US20210028445A1 - Method of Preparing Positive Electrode Active Material - Google Patents

Method of Preparing Positive Electrode Active Material Download PDF

Info

Publication number
US20210028445A1
US20210028445A1 US16/982,812 US201916982812A US2021028445A1 US 20210028445 A1 US20210028445 A1 US 20210028445A1 US 201916982812 A US201916982812 A US 201916982812A US 2021028445 A1 US2021028445 A1 US 2021028445A1
Authority
US
United States
Prior art keywords
heat treatment
positive electrode
electrode active
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/982,812
Other languages
English (en)
Inventor
Won Sig Jung
Seung Beom Cho
Sang Soon Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Assigned to LG CHEM, LTD. reassignment LG CHEM, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, SEUNG BEOM, CHOI, SANG SOON, JUNG, WON SIG
Publication of US20210028445A1 publication Critical patent/US20210028445A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/28Moving reactors, e.g. rotary drums
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of preparing a positive electrode active material, and more particularly, to a method of preparing a lithium nickel manganese cobalt oxide-based positive electrode active material having excellent productivity, excellent quality consistency, and excellent physical properties.
  • Li(Ni a Co b Mn c )O 2 has been recently actively studied because it can be advantageously used in high-capacity and high-voltage applications.
  • the conventional lithium nickel manganese cobalt-based oxide is prepared by the method of mixing a precursor such as nickel manganese cobalt hydroxide with a lithium source material such as lithium hydroxide or lithium carbonate, introducing the mixture into a firing furnace, and firing the same at a high temperature of about 750-950° C.
  • a continuous firing furnace such as a roller hearth kiln has been used as the above-described firing furnace.
  • a roller hearth kiln is a type of firing furnace in which a plurality of rollers are arranged at a predetermined interval and the rotation of the rollers in the same direction allows a material to be fired while being moved.
  • roller hearth kiln provides the advantages of an excellent material flow therethrough and the easy removal of the moisture contained in a raw material, due to the randomly positioned heating wires and thermal conductivity variance in the firing furnace, which lead to a large temperature variance according to position, it also has drawbacks in that it results in a positive electrode active material with low quality consistency and, accordingly, increased costs due to increased production time for the purpose of improving the quality consistency of the positive electrode active material.
  • the present invention is directed to providing a method of preparing a positive electrode active material that can provide a lithium nickel manganese cobalt-based positive electrode active material having consistent and excellent quality.
  • the present invention provides a method of preparing a positive electrode active material that includes the steps of: introducing a reaction mixture including a lithium source material and a nickel-manganese-cobalt precursor into a continuous firing furnace and subjecting the same to primary heat treatment, thereby preparing a fired mixture; subjecting the fired mixture to pulverization or size classification; and introducing the fired mixture having been pulverized or size-classified into a rotary kiln and subjecting the same to a secondary heat treatment, thereby forming a lithium nickel manganese cobalt-based positive electrode active material.
  • the performance of two serial heat-treatment steps in a continuous firing furnace and a rotary kiln results in excellent quality consistency of particles and low cation mixing. Therefore, a lithium nickel manganese cobalt-based positive electrode active material having excellent electrochemical characteristics can be obtained.
  • the method of preparing a positive electrode active material according to the present invention allows unnecessary gases or moisture such as water or CO 2 to be released during the primary heat-treatment (firing) process performed in a continuous firing furnace, and accordingly, improves the flow of fired products during the secondary heat-treatment process. Therefore, the productivity of the positive electrode active material can be improved, and the production time can be shortened.
  • the secondary heat treatment is performed in a rotary kiln, the heat can be transferred evenly to the raw material. Therefore, the physical property variance of the positive electrode active material can be reduced, and accordingly, the quality inconsistency of the positive electrode active material can be effectively resolved.
  • % used herein indicates a weight percentage (wt %) unless explicitly indicated otherwise.
  • the present invention relates to a method of preparing a positive electrode active material, and more particularly, to a method of preparing a positive electrode active material that includes the steps of: (1) introducing a reaction mixture including a lithium source material and a nickel-manganese-cobalt precursor into a continuous firing furnace and subjecting the same to primary heat treatment, thereby preparing a fired mixture; (2) subjecting the fired mixture to pulverization or size classification; and (3) introducing the fired mixture having been pulverized or size-classified into a rotary kiln and subjecting the same to secondary heat treatment, thereby forming a lithium nickel manganese cobalt-based positive electrode active material.
  • a reaction mixture including a lithium source material and a nickel-manganese-cobalt precursor is introduced into a continuous firing furnace.
  • lithium source material various lithium source materials known in the art, for example, a lithium-containing carbonate (e.g., lithium carbonate or the like), a lithium-containing hydrate (e.g., lithium hydroxide monohydrate (LiOH.H 2 O) or the like), a lithium-containing hydroxide (e.g., lithium hydroxide or the like), a lithium-containing nitrate (e.g., lithium nitrate (LiNO 3 ) or the like), a lithium-containing chloride (e.g., lithium chloride (LiCl) or the like) or the like) or the like may be used without limitation.
  • a lithium-containing carbonate e.g., lithium carbonate or the like
  • a lithium-containing hydrate e.g., lithium hydroxide monohydrate (LiOH.H 2 O) or the like
  • a lithium-containing hydroxide e.g., lithium hydroxide or the like
  • a lithium-containing nitrate e.g., lithium
  • nickel-manganese-cobalt precursor various nickel-manganese-cobalt precursor materials known in the art, for example, one or more selected from the group consisting of nickel manganese cobalt hydroxide, nickel manganese cobalt oxyhydroxide, nickel manganese cobalt carbonate, and nickel manganese cobalt organic complex may be used without limitation.
  • the nickel-manganese-cobalt precursor may be purchased among commercially available products, or may be prepared by a method of preparing a nickel-manganese-cobalt transition metal precursor well known in the art.
  • the nickel-manganese-cobalt transition metal precursor may be prepared by subjecting a metal solution containing a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material to a co-precipitation reaction by adding an ammonium-cation-containing complex-forming agent and a basic compound thereto.
  • the nickel-containing raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or the like that contains nickel, specifically, Ni(OH) 2 , NiO, NiOOH, NiCO 3 .2Ni(OH) 2.4 .H 2 O, NiC 2 O 2 .2H 2 O, Ni(NO 3 ) 2 .6H 2 O, NiSO 4 , NiSO 4 .6H 2 O, a fatty acid nickel salt, a nickel halide, or a mixture thereof, but the present invention is not limited thereto.
  • the cobalt-containing raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or the like that contains cobalt, specifically, Co(OH) 2 , CoOOH, Co(OCOCH 3 ) 2 .4H 2 O, Co(NO 3 ) 2 .6H 2 O, Co(SO 4 ) 2 .7H 2 O, or a mixture thereof, but the present invention is not limited thereto.
  • the manganese-containing raw material may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, or oxyhydroxide that contains manganese or a mixture thereof, specifically, a manganese oxide such as Mn 2 O 3 , MnO 2 , or Mn 3 O 4 ; a manganese salt such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylate, manganese citrate, or a fatty acid manganese salt; manganese oxyhydroxide, manganese chloride, or a mixture thereof, but the present invention is not limited thereto.
  • the metal solution is prepared by adding the nickel-containing raw material, the cobalt-containing raw material, and the manganese-containing raw material to a solvent, wherein the solvent is specifically water or a mixture of water and an organic solvent (e.g., alcohol or the like) that can be uniformly mixed with water, or by mixing an aqueous solution of the nickel-containing raw material, an aqueous solution of the cobalt-containing raw material, and an aqueous solution of the manganese-containing raw material.
  • a solvent is specifically water or a mixture of water and an organic solvent (e.g., alcohol or the like) that can be uniformly mixed with water, or by mixing an aqueous solution of the nickel-containing raw material, an aqueous solution of the cobalt-containing raw material, and an aqueous solution of the manganese-containing raw material.
  • the ammonium-cation-containing complex-forming agent may be NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , (NH 4 ) 2 CO 3 , or a mixture thereof, but the present invention is not limited thereto.
  • the ammonium-cation-containing complex-forming agent may be used in the form of an aqueous solution containing, as the solvent, water or a mixture of water and an organic solvent (specifically, alcohol or the like) that can be uniformly mixed with water.
  • the basic compound may be a hydroxide of an alkali metal or alkaline earth metal, such as NaOH, KOH, or Ca(OH) 2 , a hydrate thereof, or a mixture thereof.
  • the basic compound may also be used in the form of an aqueous solution containing, as the solvent, water or a mixture of water and an organic solvent (specifically, alcohol or the like) that can be uniformly mixed with water.
  • the basic compound is used to adjust the pH of the reaction solution, and it may be used in an amount such that the metal solution has the pH of 10.5 to 13, preferably, 11 to 13.
  • the co-precipitation reaction may be performed at a temperature of 40° C. to 70° C. under an inert atmosphere such as a nitrogen or argon atmosphere.
  • nickel-manganese-cobalt-hydroxide particles are prepared and are precipitated in the reaction solution.
  • the precipitated nickel-manganese-cobalt-hydroxide particles may be separated and dried by a conventional method, thereby preparing a transition metal precursor.
  • the content of the lithium source material and the nickel-manganese-cobalt precursor in the reaction mixture may be appropriately adjusted in consideration of the composition of the final positive electrode active material to be obtained.
  • the lithium source material and the nickel-manganese-cobalt precursor may be included in the reaction mixture in an amount such that the lithium-to-transition metal atomic ratio is in the range of 1:1.00-1.09.
  • the above-described atomic ratio is based on the total number of transition metal atoms, that is, the sum of the number of nickel, cobalt, and manganese atoms.
  • the reaction mixture may further include a doping source material for improving the stability and physical properties of the positive electrode active material in addition to the lithium source material and the nickel-manganese-cobalt precursor.
  • a doping source material for improving the stability and physical properties of the positive electrode active material in addition to the lithium source material and the nickel-manganese-cobalt precursor.
  • the doping source material an oxide, hydroxide, sulfide, oxyhydroxide, or halide that contains one or more elements selected from the group consisting of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and Mo, or a mixture thereof may be used.
  • the reaction mixture including the above-described components may be prepared by introducing the components into a mixer or the like and subjecting them to solid-phase mixing, but the present invention is not limited thereto.
  • the primary heat treatment is performed in a continuous firing furnace.
  • the continuous firing furnace there is no particular limitation on the continuous firing furnace, and selection may be made from a tunnel kiln and a roller hearth kiln.
  • the tunnel kiln may be a tunnel-type firing furnace in which a reaction mixture is loaded on a transporting means such as a conveyor or the like and is fired as it is moved
  • the roller hearth kiln may be a firing furnace in which a reaction mixture is fired as it passes over a roller conveyor of the firing furnace.
  • any tunnel kiln or roller hearth kiln being commonly used in the art may be used without limitation.
  • the roller hearth kiln is preferred as the continuous firing furnace in terms of exhibiting excellent thermal efficiency.
  • the roller hearth kiln may be a type of firing furnace in which a plurality of rollers are arranged at a predetermined interval and the rotation of the rollers in the same direction allows a material to be fired while being moved.
  • roller hearth kiln may have a direct or indirect exhaust passage, and accordingly, the oxygen partial pressure or the like therein can be controlled.
  • the primary heat treatment allows the lithium source material and the nickel-manganese-cobalt precursor to react with each other, resulting in the formation of a fired mixture, which is a mixture of spinel-structured lithium nickel cobalt manganese-based oxide seeds and laminar-structured lithium nickel cobalt manganese-based oxide seeds.
  • the following Reaction Scheme 1 illustrates the reaction that takes place during the primary heat treatment performed using LiOH as the lithium source material and nickel manganese cobalt hydroxide as the nickel-manganese-cobalt precursor.
  • the fired mixture formed therefrom may have a smaller volume than the reaction mixture.
  • roller hearth kiln allows the smooth supply and smooth exhaustion of air thereto and therefrom, unnecessary by-products such as moisture, CO 2 , and the like can be effectively removed, which is favorable for the density increase and volume reduction of the fired mixture, and accordingly, the room- or high-temperature flow of the fired mixture in the secondary heat treatment to be described below can be improved, which is favorable for productivity enhancement.
  • the primary heat treatment may be performed in a temperature range of 300° C. to 900° C., preferably 500° C. to 850° C., and more preferably 600° C. to 800° C.
  • the crystal of the nickel-manganese-cobalt precursor can be grown at an appropriate rate, which is advantageous for controlling characteristics of the active material, and the effects produced by the primary heat treatment are favorable for the volume reduction and flow improvement of the fire mixture.
  • the primary heat treatment may be performed for 3 hours to 15 hours, and preferably 5 hours to 12 hours. Satisfaction of the above-described range is favorable for the sufficient removal of moisture and gases generated during the heat treatment and the easy control of crystal growth during the secondary heat treatment.
  • the primary heat treatment may be performed under an oxygen atmosphere or an air atmosphere.
  • the performance of firing at a primary heat-treatment temperature results in the formation of a spinel-structured lithium nickel cobalt manganese-based oxide. Since the formation of the spinel structure is an oxidation process as described in Reaction Scheme 1, the crystal size is increased and the cation mixing is reduced under the condition of high oxygen partial pressure. Therefore, it is preferable that the primary heat treatment be performed under an oxygen atmosphere or an air atmosphere, where the oxygen partial pressure is high.
  • the prepared fired mixture is collected from the continuous firing furnace and then subjected to pulverization or size classification.
  • the pulverization or size classification may be carried out by a conventional pulverization or size-classification method known in the art, for example, by ball milling, jet milling, sieving, or the like.
  • the pulverization or size classification increases the tapped density of the fired mixture and effectively removes impurities such as moisture and carbon dioxide, thereby reducing the volume of the fired mixture. Since a larger amount of the fired mixture can be accommodated in the rotary kiln for the secondary heat treatment, the productivity can be improved.
  • the fired mixture is homogeneously compounded during the pulverization or size-classification process, and thus the quality consistency of the positive electrode active material can be improved.
  • the fired mixture having been pulverized or size-classified is introduced into a rotary kiln and subjected to secondary heat treatment, thereby forming a lithium nickel manganese cobalt-based positive electrode active material.
  • the secondary heat treatment is performed in a rotary kiln.
  • any rotary kiln known in the art may be used without limitation.
  • the secondary heat treatment is performed in a rotary kiln in which the rotation of a rotary cylindrical tube allows the heat to be evenly transferred to the raw materials, the contact between input gas and the raw materials to be more uniform, and the raw materials to be continuously mixed, the consistency in the physical properties or characteristics of the lithium nickel manganese cobalt-based positive electrode active material can be improved.
  • the internal temperature variance of the firing furnace may intensify the quality variance of the positive electrode active material being prepared, and accordingly, it is necessary to perform long-term firing to overcome the problem.
  • the present invention provides a secondary heat-treatment process using a rotary kiln and thereby enables the preparation of a positive electrode active material with improved quality consistency in a relatively short time.
  • the reaction mixture holds moisture therein and thus may agglomerate, possibly causing an inlet or outlet of the firing furnace to be clogged.
  • a process is preceded by a primary heat-treatment process using a roller hearth kiln, and therefore by-products such as moisture can be removed in advance, and the flow of the fired mixture can be remarkably improved.
  • the productivity of the positive electrode active material can be improved, the consistency in physical properties can be realized, the production time can be shortened, and the productivity can be improved.
  • the rotary kiln may include a rotary cylindrical tube having an inlet portion and an outlet portion.
  • the fired mixture introduced through the inlet portion is mixed and fired in the rotary cylindrical tube being rotated, and the product is discharged through the outlet portion.
  • the rotary kiln may include a heating portion configured to surround at least a part of the rotary cylindrical tube.
  • the operation of the heating portion may cause the heat to be transferred to the interior of the rotary cylindrical tube. Accordingly, the fired mixture is subjected to secondary heat treatment, thereby preparing a lithium nickel manganese cobalt-based positive electrode active material, which is discharged through the outlet portion.
  • the rotary kiln may further include a direct or indirect exhaust passage, and accordingly, the oxygen partial pressure or the like therein can be controlled.
  • the rotary cylindrical tube of the rotary kiln may be disposed such that the outlet portion is provided closer to the ground than the inlet portion.
  • the rotary cylindrical tube may be disposed such that it is inclined at an angle of 2° to 8°, preferably, 3° to 6°, and the outlet portion is not level with the inlet portion.
  • the diameter and length of the rotary cylindrical tube there is no particular limitation on the diameter and length of the rotary cylindrical tube, and selection may be made appropriately in consideration of the type, amount, and the like of the raw materials to be introduced.
  • the rotary cylindrical tube may have a length-to-diameter ratio of 2 to 20, and preferably 5 to 15.
  • the rotary cylindrical tube may have a diameter of 0.1 m to 50 m, and preferably 0.3 m to 20 m, and a length of 2 m to 100 m, and preferably 2.5 m to 50 m.
  • the rate at which the rotary cylindrical tube is rotated during the secondary heat treatment there is no particular limitation on the rate at which the rotary cylindrical tube is rotated during the secondary heat treatment.
  • the rotary cylindrical tube may be rotated at a rate of 0.5 rpm to 8 rpm, and preferably 1 rpm to 5 rpm, such that smooth compounding of the fired mixture and uniform heat transfer to the fired mixture can be realized.
  • the rotary cylindrical tube may include at least one selected from the group consisting of quartz, alumina, and stainless steel, and preferably includes quartz.
  • quartz as the material of the rotary cylindrical tube offers relatively high convenience in maintenance and repair, and since quartz has low activity with lithium and the like, can eliminate the risk of the tube reacting with lithium and the like and absorbing the same during firing.
  • the spinel-structured lithium nickel manganese cobalt oxide in the fired mixture is converted into a laminar type through the reaction shown in the following Reaction Scheme 2, and the laminar-structured lithium nickel manganese cobalt oxide seeds can grow into crystals.
  • the condition of low oxygen partial pressure may be favorable for the formation of the structure.
  • the performance of the secondary heat treatment at a low oxygen partial pressure may result in an increase in crystal size and the reduction of cation mixing.
  • the secondary heat treatment, which results in the formation of the laminar structure may be performed under the condition in which oxygen partial pressure is no more than 20%, and more specifically, the secondary heat treatment may be performed under a nitrogen atmosphere or a vacuum atmosphere. Accordingly, a positive electrode active material having excellent physical properties and excellent electrochemical properties can be prepared.
  • the process of firing a lithium source material and a nickel-manganese-cobalt precursor involves the generation of a gas such as CO 2 or the like, and the generation of unnecessary gases such as CO 2 results in the reduction of oxygen partial pressure in the firing atmosphere, and accordingly, the degradation of physical properties of the positive electrode active material being prepared. Therefore, until now, it has been common to carry out the firing process under an oxygen atmosphere in order to prepare a high-quality positive electrode active material.
  • the secondary heat-treatment process since CO 2 gas has already been generated in the primary heat treatment, the secondary heat-treatment process does not generate by-products such as CO 2 . Therefore, even the secondary heat treatment performed in a low oxygen partial pressure atmosphere can prepare a positive electrode active material of excellent quality.
  • the secondary heat treatment may be performed for 1 hour to 7 hours, and preferably 2 hours to 5 hours. Satisfaction of the above-described range is favorable for sufficient crystal growth and the improvement in the high-temperature lifetime and storage property of the active material.
  • the secondary heat treatment may be performed in the temperature range of 600° C. to 1,000° C., and preferably 700° C. to 900° C., such that the consistency in physical properties of the positive electrode active material can be improved or the above-described laminar-structured lithium-nickel-manganese-cobalt-oxide crystal growth can be easily realized.
  • a doping source material may be further added to the rotary kiln before the secondary heat treatment, if necessary, in order to improve the stability and physical properties of the positive electrode active material.
  • the doping source material an oxide, hydroxide, sulfide, oxyhydroxide, or halide that includes one or more elements selected from the group consisting of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and Mo, or a mixture thereof may be used.
  • the lithium nickel manganese cobalt-based positive electrode active material prepared by the above-described preparation method of the present invention may be represented by the following Chemical Formula 1.
  • M 1 is one or more selected from the group consisting of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, and Mo.
  • a, b, and c are atomic fractions of Ni, Mn, and Co, respectively, wherein, for example, 0.01 ⁇ a ⁇ 0.98, 0.01 ⁇ b ⁇ 0.98, and 0.01 ⁇ c ⁇ 0.98, specifically, 0.5 ⁇ a ⁇ 0.98, 0.01 ⁇ b ⁇ 0.49, and 0.01 ⁇ c ⁇ 0.49, and more specifically, 0.6 ⁇ a ⁇ 0.98, 0.01 ⁇ b ⁇ 0.39, and 0.01 ⁇ c ⁇ 0.39, but the present invention is not limited thereto.
  • the method of preparing a positive electrode active material according to the present invention can be used to prepare a fired mixture having a reduced volume, an increased density, and an improved flow.
  • the moisture in the reaction mixture or the by-products such as CO 2 are effectively removed by the primary heat treatment, when the prepared fired mixture is introduced into a rotary kiln and subjected to secondary heat treatment, the occurrence of fired mixture agglomeration due to moisture is significantly reduced, and accordingly, it can be expected that the production time of the positive electrode active material will be shortened or the production amount thereof will be increased.
  • the degradation of a firing atmosphere or of properties of the positive electrode active material which may be caused by reaction by-products during secondary heat treatment using a rotary kiln, can be minimized, and accordingly, a positive electrode active material of excellent and consistent quality can be prepared.
  • LiOH and Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 were mixed in a mixer such that the lithium-to-transition metal atomic ratio was 1.01:1, thereby preparing a reaction mixture.
  • 7,500 g (volume: 4,000 ml) of the reaction mixture was introduced into a roller hearth kiln (with a closeable entrance and exit, internal volume: 1000 m 3 , roller speed: 9 mm/min, oxygen feed rate: 650 m 3 /min) and subjected to primary heat treatment for 10 hours at 650° C. under an oxygen atmosphere, thereby preparing a fired mixture, which was then cooled.
  • the prepared fired mixture had a volume of 1,800 ml and a weight of about 5,000 g.
  • the fired mixture weighing 5,000 g (volume: 1,800 ml) was subjected to crushing and sieving, and the crushed fired mixture was introduced into a rotary kiln (quartz tube, diameter: 0.3 m, length: 3 m, rotational speed: 2 rpm, raw material feed rate: 2,000 g/h, inclination: 5°) and subjected to secondary heat treatment for three hours at 760° C. under a nitrogen atmosphere, thereby preparing the positive electrode active material of Example 1 (weight: 5,000 g, volume: 1,800 ml).
  • Li 2 CO 3 and Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 were mixed in a mixer such that the lithium-to-transition metal atomic ratio was 1.07:1, thereby preparing a reaction mixture.
  • 7,500 g (volume: 4,000 ml) of the reaction mixture was introduced into the same roller hearth kiln as in Example 1 and subjected to primary heat treatment for 10 hours at 750° C. under an oxygen atmosphere, thereby preparing a fired mixture, which was then cooled.
  • the prepared fired mixture had a volume of 1,800 ml and a weight of about 5,000 g.
  • the fired mixture weighing 5,000 g (volume: 1,800 ml) was subjected to crushing and sieving, and the crushed fired mixture was introduced into the same rotary kiln as in Example 1 and subjected to secondary heat treatment for three hours at 820° C. under a nitrogen atmosphere, thereby preparing the positive electrode active material of Example 2 (weight: 5,000 g, volume: 1,800 ml).
  • LiOH and Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 were mixed in a mixer such that the lithium-to-transition metal atomic ratio was 1.01:1, thereby preparing a reaction mixture.
  • 7,500 g (volume: 4,000 ml) of the reaction mixture was introduced into the same roller hearth kiln as in Example 1 and subjected to a 13-hour heat treatment at 650° C. under an oxygen atmosphere, cooling, crushing, and sieving, thereby preparing the positive electrode active material of Comparative Example 1 (weight: 5,000 g, volume: 1,700 ml).
  • LiOH and Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 were mixed in a mixer such that the lithium-to-transition metal atomic ratio was 1.01:1, thereby preparing a reaction mixture.
  • 7,500 g (volume: 4,000 ml) of the reaction mixture was introduced into the same rotary kiln as in Example 1 and subjected to a 13-hour heat treatment at 650° C. under an oxygen atmosphere, cooling, crushing, and sieving, thereby preparing the positive electrode active material of Comparative Example 2.
  • the positive electrode active material prepared by the above-describe process had a weight of 500 g and a volume of 180 ml.
  • the weight of the prepared positive electrode active material was significantly lower than the weight of the introduced reaction mixture, which is considered to be due to the clogging of the inlet due to the agglomeration of the reaction mixture caused by the moisture contained in LiOH and the like.
  • the positive electrode active materials of Examples 1 and 2 which were prepared by performing primary and secondary heat-treatment processes in series in a continuous firing furnace and a rotary kiln, were evaluated to have a larger crystal size and a lower cation mixing ratio than those of the comparative examples.
  • Comparative Example 1 where only a roller hearth kiln was used, a higher cation mixing ratio, and accordingly, large quality inconsistency were exhibited despite the same duration of heat treatment as in the examples.
  • Comparative Example 2 where only a rotary kiln was used, it was evaluated that the cation mixing ratio was very high because the occurrence of agglomeration hindered sufficient firing of the mixture.
  • Each one of the positive electrode active materials prepared according to Examples 1 and 2 and Comparative Examples 1 and 2 was dispersed, along with a PVdF binder and carbon black at a weight ratio of 97.5:1.5:1.0, in an NMP solution to prepare a slurry.
  • the slurry was then applied on an Al current collector and later rolled by a roll press, thereby producing a positive electrode.
  • a porous polyethylene separator was interposed between the positive electrode and the negative electrode produced as described above, thereby producing an electrode assembly.
  • a liquid electrolyte was injected into the case, thereby manufacturing a coin cell lithium secondary battery.
  • the coin cell prepared as described above was subjected to two cycles of charging and discharging at room temperature under the conditions of an end-of-charge voltage of 4.25 V, an end-of-discharge voltage of 2.5 V, and a rate of 0.1 C/0.1 C, and then the initial charge-discharge capacity and initial resistance were determined. Afterwards, the capacity retention rate (in %) and direct current resistance (DCR) increase rate (in %) after 50 cycles were measured while subjecting the coin cell to charging and discharging at 45° C. under the conditions of an end-of-charge voltage of 4.25 V, an end-of-discharge voltage of 2.5 V, and a rate of 0.3 C/0.3 C. The measurement results are shown in Table 2.
  • the positive electrode active materials of Examples 1 and 2 prepared by performing primary and secondary heat-treatment processes in series in a continuous firing furnace and a rotary kiln were evaluated to exhibit excellent capacity retention, low resistance, and a low DCR increase rate compared to those of Comparative Example 1 where only a roller hearth kiln was used and Comparative Example 2 where only a rotary kiln was used.
  • the amount of residual lithium in the positive electrode active materials of Examples 1 and 2 and Comparative Examples 1 and 2 was measured using an 888 Titrando instrument manufactured by Metrohm AG, by the Warder titration method in which the amount of OH ⁇ ions and CO 3 2 ⁇ ions is determined by titration.
  • the ratio (in mol %) of the number of moles of unreacted residual lithium to the total number of moles of lithium introduced in preparation of the positive electrode active materials determined by the above-described method is shown in the following Table 3.
US16/982,812 2018-04-12 2019-03-20 Method of Preparing Positive Electrode Active Material Pending US20210028445A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180042892A KR102288291B1 (ko) 2018-04-12 2018-04-12 양극 활물질의 제조방법
KR10-2018-0042892 2018-04-12
PCT/KR2019/003269 WO2019198944A1 (ko) 2018-04-12 2019-03-20 양극 활물질의 제조방법

Publications (1)

Publication Number Publication Date
US20210028445A1 true US20210028445A1 (en) 2021-01-28

Family

ID=68164133

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/982,812 Pending US20210028445A1 (en) 2018-04-12 2019-03-20 Method of Preparing Positive Electrode Active Material

Country Status (5)

Country Link
US (1) US20210028445A1 (ko)
JP (1) JP7046412B2 (ko)
KR (1) KR102288291B1 (ko)
CN (1) CN111902365A (ko)
WO (1) WO2019198944A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388882A (zh) * 2021-05-31 2021-09-14 湖北融通高科先进材料有限公司 一种三元单晶材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3931893A4 (en) * 2019-02-26 2022-11-23 Linde GmbH METHOD AND APPARATUS FOR THE PRODUCTION OF A TERNARY CATHODE MATERIAL
KR102406391B1 (ko) * 2019-12-20 2022-06-07 주식회사 포스코 이차 전지 양극재 제조 방법
KR102618005B1 (ko) * 2020-08-18 2023-12-27 주식회사 엘지화학 양극 활물질의 제조 방법
US20240010518A1 (en) * 2020-11-17 2024-01-11 Sumitomo Chemical Company, Limited Method for producing lithium metal composite oxide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446639B2 (ja) * 1998-12-10 2003-09-16 松下電器産業株式会社 リチウム二次電池用正極活物質の製造方法およびリチウム二次電池
KR100809847B1 (ko) 2002-10-31 2008-03-04 주식회사 엘지화학 금속성분의 조성에 구배를 갖는 리튬 전이금속 산화물
EP2696406B1 (en) * 2011-01-21 2018-05-30 JX Nippon Mining & Metals Corporation Method for producing positive-electrode active material for lithium-ion battery
JP5708277B2 (ja) * 2011-06-07 2015-04-30 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに非水系電解質二次電池
CN103066275B (zh) * 2013-01-24 2014-10-22 湖南桑顿新能源有限公司 一种球形高电压镍锰酸锂正极材料的制备方法
KR101501823B1 (ko) * 2013-02-13 2015-03-12 한국생산기술연구원 리튬이차전지용 양극복합소재 제조방법 및 이를 이용한 전극 제조방법 및 상기 전극의 충방전 방법
CN103794773B (zh) * 2013-11-16 2016-01-27 河南福森新能源科技有限公司 一种生产高容量523型三元正极材料的方法
KR102140211B1 (ko) * 2013-12-31 2020-07-31 삼성에스디아이 주식회사 양극 활물질의 제조방법, 이에 의하여 제조된 양극 활물질, 및 이를 포함하는 리튬 이차전지
JP6607670B2 (ja) * 2014-10-30 2019-11-20 住友化学株式会社 正極活物質、その製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN107001068A (zh) * 2014-11-26 2017-08-01 巴斯夫欧洲公司 用于制备锂化过渡金属氧化物的方法
JP6479632B2 (ja) * 2015-11-30 2019-03-06 ユミコア ニッケルリチウム金属複合酸化物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388882A (zh) * 2021-05-31 2021-09-14 湖北融通高科先进材料有限公司 一种三元单晶材料的制备方法

Also Published As

Publication number Publication date
WO2019198944A1 (ko) 2019-10-17
KR20190119442A (ko) 2019-10-22
JP7046412B2 (ja) 2022-04-04
JP2021516433A (ja) 2021-07-01
KR102288291B1 (ko) 2021-08-10
CN111902365A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
EP3683873B1 (en) Lithium secondary battery
EP3611132B1 (en) Method for preparing cathode active material
CN108336326B (zh) 锂二次电池用正极活性物质及其制备方法和锂二次电池
EP2016637B1 (en) Method of preparing material for lithium secondary battery of high performance
US20210028445A1 (en) Method of Preparing Positive Electrode Active Material
US20100227222A1 (en) Lithium-Metal Composite Oxides and Electrochemical Device Using the Same
JP4984593B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP3922040B2 (ja) リチウムマンガン複合酸化物とその製造方法並びにその用途
JP7121283B2 (ja) ニッケルコバルト複合水酸化物の製造方法及び非水系電解質二次電池用正極活物質の製造方法
EP4047689A1 (en) Positive electrode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery comprising same
JP6910697B2 (ja) 正極活物質の製造方法
EP3795541A1 (en) Method for manufacturing positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery manufactured by same
KR101525000B1 (ko) 리튬이차전지의 양극 활물질용 니켈-망간 복합 수산화물의 제조방법, 이에 따라 제조된 니켈-망간 복합 수산화물 및 이를 포함하는 리튬이차전지용 양극 활물질
JP2006147499A (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
KR100424635B1 (ko) 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP2022504835A (ja) リチウム遷移金属複合酸化物およびその製造方法
JP2000040512A (ja) リチウム二次電池用正極材料の製造方法
KR20170041650A (ko) 리튬이차전지용 양극소재인 리튬-니켈-코발트-망간-마그네슘 복합산화물 및 그 제조방법
KR102618005B1 (ko) 양극 활물질의 제조 방법
JP2001102054A (ja) リチウム2次電池用正極活物質の製造方法及びそれを正極に用いた電池
JPH11185755A (ja) リチウム電池用正極活物質とそれを正極に用いる電池
JPH09129231A (ja) 非水電解液二次電池およびその正極活物質の製造法

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, WON SIG;CHO, SEUNG BEOM;CHOI, SANG SOON;REEL/FRAME:053868/0113

Effective date: 20190123

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION