-02 | 2002-09-03 | Micron Technology, Inc. | Composite self-aligned extraction grid and in-plane focusing ring, and method of manufacture |
US6190223B1 (en) | 1998-07-02 | 2001-02-20 | Micron Technology, Inc. | Method of manufacture of composite self-aligned extraction grid and in-plane focusing ring |
US20040189175A1 (en) * | 1998-08-26 | 2004-09-30 | Ahn Kie Y. | Field emission display having reduced power requirements and method |
US6953375B2 (en) | 1998-08-26 | 2005-10-11 | Micron Technology, Inc. | Manufacturing method of a field emission display having porous silicon dioxide insulating layer |
US20060152134A1 (en) * | 1998-08-26 | 2006-07-13 | Micron Technology, Inc. | Field emission display having reduced power requirements and method |
US20040169453A1 (en) * | 1998-08-26 | 2004-09-02 | Ahn Kie Y. | Field emission display having reduced power requirements and method |
US7042148B2 (en) | 1998-08-26 | 2006-05-09 | Micron Technology, Inc. | Field emission display having reduced power requirements and method |
US6835111B2 (en) | 1998-08-26 | 2004-12-28 | Micron Technology, Inc. | Field emission display having porous silicon dioxide layer |
US6710538B1 (en) | 1998-08-26 | 2004-03-23 | Micron Technology, Inc. | Field emission display having reduced power requirements and method |
US6458515B2 (en) | 1998-08-28 | 2002-10-01 | Micron Technology, Inc. | Structures, lithographic mask forming solutions, mask forming methods, field emission display emitter mask forming methods, and methods of forming plural field emission display emitters |
US6537728B2 (en) | 1998-08-28 | 2003-03-25 | Micron Technology, Inc. | Structures, lithographic mask forming solutions, mask forming methods, field emission display emitter mask forming methods, and methods of forming plural field emission display emitters |
US6228538B1 (en) | 1998-08-28 | 2001-05-08 | Micron Technology, Inc. | Mask forming methods and field emission display emitter mask forming methods |
US6682873B2 (en) | 1998-08-28 | 2004-01-27 | Micron Technology, Inc. | Semiconductive substrate processing methods and methods of processing a semiconductive substrate |
US6573023B2 (en) | 1998-08-28 | 2003-06-03 | Micron Technology, Inc. | Structures and structure forming methods |
US6586144B2 (en) | 1998-08-28 | 2003-07-01 | Micron Technology, Inc. | Mask forming methods and a field emission display emitter mask forming method |
US6232705B1 (en) | 1998-09-01 | 2001-05-15 | Micron Technology, Inc. | Field emitter arrays with gate insulator and cathode formed from single layer of polysilicon |
US6495955B1 (en) | 1998-09-01 | 2002-12-17 | Micron Technology, Inc. | Structure and method for improved field emitter arrays |
US6729928B2 (en) | 1998-09-01 | 2004-05-04 | Micron Technology, Inc. | Structure and method for improved field emitter arrays |
US6710539B2 (en) | 1998-09-02 | 2004-03-23 | Micron Technology, Inc. | Field emission devices having structure for reduced emitter tip to gate spacing |
US6394871B2 (en) * | 1998-09-02 | 2002-05-28 | Micron Technology, Inc. | Method for reducing emitter tip to gate spacing in field emission devices |
US6369505B2 (en) | 1998-09-10 | 2002-04-09 | Micron Technology, Inc. | Baseplate and a method for manufacturing a baseplate for a field emission display |
US6176752B1 (en) | 1998-09-10 | 2001-01-23 | Micron Technology, Inc. | Baseplate and a method for manufacturing a baseplate for a field emission display |
US6392334B1 (en) | 1998-10-13 | 2002-05-21 | Micron Technology, Inc. | Flat panel display including capacitor for alignment of baseplate and faceplate |
US6592419B2 (en) | 1998-10-13 | 2003-07-15 | Micron Technology, Inc. | Flat panel display including capacitor for alignment of baseplate and faceplate |
US6686690B1 (en) | 1998-10-13 | 2004-02-03 | Micron Technology, Inc | Temporary attachment process and system for the manufacture of flat panel displays |
US6509265B1 (en) | 1999-01-06 | 2003-01-21 | International Business Machines Corporation | Process for manufacturing a contact barrier |
US6180521B1 (en) * | 1999-01-06 | 2001-01-30 | International Business Machines Corporation | Process for manufacturing a contact barrier |
US6552477B2 (en) | 1999-02-03 | 2003-04-22 | Micron Technology, Inc. | Field emission display backplates |
US6464550B2 (en) | 1999-02-03 | 2002-10-15 | Micron Technology, Inc. | Methods of forming field emission display backplates |
US7268481B2 (en) | 1999-02-04 | 2007-09-11 | Micron Technology, Inc. | Field emission display with smooth aluminum film |
US6638399B2 (en) | 1999-02-04 | 2003-10-28 | Micron Technology, Inc. | Deposition of smooth aluminum films |
US20050029925A1 (en) * | 1999-02-04 | 2005-02-10 | Raina Kanwal K. | Field emission display with smooth aluminum film |
US20050164417A1 (en) * | 1999-02-04 | 2005-07-28 | Raina Kanwal K. | Field emission display with smooth aluminum film |
US6838815B2 (en) | 1999-02-04 | 2005-01-04 | Micron Technology, Inc. | Field emission display with smooth aluminum film |
US6537427B1 (en) | 1999-02-04 | 2003-03-25 | Micron Technology, Inc. | Deposition of smooth aluminum films |
US7052923B2 (en) | 1999-02-04 | 2006-05-30 | Micron Technology, Inc. | Field emission display with smooth aluminum film |
US6633113B2 (en) * | 1999-02-23 | 2003-10-14 | Micron Technology, Inc. | Focusing electrode and method for field emission displays |
US6504291B1 (en) * | 1999-02-23 | 2003-01-07 | Micron Technology, Inc. | Focusing electrode and method for field emission displays |
US6524154B2 (en) | 1999-02-23 | 2003-02-25 | Micron Technology, Inc. | Focusing electrode and method for field emission displays |
US6509677B2 (en) | 1999-02-23 | 2003-01-21 | Micron Technology, Inc. | Focusing electrode and method for field emission displays |
US6933665B2 (en) | 1999-02-26 | 2005-08-23 | Micron Technology, Inc. | Structure and method for field emitter tips |
US6417016B1 (en) | 1999-02-26 | 2002-07-09 | Micron Technology, Inc. | Structure and method for field emitter tips |
US20050282301A1 (en) * | 1999-02-26 | 2005-12-22 | Micron Technology, Inc. | Structure and method for field emitter tips |
US20020175608A1 (en) * | 1999-02-26 | 2002-11-28 | Micron Technology, Inc. | Structure and method for field emitter tips |
US6017772A (en) * | 1999-03-01 | 2000-01-25 | Micron Technology, Inc. | Field emission arrays and method of fabricating emitter tips and corresponding resistors thereof with a single mask |
US6344378B1 (en) | 1999-03-01 | 2002-02-05 | Micron Technology, Inc. | Field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors |
US20030205964A1 (en) * | 1999-03-01 | 2003-11-06 | Ammar Derraa | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US20020098630A1 (en) * | 1999-03-01 | 2002-07-25 | Lee Ji Ung | Field effect transistor fabrication methods, field emission device fabrication methods, and field emission device operational methods |
US20030211803A1 (en) * | 1999-03-01 | 2003-11-13 | Ammar Derraa | Method of fabricating row lines of a field emission array and forming pixel openings therethrough by employing two masks |
US6059625A (en) * | 1999-03-01 | 2000-05-09 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines |
US20020113536A1 (en) * | 1999-03-01 | 2002-08-22 | Ammar Derraa | Field emitter display (FED) assemblies and methods of forming field emitter display (FED) assemblies |
US6443788B2 (en) | 1999-03-01 | 2002-09-03 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough by employing two masks |
US20040023592A1 (en) * | 1999-03-01 | 2004-02-05 | Ammar Derraa | Field emission arrays and method of fabricating same to optimize the size of grid openings and to minimize the occurrence of electrical shorts |
US20020142499A1 (en) * | 1999-03-01 | 2002-10-03 | Ammar Derraa | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6210985B1 (en) | 1999-03-01 | 2001-04-03 | Micron Technology, Inc. | Field emission arrays and method of fabricating emitter tips and corresponding resistors thereof with a single mask |
US7518302B2 (en) | 1999-03-01 | 2009-04-14 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US20040048544A1 (en) * | 1999-03-01 | 2004-03-11 | Ammar Derraa | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US6406927B2 (en) | 1999-03-01 | 2002-06-18 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6600264B2 (en) | 1999-03-01 | 2003-07-29 | Micron Technology, Inc. | Field emission arrays for fabricating emitter tips and corresponding resistors thereof with a single mask |
US6713313B2 (en) | 1999-03-01 | 2004-03-30 | Micron Technology, Inc. | Field emission arrays and method of fabricating emitter tips and corresponding resistors thereof with a single mask |
US6403390B2 (en) | 1999-03-01 | 2002-06-11 | Micron Technology, Inc. | Method of fabricating field emission arrays to optimize the size of grid openings and to minimize the occurrence of electrical shorts |
US6504170B1 (en) | 1999-03-01 | 2003-01-07 | Micron Technology, Inc. | Field effect transistors, field emission apparatuses, and a thin film transistor |
US6398609B2 (en) | 1999-03-01 | 2002-06-04 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US6271623B1 (en) | 1999-03-01 | 2001-08-07 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6731063B2 (en) | 1999-03-01 | 2004-05-04 | Micron Technology, Inc. | Field emission arrays to optimize the size of grid openings and to minimize the occurrence of electrical shorts |
US6121722A (en) * | 1999-03-01 | 2000-09-19 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US7329552B2 (en) | 1999-03-01 | 2008-02-12 | Micron Technology, Inc. | Field effect transistor fabrication methods, field emission device fabrication methods, and field emission device operational methods |
US20040108805A1 (en) * | 1999-03-01 | 2004-06-10 | Ammar Derraa | Field emission arrays and row lines thereof |
US6276982B1 (en) | 1999-03-01 | 2001-08-21 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US6790114B2 (en) | 1999-03-01 | 2004-09-14 | Micron Technology, Inc. | Methods of forming field emitter display (FED) assemblies |
US6133057A (en) * | 1999-03-01 | 2000-10-17 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US6204077B1 (en) | 1999-03-01 | 2001-03-20 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6387718B2 (en) | 1999-03-01 | 2002-05-14 | Micron Technology, Inc. | Field emission arrays and method of fabricating emitter tips and corresponding resistors thereof with a single mask |
US6822386B2 (en) | 1999-03-01 | 2004-11-23 | Micron Technology, Inc. | Field emitter display assembly having resistor layer |
US20030001489A1 (en) * | 1999-03-01 | 2003-01-02 | Ammar Derraa | Field emitter display assembly having resistor layer |
US6831398B2 (en) | 1999-03-01 | 2004-12-14 | Micron Technology, Inc. | Field emission arrays and row lines thereof |
US6197607B1 (en) | 1999-03-01 | 2001-03-06 | Micron Technology, Inc. | Method of fabricating field emission arrays to optimize the size of grid openings and to minimize the occurrence of electrical shorts |
US6589803B2 (en) | 1999-03-01 | 2003-07-08 | Micron Technology, Inc. | Field emission arrays and method of fabricating same to optimize the size of grid openings and to minimize the occurrence of electrical shorts |
US6579140B2 (en) | 1999-03-01 | 2003-06-17 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough by employing two masks |
US6498425B1 (en) | 1999-03-01 | 2002-12-24 | Micron Technology, Inc. | Field emission array with planarized lower dielectric layer |
US6326222B2 (en) * | 1999-03-01 | 2001-12-04 | Micron Technology, Inc. | Field emission arrays and method of fabricating emitter tips and corresponding resistors thereof with a single mask |
US6329744B1 (en) | 1999-03-01 | 2001-12-11 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US6875626B2 (en) | 1999-03-01 | 2005-04-05 | Micron Technology, Inc. | Field emission arrays and method of fabricating same to optimize the size of grid openings and to minimize the occurrence of electrical shorts |
US6878029B2 (en) | 1999-03-01 | 2005-04-12 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough by employing two masks |
US6383828B2 (en) | 1999-03-01 | 2002-05-07 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6559581B2 (en) | 1999-03-01 | 2003-05-06 | Micron Technology, Inc. | Field emission arrays and row lines thereof |
US6333593B1 (en) | 1999-03-01 | 2001-12-25 | Micron Technology, Inc. | Field emission arrays and method of fabricating emitter tips and corresponding resistors thereof with a single mask |
US6552478B2 (en) | 1999-03-01 | 2003-04-22 | Micron Technology, Inc. | Field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US6369497B1 (en) | 1999-03-01 | 2002-04-09 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough by employing two masks |
US6957994B2 (en) | 1999-03-01 | 2005-10-25 | Micron Technology, Inc. | Method of fabricating field emission arrays employing a hard mask to define column lines and another mask to define emitter tips and resistors |
US6548947B2 (en) | 1999-03-01 | 2003-04-15 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6124665A (en) * | 1999-03-01 | 2000-09-26 | Micron Technology, Inc. | Row lines of a field emission array and forming pixel openings therethrough |
US6632693B2 (en) | 1999-03-01 | 2003-10-14 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6008063A (en) * | 1999-03-01 | 1999-12-28 | Micron Technology, Inc. | Method of fabricating row lines of a field emission array and forming pixel openings therethrough |
US6555402B2 (en) | 1999-04-29 | 2003-04-29 | Micron Technology, Inc. | Self-aligned field extraction grid and method of forming |
US6391670B1 (en) * | 1999-04-29 | 2002-05-21 | Micron Technology, Inc. | Method of forming a self-aligned field extraction grid |
US20030137474A1 (en) * | 1999-05-06 | 2003-07-24 | Micron Technology, Inc. | Thermoelectric control for field emission display |
US7268004B2 (en) | 1999-05-06 | 2007-09-11 | Micron Technology, Inc. | Thermoelectric control for field emission display |
US6507328B1 (en) | 1999-05-06 | 2003-01-14 | Micron Technology, Inc. | Thermoelectric control for field emission display |
US20070024178A1 (en) * | 1999-08-26 | 2007-02-01 | Ammar Derraa | Field emission device having insulated column lines and method of manufacture |
USRE40490E1 (en) | 1999-09-02 | 2008-09-09 | Micron Technology, Inc. | Method and apparatus for programmable field emission display |
US6384520B1 (en) * | 1999-11-24 | 2002-05-07 | Sony Corporation | Cathode structure for planar emitter field emission displays |
US6860777B2 (en) | 2000-01-14 | 2005-03-01 | Micron Technology, Inc. | Radiation shielding for field emitters |
US20040104658A1 (en) * | 2000-01-14 | 2004-06-03 | Micron Technology, Inc. | Structure and method to enhance field emission in field emitter device |
US6692323B1 (en) | 2000-01-14 | 2004-02-17 | Micron Technology, Inc. | Structure and method to enhance field emission in field emitter device |
US6469436B1 (en) | 2000-01-14 | 2002-10-22 | Micron Technology, Inc. | Radiation shielding for field emitters |
US20030057861A1 (en) * | 2000-01-14 | 2003-03-27 | Micron Technology, Inc. | Radiation shielding for field emitters |
US7091654B2 (en) | 2000-04-26 | 2006-08-15 | Micron Technology, Inc. | Field emission tips, arrays, and devices |
US20020000548A1 (en) * | 2000-04-26 | 2002-01-03 | Blalock Guy T. | Field emission tips and methods for fabricating the same |
US20060267472A1 (en) * | 2000-04-26 | 2006-11-30 | Blalock Guy T | Field emission tips, arrays, and devices |
US6713312B2 (en) | 2000-04-26 | 2004-03-30 | Micron Technology, Inc. | Field emission tips and methods for fabricating the same |
US20040036401A1 (en) * | 2000-08-25 | 2004-02-26 | Kazuo Konuma | Field electron emission apparatus and method for manufacturing the same |
USRE47767E1 (en) | 2003-03-26 | 2019-12-17 | Nokia Of America Corporation | Group III-nitride layers with patterned surfaces |
EP3035372A1 (de) * | 2003-03-26 | 2016-06-22 | Alcatel Lucent | Gruppe-iii-nitrid-schichten mit strukturierten oberflächen |
US7372193B2 (en) * | 2003-04-08 | 2008-05-13 | Mitsubishi Denki Kabushiki Kaisha | Cold cathode light emitting device with nano-fiber structure layer, manufacturing method thereof and image display |
US20040201345A1 (en) * | 2003-04-08 | 2004-10-14 | Yoshinobu Hirokado | Cold cathode light emitting device, image display and method of manufacturing cold cathode light emitting device |
US20050057168A1 (en) * | 2003-08-27 | 2005-03-17 | Song Yoon Ho | Field emission device |
US7176615B2 (en) * | 2003-08-27 | 2007-02-13 | Electronics And Telecommunications Research Institute | Field emission device having emission-inducing and suppressing gates |
US20050067935A1 (en) * | 2003-09-25 | 2005-03-31 | Lee Ji Ung | Self-aligned gated rod field emission device and associated method of fabrication |
US7239076B2 (en) | 2003-09-25 | 2007-07-03 | General Electric Company | Self-aligned gated rod field emission device and associated method of fabrication |
US7868850B2 (en) * | 2004-10-06 | 2011-01-11 | Samsung Electronics Co., Ltd. | Field emitter array with split gates and method for operating the same |
US20070235772A1 (en) * | 2004-10-06 | 2007-10-11 | Sungho Jin | Field emitter array with split gates and method for operating the same |
US7235493B2 (en) | 2004-10-18 | 2007-06-26 | Micron Technology, Inc. | Low-k dielectric process for multilevel interconnection using mircocavity engineering during electric circuit manufacture |
US20070029911A1 (en) * | 2005-07-19 | 2007-02-08 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US7279085B2 (en) | 2005-07-19 | 2007-10-09 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US7411341B2 (en) | 2005-07-19 | 2008-08-12 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US20080129178A1 (en) * | 2005-07-19 | 2008-06-05 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US7326328B2 (en) | 2005-07-19 | 2008-02-05 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US20070273263A1 (en) * | 2005-07-19 | 2007-11-29 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US7902736B2 (en) | 2005-07-19 | 2011-03-08 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US20070085459A1 (en) * | 2005-07-19 | 2007-04-19 | General Electric Company | Gated nanorod field emitter structures and associated methods of fabrication |
US8076832B2 (en) | 2007-05-25 | 2011-12-13 | Sony Corporation | Electron emitter structure and associated method of producing field emission displays |
US20080290777A1 (en) * | 2007-05-25 | 2008-11-27 | Sony Corporation | Electron emitter structure and associated method of producing field emission displays |
US9184016B2 (en) * | 2012-12-06 | 2015-11-10 | Tsinghua University | Field emission cathode device and field emission equipment using the same |
US20140159566A1 (en) * | 2012-12-06 | 2014-06-12 | Hon Hai Precision Industry Co., Ltd. | Field emission cathode device and field emission equipment using the same |
US9190237B1 (en) | 2014-04-24 | 2015-11-17 | Nxp B.V. | Electrode coating for electron emission devices within cavities |
CN108098516A (zh) * | 2017-12-21 | 2018-06-01 | 大连理工大学 | 一种圆柱顶尖在机修研工装 |
CN108098516B (zh) * | 2017-12-21 | 2019-05-10 | 大连理工大学 | 一种圆柱顶尖在机修研工装 |
Also Published As
Publication number | Publication date |
---|---|
JPH0684454A (ja) | 1994-03-25 |
DE4304103A1 (de) | 1993-08-19 |
JP3098483B2 (ja) | 2000-10-16 |
DE4304103C2 (de) | 2002-02-14 |
JP2836802B2 (ja) | 1998-12-14 |
US5372973A (en) | 1994-12-13 |
JPH10188784A (ja) | 1998-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5229331A (en) | Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology | |
US5186670A (en) | Method to form self-aligned gate structures and focus rings | |
US5259799A (en) | Method to form self-aligned gate structures and focus rings | |
US5653619A (en) | Method to form self-aligned gate structures and focus rings | |
US5696028A (en) | Method to form an insulative barrier useful in field emission displays for reducing surface leakage | |
US5374868A (en) | Method for formation of a trench accessible cold-cathode field emission device | |
US6181060B1 (en) | Field emission display with plural dielectric layers | |
US5394006A (en) | Narrow gate opening manufacturing of gated fluid emitters | |
US6139385A (en) | Method of making a field emission device with silicon-containing adhesion layer | |
US5747918A (en) | Display apparatus comprising diamond field emitters | |
US6465950B1 (en) | Method of fabricating flat fed screens, and flat screen obtained thereby | |
US6428378B2 (en) | Composite self-aligned extraction grid and in-plane focusing ring, and method of manufacture | |
KR20020003709A (ko) | 전계 방출 표시 소자 및 그의 제조 방법 | |
US6391670B1 (en) | Method of forming a self-aligned field extraction grid | |
US20020115269A1 (en) | Method of depositing amorphous silicon based films having controlled conductivity | |
US6352910B1 (en) | Method of depositing amorphous silicon based films having controlled conductivity | |
US6824698B2 (en) | Uniform emitter array for display devices, etch mask for the same, and methods for making the same | |
JP2694889B2 (ja) | セルフアラインゲート構造および集束リングの形成法 | |
US6045425A (en) | Process for manufacturing arrays of field emission tips | |
KR100260260B1 (ko) | 전계방출 표시소자의 제조방법 | |
JP2000323013A (ja) | 冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置 | |
KR100301616B1 (ko) | 전계방사형(電界放射型)소자의제조방법 | |
Cho et al. | Fabrication of field emitter arrays using the mold method for FED application | |
EP0578512A1 (de) | Einkristalline Feldemissionsvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DOAN, TRUNG T.;ROLFSON, J. BRETT;LOWREY, TYLER A.;AND OTHERS;REEL/FRAME:006023/0691 Effective date: 19920213 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |