US4521567A - Method for making impact resistant molding compositions - Google Patents
Method for making impact resistant molding compositions Download PDFInfo
- Publication number
- US4521567A US4521567A US06/637,863 US63786384A US4521567A US 4521567 A US4521567 A US 4521567A US 63786384 A US63786384 A US 63786384A US 4521567 A US4521567 A US 4521567A
- Authority
- US
- United States
- Prior art keywords
- monomers
- phase
- stage
- polymerization
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000000465 moulding Methods 0.000 title claims abstract description 27
- 239000000178 monomer Substances 0.000 claims abstract description 98
- 229920000642 polymer Polymers 0.000 claims abstract description 55
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 50
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000004971 Cross linker Substances 0.000 claims abstract description 23
- 239000003999 initiator Substances 0.000 claims abstract description 21
- 239000012986 chain transfer agent Substances 0.000 claims abstract description 14
- 230000009477 glass transition Effects 0.000 claims abstract description 9
- 125000003396 thiol group Chemical group [H]S* 0.000 claims abstract description 9
- 150000003254 radicals Chemical class 0.000 claims abstract description 8
- 238000010557 suspension polymerization reaction Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 17
- 150000002148 esters Chemical class 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- RUDUCNPHDIMQCY-UHFFFAOYSA-N [3-(2-sulfanylacetyl)oxy-2,2-bis[(2-sulfanylacetyl)oxymethyl]propyl] 2-sulfanylacetate Chemical group SCC(=O)OCC(COC(=O)CS)(COC(=O)CS)COC(=O)CS RUDUCNPHDIMQCY-UHFFFAOYSA-N 0.000 claims description 9
- 239000003431 cross linking reagent Substances 0.000 claims description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 7
- 230000009257 reactivity Effects 0.000 claims description 7
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 6
- 229920002554 vinyl polymer Polymers 0.000 claims description 6
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 5
- 125000005394 methallyl group Chemical group 0.000 claims description 5
- 230000000379 polymerizing effect Effects 0.000 claims description 4
- 229920001567 vinyl ester resin Polymers 0.000 claims description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
- 239000012736 aqueous medium Substances 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 229920001519 homopolymer Polymers 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 101150108015 STR6 gene Proteins 0.000 claims 1
- 238000007334 copolymerization reaction Methods 0.000 claims 1
- 125000005395 methacrylic acid group Chemical group 0.000 claims 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 claims 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 claims 1
- 239000012071 phase Substances 0.000 description 90
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 28
- 239000011324 bead Substances 0.000 description 18
- -1 acrylic ester Chemical class 0.000 description 13
- 239000002270 dispersing agent Substances 0.000 description 13
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 9
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000003607 modifier Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 235000002639 sodium chloride Nutrition 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- OWHSTLLOZWTNTQ-UHFFFAOYSA-N 2-ethylhexyl 2-sulfanylacetate Chemical compound CCCCC(CC)COC(=O)CS OWHSTLLOZWTNTQ-UHFFFAOYSA-N 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 238000012662 bulk polymerization Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HSOOIVBINKDISP-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CCC)OC(=O)C(C)=C HSOOIVBINKDISP-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical group C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000007720 emulsion polymerization reaction Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 2
- SRZXCOWFGPICGA-UHFFFAOYSA-N 1,6-Hexanedithiol Chemical compound SCCCCCCS SRZXCOWFGPICGA-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- WDQNIWFZKXZFAY-UHFFFAOYSA-M fentin acetate Chemical compound CC([O-])=O.C1=CC=CC=C1[Sn+](C=1C=CC=CC=1)C1=CC=CC=C1 WDQNIWFZKXZFAY-UHFFFAOYSA-M 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 1
- PGTWZHXOSWQKCY-UHFFFAOYSA-N 1,8-Octanedithiol Chemical compound SCCCCCCCCS PGTWZHXOSWQKCY-UHFFFAOYSA-N 0.000 description 1
- GJRCLMJHPWCJEI-UHFFFAOYSA-N 1,9-Nonanedithiol Chemical compound SCCCCCCCCCS GJRCLMJHPWCJEI-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- SCBKKGZZWVHHOC-UHFFFAOYSA-N 2,2-bis(sulfanyl)propanoic acid Chemical compound CC(S)(S)C(O)=O SCBKKGZZWVHHOC-UHFFFAOYSA-N 0.000 description 1
- KAJBSGLXSREIHP-UHFFFAOYSA-N 2,2-bis[(2-sulfanylacetyl)oxymethyl]butyl 2-sulfanylacetate Chemical compound SCC(=O)OCC(CC)(COC(=O)CS)COC(=O)CS KAJBSGLXSREIHP-UHFFFAOYSA-N 0.000 description 1
- IJLJDZOLZATUFK-UHFFFAOYSA-N 2,2-dimethylpropyl prop-2-enoate Chemical compound CC(C)(C)COC(=O)C=C IJLJDZOLZATUFK-UHFFFAOYSA-N 0.000 description 1
- NEBBLNDVSSWJLL-UHFFFAOYSA-N 2,3-bis(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(OC(=O)C(C)=C)COC(=O)C(C)=C NEBBLNDVSSWJLL-UHFFFAOYSA-N 0.000 description 1
