US3906572A - Apparatus for maneuvering on a submerged surface - Google Patents

Apparatus for maneuvering on a submerged surface Download PDF

Info

Publication number
US3906572A
US3906572A US378660A US37866073A US3906572A US 3906572 A US3906572 A US 3906572A US 378660 A US378660 A US 378660A US 37866073 A US37866073 A US 37866073A US 3906572 A US3906572 A US 3906572A
Authority
US
United States
Prior art keywords
chamber
wheel
steering
open side
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US378660A
Other languages
English (en)
Inventor
Russell Edward Winn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB9323/65A priority Critical patent/GB1092133A/en
Priority to DE19661556960 priority patent/DE1556960B2/de
Priority to JP41012064A priority patent/JPS4937160B1/ja
Priority to NL6602770A priority patent/NL6602770A/xx
Priority to FR51937A priority patent/FR1470634A/fr
Priority to BE695117D priority patent/BE695117A/xx
Priority to MY196911A priority patent/MY6900011A/xx
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US378660A priority patent/US3906572A/en
Application granted granted Critical
Publication of US3906572A publication Critical patent/US3906572A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/06Cleaning devices for hulls
    • B63B59/10Cleaning devices for hulls using trolleys or the like driven along the surface
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the system basically comprises four sections including a cleaning unit, a control console [30] Fore'gn Application Pnonty Data and a power supply unit.
  • the cleaning unit includes a Mar. 4, United device having rotating crubbing brushes and reduced pressure holds the device against the ship while it is [1.8. CI- being driven along the ubmerged urface f the [51] Int. Cl. B63B 59/02 [58] Field Of Search 15/1.7, 312 R; 114/222 7 Claims, 18 Drawing Flgures US Patent Sept. 23,1975 Sheet 1 of7 3,906,572
  • This invention relates broadly to an overall cleaning system including an apparatus which can be maneuvered on a submerged surface and more particularly,to an apparatus that can be used for cleaning the hull of a ship while it is in the water, or for cleaning the inside of tanks, or it can be used as an underwater survey platform.
  • the cleaning system comprises four sections including a cleaning unit, a control console and a generator power supply unit. Additionally, there may be provided a distributor box or reel unit for feeding out the interconnecting power cable.
  • the cleaning unit has four direction facilities, namely, forward, reverse, left and right (port and starboard).
  • the speed is adjustable and the unit is held to the surface to be cleaned by pressure means, such as a hydraulic impeller.
  • the unit travels along the submerged surface, preferably by means of three hydraulically driven wheels disposed in a triangular configuration, two wheels being located at one end (the rear) transversely disposed on opposite sides of the units longitudinal centerline and one being situated along the centerline at the front.
  • Cleaning is effected by means of three rotary brushes.
  • the power for the cleaning unit is provided by means of a conventional power supply, such as a three-phase electric motor which may then supply power to the impeller.
  • a conventional motor may be provided for the driven wheels and brushes.
  • the cleaning unit of this invention includes a substantially hollow main body or chamber having an open bottom, a pressure-reducing device capable of continuously maintaining a reduced pressure inside the chamber relative to the pressure outside the chamber; a steerable wheel mounted so that the unit can be driven along a submerged surface (e.g. the hull ofa ship) with the open or bottom side of the chamber being held disposed adjacent the surface to be cleaned; a motor for driving the unit along the submerged surface; and a steering device for controlling directional movement of the steerable wheel and thus the unit, typically the chamber, may be box-like in shape or it may comprise a shape substantially like that of the segment of a sphere with the open bottom formed in the flat edge.
  • the chamber also may have a suitable outlet, which can be a cylindrical tube suitably attached to or inte-.
  • the pressure reducing device may comprise a suction pump, eg an. axial piston hydraulic pump, arranged in suitable fashion so that liquid is removed from the interior of the chamber as further enters the chamber about the periphery of the open side.
  • this device may comprise a pump-driven impeller with the impeller blades being conveniently located within the pressure reduction outlet, or a centrifugal pump.
  • Other suitable pressure reducing devices aresatisfactory so long as there is a resultant reduction in the internal pressure of the chamber in the face of liquid entering the chamber, such that the external hydraulic pressure forces the chamber securely into contact with the submerged surface.
  • the inside of the chamber may be continuously vented to maintain the internal pressure below that acting on the external surface of the chamber.
  • the steerable wheel (by which term it is intended to include any other rotatably mounted circular member capable driving the apparatus, e.g., a roller or drum) preferably is mounted within the chamber so that the peripheral running or contact surface thereof projects through the open side of the chamber such that the chamber is supported a small distance, e.g. 5 to 10 cm., from the submerged surface.
  • This wheel may be arranged for operation in a generally conventional manner such as disclosed in US. Pat. Nos. 2,492,649 and 3,035,793. In this way small irregularities or slight curvatures of the surface will not interfere with the maneuverability of the unit. If desired, however, this wheel conveniently could be mounted outside the chamber.
  • the unit In order to facilitate the maneuverability of the unit, it is preferable, if in addition to the steerable wheel, there are two or more supporting wheels, which may be idle or driven in conventional fashion by the drive motor. These wheels are also preferably mounted within the chamber similar to the steerable wheel. In this manner the unit can readily be driven along a submerged surface which is substantially flat over any area at least equal to that of the open side of the chamber. All of the wheels, including the steerable wheel, may be made of suitable rubber or have a rubber tread or tire. Instead of rubber, polyurethane foam, for example, may be used.
  • the steerable wheel should preferably be mounted so that it is free to swivel through a wide angle, i.e. at least In practice this angle ,will often be greater, e.g. between and or even 360.
  • the wheel is free to swivel equally on either side of the neutral position, which results in the apparatus being steered in a straight line. With this wide angle of swivel, the steerable wheel can steer the device very easily and the device can be maneuvered over any part of the submerged surface.
  • the unit is provided with a motor so that it can be driven along the submerged surface.
  • This motor may be arranged so as to drive the steerable wheel, or, where other wheels are provided, one or more of these wheels may be driven.
  • the motor may drive a hydraulic pump which pumps hydraulic fluid through a hydraulic motor for driving the steerable wheel and, if desired, the other wheels.
  • hydraulic motors it is within the scope of the invention to employ electric motors.
  • a steering device for steering the steerable wheel may comprise a hydraulic motor remotely controlled from the land or a ship, by a hydraulically operated actuator. Means would also be provided to control the flow to the actuator in such a manner as to enable the operator to effect the necessary fine degree of remote steering control.
  • the steering may be carried out by means of hydraulically-operated steering rams operating on the drive wheel through a chain drive and provided with suitable valve devices to maintain tautness in the chain, or alternatively, through a crank or cross-head mechanism.
  • the steering may be carried out by an electric motor or other power source which may be remotely controlled and with any necessary mechanical gearing or other mechanism.
  • Either or both the motor and steering devices are preferably mounted in the chamber in a water-tight compartment, which may contain air or another suitable gas, oil or other suitable liquid. Alternatively, they may be of such a design that they are suitable for oper ating in submerged conditions. If certain control items cannot by the nature of their design operate in submerged conditions, it is preferable that the walls of the water-tight compartment be so formed as to provide integral channels for directing the hydraulic operating fluid to the proximity of the units requiring to be controlled and/or driven.
  • cleaning devices e.g. rotatable brushes. These brushes project beyond the open bottom of the chamber and are urged into cleaning contact with the submerged surface.
  • the cleaning devices may be conventionally driven and operated in any one of a variety of ways including a separate motor, or the motor of the suction or pressure re ducing device, or by the driving motor, or the hydraulic fluid pumped from the hydraulic pump.
  • the unit may also have a sensing device and/or instruments for sending back information to the surface, e.g. a gravity-controlled potentiometer, for providing information on the orientation of the unit, or a pressure gauge for relaying information on the hydrostatic pressure.
  • a sensing device and/or instruments for sending back information to the surface, e.g. a gravity-controlled potentiometer, for providing information on the orientation of the unit, or a pressure gauge for relaying information on the hydrostatic pressure.
  • the unit may also have a television camera for navigation and survey purposes mounted on the chamber.
  • All the cables for supplying current to the electrical equipment in the unit may pass through a gland in the wall of the chamber. These electrical cables also may act as hoists for lowering and raising the unit into and out of the water, or if desired, there may be provided separate cables for this purpose.
  • the unit is particularly suited for cleaning the hull of a ship, or for use as a platform for attachment to the hull of a ship for purpose of conducting an underwater survey, or as a stable platform for carrying out mechanical operations underwater.
  • One method of operating the apparatus of the invention comprises allowing the apparatus to enter the water near the hull ofa ship to a suitable depth, activating the pressure reducing device whereby the chamber attaches itself to the hull, and operating the driving motor whereby the apparatus moves over the surface of the hull. If it is desired to clean the sides of the ship, the cleaning device is activated when the chamber has attached itself to the hull. To remove the apparatus from the water, the pressure reducing device is deactivated, and the unit is recovered, e.g., by allowing it to float to the water surface, or by raising it by means of cables attached thereto.
  • FIG. 1 shows a schematic side elevation of the cleaning apparatus or unit
  • FIG. 1A shows schematically the general layout of the overall cleaning system
  • FIG. 2 shows a plan view taken substantially along the line IIII of FIG. 1;
  • FIG. 3 shows in schematic representation a perspective view of the apparatus with some of the internal parts of the apparatus being shown in dotted lines;
  • FIG. 4 shows a view of the underside of an alternate embodiment of the cleaning apparatus
  • FIG. 5 shows a top view of the cleaning apparatus of FIG. 4
  • FIG. 6 shows a side view of the cleaning apparatus taken substantially along the line VI-VI of FIG. 4;
  • FIG. 6A shows details of the mounting of the steerable wheel of FIGS. 1 and 6;
  • FIG. 7 shows the steering device for the steerable wheel
  • FIG. 8 shows a diagram of the hydraulic system and FIGS. 8a through 9 schematically illustrate the operation of the valves
  • FIG. 9 shows details of the peripheral corrugations of the chamber.
  • FIG. 10 shows a plan view of the control console.
  • the chamber 1 has an open bottom side 12 and an outlet 2 disposed in the top wall.
  • a watertight casing 10 Inside the chamber there is provided a driving motor 6, a steering motor 7, a drive motor 8 for the cleaning means (described in detail hereinafter), and a drive motor 16 for the pressure reducing means (also to be described in detail hereinaf ter), all conventionally mounted in the casing 10.
  • These motors also can be conventionally connected to the corresponding parts on the unit.
  • FIGS. 1 to 3 which omit, for clarity of illustration, normal constructional features such as bolts, welds, and linkages, the arrangement of is apparent to those skilled in the art.
  • a power cable 14 is con nected at one end to a distributor reel or alternatively, a distributor box, and at its other end is connected to the generator 64, while the distributor box is connected to the cleaning unit 1 by means of the cable 14'.
  • the distributor is connected by means of a console cable 66 to the control console 63.
  • the steerable wheel 4 is conventionally driven by the driving motor 6 and steered by the steering motor 7. This wheel is free to swivel through 360 as indicated in FIG. 2.
  • the pump motor 16 drives a propeller or impeller 5, which continuously removes water from inside chamber 1 and discharges it through the outlet 2, thereby lowering the pressure inside the chamber 1 relative to the external hydrostatic pressure. The apparatus is then forced against the submerged surface.
  • the steering is accomplished by remote control from the control console 63 and may be either manual or automatic.
  • the steering is obtained by means of the motor 7, when the designated steering control at the console is selected for movement of the chamber in the desired direction.
  • a conventional electrical circuit produces a predetermined alternating output signal which is fed from the console 63 by means of the console cable 66 and control cable 14' to either a port or starboard solenoid located in a control box 70 on the cleaning unit.
  • a steering valve which operably is connected with the solenoids, will then operate to provide hydraulic pressure to the required side of a steering ram, thus moving the steering wheel angle to change direction so that the cleaning unit will follow the desired course for cleaning.
  • the automatic system comprises conventional electrical circuitry which causes the unit to follow a predetermined path of travel.
  • the casing also contains transducers 21, which send back to the surface information regarding the orientation of the apparatus, and the hydrostatic pressures inside and outside the chamber.
  • a television camera Mounted on the top of the chamber 1 there may be a television camera which is directed towards the front of the apparatus for nagivation and survey purposes.
  • FIG. 8 the chamber 1 with the open side 12 and the outlet or pressure reduction duct 2.
  • the chamber 1 houses the motor 16, which drives the impeller 5 and the watertight hydraulic pump 9', which as shown may extend outside the housing of the cleaning unit.
  • This hydraulic pump 9 pumps hydraulic fluid through conduits shown only schematically in FIG. 8 (so as not to complicate FIGS. 4 to 7) for driving the wheel and brush motors shown schematically at 6 and the steering rams 34, 35.
  • FIGS. 8a through 8f In order to facilitate handling there is provided a handrail 29 (See FIG.
  • FIG. 6 schematically illustrates that the pump 9 is driven from the impeller shaft, this is merely one possible location and is not intended to be limiting as to the exact physical location of the pump within the cleaning unit.
  • the cleaning brushes a, 25b and 250 are conventionally driven by hydraulic motors 8a, 8b and 8c which comprise the motor 8 schematically shown in FIG. 1.
  • the steerable wheel 4 is driven by the hydraulic motor 6 and the wheels and 3b are driven respectively by the hydraulic motors 30a and 30b.
  • the rotating impeller 5 continuously removes water from inside chamber 1 and discharges it through the outlet or pressure reduction duct 2, thereby lowering the pressure inside the chamber 1 relative to the external hydrostatic pressure and causing the apparatus to be forced against the submerged surface.
  • the steerable wheel 4 is directionally driven by means of a yoke 31 mounted therewith in conventional fashion and fixed to a sprocket chain driven wheel or gear 32.
  • a yoke 31 mounted therewith in conventional fashion and fixed to a sprocket chain driven wheel or gear 32.
  • a sprocket chain driven wheel or gear 32 Housed inside the steering wheel casing 33 are two hydraulically-operated steering rams 34 and 35 having pistons 36 and 37, respectively.
  • a chain 38 connected to the pistons 36 and 37 drives the wheel 32 in the desired direction.
  • the generator 64 provides a three-phase power supply for the overall system and housed in the distributor box are thermal overload, main contactor and a current transformer, all of which are conventional both in construction and arrangement.
  • the current transformer is connected in one phase and forms part of the main motor current measuring circuit.
  • the distributor reel comprises the distributor box and a large takeup reel on which is mounted the coaxial control cable.
  • the distributor reel and the distributor box each are optional and need not necessarily be employed in the overall system.
  • the hydraulic operation of the cleaning unit is such that as soon as the main drive motor 16 starts, the impeller 5, the pump 9 and the three brushes 25a, 25b, and 250 rotate.
  • the brush motors 8a, 8b, and 8c and the wheel drive motors 6,. 30a and 3012 are connected in series relation with the pump 9.
  • the wheel motors will not operate until they have been signalled to do so from the control console.
  • the control of the wheel motors is effected through the use of a conventional 2-solenoid operated valve 43, generally designated 43a for forward end 43b for reverse operation.
  • a conventional duel direction steering valve generally designated 44, which operates in conjunction with a standard slipring block (not shown), all of which are conventionally mounted in the casing 10 on the cleaning unit.
  • FIG. 8a shows the valve in its neutral position. Energising either solenoid results in the desired direction of movement of valve spool 43, which in turn causes hydraulic pressure to be applied to the wheel drive motors 6, 30a, 30b through the slipring block in a given direction.
  • the valve spool 42 moves towards 43a, thereby causing fluid entering at port 43c to pass through the valve leaving at port 43d.
  • the hydraulic fluid then passes through motors 6, 30a and 30b in that order, and reenters the valve at port 43e.
  • the hydraulic fluid then passes through the valve and leaves the valve at' poirt 43f, which is connected internally to port 43g and thence passes to brush motors 8a, 8b, and 8c.
  • solenoid 43b is energised (see FIG. 80)
  • the spool 42 will move towards 43b thereby causing the hydraulic fluid entering at port 43c to pass through the valve in such a way that it will leave the valve 43 at port 43c.
  • the hydraulic fluid will then pass through the wheel motors b, 30a, 6 and re-enter valve 43 at port 43d.
  • the hydraulic fluid will then pass through the valve 43, leaving it at port 43g and then to brush motors 8a, 8b and 80.
  • the motor 30b, 30a and b operate in reverse directions compared to when solenoid 43a is energised.
  • valve spool 42 When neither solenoid 43a nor 43b are energised, valve spool 42 is returned to its neutral position by springs (not shown). Hydraulic fluid is allowed to enter at port 436 and since spool 42 does not completely cover or block port 430, fluid is allowed to pass on either side of spool 42 and leave the valve 43 at ports 43f and 43g, thereby allowing only the brush motors 8a, 8b and SC to continue to rotate.
  • the previously mentioned steering valve 44 is identical in function, operation and construction (see FIGS. 8d-8f) to the forward/reverse valve 43 and is operated either through a port solenoid 440 or a starboard solenoid 44b and is connected to control the steering rams 34, so as to alter the angle of the steering wheel 4 connected therewith in a desired manner.
  • the port and starboard solenoids are also selected by an appropriate control at the console 63.
  • the slipring block is suitably constructed in conventional fashion so as to provide the required 'path for the wheel hydraulic circuits.
  • valve spool is constructed so as to prevent passage of fluid facing line 49 when in the neutral position (see FIG. 8d) when neither solenoid 44a or 44b are energised.
  • Hydraulic fluid is housed in the reservoir 40 and is serially pumped by pump 9' via the forward- /reverse valve 43 through the hydraulic motor 6 (which drives the steerable wheel 4), the hydraulic motors 30a and 30b (which drive the wheels 3a and 3b) and then via the valve 43 in the previously described manner to the hydraulic motors 8a, 8b and 80 (which drive the brushes 25a, 25b and 250) and back to the reservoir 40 via line 48.
  • the fluid drives the motors 8a, 8b and 8c in one direction only as brushes 25a, 25b and 25c need rotate in one direction only.
  • the forward/reverse solenoid 43 is actuated from the console 63 by selecting the desired direction of the cleaninf unit, and in turn, actuates the valve 43 to obtain the desired direction of flow.
  • the hydraulic fluid also passes through line 49 to steering ram 34 or 35 via the valve 44.
  • Actuation of the valve 44 is controlled by a suitable steering mechanism (not shown) at the console 63 and the amounts of fluid allowed to pass through line or 51 determines the selected movement of either piston 36 or 37 respectively, and hence the direction of rotation of sprocket wheel 32, particular reference being made to FIG. 7. Fluid may pass between the rams 34 and 35 through the common line 470.
  • the valve 44 may be actuated by solenoids 44a (see FIG.
  • Valve 47 functions as a drainage seal should there be any leakage from the rams.
  • the pistons 36 and 37 operate in a highly desirable manner.
  • a relief valve 41 is provided conveniently operating at a pressure of 1,000 psi or more so that excess pressure is not built up in the hydraulic system.
  • the peripheral edge of the chamber which bounds the open side 12 and which comes into close proximity with the submerged surface is provided with a series of corrigations 26 therein. See FIG. 9. In this manner turbulent conditions are established, and the ingress of water is reduced. This means that less power is required in maintaining a reduced pressure inside the chamber relative to the pressure outside the chamber in order to hold the unit against the submerged surface.
  • an apparatus suitable for attaching to a submerged surface comprising a chamber having an open side, a pressure reducing device capable of continuously maintaining a reduced pressure inside the chamber relative to the pressure outside the chamber, and a series of corrugations in the edge of the chamber which bounds the open side and which edge comes into close proximity with the submerged surface.
  • Such an apparatus may be operated by allowing the apparatus to enter the water near the hull of a ship to a suitable depth, and activating the pressure reducing device whereby the chamber attaches itself to the hull.
  • the corrugations 26 used in this invention are preferably continuous, and preferably define an area of the same shape as the open space bounded by this edge. Thus, if the open side is circular or oval in shape, the currugations enclosure circular or oval areas also.
  • the corrugations may be discontinuous and inclined at an angle to the bounding line of the open side, e.g., with a circular open side, there could be a series of corrugations forming non-intersecting tangents with the inner boundary of the open side.
  • the profile of the corrugations may vary considerably. They may, for example, be symmetrical or unsymmetrical, e.g., sinusoidal, circular, square, V-shaped or of other profiles with sharp edges.
  • the corrugations are arranged so that in proceeding from the outside to the inside of the chamber across the edge bounding the open side one transverse at least two corrugations, and more preferably six corrugations or more.
  • the open side is circular in shape and the edge of the chamber has six corrugations therein, the profile preferably being sinusoidal.
  • FIGS. 4 and 6 of the drawings show the use of corrugations at the edge of the chamber.
  • FIG. 9 of the drawings shows an enlarged side view of the chamber.
  • the' apparatus may include conventional devices for indicating the attitude of the indicating the attitude of the steerable wheel 4, respectively.
  • the rotatable drum 55 is-controlledby the device for sensing the position of the chamber relative to steerable wheel 4 and the chamber (e.g., standardgravity-controlled pendulum and 'magsliparrange-f ment), and a device for sensing the position of the chamber relative to said submerged surface (e.g., standard hydrostatic pressure responsive gauge).
  • the attitude of the chamber and the steerable wheel are visibly indicated on the screen of the console 63 by means of suitable representations (e.g., small replicas).
  • the console screen is, preferably marked with graduated parallel lines so that the posi tion of the chamber is indicated by movement of the screen which is controllable by the device which senses the position of the chamber. With this information an operator can readily ascertain the position and attitude of the chamber, and the attitude of the steerable wheel, and take any necessary corrective measures to keep the maneuverable chamber on its desired course.
  • the depth of the cleaning unit is detected by means of the pressure transducer schematically represented at 21 and mounted on the unit. This transducer will provide a signal to the console which provides a suitable visible indication of depth.
  • the monitor comprises a vertically moving surface graduated in horizontal lines which correspond to depth (feet).
  • a typical arrangement may have been connected to the moving surface a takeup drum (not shown) at the top and bottom with the drive being applied by means of a conventional capacitor motor through a belt-driven pulley and gears, and a chain link between the top and bottom drums.
  • the depth indicator responds ac cordingly by sending an appropriate signal to the motor which causes the surface 55 to move, thereby registering the corresponding depth at the console 63 to provide the operator with an indication of th depth of the unit.
  • One method of operating the preferred embodiment of this invention comprises allowing the apparatus to enter the water near the hull of a ship to a suitable depth, activating the pressure reducing device whereby the chamber attaches itself to the hull, operating the driving motor whereby the apparatus moves over the surface of the hull, noting the attitude and position of the chamber and the attitude of the steerable wheel, and controlling the course of the chamber using the information which has been sensed from the apparatus and displayed at the console. If it is desired to clean the sides of the ship, the brush motors are activated before or when the chamber has attached itself to the hull. To remove the apparatus from the water, the activation of the pressure reducing device is stopped, and the apparatus is recovered, e.g., by allowing it first to float to the surface, or by raising it by means of cables or wires attached to the apparatus.
  • the rotatable drum 55 has parallel graduated lines 56. In front of this drum is pivoted about 57 a replica of the chamber 58. About a pivot 59 attached to the replica 58 is pivoted another replica 60, this being a replica of the steerable wheel 4.
  • These two replicas 58 and 60 are controlled by the device for indicating the attitude of the chamber and the device for the submerged surface, whicli1 in this case isia system capable of generating an inductive signal in proportion to the deflection ,of an evacuated capsule under changing hydrostatic pressure.
  • Full controlof the apparatus is achieved by the operator observing the position of the replicas 58 and 60 and of the position of the drum 55 as indicated by the parallel lines 56, and taking any correcting measures necessary to keep the apparatus on its desired course.
  • An apparatus capable of being driven along a submerged surface and cleaning said surface, comprising a chamber having an open side, supporting means for maintaining the open side of said chamber at a distance from said surface, said supporting means including wheel means, driving means connected to said wheel means for causing said chamber to move along said surface, pressure reducing means operably connected with said chamber for continuously maintaining a reduced pressure inside the chamber relative to the pressure outside the chamber, steering means mounted with said chamber for directionally moving said apparatus as it is driven along the submerged surface, said wheel means further including a wheel operably connected with said steering means and capable of being swivelled through an angle of at least and cleaning means comprising brush means mounted for rotation about an axis substantially perpendicular to the surface to be cleaned, means to rotate said brush means so that when said brush means are compressed against said surface the bristles thereon rotate in a plane substantially parallel to said surface.
  • An apparatus as claimed in claim 1 including a series of corrugations disposed about the edge of the chamber which bounds the open side and which edge is disposed in close proximity to the submerged surface.
  • An apparatus capable of being driven along a submerged surface and cleaning said surface, comprising a chamber having an open side, said chamber including a series of corrugations disposed about the edge of said chamber which bounds said open side and facing said submerged surface, supporting means for maintaining the open side of said chamber at a distance from said nected with said steering rams and capable of being swivelled through an angle of at least and cleaning means comprising brush means for rotation about an axis substantially perpendicular to the surface to be cleaned, means to rotate said brush so that when said brush means are compressed against said surface the bristles thereon rotate in a plane substantially parallel to said surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
US378660A 1965-03-04 1973-07-12 Apparatus for maneuvering on a submerged surface Expired - Lifetime US3906572A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
GB9323/65A GB1092133A (en) 1965-03-04 1965-03-04 Apparatus for manoeuvring on a submerged surface
DE19661556960 DE1556960B2 (de) 1965-03-04 1966-03-01 Fernsteuerbares motorgetriebenes reinigungs oder beobach tungsgeraet
JP41012064A JPS4937160B1 (ja) 1965-03-04 1966-03-01
FR51937A FR1470634A (fr) 1965-03-04 1966-03-03 Appareil pouvant être manoeuvré sur une surface immergée
NL6602770A NL6602770A (ja) 1965-03-04 1966-03-03
BE695117D BE695117A (ja) 1965-03-04 1967-03-07
MY196911A MY6900011A (en) 1965-03-04 1969-12-31 Apparatus for manoeuvring on a submerged surface
US378660A US3906572A (en) 1965-03-04 1973-07-12 Apparatus for maneuvering on a submerged surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9323/65A GB1092133A (en) 1965-03-04 1965-03-04 Apparatus for manoeuvring on a submerged surface
US6544970A 1970-08-20 1970-08-20
US378660A US3906572A (en) 1965-03-04 1973-07-12 Apparatus for maneuvering on a submerged surface

Publications (1)

Publication Number Publication Date
US3906572A true US3906572A (en) 1975-09-23

Family

ID=27255346

Family Applications (1)

Application Number Title Priority Date Filing Date
US378660A Expired - Lifetime US3906572A (en) 1965-03-04 1973-07-12 Apparatus for maneuvering on a submerged surface

Country Status (7)

Country Link
US (1) US3906572A (ja)
JP (1) JPS4937160B1 (ja)
BE (1) BE695117A (ja)
DE (1) DE1556960B2 (ja)
GB (1) GB1092133A (ja)
MY (1) MY6900011A (ja)
NL (1) NL6602770A (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011827A (en) * 1976-01-12 1977-03-15 Ben Fond Machine for cleaning the bottom of boats
US4029164A (en) * 1974-12-28 1977-06-14 Sanko Co., Ltd. Movable apparatus adhering to the surface of a wall
US4041565A (en) * 1975-03-24 1977-08-16 Butterworth Systems Inc. Rotatable brushes
US4079694A (en) * 1975-12-01 1978-03-21 Commissariat A L'energie Atomique Apparatus for applying a coating to a submerged surface
FR2369964A1 (fr) * 1976-11-04 1978-06-02 Lundberg Hans Procede et appareil pour le traitement des surfaces immergees de structures fixes ou flottantes
US4168557A (en) * 1976-12-15 1979-09-25 Rasch Wilhelm Pool cleaners
US4270484A (en) * 1978-10-07 1981-06-02 Mitsui Engineering & Shipbuilding Co., Ltd. Machine for underwater painting
US4574722A (en) * 1982-10-06 1986-03-11 Mitsui Engineering & Shipbuilding Co., Ltd. Underwater cleaning apparatus
US4598436A (en) * 1983-06-22 1986-07-08 Kraftwerk Union Aktiengesellschaft Cleaning equipment for the sealing surfaces of a vessel
US4838193A (en) * 1986-12-23 1989-06-13 Tak Josephus A M V D Scrubbing machine
US5222452A (en) * 1992-06-15 1993-06-29 Maloney Michael J Boat hull cleaning apparatus
US5454129A (en) * 1994-09-01 1995-10-03 Kell; Richard T. Self-powered pool vacuum with remote controlled capabilities
US5513930A (en) * 1991-04-11 1996-05-07 Eathorne; Russell J. Underwater servicing device
US5617600A (en) * 1993-12-03 1997-04-08 Frattini; Ercole Self-propelled underwater electromechanical apparatus for cleaning the bottom and walls of swimming pools
US6070547A (en) * 1997-05-16 2000-06-06 Seaward Marine Services, Inc. Surface cleaning device and related method
US6276478B1 (en) * 2000-02-16 2001-08-21 Kathleen Garrubba Hopkins Adherent robot
WO2004029591A1 (es) * 2002-09-30 2004-04-08 Coiwapli, S.L. Método y sistema de inspección de un revestimiento de protección de una superficie
US20040133999A1 (en) * 2003-01-13 2004-07-15 Walton Charles A. Underwater cleaning and scrubbing apparatus
US20060174430A1 (en) * 2005-02-08 2006-08-10 Vittorio Pareti Swimming pool cleaning device
US20070189858A1 (en) * 2006-02-13 2007-08-16 Kabushiki Kaisha Toshiba Underwater inspecting and repairing system
US20070192971A1 (en) * 2002-01-18 2007-08-23 Hui Joseph W Swimming pool cleaner
US7352074B1 (en) * 1999-11-11 2008-04-01 Peter Alexander Josephus Pas System for producing hydrogen making use of a stream of water
GB2444479A (en) * 2006-12-04 2008-06-11 Ronald James Westhead Marine hull cleaner with propeller means
EP2062659A2 (en) 2007-11-26 2009-05-27 Air Products and Chemicals, Inc. Devices and methods for performing inspections, repairs, and/or other operations within vessels
US20100126403A1 (en) * 2008-11-21 2010-05-27 Rooney Iii James H Hull Robot
US20100131098A1 (en) * 2008-11-21 2010-05-27 Rooney Iii James H Hull robot with rotatable turret
US20110000031A1 (en) * 2007-12-21 2011-01-06 Philippe Pichon Apparatus for cleaning submerged surface with eddy filtration
US20110162570A1 (en) * 2010-01-06 2011-07-07 Robert Moser Boat Hull Washing Apparatus
US20130031729A1 (en) * 2011-08-04 2013-02-07 Fabrizio Bernini Automatic swimming pool cleaning machine
US20140137343A1 (en) * 2012-11-20 2014-05-22 Aqua Products, Inc. Pool or tank cleaning vehicle with a powered brush
US9038557B2 (en) 2012-09-14 2015-05-26 Raytheon Company Hull robot with hull separation countermeasures
US9179653B1 (en) * 2014-04-30 2015-11-10 Kyle D. Snyder Automated fish tank cleaning assembly
US9233724B2 (en) 2009-10-14 2016-01-12 Raytheon Company Hull robot drive system
GB2528871A (en) * 2014-07-31 2016-02-10 Reece Innovation Ct Ltd Improvements in or relating to ROVs
CN106516041A (zh) * 2016-11-14 2017-03-22 南通市海鸥救生防护用品有限公司 船体清刷监测水下机器人用行走装置
CN106516040A (zh) * 2016-11-14 2017-03-22 南通市海鸥救生防护用品有限公司 船体清刷监测水下机器人用转向装置
US20180232874A1 (en) * 2017-02-10 2018-08-16 Ecosubsea As Inspection vehicle
US10160406B2 (en) * 2016-03-22 2018-12-25 Boe Technology Group Co., Ltd. Mobile platform and operating method thereof
US10308093B2 (en) * 2014-11-10 2019-06-04 Tas Global Co., Ltd. Load distribution apparatus of magnetic wheel
US11313846B1 (en) 2020-02-10 2022-04-26 The United States Of America, As Represented By The Secretary Of The Navy Underwater ship hull cleaning tool test device
WO2022130310A3 (en) * 2020-12-17 2022-12-08 Geyser Mark Beverly Underwater cleaning

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1756431A1 (de) * 1968-05-20 1970-02-26 Paul Hammelmann Vorrichtung zum Reinigen und Konservieren grosser geschlossener,ueber und unter Wasser liegender Flaechen
JPS49134019A (ja) * 1973-04-25 1974-12-24
JPS52114394U (ja) * 1975-12-18 1977-08-30
WO1984003869A1 (en) * 1983-04-06 1984-10-11 John Cameron Robertson Remotely-operable vehicles for use in the cleaning and inspection of marine contact surfaces
FR2569140B1 (fr) * 1984-08-14 1992-04-17 Int Robotic Engineerin Appareil pour l'observation et/ou le traitement d'une surface immergee
JPS6327123U (ja) * 1986-08-07 1988-02-23
JPS6393814U (ja) * 1986-12-09 1988-06-17
JP3281516B2 (ja) * 1995-08-07 2002-05-13 確太郎 福田 水槽清浄機
US6199237B1 (en) * 1998-11-12 2001-03-13 Brent Budden Underwater vacuum
DE202006008893U1 (de) * 2006-06-02 2007-10-04 G. Theodor Freese Gmbh & Co. Kg Robotersteuerung für Schiffsentlackung und -beschichtung
JP7049279B2 (ja) * 2019-01-18 2022-04-06 ヤンマーパワーテクノロジー株式会社 水中清掃作業機
CN112849356A (zh) * 2021-03-19 2021-05-28 上海应用技术大学 一种水下爬壁船舶清洗机器人

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3337889A (en) * 1966-03-11 1967-08-29 Walter L West Mechanical device for cleaning the interior of large aquarium tanks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE91868C (ja) *
US1079208A (en) * 1912-08-05 1913-11-18 Frederick George Browne Apparatus for cleaning the hulls of ships or any kind of vessel.
GB124236A (en) * 1918-01-21 1919-03-21 N Odero Fu Aless & Co Improvements in or relating to Submersible Apparatus for Permitting Work on Sunken Vessels and the like.
DE388654C (de) * 1921-06-23 1924-01-17 Thorsen L Vorrichtung zum Reinigen von Schiffsboeden
FR1158786A (fr) * 1956-07-25 1958-06-19 Nettoyeuse-brosseuse sous-marine
US3088429A (en) * 1961-06-28 1963-05-07 Johannessen Harry De Fi Brandt Cleaning devices for removing marine growth from ships' hulls

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3337889A (en) * 1966-03-11 1967-08-29 Walter L West Mechanical device for cleaning the interior of large aquarium tanks

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029164A (en) * 1974-12-28 1977-06-14 Sanko Co., Ltd. Movable apparatus adhering to the surface of a wall
US4041565A (en) * 1975-03-24 1977-08-16 Butterworth Systems Inc. Rotatable brushes
US4079694A (en) * 1975-12-01 1978-03-21 Commissariat A L'energie Atomique Apparatus for applying a coating to a submerged surface
US4011827A (en) * 1976-01-12 1977-03-15 Ben Fond Machine for cleaning the bottom of boats
FR2369964A1 (fr) * 1976-11-04 1978-06-02 Lundberg Hans Procede et appareil pour le traitement des surfaces immergees de structures fixes ou flottantes
US4168557A (en) * 1976-12-15 1979-09-25 Rasch Wilhelm Pool cleaners
US4270484A (en) * 1978-10-07 1981-06-02 Mitsui Engineering & Shipbuilding Co., Ltd. Machine for underwater painting
US4574722A (en) * 1982-10-06 1986-03-11 Mitsui Engineering & Shipbuilding Co., Ltd. Underwater cleaning apparatus
US4598436A (en) * 1983-06-22 1986-07-08 Kraftwerk Union Aktiengesellschaft Cleaning equipment for the sealing surfaces of a vessel
US4838193A (en) * 1986-12-23 1989-06-13 Tak Josephus A M V D Scrubbing machine
US5513930A (en) * 1991-04-11 1996-05-07 Eathorne; Russell J. Underwater servicing device
US5222452A (en) * 1992-06-15 1993-06-29 Maloney Michael J Boat hull cleaning apparatus
US5617600A (en) * 1993-12-03 1997-04-08 Frattini; Ercole Self-propelled underwater electromechanical apparatus for cleaning the bottom and walls of swimming pools
US5454129A (en) * 1994-09-01 1995-10-03 Kell; Richard T. Self-powered pool vacuum with remote controlled capabilities
US6070547A (en) * 1997-05-16 2000-06-06 Seaward Marine Services, Inc. Surface cleaning device and related method
US7352074B1 (en) * 1999-11-11 2008-04-01 Peter Alexander Josephus Pas System for producing hydrogen making use of a stream of water
WO2001060638A1 (en) * 2000-02-16 2001-08-23 Kathleen Garrubba Hopkins Adherent robot
US6276478B1 (en) * 2000-02-16 2001-08-21 Kathleen Garrubba Hopkins Adherent robot
US20070192971A1 (en) * 2002-01-18 2007-08-23 Hui Joseph W Swimming pool cleaner
WO2004029591A1 (es) * 2002-09-30 2004-04-08 Coiwapli, S.L. Método y sistema de inspección de un revestimiento de protección de una superficie
US20040133999A1 (en) * 2003-01-13 2004-07-15 Walton Charles A. Underwater cleaning and scrubbing apparatus
US7908696B2 (en) * 2005-02-08 2011-03-22 Vittorio Pareti Swimming pool cleaning device
USRE45852E1 (en) * 2005-02-08 2016-01-19 Maytronics, Ltd. Swimming pool cleaning device
US20060174430A1 (en) * 2005-02-08 2006-08-10 Vittorio Pareti Swimming pool cleaning device
US7303360B2 (en) * 2006-02-13 2007-12-04 Kabushiki Kaisha Toshiba Underwater inspecting and repairing system
US20070189858A1 (en) * 2006-02-13 2007-08-16 Kabushiki Kaisha Toshiba Underwater inspecting and repairing system
GB2444479A (en) * 2006-12-04 2008-06-11 Ronald James Westhead Marine hull cleaner with propeller means
GB2444479B (en) * 2006-12-04 2011-07-06 Ronald James Westhead Marine hull cleaner
US8616075B2 (en) 2007-11-26 2013-12-31 Air Products And Chemicals, Inc. System for performing inspections, repairs, and/or other operations within vessels
EP2062659A2 (en) 2007-11-26 2009-05-27 Air Products and Chemicals, Inc. Devices and methods for performing inspections, repairs, and/or other operations within vessels
TWI491542B (zh) * 2007-11-26 2015-07-11 Air Prod & Chem 於容器內進行檢查、修護及或其它操作的裝置及方法
EP2851135A1 (en) * 2007-11-26 2015-03-25 Air Products And Chemicals, Inc. Devices and methods for performing inspections, repairs and/or other operations within vessels
EP2062659A3 (en) * 2007-11-26 2012-08-08 Air Products and Chemicals, Inc. Devices and methods for performing inspections, repairs, and/or other operations within vessels
US20110000031A1 (en) * 2007-12-21 2011-01-06 Philippe Pichon Apparatus for cleaning submerged surface with eddy filtration
US8627533B2 (en) * 2007-12-21 2014-01-14 Zodiac Pool Care Europe Apparatus for cleaning submerged surface with eddy filtration
US9440717B2 (en) * 2008-11-21 2016-09-13 Raytheon Company Hull robot
US9254898B2 (en) 2008-11-21 2016-02-09 Raytheon Company Hull robot with rotatable turret
US20100126403A1 (en) * 2008-11-21 2010-05-27 Rooney Iii James H Hull Robot
US20100131098A1 (en) * 2008-11-21 2010-05-27 Rooney Iii James H Hull robot with rotatable turret
US9233724B2 (en) 2009-10-14 2016-01-12 Raytheon Company Hull robot drive system
US20110162570A1 (en) * 2010-01-06 2011-07-07 Robert Moser Boat Hull Washing Apparatus
US8661595B2 (en) * 2011-08-04 2014-03-04 Fabrizio Bernini Automatic swimming pool cleaning machine
US20130031729A1 (en) * 2011-08-04 2013-02-07 Fabrizio Bernini Automatic swimming pool cleaning machine
US9038557B2 (en) 2012-09-14 2015-05-26 Raytheon Company Hull robot with hull separation countermeasures
US9180934B2 (en) 2012-09-14 2015-11-10 Raytheon Company Hull cleaning robot
US9061736B2 (en) 2012-09-14 2015-06-23 Raytheon Company Hull robot for autonomously detecting cleanliness of a hull
US9051028B2 (en) 2012-09-14 2015-06-09 Raytheon Company Autonomous hull inspection
US20140137343A1 (en) * 2012-11-20 2014-05-22 Aqua Products, Inc. Pool or tank cleaning vehicle with a powered brush
US9179653B1 (en) * 2014-04-30 2015-11-10 Kyle D. Snyder Automated fish tank cleaning assembly
GB2528871A (en) * 2014-07-31 2016-02-10 Reece Innovation Ct Ltd Improvements in or relating to ROVs
US10308093B2 (en) * 2014-11-10 2019-06-04 Tas Global Co., Ltd. Load distribution apparatus of magnetic wheel
US10160406B2 (en) * 2016-03-22 2018-12-25 Boe Technology Group Co., Ltd. Mobile platform and operating method thereof
CN106516040A (zh) * 2016-11-14 2017-03-22 南通市海鸥救生防护用品有限公司 船体清刷监测水下机器人用转向装置
CN106516041A (zh) * 2016-11-14 2017-03-22 南通市海鸥救生防护用品有限公司 船体清刷监测水下机器人用行走装置
US20180232874A1 (en) * 2017-02-10 2018-08-16 Ecosubsea As Inspection vehicle
US11313846B1 (en) 2020-02-10 2022-04-26 The United States Of America, As Represented By The Secretary Of The Navy Underwater ship hull cleaning tool test device
WO2022130310A3 (en) * 2020-12-17 2022-12-08 Geyser Mark Beverly Underwater cleaning

Also Published As

Publication number Publication date
JPS4937160B1 (ja) 1974-10-05
DE1556960A1 (ja) 1971-08-26
NL6602770A (ja) 1966-09-05
DE1556960B2 (de) 1971-08-26
MY6900011A (en) 1969-12-31
GB1092133A (en) 1967-11-22
BE695117A (ja) 1967-09-07

Similar Documents

Publication Publication Date Title
US3906572A (en) Apparatus for maneuvering on a submerged surface
US5947051A (en) Underwater self-propelled surface adhering robotically operated vehicle
CN103600821B (zh) 全向浮游爬壁水下机器人
US3670514A (en) Automatic submarine trencher
KR20150106884A (ko) 수중 세정 시스템
JPS5830894A (ja) 船の推進装置
US2213611A (en) Boat propelling and stabilizing apparatus
CN1095681A (zh) 具有安装于平坦船底之下的驱动螺旋桨的船只驱动装置
US6273642B1 (en) Buoyant propulsion underwater trenching apparatus
US4214387A (en) Trenching apparatus and method
US2214656A (en) Mechanism for improving the dirigibility of ships, submarines, and aircraft
KR101475203B1 (ko) 수중 청소로봇
US2359964A (en) Salvaging apparatus
WO1984003869A1 (en) Remotely-operable vehicles for use in the cleaning and inspection of marine contact surfaces
JP3701746B2 (ja) ピッチング機能付水中監視カメラ
US2797659A (en) Aqua jet propulsion device
EP3418178A1 (en) Cleaning system
US4058082A (en) Submersible painting apparatus
US4044566A (en) Machine for forming trenches for pipelines or the like in the sea bed
IE42767B1 (en) Submersible painting apparatus
KR101540309B1 (ko) 수중 청소로봇
CN112483770A (zh) 一种cctv式的漂浮筏
CA1074099A (en) Submersible painting apparatus
JP2909804B2 (ja) 石油貯蔵船船体の保守装置
JP3634007B2 (ja) サイドスラスタ装置