US3886992A - Method of treating metal melts with a purging gas during the process of continuous casting - Google Patents
Method of treating metal melts with a purging gas during the process of continuous casting Download PDFInfo
- Publication number
- US3886992A US3886992A US257421A US25742172A US3886992A US 3886992 A US3886992 A US 3886992A US 257421 A US257421 A US 257421A US 25742172 A US25742172 A US 25742172A US 3886992 A US3886992 A US 3886992A
- Authority
- US
- United States
- Prior art keywords
- metal
- melt
- teeming
- gas
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 65
- 239000002184 metal Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000000155 melt Substances 0.000 title claims abstract description 29
- 238000010926 purge Methods 0.000 title claims abstract description 28
- 238000009749 continuous casting Methods 0.000 title claims abstract description 24
- 230000008569 process Effects 0.000 title description 3
- 239000002893 slag Substances 0.000 claims abstract description 12
- 238000005275 alloying Methods 0.000 claims description 24
- 238000005266 casting Methods 0.000 claims description 23
- 230000009471 action Effects 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000009825 accumulation Methods 0.000 claims description 4
- 230000035508 accumulation Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 54
- 229910000831 Steel Inorganic materials 0.000 description 14
- 239000010959 steel Substances 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000161 steel melt Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/05—Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0037—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
- C21C7/0043—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material into the falling stream of molten metal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0068—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by introducing material into a current of streaming metal
Definitions
- a method of treating the metal with a purging gas during continuous casting in a tundish fitted with a pouring pipe has been disclosed in German petty Pat. No. 7,023,173.
- the arrangement disclosed in such patent which consists of a blowing orifice in the bottom of the tundish in the vicinity of the pouring nozzle has a very modest purifying effect, since the depth of the bath in a tundish is only about 30 to 40 cms. and therefore offers only a short path for the passage of the gas through the steel melt.
- the purifying effect regarding the purging of undesirable gaseous constituents in the melt and the removal of non-metallic occlusions or inclusions is very slight.
- the steel may pick up fresh oxidic impurities.
- the maintenance and insertion of porous purging bricks in the tundish is time-consuming and expensive.
- U.S. Pat. No. 2,005.31 1 describes the passage of major volumes of gas through the stopper rod ofa ladle for the purpose of cooling same. This arrangement also has no purifying effect.
- Another object of the invention is to bring about a satisfactory dissolution and even distribution of any deoxidants and/or alloying elements that may be also introduced into the melt.
- another object of the invention is to reduce the frequency of transverse cracking by controlling the pattern of flow in the casting head and, when aluminium-containing steels are cast to prevent the pouring pipes from being choked.
- the proposed method of introducing the gas into the center of the teeming jet as the jet forms, in conjunction with the injector-like action of the teeming metal, results in the gas being divided into a multiplicity of very small bubbles having diameters not exceeding about 5 mm. which provide an intimate mixture between gas and steel.
- the injector effect also assists in keeping the gas exit opening clear.
- the proposed method produces continuous castings which are substantially free from surface occlusions or inclusions. Moreover, macroscopic purity is greatly improved. The small bubbles are particularly good for picking up oxidic impurities.
- the gas at the point where the teeming jet is in the course of formation they are forced to travel a long way through the liquid steel and the probability of collisions between gas bubbles and oxide impurities and the resultant purifying effects are thus greatly improved.
- the slow ascent of the gas bubbles in the pool they readily take-up the non-metallic occlusions or inclusions and convey them to the slag on the surface of the liquid pool.
- the small gas volume has the further advantage that the surface of the pool is not violently agitated and that there is avoided contamination of the casting by particles of slag from the floating slag cover.
- the small bubbles affect the pattern of flow in the mold in the direction of reducing descending components of flow.
- the small bubbles are carried into the critical surface zones where theyfloat upwards in the descending steel and thus purge this zone of the casting which is particularly liable to exhibit faults.
- the lift imparted to the descending metal at the solidification boundary by the rising bubbles affects metal flow and enables the impurities to float up, so that the probability of impurities being intercepted by the surface zones is greatly diminished.
- the proposed method When casting aluminium-containing slabs the proposed method also operates to prevent the flow orifice from being choked.
- the provision of the teeming jet with gas bubbles also leads to a reduction of the velocity of flow towards the narrow sides of the section. The thermal stressing of this zone which is particularly liable to develop cracks is thus re Jerusalem and the occurrence of transverse cracks can be reduced.
- the velocity of flow is by no means constant but is subject to fluctuations even disregarding the slower pouring rate when starting.
- the velocity is adjusted by the position of a closure means in the pouring vessel or in the tundish.
- the invention proposes to introduce the deoxidants and/or alloying elements continuously at rates corresponding to the existing pouring rate.
- the invention proposes to introduce the deoxidants and/or alloying elements at progressively increasing rates as casting continues.
- a pouring vessel which contains a closure means below which a pouring pipe extends to below the surface of the pool in the mold, and in which these means in their interior cntain a longitudinal conduit which has its bottom end in the region where the metal begins to form a teeming jet, whereas at its upper end it is provided with one or more supply means.
- the closure means may comprise a stopper rod fitted with a cone or ball head. The purging gases as well as alloying elements, if these are to be added, in such case are introduced from a supply at the top into the stopper rod and issue from the exit end of the conduit at the ceramic head of the rod.
- the exit opening for the gas should have a cross-section of between 0.2 and 7 sq.mm.
- a uniform introduction of alloying elements and deoxidants can be achieved if at the upper end of the conduit there is provided, besides the supply means for the gas, a second supply means comprising a wire roll, drive means and a funnel for guiding the wire into the conduit.
- the drive means permits the wire to be introduced into the steel at the exit end of the conduit, either at a constant or a controlled rate, the end of the wire being melted as it makes contact with the flowing steel and being thus uniformly distributed in the steel.
- the introduction of the alloying element can be at a constant rate. Since the entry funnel embraces the wire without much clearance blow-by through the wire supply funnel of a purging gas that is being introduced is avoided.
- Purging gases which have proved to be particularly satisfactory include the noble gases, e.g. argon.
- the volumetric rate of gas introduction should be between 3 litres (S.T.P.) and 18 litres (S.T.P.) per minute.
- the volume of gas introduced matches the pouring rate.
- the ratio of the volume of the poured steel to the volume of the argon gas introduced is between 40 l and 10 1.
- the invention proposes to incorporate a regulating valve in the gas supply and to control the valve according to the position of the stopper rod.
- a conventional needle valve would be an appropriate control valve for this purpose.
- the teeming metal 18 is protected from the ambient atmosphere by being enclosed in a pouring pipe or tube 15 which extends to below the surface 16 of the pool of metal in a continuous casting mold 17.
- the surface of the pool 16 is covered with slag 19.
- a suitable device 1 which in the illustrated embodiment is a stopper rod, a small volume of purging gas is introduced at the rate of 10 litres (S.T. P.) per minute when teeming begins out of the pool 11.
- the gas is admitted from a gas supply 6 which may incorporate aregulating valve 6a of conventional design, and thus only schematically depicted,and controlled with reference to the position of the stopper rod 1 by means of a suitable control mechanism 20.
- the ratio of the teemed volume of steel to the volume of gas i.e. argon introduced is 20 1.
- the stopper rod 1 contains a conduit 2 extending axially along its length and ending at location or exit opening 3 in the sealing cone 4 centrally outside the seating surface 5 in the region where the metal enters the pouring pipe.
- the diameter of the exit opening 3 is between about 0.5 and 3 mm. For example, a diameter of 1 mm. for a pouring rate of 1.3 tons/minute has proved to be most advantageous.
- the steel 11 which is covered by a protective layer of slag 10 in the tundish 9 flows past the exit of the conduit 2 and entrains the purging gas, such as argon, in the form of small bubbles l3 and simultaneously melts away the end of wire 14 which may be drawn from the supply roll 7 and fed down the conduit 2 by standard drive means 21, such as a speed-controlled electric motor, the speed of which may be controlled by the control mechanism 20 as a function of the position of the stopper rod 1.
- the steel 1 l, the bubbles of argon l3 and the dissolved alloying wire 14 travel down the pouring pipe 15 with the exclusion of air to a point below the surface of the metal pool 16 in the mold 17.
- the gas bubbles 13 rise in the mold 17 and precipitate non-metallic occlusions in the covering slag layer 19.
- the closure may have the form of a sliding gate nozzle.
- the means 1 above the sliding gate would be a lance instead of a stopper rod.
- a method of treating metal melts during continuous casting for suppressing the formation of undesirable oxidic non-metallic inclusions comprising the steps of enclosing the teeming metal to a point below the surface of the metal pool in a continuous casting mold to avoid contact with the ambient atmosphere, covering the surface of the pool with a layer of slag, and introducing small volumes of purging gas in bubble form into the metal melt at the location where such metal melt begins to form a teeming jet, so that the injector-like action of the melt divides the gas into a multiplicity of very small bubbles which are carried into the mold by the melt.
- a method of treating metal melts during continuous casting in order to reduce the formation of undesirable oxidic accumulations comprising the steps of confining the teeming metal so as to avoid contact with the ambient atmosphere to a location below the surface of the metal pool in a continuous casting mold, and introducing small volumes of purging gas in bubble form into the metal melt approximately at the location where the metal melt begins to form a teeming jet, so that the injector-like action of the melt divides the gas into a multiplicity of very small bubbles which are carried into the mold by the melt.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Multimedia (AREA)
- Manufacturing & Machinery (AREA)
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/499,910 US3954134A (en) | 1971-03-28 | 1974-08-23 | Apparatus for treating metal melts with a purging gas during continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2126606 | 1971-05-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/499,910 Division US3954134A (en) | 1971-03-28 | 1974-08-23 | Apparatus for treating metal melts with a purging gas during continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
US3886992A true US3886992A (en) | 1975-06-03 |
Family
ID=5809217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US257421A Expired - Lifetime US3886992A (en) | 1971-03-28 | 1972-05-26 | Method of treating metal melts with a purging gas during the process of continuous casting |
Country Status (10)
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3935895A (en) * | 1973-06-14 | 1976-02-03 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Continuous steel casting method |
US3964535A (en) * | 1975-02-20 | 1976-06-22 | Allied Chemical Corporation | Stopper rod tapping assembly and filament forming process |
US4006772A (en) * | 1973-06-22 | 1977-02-08 | Concast Ag | Method and apparatus for casting steel into a continuous casting mold |
US4042007A (en) * | 1975-04-22 | 1977-08-16 | Republic Steel Corporation | Continuous casting of metal using electromagnetic stirring |
DE2609065A1 (de) * | 1976-03-05 | 1977-09-15 | Arbed | Verfahren zur qualitativen verbesserung von stranggussmaterial aus beruhigten stahlqualitaeten |
US4064925A (en) * | 1975-02-25 | 1977-12-27 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Continuous casting method and apparatus |
US4169584A (en) * | 1977-07-18 | 1979-10-02 | The Carborundum Company | Gas injection apparatus |
US4367784A (en) * | 1977-04-18 | 1983-01-11 | Centro Sperimentale Metallurgico S.P.A. | Method for adding cooling powders to steel during continuous casting |
US4481032A (en) * | 1983-08-12 | 1984-11-06 | Pfizer Inc. | Process for adding calcium to a bath of molten ferrous material |
US4520861A (en) * | 1983-11-18 | 1985-06-04 | Republic Steel Corporation | Method and apparatus for alloying continuously cast steel products |
US5662725A (en) * | 1995-05-12 | 1997-09-02 | Cooper; Paul V. | System and device for removing impurities from molten metal |
US5944496A (en) * | 1996-12-03 | 1999-08-31 | Cooper; Paul V. | Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection |
US5951243A (en) * | 1997-07-03 | 1999-09-14 | Cooper; Paul V. | Rotor bearing system for molten metal pumps |
US6027685A (en) * | 1997-10-15 | 2000-02-22 | Cooper; Paul V. | Flow-directing device for molten metal pump |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US20060180962A1 (en) * | 2004-12-02 | 2006-08-17 | Thut Bruno H | Gas mixing and dispersement in pumps for pumping molten metal |
US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
US20080236336A1 (en) * | 2007-03-27 | 2008-10-02 | Thut Bruno H | Flux injection with pump for pumping molten metal |
US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
CN104014781A (zh) * | 2014-06-17 | 2014-09-03 | 常州东大中天钢铁研究院有限公司 | 一种连铸中间包塞棒喷粉稀土加入装置及方法 |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
WO2016146829A1 (en) | 2015-03-18 | 2016-09-22 | Innomaq 21, Sociedad Limitada | Method of manufacturing of a casted part or ingot of a metallic alloy attaining a minimal segregation in the casting process |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT331438B (de) * | 1973-06-14 | 1976-08-25 | Voest Ag | Kontinuierliches stahlstranggiessverfahren sowie anlage zur durchfuhrung des verfahrens |
US3991810A (en) | 1974-07-15 | 1976-11-16 | Caterpillar Tractor Co. | Method and apparatus for introducing additives into a casting mold |
US4052199A (en) * | 1975-07-21 | 1977-10-04 | The Carborundum Company | Gas injection method |
DE2634282C2 (de) * | 1976-07-28 | 1978-04-13 | Mannesmann Ag, 4000 Duesseldorf | Verfahren zum kontinuierlichen Einbringen von Zusatzmitteln in ein mit flüssigem Metall gefülltes Gefäß |
US4667715A (en) * | 1985-12-06 | 1987-05-26 | Inland Steel Company | Method for controlling uniformity of alloy content in continuously cast steel |
CH680270A5 (enrdf_load_stackoverflow) * | 1990-01-05 | 1992-07-31 | Fischer Ag Georg | |
EP0463784B1 (en) * | 1990-06-19 | 1998-10-14 | Canon Kabushiki Kaisha | Optical recording medium, optical recording method, and optical reproducing method |
FR2680180B1 (fr) * | 1991-08-09 | 1994-06-03 | Peugeot | Procede et dispositif d'introduction sous la forme d'un fil fusible, d'un additif de traitement dans un materiau liquide ou en fusion. |
RU2443504C2 (ru) * | 2010-04-08 | 2012-02-27 | Открытое акционерное общество Акционерная холдинговая компания "Всероссийский научно-исследовательский и проектно-конструкторский институт металлургического машиностроения имени академика Целикова" (ОАО АХК "ВНИИМЕТМАШ") | Способ производства металлической полосы |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3208117A (en) * | 1962-03-28 | 1965-09-28 | Reisholz Stahl & Roehrenwerk | Casting method |
US3465811A (en) * | 1965-11-15 | 1969-09-09 | Est Aciers Fins | Plants for the continuous casting of steel |
US3514285A (en) * | 1963-10-15 | 1970-05-26 | Tno | Method for feeding additive materials into a stream of molten metals |
US3608621A (en) * | 1969-04-29 | 1971-09-28 | Schloemann Ag | Continuous casting apparatus with controlled overflow casting tube in tundish |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3200457A (en) * | 1964-03-09 | 1965-08-17 | United States Steel Corp | Method of regulating the discharge of molten metal from ladles |
FR1422695A (fr) * | 1965-01-26 | 1965-12-24 | Fischer Ag Georg | Procédé de traitement de bains de fusion métalliques et dispositif pour la mise en oeuvre du procédé |
CH445034A (de) * | 1966-10-18 | 1967-10-15 | Metacon Ag | Ausgussvorrichtung |
-
1972
- 1972-05-26 ZA ZA723617A patent/ZA723617B/xx unknown
- 1972-05-26 GB GB2509972A patent/GB1400556A/en not_active Expired
- 1972-05-26 IT IT24945/72A patent/IT955930B/it active
- 1972-05-26 FR FR7218974A patent/FR2139992B1/fr not_active Expired
- 1972-05-26 US US257421A patent/US3886992A/en not_active Expired - Lifetime
- 1972-05-26 BE BE784022A patent/BE784022A/xx unknown
- 1972-05-26 AT AT459672A patent/ATA459672A/de not_active Application Discontinuation
- 1972-05-26 CA CA143,370A patent/CA956078A/en not_active Expired
- 1972-05-26 AU AU42819/72A patent/AU463496B2/en not_active Expired
- 1972-05-29 JP JP5323872A patent/JPS5426493B1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3208117A (en) * | 1962-03-28 | 1965-09-28 | Reisholz Stahl & Roehrenwerk | Casting method |
US3514285A (en) * | 1963-10-15 | 1970-05-26 | Tno | Method for feeding additive materials into a stream of molten metals |
US3465811A (en) * | 1965-11-15 | 1969-09-09 | Est Aciers Fins | Plants for the continuous casting of steel |
US3608621A (en) * | 1969-04-29 | 1971-09-28 | Schloemann Ag | Continuous casting apparatus with controlled overflow casting tube in tundish |
Cited By (131)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3935895A (en) * | 1973-06-14 | 1976-02-03 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Continuous steel casting method |