- VSKAJYQVWVOVRT-UHFFFAOYSA-N 2,3-bis[(2-sulfanylacetyl)oxy]propyl 2-sulfanylacetate Chemical compound SCC(=O)OCC(OC(=O)CS)COC(=O)CS VSKAJYQVWVOVRT-UHFFFAOYSA-N 0.000 description 1
- PSYGHMBJXWRQFD-UHFFFAOYSA-N 2-(2-sulfanylacetyl)oxyethyl 2-sulfanylacetate Chemical compound SCC(=O)OCCOC(=O)CS PSYGHMBJXWRQFD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- BSNJMDOYCPYHST-UHFFFAOYSA-N 2-ethenoxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC=C BSNJMDOYCPYHST-UHFFFAOYSA-N 0.000 description 1
- GROXSGRIVDMIEN-UHFFFAOYSA-N 2-methyl-n-prop-2-enylprop-2-enamide Chemical compound CC(=C)C(=O)NCC=C GROXSGRIVDMIEN-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- MBVUXDRWRMDPDB-UHFFFAOYSA-N CC(=CC(=O)OC(CCC)O)C Chemical compound CC(=CC(=O)OC(CCC)O)C MBVUXDRWRMDPDB-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 239000004908 Emulsion polymer Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- VLCCKNLIFIJYOQ-UHFFFAOYSA-N [3-hydroxy-2,2-bis(hydroxymethyl)propyl] 2,2,3,3-tetrakis(sulfanyl)propanoate Chemical compound OCC(CO)(CO)COC(=O)C(S)(S)C(S)S VLCCKNLIFIJYOQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000005399 allylmethacrylate group Chemical group 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- SMTOKHQOVJRXLK-UHFFFAOYSA-N butane-1,4-dithiol Chemical compound SCCCCS SMTOKHQOVJRXLK-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- BLCTWBJQROOONQ-UHFFFAOYSA-N ethenyl prop-2-enoate Chemical compound C=COC(=O)C=C BLCTWBJQROOONQ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- CNPHCSFIDKZQAK-UHFFFAOYSA-N n-prop-2-enylprop-2-enamide Chemical compound C=CCNC(=O)C=C CNPHCSFIDKZQAK-UHFFFAOYSA-N 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- KMTUBAIXCBHPIZ-UHFFFAOYSA-N pentane-1,5-dithiol Chemical compound SCCCCCS KMTUBAIXCBHPIZ-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002976 peresters Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- ZJLMKPKYJBQJNH-UHFFFAOYSA-N propane-1,3-dithiol Chemical compound SCCCS ZJLMKPKYJBQJNH-UHFFFAOYSA-N 0.000 description 1
- KOODSCBKXPPKHE-UHFFFAOYSA-N propanethioic s-acid Chemical class CCC(S)=O KOODSCBKXPPKHE-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- WYKYCHHWIJXDAO-UHFFFAOYSA-N tert-butyl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)C WYKYCHHWIJXDAO-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/902—Core-shell
Definitions
- the present invention relates to a method for making impact resistant molding compositions, and particularly of crystal clear molding compositions, by means of a two stage polymerization process.
- Polymers modified to improve their impact strength generally are multiphase materials comprising at least a hard phase and a rubbery phase.
- Such polymers are produced commercially mainly by emulsion polymerization since discrete rubbery phase particles coated with a hard phase can readily be produced by this method.
- the advantages inherent in this method are partly offset by the considerable difficulties and costs which isolation of the solid polymer entails.
- the polymerization auxiliaries used cannot always be removed to the desired extent. It has therefore been sought to produce impact resistant molding compositions by methods other than emulsion polymerization, for example by bulk or bead (suspension) polymerization.
- insoluble monomers are dispersed by mechanical action (agitation) in a nonsolvent (the continuous phase) and polymerized, generally by the use of initiators insoluble in the continuous phase.
- the polymer formed is predominantly soluble in the monomer.
- the monomer forms spherical droplets.
- dispersing agents protective colloids
- the continuous phase usually is water.
- a method for making impact resistant bead polymers is described in U.S. Pat. No. 3,458,603. In that multiple stage process, the bead polymerization of methyl methacrylate and/or styrene is carried out in a first stage in the presence of dispersing agents and with the formation of a first aqueous dispersion. Bead polymerization is then continued in this first dispersion in a second stage with a monomer mixture of C 1 to C 8 alkyl acrylates together with from 0.01 to 10 weight percent of a crosslinking agent, with formation of a second aqueous dispersion.
- Bead polymerization is then completed in this second dispersion in a third stage after the addition of methyl methacrylate and/or styrene.
- the monomers may contain up to 50 weight percent of another copolymerizable monomer.
- Each process stage should be carried to complete polymerization of the monomers present.
- the molecular weight of the polymers may be controlled conventionally.
- U.S. Pat. No. 3,943,190 also proposes impact resistant bead polymers which are produced by a two stage process.
- the hard phase consisting of methyl methacrylate with from 0 to 40 weight percent of a C 1 to C 8 acrylic ester and from 0 to 10 weight percent of a vinyl monomer copolymerizable with said ester, is polymerized in the first stage and the soft phase, formed from 89 to 99.9 weight percent of alkyl acrylate, from 0.1 to 3 weight percent of crosslinking agent, and optional alkyl methacrylate, is polymerized in the second stage.
- the weight ratio of the monomers polymerized in the first stage to the monomers polymerized in the second stage must be 100:20-70.
- transparent, weather resistant, and impact resistant polymers are obtained by multiple stage suspension polymerization.
- the hard phase consisting of 50 to 100 weight percent of methyl methacrylate, is polymerized first.
- a mixture of an acrylic ester, from 0 to 10 weight percent of alkyl methacrylate, from 0.1 to 3 weight percent of crosslinking agent, and from 1 to 30 weight percent of a comonomer for matching the refractive index to that of the hard phase is added and the particles of the hard phase are impregnated therewith.
- the suspension polymerization is then carried to completion.
- Japanese patent publication No. 78-138496 (Chem. Abstr. 90, 122484q) also relates to transparent, impact resistant polymethyl methacrylate resins.
- First the hard phase is produced by polymerization in water at 80° C. using a redox catalyst system consisting of a chain transfer agent, a persulfate, and a reducing sulfoxy compound in the absence of an emulsifier.
- a monomer mixture formed of 50 to 90 weight percent of alkyl acrylate, 3 to 40 weight percent of methyl methacrylate, 0 to 40 weight percent of further unsaturated comonomers, 0.1 to 5 weight percent of allyl or methallyl and crotyl esters of unsaturated carboxylic and dicarboxylic acids, and 0 to 5 weight percent polyfunctional crosslinking agents is then added to the emulsion and the mixture so obtained is polymerized in the absence of an emulsifier.
- Japanese patent publication No. 78-36589 discloses impact resistant materials obtained by the polymerization of methyl methacrylate, optionally together with other monomers, in an aqueous suspension in the presence of a chain transfer agent, followed by the addition of 5 to 40 percent, by weight of the resin, of monomers which form a latexlike polymer, 0.01 to 2 mole percent of polyfunctional monomers, and 0.05 to 10 mole percent of an oil soluble peroxide and polymerization of this mixture.
- the method of the present invention is a bulk (mass) polymerization or a bead (suspension) polymerization in an aqueous medium which comprises, in a first stage, the polymerization of a hard phase (A) having a glass transition temperature above 25° C.
- Polymerization of the hard phase (A) in the first stage is carried out in the presence of (a) an oil soluble free radical initiator and of (b) an organosulfur chain transfer agent with at least two thiol groups in the molecule.
- Polymerization of the rubbery phase (B) is carried out in the presence of the hard phase (A) by swelling the previously formed hard phase (A) with the monomers. Polymerization of the monomers of the rubbery phase thus takes place substantially within the preformed hard phase. Polymerization is advantageously carried out using the residual initiator still present in the hard phase.
- T g glass transition temperatures
- the glass transition temperature of the hard phase (A) polymerized in the first stage usually is above 25° C., and preferably is 60° C. or higher.
- alkyl esters of acrylic acid are methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, and particularly n-butyl and isobutyl acrylate, n-hexyl acrylate and 2-ethylhexyl acrylate, as well as neopentyl acrylate.
- alkyl esters of methacrylic acid with C 2 to C 8 alcohols examples include ethyl methacrylate, n-propyl methacrylate, butyl methacrylate, and particularly n-butyl methacrylate.
- esters may also be used in the form of mixtures.
- Examples of other vinyl monomers which are copolymerizable in amounts from 0 to 10 weight percent with said esters are aromatic vinyl compounds, for example styrene and its derivatives such as alpha-methylstyrene and para-methylstyrene, as well as vinyl esters of aromatic or aliphatic carboxylic acids such as vinyl acetate and vinyl benzoate, as well as acrylonitrile and methacrylonitrile.
- aromatic vinyl compounds for example styrene and its derivatives such as alpha-methylstyrene and para-methylstyrene
- vinyl esters of aromatic or aliphatic carboxylic acids such as vinyl acetate and vinyl benzoate, as well as acrylonitrile and methacrylonitrile.
- the monomers of the rubbery phase (B) are defined as those which, in the form of homopolymers or copolymers (independently of the hard phase), have a glass transition temperature below 25° C., and preferably below 10° C.
- Suitable esters of methacrylic acid are the esters of C 2 to C 8 alcohols named above and suitable esters of methacrylic acid are those of C 1 to C 8 alcohols.
- Organosulfur chain transfer agents having at least two thiol groups in the molecule generally have at least 2, and preferably at least 6, but usually not more than 40, carbon atoms in the molecule.
- the presence of one or, preferably, more alpha-mercapto carboxylic ester groups in the molecule, preferably derived from polyols such as glycol, propanediol, glycerol, pentaerythritol, and the like is of advantage.
- pentaerythritol tetrathioglycolate pentaerythritol tetramercaptopropionate
- glycol dimercaptoacetate glycol dimercaptopropionate
- glycerine trithioglycolate trimethylolpropane trithioglycolate
- trimethylolethane triethioglycolate is especially preferred.
- Suitable alkanedithiols which can be used are, for example, 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, and 1,10-decanediethiol.
- bis-2-mercaptoethyl sulfide should be mentioned (cf. N. Kharasch, Organic Sulfur Compounds, Vol. 1, pp. 199-209, Pergamon Press, New York, 1961).
- Organosulfur chain transfer agents having at least two thiol groups in the molecule may be represented in part by the formula
- A is a hydrocarbon chain having from 3 to 16 carbon atoms in which one or more carbon atoms can be replaced by --S--, and more particularly such a hydrocarbon chain having from 4 to 8 carbon atoms, or A is ##STR1## wherein n is 0 or an integer from 1 to 8, and more particularly 0 or 1 to 5, and Y is a hydrocarbon chain having from 2 to 16 carbon atoms which may be substituted with ##STR2## wherein n' has the same meaning as n, and m is 0 or an integer from 1 to 8.
- the content of organosulfur molecular weight regulators in the polymerization of the hard phase (A) in the first stage generally ranges from 0.05 to 5 percent, and preferably from 0.1 to 2 percent, by weight of the hard phase (A).
- Suitable oil soluble (and water insoluble) free radical initiators (a) are, for example, peroxidic and azo compounds of that type (cf. U.S. Pat. No. 2,471,959). These include organic peroxides such as dibenzoyl peroxide or dilauroyl peroxide and peresters such as tert-butyl-peroxy-2-ethylhexanoate, as well as azo compounds such as azoisobutyronitrile and other known initiators of this type. Free radical forming initiators having higher decomposition temperatures may additionally be used, for example if the temperature is raised toward the end of the reaction to obtain as nearly complete polymerization as possible.
- the amount of the oil soluble free radical initiators generally ranges from 0.01 to 5 percent, and preferably from 0.2 to 3 percent, and still more preferably is 1.5 ⁇ 1 percent, by weight of the monomers of the hard phase (A).
- the graft crosslinkers which are used in stage (B) in accordance with the invention are either monomers with at least two different polymerizable groups having different reactivities in the molecule, or monomers having at least three similar polymerizable groups in the molecule, but which groups similarly have different reactivities. In the latter case, the different reactivities of the polymerizable groups, which are otherwise the same in structure, is probably attributable to steric hindrance of those polymerizable groups in each molecule which are unpolymerized as the polymerization proceeds.
- Both types of graft crosslinker that is monomers with at least two polymerizable groups but different reactivities in the molecule and monomers with at least three similar polymerizable groups in the molecule, will improve the clarity of the impact resistant molding compositions. It may be assumed that these graft crosslinkers aid in preventing the divergent polymerization of the monomers having different refractive indices. Moreover, both types of graft crosslinker improve thermoplastic processability (e.g the extrudability) of the material in comparison with other crosslinking agents such as butanediol dimethylacrylate.
- the graft crosslinkers having at least two polymerizable entities having different reactivities may be represented by the general formula ##STR3## wherein Q is --O-- or --NR 5 , where R 5 is hydrogen or C 1 -C 6 alkyl,
- R 1 , R 1 ', R 1 ", R 2 and R 2 ' are, independently of each other, hydrogen or methyl
- Examples are the allyl, methallyl, and crotyl esters of ⁇ , ⁇ -unsaturated carboxylic acids, such as allyl metnacrylate and allyl acrylate, and the corresponding methallyl, crotyl, and vinyl esters.
- An example of a graft crosslinker having three similar polymerizable units in the molecule is trimethylolpropane triacrylate.
- Other examples of graft crosslinkers are trimethylolpropane trimethacrylate, glycerine trimethacrylate and triacrylate, vinyl methacrylate and vinyl acrylate, vinyloxyethylmethacrylate, N-allylmethacrylamide, and N-allylacrylamide.
- the refractive indices of the hard phase (A) and of the rubbery phase (B) may match or differ depending on the monomers selected.
- the polymers of the hard phase (A) and of the rubbery phase (B) should have at least about the same refractive index.
- copolymerizable monomers making different contributions to the refractive index may be conventionally incorporated in the polymers, for example monomers with fairly high optical density, suitably aromatic monomers, and particularly monomers having a phenyl group therein such as styrene and its derivatives and homologs like alpha-methylstyrene and para-methylstyrene. Their amount will generally range from 10 to 30 percent, by weight of the monomers of the rubbery phase.
- the good mechanical properties of the impact resistant molding compositions of the invention depend primarily on the use in the hard phase (A) of an organosulfur molecular weight regulator having at least two thiol groups in the molecule.
- the nature of the crosslinker used in the rubbery phase (B), on the other hand, has a very marked effect on the optical properties and processing characteristics of the material. For example, when a graft crosslinker having at least two polymerizable entities of different reactivity in the molecule, or when crosslinkers having at least three similar polymerizable groups in the molecule, are used, the products will be decidedly clearer than are products obtained by the use of other crosslinking agents. Also, such molding compositions will be much more readily extrudable than molding compositions produced by the use of other crosslinking agents.
- the method for the invention may be carried out along the lines of the known bead (suspension) or bulk polymerization processes, bead polymerization being the preferred mode of operation.
- bead polymerization the ratio of the aqueous phase to the monomer phase usually ranges from 1.5:1 to 4:1.
- the commonly used dispersing agents should be employed, generally in amounts not exceeding a few weight percent based on the aqueous phase.
- Suitable dispersants include water insoluble salts of inorganic acids, such as barium sulfate or barium carbonate, water insoluble oxides such as aluminum hydroxide, or high molecular weight natural substances or synthetic polymers.
- the group of high molecular weight dispersants includes water soluble colloids such as polyvinyl alcohol, partially saponified polyvinyl acetate, methyl cellulose, starch, gelatin, pectin, the alkali metal salts of polyacrylic acid, or the alkali metal salts of styrene or vinyl acetate/maleic anhydride copolymers, etc.
- a guide value for the amount of dispersant to be used is 1 weight percent, for example, based on the monomers used.
- the bead polymerization will be carried out at a temperature ranging from 50° to 95° C.
- the polymerization time is dependent in large measure on the other process parameters but usually ranges from 2 to 10 hours.
- initiator will primarily be used in the final polymerization.
- the dispersing agents used in bead polymerization permit the hard phase (A) to be readily swollen with the monomers of the rubbery phase (B), there appear to be no limitations.
- Particularly preferred are the so called organic dispersants, for example partially saponified polyvinyl acetate, alkali metal salts of sytrene or vinyl acetate/maleic acid copolymers, and other polymers having hydrophobic and hydrophilic groups in the same molecule.
- a salt for example common salt, may be added to the aqueous phase.
- low molecular weight emulsifiers such as the sodium salts of alkanesulfonic acids may also concurrently be used.
- the size of the bead polymers may vary from a few microns to several millimeters. As a rule, however, the bead size will be held within a range of about 20 microns to about 2 mm. This assures (1) a large surface area that will permit the hard phase (A) polymerized first to be rapidly swollen with the monomers of the rubbery phase (B) and (2) a bead size that will permit the beads to be readily separated from the aqueous phase.
- the bead polymerization of the hard phase (A) and that of the monomers (B) will usually be performed sequentially in the same polymerization vessel. However, the two polymerization stages can also be carried out sequentially in two different polymerization vessels.
- the monomers of the hard phase (A) will generally have been polymerized to the extent of at least 80 weight percent by the time the monomers of the rubbery phase (B) are added. It is highly advantageous to add the monomers of the rubbery phase only after the gel-effect has set in in phase (A). The addition of the monomers of the rubbery phase (B) thus takes place at a time when the maximum rate of polymerization of the hard phase has passed. (With regard to the gel-effect, see H. Rauch-Puntigam and Th. Volker in "Acryl- und Methacrylitatien", Springer-Verlag, 1967.)
- polymerization may also be carried out by first producing the hard phase by bulk (mass) polymerization and then, after the hard phase (A) has been comminuted to increase the surface area (unless it was actually produced in a high surface form, such as a polymer string), swelling it with the monomers of the rubbery phase (B) and polymerizing the latter monomers in the presence of the hard phase (A).
- the process may also be carried out by first polymerizing the hard phase (A) by the bead polymerization technique and then performing the polymerization of the monomers of the rubbery phase (B) within the hard phase (A) as a bulk polymerization.
- two stage bead polymerization is the preferred mode of operation.
- any other process in which the polymer is obtained directly in the form of readily isolated particles having a weight of at least 10 -9 g/particle and wherein the preformed hard phase (A) can readily be swollen with the monomers of the rubbery phase (B) should be suitable.
- Emulsion polymerization in which the polymer particles usually have a weight of less than 10 -12 g/particle, thus must be ruled out since, following the actual polymerization process, that method requires the performance of costly operations for isolation of the solid polymer, for example chemical precipitation, spray drying, etc.
- the weight ratio of the monomers of the hard phase (A) to the monomers of the rubbery phase (B) should range from 1:0.15 to 1:3 and preferably from 1:0.25 to 1:1.5.
- thermoplastically processable molding composition used in such mixing is advantageously composed of polymethyl methacrylate. Mixing is advantageously done under high shear stresses, for example by means of a kneading extruder or of a co-kneader.
- Additives such as solvents, plasticizers (e.g. dioctyl phthalate), or lubricants (e.g. cetyl alcohol or paraffin) may be used both in the production of the two stage polymer according to the invention and in mixing it with other molding compositions.
- lubricants e.g. cetyl alcohol or paraffin
- Other low molecular weight substances such as anti-aging agents, dyes, etc. may also be added.
- the organosulfur chain transfer agent (B) of the invention having at least two thiol groups in the molecule is not used, the presence of this component is of great importance to the mechanical properties of the impact resistant molding compositions.
- Good optical properties of the impact resistant molded articles and good processability of the molding composition further require the use of a graft crosslinker in the monomer mixture (B).
- an 0.4% dispersant solution for example aluminum hydroxide prepared in situ from aluminum sulfate and soda, was used.
- polyvinyl alcohol was used in the presence of 0.05 weight percent of the sodium salt of a C 14 to C 16 alkanesulfonic acid.
- alkanethiol such as 1,6-hexanedithiol can be employed as a chain transfer agent in the method of this Example, instead of pentaerythritol tetrathioglycolate.
- Example 2 The same bead polymerization recipe is used as in Example 1. However, a trifunctional crosslinker is used in the monomer mixture (B).
- Example 2 The same procedure is followed as in Example 1 except that a different graft crosslinker is used in the monomer mixture (B).
- Example 3 The same procedure is followed as in Example 3 except that a MW having only one thiol group in the molecule is used in place of the tetrafunctional organosulfur chain transfer agent.
- Example 2 The same procedure is followed as in Example 1 except that a regulator having only one thiol group in the molecule is used in place of tetrafunctional chain transfer agent.
- a polymer is obtained which does yield clear molded articles. However, the mechanical properties of such articles are quite inferior compared with articles made with the polymer of Example 1. In contrast to the molding composition of Example 1, the material of Example 5 is not extrudable.
- Example 2 The same procedure is followed as in Example 1 except that no graft crosslinker is used in monomer mixture (B).
- Example 2 The same procedure is followed as in Example 1 except that no polyfunctional organosulfur chain transfer agent is used in phase (A) and no graft crosslinker is used in phase (B).
- a material is obtained which when used in molding compositions for injection molding results in opaque articles with poor mechanical properties.
- the composition is not extrudable. See also Table 1.
- the bead polymer of Example 1 is granulated in a kneading extruder.
- a molding composition is so obtained which can be injection molded or extruded to give crystal clear impact resistant articles.
- Example 2 The same procedure is followed as in Example 1, but a different weight ratio of hard phase (A) to rubbery phase (B) is selected.
- the beads were worked up as described in Example 1. Mixing them with a thermoplastically processable polymethyl methacrylate in a ratio of 1:1 results in a molding composition which can be injection molded or extruded to give clear, impact resistant articles.
- This example relates to a two stage process for the production of an impact resistant molding composition wherein the first stage is carried out as a bead polymerization and the second stage as a bulk polymerization.
- Polymerization of the hard phase (A) is performed as described in Example 1. However, the recipe is three times as large.
- Polymerization is carried out with vigorous agitation for 120 minutes at 70° C. This is followed by cooling, washing out the dispersant, and drying at room temperature.
- the batch is gradually heated to 45° C., which produces a highly viscous solution.
- the latter is used to fill five bags of equal size. These bags are then polymerized, initially for 30 minutes at 55° C., then for 3 hours at 60° C., then for 2 hours at 65° C., then for 3 hours at 70° C., and finally for 5 hours at 90° C.
- the samples are then cooled and comminuted.
- the comminuted polymer is then mixed in a ratio of 1:1 with a thermoplastically processable polymethyl methacrylate and extruded.
- the extrudate is used to injection mold test pieces.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
- Polymerisation Methods In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3329765A DE3329765C2 (de) | 1983-08-18 | 1983-08-18 | Verfahren zur Herstellung schlagzäher Formmassen auf Acrylatbasis durch zweistufige Polymerisation |
DE3329765 | 1983-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4521567A true US4521567A (en) | 1985-06-04 |
Family
ID=6206806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/637,863 Expired - Lifetime US4521567A (en) | 1983-08-18 | 1984-08-06 | Method for making impact resistant molding compositions |
Country Status (6)
Country | Link |
---|---|
US (1) | US4521567A (enrdf_load_stackoverflow) |
JP (1) | JPS6060119A (enrdf_load_stackoverflow) |
DE (1) | DE3329765C2 (enrdf_load_stackoverflow) |
FR (1) | FR2550793B1 (enrdf_load_stackoverflow) |
GB (1) | GB2148908B (enrdf_load_stackoverflow) |
IT (1) | IT1179059B (enrdf_load_stackoverflow) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737533A (en) * | 1986-04-15 | 1988-04-12 | Rhone-Poulenc Chimie | Dry material which can be hydrated into an aqueous gel, containing dispersed polymer particles, process for the preparation thereof and use thereof in biological applications |
US5006593A (en) * | 1988-06-16 | 1991-04-09 | E. I. Du Pont De Nemours And Company | Catenated polymer systems |
US5102939A (en) * | 1985-11-30 | 1992-04-07 | Bayer Aktiengesellschaft | Mixtures suitable as stabilizers for polymers |
US5155172A (en) * | 1989-01-30 | 1992-10-13 | Rohm Gmbh Chemische Fabrik | Elastomeric acrylic resins |
US5198500A (en) * | 1990-01-16 | 1993-03-30 | Nippon Paint Co., Ltd. | Process for preparing crosslinked resin particles |
US20020173589A1 (en) * | 2001-05-15 | 2002-11-21 | Mitsubishi Gas Chemical Company, Inc. | Acrylic syrup and method of producing same |
US20060058458A1 (en) * | 2002-12-19 | 2006-03-16 | Roehm Gmbh & Co. Kg | Coating agents for producing rigid coatings resistant to scratching and soiling and rigid moulded bodies resistant to scratching and soiling and method for the production thereof |
US7784161B2 (en) | 2006-03-27 | 2010-08-31 | Rotox Gmbh | Device for machining the corner area of a frame welded together out of profiled pieces |
WO2011003219A1 (en) * | 2009-07-07 | 2011-01-13 | Evonik Röhm Gmbh | Plasties moulding compositions, mouldings and production processes |
US20110210454A1 (en) * | 2008-11-21 | 2011-09-01 | Allison Yue Xiao | Phase Separated Curable Compositions |
DE102010028186A1 (de) | 2010-04-26 | 2011-10-27 | Evonik Röhm Gmbh | Fluoreszenzkonversionssolarzelle Lacke |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61272206A (ja) * | 1985-05-28 | 1986-12-02 | Asahi Chem Ind Co Ltd | 耐熱分解性に優れたメタクリル樹脂の製造法 |
JPS61272215A (ja) * | 1985-05-29 | 1986-12-02 | Asahi Chem Ind Co Ltd | 耐熱耐溶剤性アクリル共重合体の製造方法 |
DE4141319A1 (de) * | 1991-12-14 | 1993-10-14 | Roehm Gmbh | Hochschlagzähe Polymermischungen |
US6410005B1 (en) | 2000-06-15 | 2002-06-25 | Pmd Holdings Corp. | Branched/block copolymers for treatment of keratinous substrates |
DE10101389A1 (de) | 2001-01-13 | 2002-07-18 | Roehm Gmbh | Unsymmetrische (Meth)acrylatvernetzer |
DE102005003303A1 (de) * | 2005-01-24 | 2006-07-27 | Röhm GmbH & Co. KG | Thio(meth)acrylate, Mischungen zur Herstellung transparenter Kunststoffe, transparente Kunststoffe sowie Verfahren zu deren Herstellung und Verwendung |
JP6222869B1 (ja) * | 2016-07-29 | 2017-11-01 | サイデン化学株式会社 | 無溶剤液状アクリル樹脂組成物及び無溶剤液状アクリル樹脂組成物の製造方法 |
EP3369788B1 (en) * | 2017-03-03 | 2019-05-08 | Evonik Röhm GmbH | Curable thermosetting resin compositions with improved mechanical properties |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458603A (en) * | 1965-12-10 | 1969-07-29 | Ici Ltd | Polymeric styrene or alkyl methacrylate copolymers made by 3-stage granular polymerization process |
US3711576A (en) * | 1967-09-01 | 1973-01-16 | Stauffer Chemical Co | Polymercaptan modified vinyl halide polymers and blends thereof with vinyl halide polymer |
US3943190A (en) * | 1973-08-15 | 1976-03-09 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for preparing acrylate polymers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3364182A (en) * | 1965-10-07 | 1968-01-16 | American Cyanamid Co | Polymerization of methyl methacrylate in the presence of a polythiol |
JPS5910369B2 (ja) * | 1976-03-19 | 1984-03-08 | 株式会社クラレ | メタクリル樹脂組成物の製法 |
-
1983
- 1983-08-18 DE DE3329765A patent/DE3329765C2/de not_active Expired - Lifetime
-
1984
- 1984-06-22 FR FR8409857A patent/FR2550793B1/fr not_active Expired
- 1984-08-06 US US06/637,863 patent/US4521567A/en not_active Expired - Lifetime
- 1984-08-16 GB GB08420846A patent/GB2148908B/en not_active Expired
- 1984-08-17 IT IT67830/84A patent/IT1179059B/it active
- 1984-08-18 JP JP59171014A patent/JPS6060119A/ja active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458603A (en) * | 1965-12-10 | 1969-07-29 | Ici Ltd | Polymeric styrene or alkyl methacrylate copolymers made by 3-stage granular polymerization process |
US3711576A (en) * | 1967-09-01 | 1973-01-16 | Stauffer Chemical Co | Polymercaptan modified vinyl halide polymers and blends thereof with vinyl halide polymer |
US3943190A (en) * | 1973-08-15 | 1976-03-09 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for preparing acrylate polymers |
Non-Patent Citations (2)
Title |
---|
Abstract Japanese Pat. Nos. 53138 496, 53036 589, Kuraray. * |
Abstract-Japanese Pat. Nos. 53138-496, 53036-589, Kuraray. |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5102939A (en) * | 1985-11-30 | 1992-04-07 | Bayer Aktiengesellschaft | Mixtures suitable as stabilizers for polymers |
US4737533A (en) * | 1986-04-15 | 1988-04-12 | Rhone-Poulenc Chimie | Dry material which can be hydrated into an aqueous gel, containing dispersed polymer particles, process for the preparation thereof and use thereof in biological applications |
US5006593A (en) * | 1988-06-16 | 1991-04-09 | E. I. Du Pont De Nemours And Company | Catenated polymer systems |
US5155172A (en) * | 1989-01-30 | 1992-10-13 | Rohm Gmbh Chemische Fabrik | Elastomeric acrylic resins |
US5280073A (en) * | 1989-01-30 | 1994-01-18 | Rohm Gmbh Chemische Fabrik | Elastomeric arcylic resins |
US5198500A (en) * | 1990-01-16 | 1993-03-30 | Nippon Paint Co., Ltd. | Process for preparing crosslinked resin particles |
US20020173589A1 (en) * | 2001-05-15 | 2002-11-21 | Mitsubishi Gas Chemical Company, Inc. | Acrylic syrup and method of producing same |
EP1258501A3 (en) * | 2001-05-15 | 2003-07-30 | Mitsubishi Gas Chemical Company, Inc. | Acrylic syrup and method of producing the same |
US7056984B2 (en) | 2001-05-15 | 2006-06-06 | Mitsubishi Gas Chemical Co., Inc. | Acrylic syrup and method of producing same |
US20060058458A1 (en) * | 2002-12-19 | 2006-03-16 | Roehm Gmbh & Co. Kg | Coating agents for producing rigid coatings resistant to scratching and soiling and rigid moulded bodies resistant to scratching and soiling and method for the production thereof |
US7784161B2 (en) | 2006-03-27 | 2010-08-31 | Rotox Gmbh | Device for machining the corner area of a frame welded together out of profiled pieces |
US20110210454A1 (en) * | 2008-11-21 | 2011-09-01 | Allison Yue Xiao | Phase Separated Curable Compositions |
US8426986B2 (en) * | 2008-11-21 | 2013-04-23 | Henkel Corporation | Phase separated curable compositions |
WO2011003219A1 (en) * | 2009-07-07 | 2011-01-13 | Evonik Röhm Gmbh | Plasties moulding compositions, mouldings and production processes |
CN102575081A (zh) * | 2009-07-07 | 2012-07-11 | 赢创罗姆有限公司 | 塑料模塑组合物、模制品和制备方法 |
KR20120095339A (ko) * | 2009-07-07 | 2012-08-28 | 에보니크 룀 게엠베하 | 플라스틱 성형 조성물, 성형물 및 제조 방법 |
US8759450B2 (en) | 2009-07-07 | 2014-06-24 | Evonik Röhm Gmbh | Plastics moulding compositions, and mouldings and production processes |
CN102575081B (zh) * | 2009-07-07 | 2014-12-10 | 赢创罗姆有限公司 | 塑料模塑组合物、模制品和制备方法 |
TWI483984B (zh) * | 2009-07-07 | 2015-05-11 | Evonik Roehm Gmbh | 塑膠模製組成物、模製品及製造方法 |
KR101627391B1 (ko) | 2009-07-07 | 2016-06-03 | 에보니크 룀 게엠베하 | 플라스틱 성형 조성물, 성형물 및 제조 방법 |
DE102010028186A1 (de) | 2010-04-26 | 2011-10-27 | Evonik Röhm Gmbh | Fluoreszenzkonversionssolarzelle Lacke |
Also Published As
Publication number | Publication date |
---|---|
GB8420846D0 (en) | 1984-09-19 |
IT8467830A0 (it) | 1984-08-17 |
IT1179059B (it) | 1987-09-16 |
IT8467830A1 (it) | 1986-02-17 |
FR2550793B1 (fr) | 1988-07-29 |
GB2148908A (en) | 1985-06-05 |
DE3329765C2 (de) | 1993-10-14 |
FR2550793A1 (fr) | 1985-02-22 |
GB2148908B (en) | 1987-02-18 |
JPH0543727B2 (enrdf_load_stackoverflow) | 1993-07-02 |
JPS6060119A (ja) | 1985-04-06 |
DE3329765A1 (de) | 1985-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4521567A (en) | Method for making impact resistant molding compositions | |
US4246382A (en) | Solvent resistent acrylic resin and process for producing the same | |
US4543383A (en) | Impact resistant resins and method for making the same | |
DE2253689B2 (de) | Thermoplastische Masse | |
JPH0629304B2 (ja) | 耐衝撃性改良剤 | |
JPH11511492A (ja) | 低いヘイズ値を有する熱可塑性の成形用材料 | |
DE2264224B2 (de) | Herstellung eines vernetzten Polystyrol-Emulsionspolymerisats und seine Verwendung zum Trüben von Kunststoffen auf Methacrylstbasis | |
JPH07258340A (ja) | 熱可塑性に加工可能なポリメタクリレート成形材料から製造された押出成形したプレート及びシート、射出成形部品、成形体及び工作部品 | |
KR100301977B1 (ko) | 개선된내블록킹성을갖는합성수지분말의제조방법 | |
EP0095769B1 (en) | Impact-resistant methacrylic resin composition | |
KR0160333B1 (ko) | 투명성 및 가공성이 우수한 사출성형용 아크릴계 충격보강제의 제조방법 | |
JPH0582405B2 (enrdf_load_stackoverflow) | ||
KR100515592B1 (ko) | 열가소성 수지 조성물 | |
JP3539973B2 (ja) | 乳化グラフトコポリマー | |
JPS63120716A (ja) | 耐衝撃性樹脂の製造方法 | |
JPH0154361B2 (enrdf_load_stackoverflow) | ||
US3673282A (en) | Core-shell vinyl halide polymers having a long-chain vinyl ether containing shell | |
JPS5942024B2 (ja) | 熱可塑性樹脂組成物 | |
JPH09194671A (ja) | 硬質熱可塑性メタクリル樹脂組成物から得られる、亀裂発生剤に対して改良された耐性を示す成形品 | |
KR100188529B1 (ko) | 저온내충격성 및 광택도가 우수한 열가소성 수지조성물의제조방법 | |
JPH0582406B2 (enrdf_load_stackoverflow) | ||
US4754008A (en) | Heat resistant molding compounds | |
JPS6153350A (ja) | 耐溶剤性メタクリル樹脂組成物 | |
JPH0518862B2 (enrdf_load_stackoverflow) | ||
KR20000038610A (ko) | 내후성이 우수한 투명 열가소성 수지 조성물 및그의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROHM GMBH DARMSTADT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:ARNDT, PETER J.;LUDWIG, WALTER;MUNZER, MANFRED;AND OTHERS;REEL/FRAME:004339/0373 Effective date: 19840727 Owner name: ROHM GMBH,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARNDT, PETER J.;LUDWIG, WALTER;MUNZER, MANFRED;AND OTHERS;REEL/FRAME:004339/0373 Effective date: 19840727 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |