US3763782A - Metal layer initiator - Google Patents
Metal layer initiator Download PDFInfo
- Publication number
- US3763782A US3763782A US00137464A US3763782DA US3763782A US 3763782 A US3763782 A US 3763782A US 00137464 A US00137464 A US 00137464A US 3763782D A US3763782D A US 3763782DA US 3763782 A US3763782 A US 3763782A
- Authority
- US
- United States
- Prior art keywords
- element according
- electrical detonator
- electrode
- detonator element
- electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 14
- 239000002184 metal Substances 0.000 title claims description 14
- 239000003999 initiator Substances 0.000 title description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 239000011888 foil Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 6
- GNLCAVBZUNZENF-UHFFFAOYSA-N platinum silver Chemical compound [Ag].[Ag].[Ag].[Pt] GNLCAVBZUNZENF-UHFFFAOYSA-N 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- JUWSSMXCCAMYGX-UHFFFAOYSA-N gold platinum Chemical compound [Pt].[Au] JUWSSMXCCAMYGX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 claims description 3
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 238000005246 galvanizing Methods 0.000 claims description 2
- -1 silver-aluminum Chemical compound 0.000 claims description 2
- 238000000034 method Methods 0.000 description 9
- 239000012876 carrier material Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229920006305 unsaturated polyester Polymers 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- WETZJIOEDGMBMA-UHFFFAOYSA-L lead styphnate Chemical compound [Pb+2].[O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C([O-])=C1[N+]([O-])=O WETZJIOEDGMBMA-UHFFFAOYSA-L 0.000 description 1
- MHVVRZIRWITSIP-UHFFFAOYSA-L lead(2+);2,4,6-trinitrophenolate Chemical compound [Pb+2].[O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O.[O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O MHVVRZIRWITSIP-UHFFFAOYSA-L 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/10—Initiators therefor
- F42B3/103—Mounting initiator heads in initiators; Sealing-plugs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/10—Initiators therefor
- F42B3/195—Manufacture
Definitions
- Data side of a non-conductive carrier which is inserted into Apr. 24, Germany P a conductive housing one urface contacting a pole piece and the other surface having the bridge UuSn Clt t t EB, R f r d th r pressed against the [51] Int. Cl.
- F42b 3/12 charge which is electrically connected i the h [58] Field of Search 102/28 EB, 28 R, ing, and conductive means interconnecting the bridge 102/ R on one side of the carrier with the surface of the carrier contacting the pole piece either through a bore in [56] Reerences Cited the carrier or around the periphery thereof.
- the present invention relates in general to the manufacture of electric detonator elements, such as primer caps, and more particularly to an initiator, having an electrically conductive housing, a pole piece, and an ignitable charge, wherein a carrier of glass or ceramic having metallic layers plated thereon forms an ignition bridge disposed between said pole piece and the ignitable charge, which charge contacts or is in electrically conductive relationship with the conductive housing.
- the ignition bridge is conventional to form as an extremely thin and very short metallic wire jointed to the housing or the pole piece by soldering or welding.
- this procedure exhibits the disadvantage that the manufacturing expenses are relatively high, since the dimensions of the individual parts are very small, and accordingly, a large amount of skill and precision is required to flawlessly execute the welding or soldering operations necessary to effect the connection of the incandescent bridge with the poles.
- suitable materials for the nonconductive carrier element are laminated materials consisting of synthetic resin'materials such as phenol, epoxy, or of unsaturated polyesters, impregnated cellulose paper, cotton, glass fiber, and synthetic fiber fabrics impregnated with unsaturated polyester, or the like.
- the ignition bridge can also be fashioned, for example, as an extremely thin metallic wire which is held on the non-conductive carrier element, for instance, by means of an adhesive.
- the thus-produced primer elements possess the disadvantage that the mechanical stability thereof is not sufficiently large to withstand the shock stress arising, for example, by the firing of a projectile, with a sufficient degree of safety.
- the invention is based on the problem of producing a connection of the conductive ignition bridge with a solid non-conductive carrier material, so that the conductive bridge is provided with an increased mechanical stability. Thereby, it is possible to produce primer elements withstanding an impact stress of up to 500,000 gs (g gravitational acceleration), without the necessity of utilizing a welded or soldered incandescent wire, and thus to fashion these elements with a maximum degree of safety.
- This invention relates to an electric primer element consisting of an insulating body carrying two lead electrodes and a metallic bridge, which bridge serves to ignite a primer composition upon the passage of current therethrough, which element is characterized in that the insulating body consists of a glass or ceramic carrier material to which the electrodes and the bridge are applied by vaporization, printing, and in a chemical manner.
- the mechanical strength of this primer element is determined solely by the carrier material. Due to the high mechanical stability of the carrier material, which is made of glass or ceramic, it is possible to press the primer composition against the conductive bridge with a higher pressure, whereby a substantially better thermal contact is established between the conductive bridge and the primer composition than is possible in the usual dipping or dripping process. Thus, it is possible to place pure explosives, for example lead trinitroresorcinate, lead azide, or lead picrate, into a close thermal bond with the primer element, for example by compression.
- pure explosives for example lead trinitroresorcinate, lead azide, or lead picrate
- FIG. 1 is a side elevation partly in section of a conventional electrical detonator element
- FIG. 2 is a side elevation partly in section of an electrical detonator in accordance with the present invention.
- FIGS. 3a and 3b are bottom elevational and side sectional views of the ignition bridge element used in the device of FIG. 2;
- FIG. 4 is a side elevation partly in section of a second embodiment of the present invention.
- FIGS. 5a and 5b are bottom elevational and side sectional views of the ignition bridge element used in the device of FIG. 4;
- FIG. 6 is a detailed view of the conductive bridge member used on the ignition bridge element of FIGS. 5a and 5b.
- FIG. 1 shows a conventional electrical primer of the spark gap type.
- the primer consists of a conductive casing 1 containing, in an insulated manner, a pole 'piece 2.
- An insulating ring 3 is disposed on the inner side of the pole piece 2, this ring being pressed against the pole piece 2 by means of a conductive supporting ring 4.
- the gap 5 is formed between the pole piece 2 and a primer composition 6 which is pressed into the area defined laterally by the conductive supporting ring 4, the latter being retained by the casing 1.
- FIG. 2 shows an electrical primer constructed according to FIG. 1, except that the insulating ring 3 is replaced by a metal covered ignition bridge element 7 constructed as seen in FIGS. 3a and 3b.
- the structure of the remaining parts of the initiator corresponds to the primer cap illustrated in FIG. 1.
- the bridge element 7 consists of a carrier 8 in the form of a round disk of glass or a ceramic material, especially sintered aluminum oxide, having a high surface quality and conductive contact members 9 applied to the surfaces of this carrier material.
- the insulator 8 is provided with a bore 10 made conductive by means of a metallic layer 10' on the surface thereof which extends through the bore, so that electrical contact can be established therethrough to conductive layers 9' on the opposite surface of the carrier.
- the round disk carrier 7 can be provided with indentations, notches, or it can be flattened on one side by sections, so that the primer element can be inserted or fitted in the housing 1 during the assembly of the initiator in an oriented manner.
- the bore 10, lined with a conductive material, is connected with one of the contact surfaces 9 by a conductive ignition bridge 11, overlapping both the conductive layer 10 and the contact surface 9 at portions 14. As shown in FIGS. 3a and 3b the contact surface 9" is not electrically connected and serves a support function to ensure proper positioning of the bridge element.
- the ignition current flows via the pole piece 2 through the metallized bore 10, by way of the ignition bridge 11 to the conductive spacer ring 4, the latter constituting the connection to ground together with the external housing 1.
- the ignition bridge is heated in such a manner that the primer composition 6 is ignited.
- FIG. 4 shows another embodiment of the metal layer ignition bridge initiator wherein the current is fed to a bridge electrode constructed according to FIGS. 5a, 5b and 6 using a metallic bracket 12 extending around the periphery of the carrier so as to eliminate need for the bore 10.
- a metallic bracket 12 extending around the periphery of the carrier so as to eliminate need for the bore 10.
- an additional layer of insulation 13 is provided therebetween.
- the current flows, in this embodiment, from the pole piece 2 on the outside via the bracket 12 to the ignition bridge 11, which interconnects the contact surfaces 9.
- FIGS. 50 and 5b the details of the further embodiment of a metal layer bridge element are shown.
- the carrier 8 does not have a bore for electrical conducting purposes, but rather utilizes a rerouting or by-pass element 12 made of a conductive material.
- a rerouting or by-pass element 12 made of a conductive material.
- FIG. 6 One embodiment of this rerouting element 12 is shown in FIG. 6.
- a segment has been cut out from the circular surface of the carrier 7, whereby simultaneously space has been made available for the lateral conductive rerouting element 12.
- the ignition bridge 11 is disposed in the center of the carrrer.
- the contacting surfaces 9 are applied to the carrier material 8 preferably by the silk screen printing process, wherein conventional material is employed, for example palladium, a palladium silver mixture, palladium gold, platinum silver, platinum gold, nickel, or a silver-aluminum alloy.
- the thus-applied material is sintered at about l,000 l,100 C.
- Any bore, such as the bore 10 of the embodiment illustrated in FIG. 2, required in certain cases in the bridge element for establishing electrical contact through the carrier is already provided during the production of the blank. Thereafter, a tantalum or tantalum nitride layer of a specific thickness is deposited thereon by vaporization in a high-vacuum process.
- silver can be employed as the contact material.
- a photosensitive layer is applied by means of a spraying or sputtering process.
- the desired and predetermined shape of the ignition bridge 11 is applied either by positive or negative contact copying procedures to the pretreated electrodes 9 and transferred to the lightsensitive coating of the electrodes 9 by appropriate developing methods.
- the electrodes 9 illustrated in FIGS. 3a, 3b and 5a, 5b are shaped essentially in the form of circular segments, for example of platinum silver. Since the primer element shown in FIG. 3a is provided with a bore 10, a layer of platinum silver is likewise arranged around this bore; however, this layer does not have any connection with the electrodes 9.
- the ignition bridge 11 is disposed between the layer around the bore 10 and an electrode 9, and in the example of FIG.
- the bridge is arranged between the two electrodes 9.
- the ignition bridge 11 consisting of tantalum or tantalum nitride, is enlarged at the contact surface with the electrodes 9, so that it covers part of the electrodes 9.
- the overlapping portions 14 serve for the purpose of establishing as good a contact as possible with the electrodes.
- an ignition bridge 11 is obtained at a predetermined place, the ignition sensitivty of which is determined by the layer thickness, length, and width of the transition between the contact surfaces and can be measured by the electric resistance thereof.
- the conductive bridge preferably exhibits a width and a length of 50 u, and a thickness of 0.1 1.5 a.
- an electrical detonator element including a pole piece and a housing means forming a pair of electrical leads, a primer composition and an ignition bridge element disposed with said primer composition between said pole piece and said housing means, said ignition bridge element comprising an insulating body having first electrode means arranged on at least a first surface of said body for electrically contacting said pole piece and second electrode means arranged on a second surface of said body for electrically contacting said housing means, each of said first and second electrode means including an electrode member formed on said second surface of said body, and a bridge member of a size providing a specific electrical resistance interconnecting said first and second electrode means, said bridge member being provided as a plated metal layer on said second surface of said body in overlapping relationship with portions of each of said electrode members.
- said insulating body is formed as a round disc having a bore therethrough
- said first electrode means includes a conductive layer provided on the first surface of said body in contact with said pole piece and a metal portion plated on the surface of said bore electrically interconnecting said conductive layer on said first surface with said electrode member of said first electrode means on said second surface of said body.
- An electrical detonator element according to claim 1, wherein said insulating body is formed as a round disc, said first electrode means including a conductive layer on said first surface of said body contacting said pole piece and means for connecting said conductive layer to said electrode member of said first electrode means on said second surface of said body.
- An electrical detonator element according to claim 1 said bridge member having a width and a length of 50 p. and a thickness of 0.1 1.5 p
- Electrodes 13 are formed of a conductive material selected from the group consisting of nickel, palladium, palladium silver alloy, palladium gold, platinum gold, platinum silver, or a silveraluminum alloy.
- said bridge member consists of a metal selected from the group consisting of tantalum and tantalum nitride.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Spark Plugs (AREA)
- Air Bags (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2020016A DE2020016C3 (de) | 1970-04-24 | 1970-04-24 | Metallschichtzündmittel |
Publications (1)
Publication Number | Publication Date |
---|---|
US3763782A true US3763782A (en) | 1973-10-09 |
Family
ID=5769194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00137464A Expired - Lifetime US3763782A (en) | 1970-04-24 | 1971-04-26 | Metal layer initiator |
Country Status (4)
Country | Link |
---|---|
US (1) | US3763782A (enrdf_load_stackoverflow) |
DE (1) | DE2020016C3 (enrdf_load_stackoverflow) |
FR (1) | FR2090579A5 (enrdf_load_stackoverflow) |
GB (1) | GB1344922A (enrdf_load_stackoverflow) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3440660A1 (de) * | 1983-11-09 | 1985-07-25 | Dynamit Nobel Ag, 5210 Troisdorf | Elektrisches zuendmittel |
US4644863A (en) * | 1983-11-09 | 1987-02-24 | Dynamit Nobel Aktiengesellschaft | Electric detonator |
US4770099A (en) * | 1976-10-23 | 1988-09-13 | Dynamit Nobel Ag | Propellant charge igniter |
US4881463A (en) * | 1988-02-24 | 1989-11-21 | The State Of Israel, Ministry Of Defence, Israel Military Industries | Electric igniter assembly |
WO1994019661A1 (en) * | 1993-02-26 | 1994-09-01 | Quantic Industries, Inc. | Improved semiconductor bridge explosive device |
US5433147A (en) * | 1993-03-12 | 1995-07-18 | Dynamit Nobel Aktiengesellschaft | Ignition device |
US5495806A (en) * | 1993-05-28 | 1996-03-05 | Altech Industries (Proprietary) Limited | Detonators |
WO1996024024A1 (en) * | 1995-01-31 | 1996-08-08 | Quantic Industries, Inc. | Improved semiconductor bridge explosive device |
WO1998010236A1 (en) * | 1996-09-03 | 1998-03-12 | Teledyne Industries, Inc. | Thin film bridge initiators and method of manufacture |
US6054760A (en) * | 1996-12-23 | 2000-04-25 | Scb Technologies Inc. | Surface-connectable semiconductor bridge elements and devices including the same |
US6133146A (en) * | 1996-05-09 | 2000-10-17 | Scb Technologies, Inc. | Semiconductor bridge device and method of making the same |
US6199484B1 (en) * | 1997-01-06 | 2001-03-13 | The Ensign-Bickford Company | Voltage-protected semiconductor bridge igniter elements |
WO2002057705A2 (en) | 2001-01-22 | 2002-07-25 | Smi Technology (Pty) Limited | An initiating device for an electronic detonator |
US7055434B1 (en) * | 2003-03-04 | 2006-06-06 | The United States Of America As Represented By The Secretary Of The Navy | Electrical initiation system |
WO2012108931A1 (en) * | 2011-02-07 | 2012-08-16 | Raytheon Company | Shock hardened initiator and initiator assembly |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2245308C3 (de) * | 1972-09-15 | 1981-05-07 | Dynamit Nobel Ag, 5210 Troisdorf | Elektrisches Brückenzündmittel |
DE2328184C3 (de) * | 1973-06-02 | 1981-06-25 | Dynamit Nobel Ag, 5210 Troisdorf | Elektrisch zu zündendes Schaltelement für Stifteinzug |
DE2654087C3 (de) * | 1976-11-29 | 1981-07-16 | Dynamit Nobel Ag, 5210 Troisdorf | Elektrisches Zündmittel |
SE431681B (sv) * | 1977-04-19 | 1984-02-20 | Bofors Ab | Eltenddon |
DE2747163A1 (de) * | 1977-10-20 | 1979-04-26 | Dynamit Nobel Ag | Elektrisches anzuendelement |
DE3024554C2 (de) * | 1980-06-28 | 1985-06-05 | Dynamit Nobel Ag, 5210 Troisdorf | Anordnung zur kontaktlosen Übertragung elektrischer Energie auf Flugkörper bei deren Abschuß |
DE3035932A1 (de) * | 1980-09-24 | 1982-05-06 | Dynamit Nobel Ag, 5210 Troisdorf | Elektrisches zuendmittel |
FR2513751B1 (fr) * | 1981-09-28 | 1986-04-11 | France Etat | Initiateur pyrotechnique electrique a effet joule |
DE3231369C1 (de) * | 1982-08-24 | 1984-01-05 | Dynamit Nobel Ag, 5210 Troisdorf | Sekundaerspule fuer induktive Anzuendmittel |
DE3245187A1 (de) * | 1982-12-07 | 1984-06-07 | Dynamit Nobel Ag, 5210 Troisdorf | Kontaktierung von traegerelementen in elektrischen zuendmitteln |
FR2538099B1 (fr) * | 1982-12-15 | 1986-10-03 | France Etat | Amorce electrique a element resistif |
EP0120176B1 (de) * | 1983-02-22 | 1987-11-19 | Ems-Inventa AG | Elektrischer Polkörper |
EP0143071A1 (de) * | 1983-11-18 | 1985-05-29 | Fela E. Uhlmann Aktiengesellschaft für gedruckte Schaltungen | Verfahren zur Herstellung einer elektrischen Zündvorrichtung, danach hergestellte Zündvorrichtung und deren Verwendung |
DE3415625A1 (de) * | 1984-04-26 | 1985-10-31 | Dynamit Nobel Ag, 5210 Troisdorf | Elektrisches zuendelement mit soll-funkenstrecke |
ZA852777B (en) * | 1984-05-24 | 1985-11-27 | Inventa Ag | Pole body for an electric fuze,method of manufacturing and method of using the pole body |
DE3702241C1 (de) * | 1987-01-27 | 1996-06-20 | Daimler Benz Aerospace Ag | Verfahren und Einrichtung zur Herstellung von Primärzündsätzen, insbesondere Brückenzündern und Spaltzündern |
DE4222223C1 (de) * | 1992-07-07 | 1994-03-17 | Dynamit Nobel Ag | Elektrische Anzünd-/Zündmittel |
FR2704944B1 (fr) * | 1993-05-05 | 1995-08-04 | Ncs Pyrotechnie Technologies | Initiateur électro-pyrotechnique. |
FR2746461B1 (fr) * | 1996-03-21 | 1998-05-29 | Dixi Fresard Microtechniques | Dispositif pour la fixation traversante d'un corps axial dans un support |
AT405591B (de) * | 1997-10-03 | 1999-09-27 | Schaffler & Co | Heizelement und verfahren zu dessen herstellung |
AU778545B2 (en) * | 1998-12-21 | 2004-12-09 | Orica Explosives Technology Pty Ltd | A detonation initiating device |
AT413150B (de) | 2003-01-28 | 2005-11-15 | Hirtenberger Schaffler Automot | Heizelement zum zünden pyrotechnischer ladungen |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2974591A (en) * | 1957-04-04 | 1961-03-14 | Wasag Chemie Ag Fa | Electric fuses for detonators and the like |
US3295446A (en) * | 1964-03-12 | 1967-01-03 | Rheinmetall Gmbh | Electric primer |
US3420174A (en) * | 1967-09-29 | 1969-01-07 | Us Navy | Pulse sensitive electro-explosive device |
US3557699A (en) * | 1968-06-26 | 1971-01-26 | Olin Mathieson | Electroexplosive primer ignition assembly |
-
1970
- 1970-04-24 DE DE2020016A patent/DE2020016C3/de not_active Expired
-
1971
- 1971-04-22 FR FR7114404A patent/FR2090579A5/fr not_active Expired
- 1971-04-23 GB GB1115971*[A patent/GB1344922A/en not_active Expired
- 1971-04-26 US US00137464A patent/US3763782A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2974591A (en) * | 1957-04-04 | 1961-03-14 | Wasag Chemie Ag Fa | Electric fuses for detonators and the like |
US3295446A (en) * | 1964-03-12 | 1967-01-03 | Rheinmetall Gmbh | Electric primer |
US3420174A (en) * | 1967-09-29 | 1969-01-07 | Us Navy | Pulse sensitive electro-explosive device |
US3557699A (en) * | 1968-06-26 | 1971-01-26 | Olin Mathieson | Electroexplosive primer ignition assembly |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4770099A (en) * | 1976-10-23 | 1988-09-13 | Dynamit Nobel Ag | Propellant charge igniter |
US4644863A (en) * | 1983-11-09 | 1987-02-24 | Dynamit Nobel Aktiengesellschaft | Electric detonator |
DE3440660A1 (de) * | 1983-11-09 | 1985-07-25 | Dynamit Nobel Ag, 5210 Troisdorf | Elektrisches zuendmittel |
US4881463A (en) * | 1988-02-24 | 1989-11-21 | The State Of Israel, Ministry Of Defence, Israel Military Industries | Electric igniter assembly |
US5912427A (en) * | 1993-02-26 | 1999-06-15 | Quantic Industries, Inc. | Semiconductor bridge explosive device |
WO1994019661A1 (en) * | 1993-02-26 | 1994-09-01 | Quantic Industries, Inc. | Improved semiconductor bridge explosive device |
JP3484517B2 (ja) | 1993-02-26 | 2004-01-06 | エヌ・ケイ・エヌ・エム・リミテッド | 改良された半導体ブリッジ起爆装置 |
US5433147A (en) * | 1993-03-12 | 1995-07-18 | Dynamit Nobel Aktiengesellschaft | Ignition device |
US5495806A (en) * | 1993-05-28 | 1996-03-05 | Altech Industries (Proprietary) Limited | Detonators |
WO1996024024A1 (en) * | 1995-01-31 | 1996-08-08 | Quantic Industries, Inc. | Improved semiconductor bridge explosive device |
US6133146A (en) * | 1996-05-09 | 2000-10-17 | Scb Technologies, Inc. | Semiconductor bridge device and method of making the same |
US5732634A (en) * | 1996-09-03 | 1998-03-31 | Teledyne Industries, Inc. | Thin film bridge initiators and method of manufacture |
WO1998010236A1 (en) * | 1996-09-03 | 1998-03-12 | Teledyne Industries, Inc. | Thin film bridge initiators and method of manufacture |
US6054760A (en) * | 1996-12-23 | 2000-04-25 | Scb Technologies Inc. | Surface-connectable semiconductor bridge elements and devices including the same |
US6199484B1 (en) * | 1997-01-06 | 2001-03-13 | The Ensign-Bickford Company | Voltage-protected semiconductor bridge igniter elements |
WO2000079210A3 (en) * | 1999-06-15 | 2001-04-19 | Ensign Bickford Co | Voltage-protected semiconductor bridge igniter elements |
WO2002057705A2 (en) | 2001-01-22 | 2002-07-25 | Smi Technology (Pty) Limited | An initiating device for an electronic detonator |
US7055434B1 (en) * | 2003-03-04 | 2006-06-06 | The United States Of America As Represented By The Secretary Of The Navy | Electrical initiation system |
WO2012108931A1 (en) * | 2011-02-07 | 2012-08-16 | Raytheon Company | Shock hardened initiator and initiator assembly |
US8701557B2 (en) | 2011-02-07 | 2014-04-22 | Raytheon Company | Shock hardened initiator and initiator assembly |
US9816790B2 (en) | 2011-02-07 | 2017-11-14 | Raytheon Company | Shock hardened initiator and initiator assembly |
US9879951B2 (en) | 2011-02-07 | 2018-01-30 | Raytheon Company | Shock hardened initiator and initiator assembly |
Also Published As
Publication number | Publication date |
---|---|
GB1344922A (en) | 1974-01-23 |
DE2020016B2 (de) | 1974-04-11 |
DE2020016C3 (de) | 1974-12-12 |
FR2090579A5 (enrdf_load_stackoverflow) | 1972-01-14 |
DE2020016A1 (de) | 1971-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3763782A (en) | Metal layer initiator | |
CA1108931A (en) | Electric igniter | |
US3682096A (en) | Electric detonator element | |
CA1125090A (en) | Electric firing element | |
KR100383335B1 (ko) | 일렉트로파이로테크닉 점화기 | |
KR100390109B1 (ko) | 정전기적 방전에 대해 보호되는 포토에칭된 필라멘트파이로테크닉 시동기 | |
US4621578A (en) | Pyrotechnic initiator using a coaxial connector | |
US6131515A (en) | Electric primer | |
US3867885A (en) | Electrical primer | |
US2986090A (en) | Electric fuses for igniting explosive charges | |
US3420174A (en) | Pulse sensitive electro-explosive device | |
US3906858A (en) | Miniature igniter | |
CA1152378A (en) | Electric igniter | |
US3516150A (en) | Method of manufacturing solid electrolytic capacitors | |
US4335653A (en) | Electric igniter with conductive bodies and thin connector | |
US3426682A (en) | Exploding fuse | |
US3333538A (en) | Electric initiator structure | |
US3515958A (en) | Electrical component with attached leads | |
US4686903A (en) | Method of manufacturing a pole body for an electric fuse, pole body for an electric fuse and method of using the pole body | |
US3090308A (en) | Electric primers for projectiles | |
US2920569A (en) | Electrical pellet primer | |
US2996944A (en) | Method of making a sparking detonator | |
GB2033553A (en) | Electric priming devices | |
KR20160091916A (ko) | 전기 뇌관 및 전기 뇌관 제조 방법 | |
JPS612000A (ja) | 電気点火装置のための電極体とその製造方法 |