US4006772A (en) * | 1973-06-22 | 1977-02-08 | Concast Ag | Method and apparatus for casting steel into a continuous casting mold |
US3964535A (en) * | 1975-02-20 | 1976-06-22 | Allied Chemical Corporation | Stopper rod tapping assembly and filament forming process |
US4064925A (en) * | 1975-02-25 | 1977-12-27 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Continuous casting method and apparatus |
US4042007A (en) * | 1975-04-22 | 1977-08-16 | Republic Steel Corporation | Continuous casting of metal using electromagnetic stirring |
DE2609065A1 (de) * | 1976-03-05 | 1977-09-15 | Arbed | Verfahren zur qualitativen verbesserung von stranggussmaterial aus beruhigten stahlqualitaeten |
US4367784A (en) * | 1977-04-18 | 1983-01-11 | Centro Sperimentale Metallurgico S.P.A. | Method for adding cooling powders to steel during continuous casting |
US4169584A (en) * | 1977-07-18 | 1979-10-02 | The Carborundum Company | Gas injection apparatus |
US4481032A (en) * | 1983-08-12 | 1984-11-06 | Pfizer Inc. | Process for adding calcium to a bath of molten ferrous material |
US4520861A (en) * | 1983-11-18 | 1985-06-04 | Republic Steel Corporation | Method and apparatus for alloying continuously cast steel products |
US5662725A (en) * | 1995-05-12 | 1997-09-02 | Cooper; Paul V. | System and device for removing impurities from molten metal |
US5944496A (en) * | 1996-12-03 | 1999-08-31 | Cooper; Paul V. | Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection |
US6345964B1 (en) | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
US5951243A (en) * | 1997-07-03 | 1999-09-14 | Cooper; Paul V. | Rotor bearing system for molten metal pumps |
US6027685A (en) * | 1997-10-15 | 2000-02-22 | Cooper; Paul V. | Flow-directing device for molten metal pump |
US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US8440135B2 (en) | 2002-07-12 | 2013-05-14 | Paul V. Cooper | System for releasing gas into molten metal |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
US9034244B2 (en) | 2002-07-12 | 2015-05-19 | Paul V. Cooper | Gas-transfer foot |
US8409495B2 (en) | 2002-07-12 | 2013-04-02 | Paul V. Cooper | Rotor with inlet perimeters |
US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
US9435343B2 (en) | 2002-07-12 | 2016-09-06 | Molten Meal Equipment Innovations, LLC | Gas-transfer foot |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8110141B2 (en) | 2002-07-12 | 2012-02-07 | Cooper Paul V | Pump with rotating inlet |
US8075837B2 (en) | 2003-07-14 | 2011-12-13 | Cooper Paul V | Pump with rotating inlet |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US8501084B2 (en) | 2003-07-14 | 2013-08-06 | Paul V. Cooper | Support posts for molten metal pumps |
US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
US8475708B2 (en) | 2003-07-14 | 2013-07-02 | Paul V. Cooper | Support post clamps for molten metal pumps |
US20060180962A1 (en) * | 2004-12-02 | 2006-08-17 | Thut Bruno H | Gas mixing and dispersement in pumps for pumping molten metal |
US7476357B2 (en) | 2004-12-02 | 2009-01-13 | Thut Bruno H | Gas mixing and dispersement in pumps for pumping molten metal |
US7534284B2 (en) | 2007-03-27 | 2009-05-19 | Bruno Thut | Flux injection with pump for pumping molten metal |
US20080236336A1 (en) * | 2007-03-27 | 2008-10-02 | Thut Bruno H | Flux injection with pump for pumping molten metal |
US11103920B2 (en) | 2007-06-21 | 2021-08-31 | Molten Metal Equipment Innovations, Llc | Transfer structure with molten metal pump support |
US10345045B2 (en) | 2007-06-21 | 2019-07-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US11185916B2 (en) | 2007-06-21 | 2021-11-30 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel with pump |
US11130173B2 (en) | 2007-06-21 | 2021-09-28 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US11759854B2 (en) | 2007-06-21 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer structure and method |
US8753563B2 (en) | 2007-06-21 | 2014-06-17 | Paul V. Cooper | System and method for degassing molten metal |
US11020798B2 (en) | 2007-06-21 | 2021-06-01 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal |
US10562097B2 (en) | 2007-06-21 | 2020-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9017597B2 (en) | 2007-06-21 | 2015-04-28 | Paul V. Cooper | Transferring molten metal using non-gravity assist launder |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US10458708B2 (en) | 2007-06-21 | 2019-10-29 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US10352620B2 (en) | 2007-06-21 | 2019-07-16 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US11167345B2 (en) | 2007-06-21 | 2021-11-09 | Molten Metal Equipment Innovations, Llc | Transfer system with dual-flow rotor |
US10274256B2 (en) | 2007-06-21 | 2019-04-30 | Molten Metal Equipment Innovations, Llc | Vessel transfer systems and devices |
US10195664B2 (en) | 2007-06-21 | 2019-02-05 | Molten Metal Equipment Innovations, Llc | Multi-stage impeller for molten metal |
US9383140B2 (en) | 2007-06-21 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US10072891B2 (en) | 2007-06-21 | 2018-09-11 | Molten Metal Equipment Innovations, Llc | Transferring molten metal using non-gravity assist launder |
US9982945B2 (en) | 2007-06-21 | 2018-05-29 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US9925587B2 (en) | 2007-06-21 | 2018-03-27 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal from a vessel |
US9909808B2 (en) | 2007-06-21 | 2018-03-06 | Molten Metal Equipment Innovations, Llc | System and method for degassing molten metal |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US9862026B2 (en) | 2007-06-21 | 2018-01-09 | Molten Metal Equipment Innovations, Llc | Method of forming transfer well |
US9855600B2 (en) | 2007-06-21 | 2018-01-02 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9566645B2 (en) | 2007-06-21 | 2017-02-14 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9581388B2 (en) | 2007-06-21 | 2017-02-28 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9470239B2 (en) | 2009-08-07 | 2016-10-18 | Molten Metal Equipment Innovations, Llc | Threaded tensioning device |
US9080577B2 (en) | 2009-08-07 | 2015-07-14 | Paul V. Cooper | Shaft and post tensioning device |
US9657578B2 (en) | 2009-08-07 | 2017-05-23 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9506129B2 (en) | 2009-08-07 | 2016-11-29 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US9464636B2 (en) | 2009-08-07 | 2016-10-11 | Molten Metal Equipment Innovations, Llc | Tension device graphite component used in molten metal |
US12163536B2 (en) | 2009-08-07 | 2024-12-10 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US9422942B2 (en) | 2009-08-07 | 2016-08-23 | Molten Metal Equipment Innovations, Llc | Tension device with internal passage |
US9377028B2 (en) | 2009-08-07 | 2016-06-28 | Molten Metal Equipment Innovations, Llc | Tensioning device extending beyond component |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US10570745B2 (en) | 2009-08-07 | 2020-02-25 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9328615B2 (en) | 2009-08-07 | 2016-05-03 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9382599B2 (en) | 2009-08-07 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US10309725B2 (en) | 2009-09-09 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Immersion heater for molten metal |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9482469B2 (en) | 2010-05-12 | 2016-11-01 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US10641279B2 (en) | 2013-03-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened tip |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US11391293B2 (en) | 2013-03-13 | 2022-07-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10126058B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Molten metal transferring vessel |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US10126059B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Controlled molten metal flow from transfer vessel |
US9587883B2 (en) | 2013-03-14 | 2017-03-07 | Molten Metal Equipment Innovations, Llc | Ladle with transfer conduit |
US10302361B2 (en) | 2013-03-14 | 2019-05-28 | Molten Metal Equipment Innovations, Llc | Transfer vessel for molten metal pumping device |
US10322451B2 (en) | 2013-03-15 | 2019-06-18 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10307821B2 (en) | 2013-03-15 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
CN104014781A (zh) * | 2014-06-17 | 2014-09-03 | 常州东大中天钢铁研究院有限公司 | 一种连铸中间包塞棒喷粉稀土加入装置及方法 |
US10465688B2 (en) | 2014-07-02 | 2019-11-05 | Molten Metal Equipment Innovations, Llc | Coupling and rotor shaft for molten metal devices |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US11939994B2 (en) | 2014-07-02 | 2024-03-26 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US11286939B2 (en) | 2014-07-02 | 2022-03-29 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11933324B2 (en) | 2015-02-02 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
WO2016146829A1 (en) | 2015-03-18 | 2016-09-22 | Innomaq 21, Sociedad Limitada | Method of manufacturing of a casted part or ingot of a metallic alloy attaining a minimal segregation in the casting process |
US10641270B2 (en) | 2016-01-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11098719B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11098720B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US11519414B2 (en) | 2016-01-13 | 2022-12-06 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US12031550B2 (en) | 2017-11-17 | 2024-07-09 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11976672B2 (en) | 2017-11-17 | 2024-05-07 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US12385501B2 (en) | 2017-11-17 | 2025-08-12 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11471938B2 (en) | 2019-05-17 | 2022-10-18 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11931803B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and method |
US11931802B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal controlled flow launder |
US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
US11858037B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11858036B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | System and method to feed mold with molten metal |
US11759853B2 (en) | 2019-05-17 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Melting metal on a raised surface |
US12263522B2 (en) | 2019-05-17 | 2025-04-01 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11850657B2 (en) | 2019-05-17 | 2023-12-26 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
US12228150B2 (en) | 2021-05-28 | 2025-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Also Published As
Publication number | Publication date |
---|---|
FR2139992B1 (enrdf_load_stackoverflow) | 1977-12-23 |
CA956078A (en) | 1974-10-15 |
AU4281972A (en) | 1973-11-29 |
GB1400556A (en) | 1975-07-16 |
BE784022A (fr) | 1972-09-18 |
FR2139992A1 (enrdf_load_stackoverflow) | 1973-01-12 |
ATA459672A (de) | 1976-12-15 |
IT955930B (it) | 1973-09-29 |
JPS5426493B1 (enrdf_load_stackoverflow) | 1979-09-04 |
AU463496B2 (en) | 1975-07-31 |
ZA723617B (en) | 1973-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3886992A (en) | Method of treating metal melts with a purging gas during the process of continuous casting | |
US3954134A (en) | Apparatus for treating metal melts with a purging gas during continuous casting | |
DE2527156A1 (de) | Verfahren zur herstellung einer stahlschmelze fuer das stranggiessverfahren | |
US4042007A (en) | Continuous casting of metal using electromagnetic stirring | |
KR19990076770A (ko) | 성형가능한 강 제조방법 및 장치 | |
US3888294A (en) | Method of continuously casting steel | |
US4520861A (en) | Method and apparatus for alloying continuously cast steel products | |
US3536122A (en) | Method of producing steel bars by continuous casting | |
US3845809A (en) | Means for the continuous casting of steel | |
US4619443A (en) | Gas distributing tundish barrier | |
US3935895A (en) | Continuous steel casting method | |
EP0092844A1 (en) | Method and apparatus for feeding and continuously casting molten metal with inert gas applied to the moving mold surfaces and to the entering metal | |
US4015655A (en) | Process and apparatus for continuously casting strands of unkilled or semi-killed steel | |
JPS62187553A (ja) | 鉱石からスチ−ルストリツプ迄の完全連続生産の為の方法および装置 | |
US4287933A (en) | Continuous casting method with rotary melt movement | |
US4186791A (en) | Process and apparatus for horizontal continuous casting of metal | |
EP0174765B1 (en) | Method and apparatus for continuous casting of crystalline strip | |
JP2019214057A (ja) | 連続鋳造方法 | |
JPS6096738A (ja) | 高純度の合金を造るための方法および装置 | |
US4006772A (en) | Method and apparatus for casting steel into a continuous casting mold | |
JP2661797B2 (ja) | 複層鋳片鋳造方法 | |
JPS58151948A (ja) | 連続鋳造法 | |
EP0174766A2 (en) | Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere | |
JPH08332551A (ja) | 竪型タンディッシュを使用した溶鋼の成分調整方法 | |
JPH09122853A (ja) | 高清浄度鋼連続鋳造用タンディッシュ |