US3811890A - Silver halide color photographic material - Google Patents

Silver halide color photographic material Download PDF

Info

Publication number
US3811890A
US3811890A US00206060A US20606071A US3811890A US 3811890 A US3811890 A US 3811890A US 00206060 A US00206060 A US 00206060A US 20606071 A US20606071 A US 20606071A US 3811890 A US3811890 A US 3811890A
Authority
US
United States
Prior art keywords
group
coupler
couplers
photographic material
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00206060A
Other languages
English (en)
Inventor
N Ohta
Y Oishi
H Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Application granted granted Critical
Publication of US3811890A publication Critical patent/US3811890A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/32Colour coupling substances
    • G03C7/3225Combination of couplers of different kinds, e.g. yellow and magenta couplers in a same layer or in different layers of the photographic material

Definitions

  • ABSTRACT A multi-layered photographic material comprising a support and (a) blue-sensitive, (b) green-sensitive, and (c) red-sensitive emulsion layers on said support, these layers containing colorless and diffusionresistant couplers forming yellow, magenta, and cyan respectively upon coupling, wherein at least one of the layers contains a combination of two couplers differing in coupling activity rate by at least 1.5 times from each other and giving two dyes of the same absorption area, that is, 400 to 500 mp. for (a), 500 to 600 mp. for (b), and 600 to 700 my. for (0).
  • Especially preferred couplers are acylacetanilides for (a), 5- pyrazolones, indazolones and pyrazolobenzimidazoles for (b), and phenols and a-naphthols for (c).
  • the specific combination of couplers contributes to the widening of the color gamut of the color photographic material.
  • FIG. I is the (UN) chromaticity diagram of a color image
  • FIG- 2 is a diagram illustrating the effects of thetheory described in detail in the specification
  • FIG. 3 is a diagram showing the positions in the chromaticity diagram of FIG. 2 for a luminous transmittance (T) of 10 percent and percent;
  • FIG. 4 is a diagram illustrating the variations in the ratio of the amounts of dyes given by the competitive coupling between two couplers A and B;
  • FIG. 5 gives diagrams each showing the realtion of the coupling actiiity of a coupler to the absorption of the resulting color image.
  • FIG. 1 shows the chromaticity diagram (U, V) obtained when dyes of the following peak wavelengths are used with a view to widening the gamut of a bright color cyan 700 mp magenta 53l my.
  • yellow 447 mp is used by applying the present invention to this color system, the color gamut is extremely widened.
  • the coupling rate of the first-mentioned color system is more than 1.5 times as great as that of the latter-mentioned color system.
  • the rate of increase of the color' gamut so obtained is shown as follows for a luminous transmittance (T%) to 10 80 percent.
  • T(%) IO 20 40 80 Rate of increase( 7%) 44 27 I3 2 in FIG. 3 for a luminous transmittance (T) of percent and 80 percent.
  • the present invention is based on the abovedescribed theory, and intended to give a maximum color gamut corresponding to the variations in density of a color image by including two couplers differing in the rate of coupling in each layer of a photographic material, and causing them to develop colors selectively towards the high density area and the low density area.
  • a silver halide color photographic material comprising a support and a blue-sensitive silver halide emulsion layer containing a coupler which forms yellow upon coupling with an oxidation product of a color developer of the aromatic primary amine type, a greensensitive silver halide emulsion layer containing a coupler which forms magenta upon coupling with said oxidation product, and a red-sensitive silver halide emulsion layer containing a coupler which forms cyan upon coupling with said oxidation product on said support; characterized in that each of said couplers is colorless and has resistance to diffusion, and at least one of said emulsion layers contains at least two couplers of the following combinations:
  • coupler A having a high rate of coupling reaction and forming yellow with a maximum absorption wavelength within the range of 400 to 500 mu
  • coupler B having a lower rate of coupling reaction than coupler A and forming yellow having a maximum absorption wavelength at at least 5 mu longer than the maximum absorption wavelength of yellow formed by coupler A
  • coupler C having a high rate of coupling reaction and forming magenta with a maximum absorption wavelength within the range of 500 to 600 mp. and coupler D having a lower rate of coupling reaction than coupler C and forming magenta having a maximum absorption wavelength at at least 5 my. longer than the maximum absorption wavelength of magenta formed by coupler C,
  • the present invention is based on the fact that the shifting of the absorption of the color image is achieved by using two couplers differing in coupling activity conjointly within one emulsion layer.
  • 1 ,O46,495 discloses that by using two couplers differing in the rate of coupling and giving images of different colors, for example, yellow and cyan, two color images of different colors and tones are obtained in superposed condition so as to render X-ray diagnosis easy.
  • the oxidation product of a color developer released from the silver halide particles being reduced by devel opment is coupled with a non-diffusing coupler incorporated in the emulsion particles.
  • the rate of formation of a dye at this time is proportional to the product of the reaction rate constant multiplied by the effective density of the coupler.
  • the non-diffusing coupler incorporated in the emulsion layer is consumed with the progress of formation of a dye. Incident to this, the effective density of the coupler is decreased, and the production of the dye will also be reduced proportionately.
  • R, and R are the reaction rate constants of couplers A and B respectively
  • F and F are the amounts of color formed by the couplers A and B respectively
  • X, and X are the amounts of couplers A and B respectively that are utilized when a maximum formation of color is obtained by sufficient subjection of emulsions X and X to the developer oxidation product.
  • FIG. 4 shows the variations in the ratio of the amount of dyes given by the competitive coupling performed between two couplers when the ratio R IR of the couplers is one-third, one-half, l, 2, and 3.
  • Couplers A and B when added to an emulsion individually, exhibit the absorption shown in FIG. 5-1.
  • the absorption obtained from a mixture of couplers A and B is shown in FIG. 5-3 when the coupling activity of coupler A is higher than that of coupler B and in F K].
  • two dyes to be derived from'the couplers to be mixed belong to the same absorption region, that is, a blue light region at 400 to 500 mp, a green light region at 500 to 600 mu, or a red light region'at 600 to 730 mg, and they differ from each other in absorption maximum by at least 5 mp.
  • one of the couplers should have at least 1.5 times as great a coupling activity as the other.
  • the combination of two couplers should be such that a specified relation inherent to the desired absorption region exits between the activity of the coupler reaction and the absorption of the resulting color images.
  • the two couplers can be chosen from non-diffusing coupling compounds y)-butylamidophenyl,
  • couplers having a wide range of structures.
  • especially useful couplers include acyl ace'tanilide compounds for formation of yellow; 5-pyrazolones; indazolones, and pyrazolobenzimidazoles for formation ofv magenta; and phenols and a-napthols for formation of cyan.
  • the yellow couplers used in the invention can be chosen from compounds of a wide range of structures. Of these, acyl acetanilide 'compoun'dsgive especially good results. These compounds: are expressed by the following structural formula (l):
  • R is a tertiary alkyl group, unsubstituted or substituted cycloalkyl group, unsubstituted or substitutedaryl group, or unsubstituted or substituted bicycloalkyl group
  • R is an unsubstituted or substituted aryl group or heterocyclic group
  • X is a hydrogen atom' or a group capable of being split off at the time of coupling.
  • examples of R include tertiary alkyl groups having four to 32 carbon atoms such as t-butyl, 1,1-dimethylpropyl, l,ldibutylheptadecyl, l, l -diisobutylheptadecyl, or I ,l-di-tert.-butylheptadecyl unsubstituted cycloalkyl chloro-5-[a-(2,4-di-tert.-amylphenoxy) cylclohexyl, l-butylcyclohexyl, 2-ethylcyclohexyl, 3-
  • octadecylsuccinomonoamidophenyl 4-octadecylsuccinomonoamidophenyl, 3-a-(2,4-di-tert.-amylphenoxy-(4-N-butyl-N- pentadecyloxycarbonylamino) propionamidophenyl, 4-phenylureido, 4-toluylsulfamylphenyl, 3-sulfophenyl, or 3-carboxyphenyl group.
  • R examples include unsubstituted aryl groups such as a phenyl group; aryl groups substituted by a halogen atom, C -C alkyl group, alkoxy group, aryloxy group, acyl group, alkoxycarbonyl group, amino group, carbonamide group, sulfonamide group, ureido group, carbamyl group, sulfamyl group, carboxyl group, or sulfo group, such as a 2-chlorophenyl, 2,4- dichlorophenyl, 2, 4, 6-trichlorophenyl, 2- bromophenyl, 2-fluorophenyl, 4 -methylphenyl, 4-trifluoromethylphenyl, 2 -methoxyphenyl, 4-[N-( 'yphenylpropyl)-N-(p-toluyl) carbamylmethoxy] phenyl,
  • butyramide] phenyl 2-methoxy-5-['a-(2,4-di.-tert.-amylphenoxy) acetamide] phenyl, 2-chloro- 5-[y-(N-butyl-N-hexadecanoylamino)propionamide] phenyl, 3-octadecylsuccinomonoamidephenyl, 2-chloro-5-(4-methylphenylsulfonamide) phenyl, 4-phenylureidophenyl, 2- (2,4-di-tert.-amylphenoxy)-5-(3,5-dimethoxycarbonylphenylcarbamyl) phenyl, 3,5-dicarbamylphenyl, 4-[N- phenylethyl)-N-(p-toluyl)sulfamyl] phenyl, 4-
  • pling such as a halogen atom, a SCN group, OR, group, SR group, OCOR group, or OSO R group, where R, is an alkyl, aryl, or heterocyclic group.
  • X include a fluorine, chlorine, bromine or iodine atom, an SCN group, phenoxy group, 4-nitro- 8 phenoxy group, acetyloxy group, 4 nitrophenyl-thio group, benzothiazolethio group, methylsulfonyloxy group, or 3nitrophenyl-sulfonyloxy group.
  • diffusion-resistant yellow couplers 5 examples of the diffusion-resistant yellow couplers 5 that can be used in the invention are as follows:
  • Coupler (1) 0 CH;
  • Coupler (8) v C 0 C H31 NHCOCH2CH;N
  • couplers of the, interior type can be synthesized by methods well known heretofore, such as those disclosed in detail in British Pat. 595,314, British Pat. 800,l08, British Pat. 1,045,633, British Pat. l,052,488, U.S .'Pat. No. 3,265,506, Belgian Pat.692,947, or Japanese Pat. application No. 3985/66.
  • magenta couplers used in the invention that is, couplers C and D, can be chosen from a wide range of compounds. Of these, 5-pyrazolone compounds give especiallygood results, which come within the structural formulae ll and jlll below.
  • I is a lower alkyl group or aryl group
  • X is a group that can be split off by the oxidation product of an aromatic primary amino compound as a developer, such as ahydrogen atom, halogen atom, cyano group, arylthio group, aryloxygroup, arylazo group, heteroazo group or acyloxy group.
  • Useful substituents of the 'aryl group represented by R are alkyl, aryl, alkoxy, aryloxy, alkylthio, arylthio, trifluoromethyl, cyano, acyl, sulfonyl, acylamino, sulfonamino, ureido, amino, carboxyl, alkoxycarbonyl, and carbamyl groups and halogen atoms. Phenyl groups substituted by these substituents are especially preferred as R At least one of R and R contains a hydrophobic group having eight to 30 carbon atoms.
  • the presence of the hydrophobic group leads to an increased affinity between couplers and between couplers and solvents for the couplers, and makes it possible to retain the coupler within or near the fine particles of a solvent for the coupler and thus render an intimate contact between them easy.
  • the hydrophobic group also serves to impart affinity for the coupler solvent to the dye derived, and enhance the effectv of the coupler solvent.
  • the hydrophobic group contained in R and/or R is bonded to the coupler residue' either directly or through two organic radicals having an amide linkage, ether linkage, ester-linkage, urea linkage, or sulfonamide linkage.
  • Coupler (b) Specifically, the S-pyrazolone is dissolved in a coupler 5 solvent and the resulting solution is dispersed in an aqueous medium for photography.
  • a surface active agent such as those described in Japanese Patent No. 428,191 and Japanese Patent Application No.
  • 60130/68 is useful at this time.
  • an organic solvent partially soluble in water and having a relatively low boiling point include sec.-butyl alcohol, hexanol, cyclohexanol, ethyl acetate, butyl acetate, ethyl propionate, and tetrahydrofuran.
  • an aqueous solution of the 5-pyrazolone coupler in an alkaline aqueous solution is added to a photographic emulsion in the presence of a dispersion of the coupler solvent which has a high boiling point, and then the mixture is neutralized.
  • a watermiscible organic solvent such as methanol, ethanol, dioxane, dimethyl formamide, or dimethyl sulfoxide is useful for promoting the dissolving of the coupler in the aqueous medium.
  • 5-pyrazolone couplers of the structural formulae (ll) and (III) which have one carboxyl group in the molecule prove especially useful.
  • the carboxyl group is present mainly in the form ofa free acid except when the coupler is added to the emulsion as an alkaline aqueous solution, and except when the-photographic material is treated with an alkaline developer solution, and it has affinity for the solvent.
  • the combination of a coupler of this kind with the coupler solvent results in good color image absorption characteristics or reduced tendency of the coupler to crystallize.
  • couplers having a strong acid group such as a sulfonic acid group or sulfoxylic acid group do not sufficiently exhibit effects ascribable to the coupler solvent.
  • Coupler (y) /N C- i1Ha5 M.P. 171l75 C.
  • magenta couplers are used in the invention, I group capable ofibeing split off by coupling reaction. that is,-couplers C andD,-indazolone compounds, py- "Couplers E and F should have a group capable of renrazolone benzimidazolercompounds and cyanoacetyl dering the coupler resistant to diffusion in order to fix coumarone compounds are also useful besides the the coupler within the emulsion'layer'with'outcrystalliabove-mentioned 5-pyrazolone couplers. Specific'ex- 5 zation.
  • each of Rgand R is ahydrogen atom, halogen atom, CONHCHICHINHCOCHCHHN lower alkyl group, or alkoxy group; and X is a hydrogen scan.
  • the coupler used in the present invention has at least one hydrophobic group having eight to 35 carbon atoms within the molecule as a diffusion-resistance imparting group.
  • This hydrophobic group serves to increase the cohesive force between molecules and promotes the formation of micelles or colloidal fine particles as a result of gathering of a number of coupler molecules. Since an assembly of these molecules cannot move within the polymer matrix that forms the emulsion layer, the coupler molecules are made resistant to diffusion.
  • hydrophobic group that is useful in the present invention is selected from straight or branched-chain alkyl groups, alkenyl groups, aldoxyalkyl groups, alkoxyaryl groups, aryl groups, aryloxyalkyl groups, aryloxyaryl groups, and acylaminoalkyl groups.
  • specific examples of the hydrophobic group include the following:
  • Substituents are suitably selected in the above compounds so that the above-mentioned requirements for the realization of the present invention will be met.
  • a useful means for achieving this object is to substitute a splittable atom or organic radical for the reaction site of the coupler because this changes the coupling reaction activity of the coupler without changing the absorption of the color image derived.
  • the spectral absorption of the color image is measured by a spectrophotometer.
  • the wavelength corresponding tothe maximum value of the spectral absorption curve is called an absorption maximum wavelength and expressed by A
  • the coupling reaction activity of the coupler can be determined as a relative value by measuring the amounts of two colors in the color images obtained by mixing two couplers A and B which give clearly separated different colors and adding the mixture to an emulsion, and then performing color development. If coupler A develops color of the maximum density (DA and color of density D in an intermediate stage, and coupler B develops colors of (D and D 21 respectively, theratio R /R of the reaction activities of both couplers is expressed by the following equation.
  • the coupling activity ratio Rig/12,. caii In t e manner as Set forth above a Pi a be obtained fromthegradient of the straight line which graph: material (deslgnated. as Sample z f f l is obtained by plotting several sets of D and D '8 3 Coupler and P* 5g ⁇ ] gl lcfmaterlla resulting from imparting several stages of exposure to (deslgnated as Sample] I) i g o coup er an emulsioncon'ta'ini'ng a mixed coupler and subjecting B alone were Prepared: h S 1 them to color'development, on two axes crossing at Plmtogmph1c Processmg of Each 6 amp es n l a hvt as f g f A isaeir aiiei'ai ai ssuies' was giverfto sash 5i PY?
  • the pH of the solution was adjusted to 7.0 with a 4 percent sodium hydroxide solution, and then 20 ml. of a 3 percent acetone solution of triethylene phosphamide was added as a hardening agent.
  • the resulting solution was coated on a cellulose triacetate film to a thickness of 4 microns.
  • the resulting photographic material was designated as sample IV.
  • sample V was similarly produced, and using 7.0 g of coupler D, sample VI was similarly produced.
  • hexyl phosphate, ml. of ethyl acetate and 0.5 g of sodium ot-sulfo-di-t-octylsuccinate were heated to 60C.
  • the resultant solution was admixed with 100 ml. of a l0 percent gelatin solution containing 1.0 g of citric acid and held at C., and the mixture was passed through a colloid mill ten times to obtain a dispersion with fine emulsification.
  • the entire coupler dispersion was added to 500 g of a green-sensitive photographic emulsion containing 30 4.. Measurement of Spectral Absorption and Conclusion The spectral absorption of the color image was measured as to each of the samples. As a result, the following absorption maximum wavelengths were obtained.
  • EXAMPLE 3 Couplers Used in the Pr esent Example The results given in Table 3 demonstrate that the selected combination of couplers E and F gives a cyan color image in which the maximum absorption wave- Coupler E M.P. above 250 C.
  • coupler E When N.N-diethyl-3 methyI-4-aminOani1ine was used as a color developer, coupler E showed a'maximum absorption at 707 my, and coupler F dispersed in di-n-butylphthalate shows a maximum absorption at 64 11: T at ys cou l n Speed o s measured using a-benzoy1-aceto-(2-methoxy -carbonyl-ndodecyloxy) anilide as a standard coupler was 1.60 for coupler E, and 0.65 for coupler F.
  • the resulting coupler dispersion was added to 300 g of a red-sensitive photographic emulsion containing 12 g of gelatin and 7.5g of silver iodobromide containing 5.2 molepercent of iodide, and then 100 ml. of an alkaline aqueous solution containing 3.5 g of coupler E.
  • sample Vlll was prepared using 5.4 g of coupler E alone, andsample lX was prepared using 4.9 g of coupler F alone.
  • Photographic Processing of Each of the Samples A graded series of exposures was given to each of the samples for sensitometry, and the samples were developed in the same way as set forth in Example 2. 4. Measurement of Spectral Absorption Characteristics The spectral absorption characteristics of the magenta, color obtained as a result of thedevelopment were measured.
  • EXAMPLE 4 taining 2,5 -dioctylhydroquinone was coated on top of the second layer in a dry thickness of 1 micron. On top of it, the same green-sensitive emulsion containing a mixture of couplers C and D as used in Example 2 was Operation Temperature (C.) Time (minutes) First development. 2
  • the above-mentioned color developer solution I was used.
  • the fixation solution and the bleaching solution used were of the formulations'described in Example 1.
  • Sample (XI) of the conventional combination has a color reproduction region shown by a solid line in FIG. 1 and Sample (X) of the present invention has a color reproduction region shown in FIG. 3.
  • the shift of the range of FIG. 1 from FIG. 3 is indicated by a dotted line in FIG. 3. It will-be understood from FIG. 3 that the same result was obtained in a comparison of sample (X) and old sample (XII).
  • sample (X) of the present invention gives a wavelength shift which is proper for widening the color ie r'o'duaiori'fgidhdfbokir films with an in crease in color formation.
  • Coupler C (3.5 g), 2.2 g of coupler D, 17 ml. of trin-hexyl phosphate, 30 ml. of ethyl acetate and 0.4 g of sodium a-sulfodi-(Z-ethylhexyl) succinate, were heated to 60C.
  • the resultant solution was admixed with 70 ml. of a 10 percent aqueous solution of gelatin containing 0.5 g of citric acid and held at 50C., and by passing the mixture through a small-sized colloid mill IO times, a finely emulsified dispersion was obtained.
  • the entire coupler dispersion so obtained was added to 300 g of a green-sensitive emulsion containing 20.0 g of silver chlorobromide and 25 g of gelatin, and the pH of the mixture was adjusted to 6.5 with a 4 percent sodium hydroxide solution. With the addition of 10 ml.
  • magenta-forming composition a magenta-forming composition was prepared.
  • a gelatin layer containing 2-benzotriazolyl-4,6- di-t-aminophenol in a dry thickness of 1.5 microns was coated on top of the .third layer.
  • EXAMPLE 5 a topmost layer, an aqueous gelatin solution was ap- Gdupler o'- 0111f '7 i nirja'u s o.
  • Coupler D N C--C11Hu M.P. 144-146" 0.
  • Couplers C and D give a color image having an absorption maximum of 544 my. and 562 mp. respectively plied in a thickness of 1 micron thereby to produce color photographic paper.
  • Coupler A cmo-Qooomoomz The magenta color image obtained by green light 30 Superior color reproducibility equivalent to sample X was obtained.
  • Each of the layers of this film showed the following absorption maximum wavelengths.
  • Table 5 showed the following absorption dependent on light- 5 Absorption maximum wavelength (mu) T bl 4 Color hue Coupler Maximum absorbuncc of color image L 1.5 2.0 Absorption maximum wavelength (mu) Maximum 'absorbance (reflectance) of color image 10 22222 5 L0 "5 20 Cyan E F 685 672 669 665 540 545 551 553 a. j a a a V I These absorption maximum wavelengths showed de- EXAMPLE 6 pendence on lightness as mentioned before. Color slid- Coupler E'- 0H 235-236 C.
  • the coupler dispersion obtained above was added to 450g of a red-sensitive emulsion containing 1 l g of, silver iodobromide and 18 g of gelatin, and then a solu. tion of-2.9 g of coupler E in-70 ml. of water containing 10 ml. of a'4'percent aqueous solution of sodium hydroxide was added. The pH of the mixed solution was then adjusted to 7.0 with 5 percent acetic acid. Then, as a hardening agent, 12 ml. of a 3 percent aqueous solution of dichlorooxy-S-triazine-sodium was added to prepare a cyan-forming composition.
  • a multi-layer coated'film was produced in the same way as set forth above in Example 4 except that the above cyan-forming composition was coated as a second layer in a dry thickness of 4.5 mt.
  • Color developer solution I N,N'-diethyl-p-phenylcnediaminc sulfate es obtained from, this film reproduced a wide range of colors.
  • a silver halide color'photographic multilayer material comprising a support, a blue-sensitive silver halide emulsion layer containing a coupler which forms a yellow dye upon coupling with an oxidation product of a color developer of the aromatic primary amine type, a green-sensitive silver halide emulsion layer containing a coupler which forms a magenta dye upon coupling with said oxidation product, and a red-sensitive silver halide emulsion layer containing a coupler which forms a cyan dye upon coupling with said oxidation production; each of said layers being on said support; wherein each of said couplers is normally colorless prior to exposure and development-and is substantially nondiffusing; and v v wherein at least one of said emulsion layers contains at least two couplers of the following combinations:
  • the ratio of the coupling reaction rates of said first coupler to said second coupler, of said third coupler to said fourth coupler, and of said fifth coupler to said sixth coupler is at least 1.5, the coupling reaction rate of said couplers being shown by the expression:
  • R is a. a tertiary alkyl group having from four to 32 carbon atoms, b. an unsubstituted or substituted cycloalkyl group substituted by a C, C carbon containing alkyl, alkoxy, alkoxyalkyl, or aryl group, .c. an unsubstituted or substituted aryl group substituted by a C C carbon containing alkyl, alkoxy, or alkoxyalkyl group, a halogen atom, or an amino, carbonamide, ureido, sulfamyl, sulfone or carboxyl group, d.
  • R is a. an unsubstituted or substituted aryl group substituted by halogen or by a C,- C carbon containing alkyl, alkoxy, aryloxy, aryl alkoxycarbonyl, amino, carbonamide, sulfonamide, ureido, carbamyl, sulfamyl carboxyl or sulfo group; or
  • X is a hydrogen atom or a group capable of being split off at the time of coupling.
  • R is selected from the group consisting of a tertiary (C -C alkyl group; a substituted or unsubstituted cycloalkyl group, wherein the substituent is a (C -C alkyl. alkoxy.
  • alkoxyalkyl or aryl group a substituted or unsubstituted bicycloalkyl group wherein the substituent is selected from the group consisting of a C ,C alkyl, alkoxy, alkoxyalkyl and aryl group; and a substituted or unsubstituted aryl group, wherein the substituent is selected from the group consisting of a (C -C alkyl, alkoxy or alkoxy-alkyl group, a halogen atom, an amino group, a carbonamide group, a ureido group, a sulfamyl group, a sulfone group and a carboxyl group; said R is an aryl group, a substituted aryl group,
  • the substituent is a halogen atom, an amino group, a carbonamide group, a sulfonamide group, a ureido group, a carbamyl group, a sulfamyl group, a carboxyl group, a sulfo group or a C -C alkyl, alkoxy, aryloxy, acyl or alkoxy-carbonyl group, or a heterocyclic group selected from the group consisting of 2- thiazole and 2-benzothiazole; and said X is a hydrogen atom or a group capable of being split off at the time of coupling selected from the'group consisting of a halogen atom, -SCN, OR SR -OCOR and -OSO R wherein R is an alkyl, aryl or heterocyclic group.
  • R is an unsubstituted or substituted aryl group substituted by an alkyl, aryl, alkoxy, aryloxy, alkylthio, arylthio, trifuoromethyl, cyano, acyl, sulfonyl, acylamino, sulfonamino, ureido, amino, carboxyl, alkoxycarbonyl, carbamyl group or a halogen atom;
  • R is a alkyl group, an alkenyl group, an aryl group, a substituted aryl group substituted by an alkoxy group, an amino group, a substituted amino group substituted by an aryl group, an acylamino group, a substituted ureido group substituted by an alkyl or aryl group, a sulfonamide group, or an alk- Y 'Q P; H
  • R is a lower alkyl group or an aryl group
  • X is a group capable of being split off by an oxidation product of an aromatic primary amino compound used as a developer; and at least one of R and R contains a hydrophobic group having from 8 to 30 carbon atoms.
  • said third and fourth couplers are selected from the group consisting of indazolone compounds, pyrazolobenzimidazole compounds and cyanoacetyl coumarone compounds.
  • R is hydrogen, an alkyl group or an aryl group
  • R is an alkyl group, an aryloxy substituted alkyl group, or an aryl group
  • R and R each is a hydrogen or halogen atom, or a lower alkyl group, or an alkoxy group
  • third and fourth couplers' are selected from pyrazolone compounds of the formulae:
  • R is an alkyl group, an alkenyl group, an aryl group, a substituted aryl group substituted by an alkoxy group, an amino group, a substituted amino group substituted by an aryl group, an my]- amino group, a substituted ureido group substituted by an alkyl or aryl group, a sulfonamide group, or an alkoxy group;
  • R is a lower alkyl group or an aryl group
  • X is a group capable of being split off by an ox idation product of an aromatic primary amino compound used as a developer
  • at least one of R and R contains a hydrophobic group having from eight to 30 carbon atoms
  • said fifth and sixth couplers are selected from compounds of the following formulae:
  • R is an alkyl group, an arloxy substituted alkyl group, or an aryl group
  • R and R each is a hydrogen or halogen atom, or a lower alkyl group, or an alkoxy group
  • R and R each is a hydrogen atom or a substituted alkyl group substituted by an acylamino group, a cyano group, or an aryl group, or a substituted aryl group substituted by an alkyl carbamoyl or alkoxy group
  • X is an atom or group capable of being split off by the coupling reaction.
  • said third and fourth couplers are selected from the group consisting of indazolone compounds, pyrazolobenzimidazole compounds and cyanocetyl coumarone compounds,
  • said fifth and sixth couplers are selected from compounds of the following formulae:
  • R and R each is a hydrogen atom or a substituted alkyl group substituted by an acylamino group, a cyano group, or an aryl group, or a substituted aryl group substituted by an alkyl carbamoyl or alkoxy group
  • X is an atom or group capable of being split off by the coupling reaction.
  • said third and fourth couplers are selected from the group consisting of S-pyrazolones, indazolones and pyrazolobenzimidazoles.
  • said third and fourth coupler are selected from the group consisting of S-pyr'azolones, indazolones and pyrazolobenzimidazoles, and in said red-sensitive silver halide emulsion layer, said fifth and sixth couplers are selected from the group consisting of phenols and -naph thols.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
US00206060A 1970-12-08 1971-12-08 Silver halide color photographic material Expired - Lifetime US3811890A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45108438A JPS4943887B1 (sl) 1970-12-08 1970-12-08

Publications (1)

Publication Number Publication Date
US3811890A true US3811890A (en) 1974-05-21

Family

ID=14484760

Family Applications (1)

Application Number Title Priority Date Filing Date
US00206060A Expired - Lifetime US3811890A (en) 1970-12-08 1971-12-08 Silver halide color photographic material

Country Status (6)

Country Link
US (1) US3811890A (sl)
JP (1) JPS4943887B1 (sl)
CA (1) CA988769A (sl)
DE (1) DE2160971C2 (sl)
FR (1) FR2131278A5 (sl)
GB (1) GB1373616A (sl)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138258A (en) * 1974-08-28 1979-02-06 Fuji Photo Film Co., Ltd. Multi-layered color photographic materials
US4170479A (en) * 1975-01-08 1979-10-09 Fuji Photo Film Co., Ltd. Multi-layer color light-sensitive material
US4294900A (en) * 1979-02-23 1981-10-13 Fuji Photo Film Co., Ltd. Process of producing multicolor optical filters
US4348474A (en) * 1980-08-01 1982-09-07 Agfa-Gevaert Aktiengesellschaft Light sensitive photographic recording material and the use thereof for the production of photographic images
US4391896A (en) * 1978-09-20 1983-07-05 Eastman Kodak Company Mixture of nondiffusible redox dye-releasers for curve shape control
US4477560A (en) * 1981-12-16 1984-10-16 Konishiroku Photo Industry Co., Ltd. Light-sensitive silver halide color photographic material
US4663271A (en) * 1985-03-04 1987-05-05 Fuji Photo Film Co., Ltd. Color photographic light-sensitive materials
US4705744A (en) * 1984-07-06 1987-11-10 Fuji Photo Film Co., Ltd. Color photographic materials having red color saturation and improved discrimination of green colors
US4965179A (en) * 1985-04-19 1990-10-23 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US5258270A (en) * 1990-10-04 1993-11-02 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US6789301B1 (en) 2001-03-21 2004-09-14 Honda Motor Co., Ltd. System and method for spotting movable mold cores

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223779U (sl) * 1975-08-08 1977-02-19
JPS5570070U (sl) * 1978-11-09 1980-05-14
US4315069A (en) * 1979-09-18 1982-02-09 Ciba Geigy Ag Color coupler combination
JPS6222095U (sl) * 1985-07-24 1987-02-10
US5399472A (en) * 1992-04-16 1995-03-21 Eastman Kodak Company Coupler blends in color photographic materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE561008A (sl) * 1956-09-26

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138258A (en) * 1974-08-28 1979-02-06 Fuji Photo Film Co., Ltd. Multi-layered color photographic materials
US4170479A (en) * 1975-01-08 1979-10-09 Fuji Photo Film Co., Ltd. Multi-layer color light-sensitive material
US4391896A (en) * 1978-09-20 1983-07-05 Eastman Kodak Company Mixture of nondiffusible redox dye-releasers for curve shape control
US4294900A (en) * 1979-02-23 1981-10-13 Fuji Photo Film Co., Ltd. Process of producing multicolor optical filters
US4348474A (en) * 1980-08-01 1982-09-07 Agfa-Gevaert Aktiengesellschaft Light sensitive photographic recording material and the use thereof for the production of photographic images
US4477560A (en) * 1981-12-16 1984-10-16 Konishiroku Photo Industry Co., Ltd. Light-sensitive silver halide color photographic material
US4705744A (en) * 1984-07-06 1987-11-10 Fuji Photo Film Co., Ltd. Color photographic materials having red color saturation and improved discrimination of green colors
US4663271A (en) * 1985-03-04 1987-05-05 Fuji Photo Film Co., Ltd. Color photographic light-sensitive materials
US4965179A (en) * 1985-04-19 1990-10-23 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US5258270A (en) * 1990-10-04 1993-11-02 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US6789301B1 (en) 2001-03-21 2004-09-14 Honda Motor Co., Ltd. System and method for spotting movable mold cores

Also Published As

Publication number Publication date
DE2160971A1 (de) 1972-08-31
CA988769A (en) 1976-05-11
DE2160971C2 (de) 1983-01-13
GB1373616A (en) 1974-11-13
FR2131278A5 (sl) 1972-11-10
JPS4943887B1 (sl) 1974-11-25

Similar Documents

Publication Publication Date Title
US3811890A (en) Silver halide color photographic material
US4551422A (en) Silver halide photographic light-sensitive material
JPS62160449A (ja) カラ−写真感光材料
JP3081404B2 (ja) ハロゲン化銀感光材料
DE2626315A1 (de) Photographischer blaugruen-farbkuppler und dessen verwendung in einem lichtempfindlichen photographischen material zur erzeugung von farbphotographischen bildern
US3703375A (en) Photographic processes and materials
DE2635492A1 (de) Photographischer farbkuppler
US3615502A (en) Color photographic development utilizing pyrazolone couplers
US3963499A (en) Photographic light-sensitive material
DE69025463T2 (de) Farbphotographisches Element und Verfahren
DE2650712A1 (de) Photographischer entwickler und seine anwendung
US5298377A (en) Photographic element with 2-equivalent magenta dye-forming coupler and filter dye
JPS61189536A (ja) ハロゲン化銀カラ−写真感光材料
JPS6249354A (ja) ハロゲン化銀カラ−写真感光材料
JPS63153548A (ja) ハロゲン化銀カラ−写真感光材料
JP2778702B2 (ja) 色素像形成性カプラー化合物を含む写真記録材料
DE3026391C2 (sl)
JPS58172647A (ja) ハロゲン化銀カラ−写真感光材料
JPH01250953A (ja) 新規なシアンカプラーを含有するハロゲン化銀写真感光材料
US5015565A (en) Color photographic recording material
US4121934A (en) Silver halide photographic light-sensitive material
JPS6257024B2 (sl)
DE69500215T2 (de) Photographisches Material mit einer blau empfindlichen Schicht enthaltend einen Magentafarbstoff bildenden Kuppler und einen Magentafarbstoff bildende Kuppler
US2860975A (en) Photographic color correction process using 2-azo-1-naphthol dyes
US6063555A (en) Silver halide color photographic light-sensitive material