US20190338013A1 - Multi-Specific Molecules - Google Patents
Multi-Specific Molecules Download PDFInfo
- Publication number
- US20190338013A1 US20190338013A1 US16/079,949 US201716079949A US2019338013A1 US 20190338013 A1 US20190338013 A1 US 20190338013A1 US 201716079949 A US201716079949 A US 201716079949A US 2019338013 A1 US2019338013 A1 US 2019338013A1
- Authority
- US
- United States
- Prior art keywords
- binding
- antibody
- protein
- bdm
- specific
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000027455 binding Effects 0.000 claims abstract description 451
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 288
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 268
- 108091007433 antigens Proteins 0.000 claims abstract description 219
- 102000036639 antigens Human genes 0.000 claims abstract description 219
- 239000000427 antigen Substances 0.000 claims abstract description 216
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 198
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 133
- 229920001184 polypeptide Polymers 0.000 claims abstract description 125
- 239000012634 fragment Substances 0.000 claims abstract description 62
- 101150099985 bdm gene Proteins 0.000 claims abstract 9
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 35
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 35
- 150000001413 amino acids Chemical class 0.000 claims description 31
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 claims description 19
- 230000008878 coupling Effects 0.000 claims description 17
- 238000010168 coupling process Methods 0.000 claims description 17
- 238000005859 coupling reaction Methods 0.000 claims description 17
- 239000000178 monomer Substances 0.000 claims description 16
- 230000004927 fusion Effects 0.000 claims description 15
- 125000000539 amino acid group Chemical group 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 11
- 239000000539 dimer Substances 0.000 claims description 11
- 239000003937 drug carrier Substances 0.000 claims description 10
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims description 8
- 102000043321 human CTLA4 Human genes 0.000 claims description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims description 8
- 102100030301 MHC class I polypeptide-related sequence A Human genes 0.000 claims description 7
- 102100030300 MHC class I polypeptide-related sequence B Human genes 0.000 claims description 7
- 101710089372 Programmed cell death protein 1 Proteins 0.000 claims description 7
- 108091008324 binding proteins Proteins 0.000 claims description 7
- 108010074708 B7-H1 Antigen Proteins 0.000 claims description 6
- 102000004127 Cytokines Human genes 0.000 claims description 6
- 108090000695 Cytokines Proteins 0.000 claims description 6
- 102000008108 Osteoprotegerin Human genes 0.000 claims description 6
- 108010035042 Osteoprotegerin Proteins 0.000 claims description 6
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- 239000003114 blood coagulation factor Substances 0.000 claims description 5
- 101000991061 Homo sapiens MHC class I polypeptide-related sequence B Proteins 0.000 claims description 4
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 4
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 4
- 230000021615 conjugation Effects 0.000 claims description 4
- 239000010445 mica Substances 0.000 claims description 4
- 229910052618 mica group Inorganic materials 0.000 claims description 4
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 claims description 3
- 101710102605 MHC class I polypeptide-related sequence A Proteins 0.000 claims description 3
- 101710102608 MHC class I polypeptide-related sequence B Proteins 0.000 claims description 3
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 claims description 3
- 101710146873 Receptor-binding protein Proteins 0.000 claims description 3
- 102100027287 Serpin H1 Human genes 0.000 claims description 3
- 108050008290 Serpin H1 Proteins 0.000 claims description 3
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 claims description 3
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 claims description 3
- 102000029719 integrin binding proteins Human genes 0.000 claims description 3
- 108091009291 integrin binding proteins Proteins 0.000 claims description 3
- 239000002464 receptor antagonist Substances 0.000 claims description 3
- 229940044551 receptor antagonist Drugs 0.000 claims description 3
- 229960005356 urokinase Drugs 0.000 claims description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 claims description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 2
- 102000008096 B7-H1 Antigen Human genes 0.000 claims 2
- 102000023732 binding proteins Human genes 0.000 claims 2
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical group NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 claims 1
- 235000018102 proteins Nutrition 0.000 description 240
- 239000004325 lysozyme Substances 0.000 description 117
- 229960000274 lysozyme Drugs 0.000 description 117
- 108010014251 Muramidase Proteins 0.000 description 116
- 102000016943 Muramidase Human genes 0.000 description 116
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 116
- 235000010335 lysozyme Nutrition 0.000 description 116
- 239000000872 buffer Substances 0.000 description 84
- 210000004027 cell Anatomy 0.000 description 83
- 238000000034 method Methods 0.000 description 83
- 239000013598 vector Substances 0.000 description 72
- 150000007523 nucleic acids Chemical class 0.000 description 69
- 230000001130 anti-lysozyme effect Effects 0.000 description 61
- 102000019307 Sclerostin Human genes 0.000 description 59
- 108050006698 Sclerostin Proteins 0.000 description 59
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 56
- 108060003951 Immunoglobulin Proteins 0.000 description 54
- 102000018358 immunoglobulin Human genes 0.000 description 54
- 238000007792 addition Methods 0.000 description 46
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 45
- 102000039446 nucleic acids Human genes 0.000 description 42
- 108020004707 nucleic acids Proteins 0.000 description 42
- 239000000203 mixture Substances 0.000 description 38
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 37
- 108020004414 DNA Proteins 0.000 description 36
- 235000001014 amino acid Nutrition 0.000 description 36
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 35
- 238000004458 analytical method Methods 0.000 description 35
- 125000003275 alpha amino acid group Chemical group 0.000 description 30
- 102000007079 Peptide Fragments Human genes 0.000 description 29
- 108010033276 Peptide Fragments Proteins 0.000 description 29
- 229960002685 biotin Drugs 0.000 description 28
- 235000020958 biotin Nutrition 0.000 description 28
- 239000011616 biotin Substances 0.000 description 28
- 108010090804 Streptavidin Proteins 0.000 description 27
- 229940024606 amino acid Drugs 0.000 description 26
- 238000010494 dissociation reaction Methods 0.000 description 26
- 230000005593 dissociations Effects 0.000 description 26
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 24
- 239000013612 plasmid Substances 0.000 description 24
- -1 CD79 Proteins 0.000 description 23
- 239000003814 drug Substances 0.000 description 22
- 230000001225 therapeutic effect Effects 0.000 description 21
- 238000013459 approach Methods 0.000 description 20
- 108091028043 Nucleic acid sequence Proteins 0.000 description 19
- 239000000047 product Substances 0.000 description 18
- 239000012491 analyte Substances 0.000 description 16
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 14
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 14
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 14
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 210000004899 c-terminal region Anatomy 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 13
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 13
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 238000006467 substitution reaction Methods 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 206010028980 Neoplasm Diseases 0.000 description 12
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 238000009472 formulation Methods 0.000 description 12
- 102000037865 fusion proteins Human genes 0.000 description 12
- 108020001507 fusion proteins Proteins 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 230000009977 dual effect Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 239000002502 liposome Substances 0.000 description 11
- 210000004962 mammalian cell Anatomy 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000001890 transfection Methods 0.000 description 10
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 9
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 9
- 108700013161 Inducible T-Cell Co-Stimulator Proteins 0.000 description 9
- 102000053646 Inducible T-Cell Co-Stimulator Human genes 0.000 description 9
- 210000001744 T-lymphocyte Anatomy 0.000 description 9
- 241000700605 Viruses Species 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 238000010561 standard procedure Methods 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 8
- 230000028993 immune response Effects 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 101000980827 Homo sapiens T-cell surface glycoprotein CD1a Proteins 0.000 description 7
- 101000716124 Homo sapiens T-cell surface glycoprotein CD1c Proteins 0.000 description 7
- 102000003839 Human Proteins Human genes 0.000 description 7
- 108090000144 Human Proteins Proteins 0.000 description 7
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 7
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 7
- 102100024219 T-cell surface glycoprotein CD1a Human genes 0.000 description 7
- 238000001042 affinity chromatography Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 210000003705 ribosome Anatomy 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 241000699800 Cricetinae Species 0.000 description 6
- 101000716149 Homo sapiens T-cell surface glycoprotein CD1b Proteins 0.000 description 6
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- 108091008874 T cell receptors Proteins 0.000 description 6
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 229940127089 cytotoxic agent Drugs 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 210000003527 eukaryotic cell Anatomy 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 230000014616 translation Effects 0.000 description 6
- 102000014914 Carrier Proteins Human genes 0.000 description 5
- 102100037362 Fibronectin Human genes 0.000 description 5
- 108010067306 Fibronectins Proteins 0.000 description 5
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 description 5
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 5
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 5
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 210000000612 antigen-presenting cell Anatomy 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 230000022534 cell killing Effects 0.000 description 5
- 239000002738 chelating agent Substances 0.000 description 5
- 230000004087 circulation Effects 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000003127 radioimmunoassay Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 230000009870 specific binding Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 5
- 239000003053 toxin Substances 0.000 description 5
- 231100000765 toxin Toxicity 0.000 description 5
- 108700012359 toxins Proteins 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- 241000282465 Canis Species 0.000 description 4
- 241000282472 Canis lupus familiaris Species 0.000 description 4
- 101710132601 Capsid protein Proteins 0.000 description 4
- 241000251730 Chondrichthyes Species 0.000 description 4
- 101710094648 Coat protein Proteins 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 102000003951 Erythropoietin Human genes 0.000 description 4
- 108090000394 Erythropoietin Proteins 0.000 description 4
- 241000282324 Felis Species 0.000 description 4
- 241000282326 Felis catus Species 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- 101710125418 Major capsid protein Proteins 0.000 description 4
- 102000018697 Membrane Proteins Human genes 0.000 description 4
- 108010052285 Membrane Proteins Proteins 0.000 description 4
- 101710141454 Nucleoprotein Proteins 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 101710083689 Probable capsid protein Proteins 0.000 description 4
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000002759 chromosomal effect Effects 0.000 description 4
- 239000000562 conjugate Substances 0.000 description 4
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- 229940105423 erythropoietin Drugs 0.000 description 4
- 150000004676 glycans Polymers 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- XSYUPRQVAHJETO-WPMUBMLPSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidaz Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CN=CN1 XSYUPRQVAHJETO-WPMUBMLPSA-N 0.000 description 3
- 102100032412 Basigin Human genes 0.000 description 3
- 108010064528 Basigin Proteins 0.000 description 3
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 3
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 3
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 3
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 101100421450 Drosophila melanogaster Shark gene Proteins 0.000 description 3
- 108010075944 Erythropoietin Receptors Proteins 0.000 description 3
- 102100036509 Erythropoietin receptor Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010054218 Factor VIII Proteins 0.000 description 3
- 102000001690 Factor VIII Human genes 0.000 description 3
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 3
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 3
- 108010054017 Granulocyte Colony-Stimulating Factor Receptors Proteins 0.000 description 3
- 102100039622 Granulocyte colony-stimulating factor receptor Human genes 0.000 description 3
- 108010092372 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Proteins 0.000 description 3
- 102000016355 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Human genes 0.000 description 3
- 102100020948 Growth hormone receptor Human genes 0.000 description 3
- 102100035943 HERV-H LTR-associating protein 2 Human genes 0.000 description 3
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 description 3
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 3
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 3
- 101001021491 Homo sapiens HERV-H LTR-associating protein 2 Proteins 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 3
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 3
- 108010002519 Prolactin Receptors Proteins 0.000 description 3
- 102100029000 Prolactin receptor Human genes 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 3
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108010068542 Somatotropin Receptors Proteins 0.000 description 3
- 102100038126 Tenascin Human genes 0.000 description 3
- 108010008125 Tenascin Proteins 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 101150008356 Trio gene Proteins 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 229940125644 antibody drug Drugs 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 238000012575 bio-layer interferometry Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 102000003675 cytokine receptors Human genes 0.000 description 3
- 108010057085 cytokine receptors Proteins 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 230000002414 glycolytic effect Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 108010085650 interferon gamma receptor Proteins 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 210000003292 kidney cell Anatomy 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- HKZAAJSTFUZYTO-LURJTMIESA-N (2s)-2-[[2-[[2-[[2-[(2-aminoacetyl)amino]acetyl]amino]acetyl]amino]acetyl]amino]-3-hydroxypropanoic acid Chemical group NCC(=O)NCC(=O)NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O HKZAAJSTFUZYTO-LURJTMIESA-N 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- VXPSQDAMFATNNG-UHFFFAOYSA-N 3-[2-(2,5-dioxopyrrol-3-yl)phenyl]pyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C(=CC=CC=2)C=2C(NC(=O)C=2)=O)=C1 VXPSQDAMFATNNG-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- GANZODCWZFAEGN-UHFFFAOYSA-N 5-mercapto-2-nitro-benzoic acid Chemical compound OC(=O)C1=CC(S)=CC=C1[N+]([O-])=O GANZODCWZFAEGN-UHFFFAOYSA-N 0.000 description 2
- 108010066676 Abrin Proteins 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 108010083359 Antigen Receptors Proteins 0.000 description 2
- 102000006306 Antigen Receptors Human genes 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010077805 Bacterial Proteins Proteins 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 108010017533 Butyrophilins Proteins 0.000 description 2
- 102000004555 Butyrophilins Human genes 0.000 description 2
- 241000282836 Camelus dromedarius Species 0.000 description 2
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 102100022641 Coagulation factor IX Human genes 0.000 description 2
- 101710172562 Cobra venom factor Proteins 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 102100020743 Dipeptidase 1 Human genes 0.000 description 2
- 108090000204 Dipeptidase 1 Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108010076282 Factor IX Proteins 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 108010058643 Fungal Proteins Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- 102100033079 HLA class II histocompatibility antigen, DM alpha chain Human genes 0.000 description 2
- 102100036242 HLA class II histocompatibility antigen, DQ alpha 2 chain Human genes 0.000 description 2
- 108010050568 HLA-DM antigens Proteins 0.000 description 2
- 208000031220 Hemophilia Diseases 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 102100031180 Hereditary hemochromatosis protein Human genes 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 2
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- STECJAGHUSJQJN-USLFZFAMSA-N LSM-4015 Chemical compound C1([C@@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-USLFZFAMSA-N 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 2
- 108010008707 Mucin-1 Proteins 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 239000012124 Opti-MEM Substances 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 108010087702 Penicillinase Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 108010064851 Plant Proteins Proteins 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108010084592 Saporins Proteins 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 102000004338 Transferrin Human genes 0.000 description 2
- 108090000901 Transferrin Proteins 0.000 description 2
- 102000018594 Tumour necrosis factor Human genes 0.000 description 2
- 108050007852 Tumour necrosis factor Proteins 0.000 description 2
- 101150042088 UL16 gene Proteins 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 239000003080 antimitotic agent Substances 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000000824 cytostatic agent Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- 150000004662 dithiols Chemical class 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229960004222 factor ix Drugs 0.000 description 2
- 229960000301 factor viii Drugs 0.000 description 2
- 229960005191 ferric oxide Drugs 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000002825 functional assay Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 239000000710 homodimer Substances 0.000 description 2
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 2
- 239000012216 imaging agent Substances 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 238000000111 isothermal titration calorimetry Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 239000003865 nucleic acid synthesis inhibitor Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 229950009506 penicillinase Drugs 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 235000021118 plant-derived protein Nutrition 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 230000012743 protein tagging Effects 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 239000012521 purified sample Substances 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 108010088201 squamous cell carcinoma-related antigen Proteins 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 229940126622 therapeutic monoclonal antibody Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 235000008521 threonine Nutrition 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 230000005026 transcription initiation Effects 0.000 description 2
- 239000012581 transferrin Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- FLCQLSRLQIPNLM-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2-acetylsulfanylacetate Chemical compound CC(=O)SCC(=O)ON1C(=O)CCC1=O FLCQLSRLQIPNLM-UHFFFAOYSA-N 0.000 description 1
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- PJOHVEQSYPOERL-SHEAVXILSA-N (e)-n-[(4r,4as,7ar,12br)-3-(cyclopropylmethyl)-9-hydroxy-7-oxo-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-4a-yl]-3-(4-methylphenyl)prop-2-enamide Chemical compound C1=CC(C)=CC=C1\C=C\C(=O)N[C@]1(CCC(=O)[C@@H]2O3)[C@H]4CC5=CC=C(O)C3=C5[C@]12CCN4CC1CC1 PJOHVEQSYPOERL-SHEAVXILSA-N 0.000 description 1
- RWOBLAUPXQBIAW-UHFFFAOYSA-N 1,1-dichloro-2-(2,2-dichloroethylsulfanyl)ethane Chemical class ClC(Cl)CSCC(Cl)Cl RWOBLAUPXQBIAW-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical group COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- FMYBFLOWKQRBST-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]acetic acid;nickel Chemical compound [Ni].OC(=O)CN(CC(O)=O)CC(O)=O FMYBFLOWKQRBST-UHFFFAOYSA-N 0.000 description 1
- FBUTXZSKZCQABC-UHFFFAOYSA-N 2-amino-1-methyl-7h-purine-6-thione Chemical compound S=C1N(C)C(N)=NC2=C1NC=N2 FBUTXZSKZCQABC-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010075348 Activated-Leukocyte Cell Adhesion Molecule Proteins 0.000 description 1
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 1
- 102100036006 Adenosine receptor A3 Human genes 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- 102100036601 Aggrecan core protein Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 102100032044 Amphoterin-induced protein 1 Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 241000712891 Arenavirus Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 101100136076 Aspergillus oryzae (strain ATCC 42149 / RIB 40) pel1 gene Proteins 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 101150016268 BLS1 gene Proteins 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 102100028239 Basal cell adhesion molecule Human genes 0.000 description 1
- 102100036597 Basement membrane-specific heparan sulfate proteoglycan core protein Human genes 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000588779 Bordetella bronchiseptica Species 0.000 description 1
- 241000588780 Bordetella parapertussis Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000589968 Borrelia Species 0.000 description 1
- 241000589969 Borreliella burgdorferi Species 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 102100025429 Butyrophilin-like protein 2 Human genes 0.000 description 1
- 108091058539 C10orf54 Proteins 0.000 description 1
- 102100024210 CD166 antigen Human genes 0.000 description 1
- 102100038077 CD226 antigen Human genes 0.000 description 1
- 102100038078 CD276 antigen Human genes 0.000 description 1
- 102100036008 CD48 antigen Human genes 0.000 description 1
- 108010062802 CD66 antigens Proteins 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 102000039968 CEA family Human genes 0.000 description 1
- 108091069214 CEA family Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- FVLVBPDQNARYJU-XAHDHGMMSA-N C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O Chemical compound C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O FVLVBPDQNARYJU-XAHDHGMMSA-N 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 102000000905 Cadherin Human genes 0.000 description 1
- 101100123850 Caenorhabditis elegans her-1 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102100033620 Calponin-1 Human genes 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 241000712083 Canine morbillivirus Species 0.000 description 1
- 101710158575 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102100024533 Carcinoembryonic antigen-related cell adhesion molecule 1 Human genes 0.000 description 1
- 102100025473 Carcinoembryonic antigen-related cell adhesion molecule 6 Human genes 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 102100034231 Cell surface A33 antigen Human genes 0.000 description 1
- 102100023126 Cell surface glycoprotein MUC18 Human genes 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 241000606153 Chlamydia trachomatis Species 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 101900238431 Clostridium perfringens Phospholipase C Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241000709687 Coxsackievirus Species 0.000 description 1
- 102100025278 Coxsackievirus and adenovirus receptor Human genes 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- 229910002535 CuZn Inorganic materials 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102100027816 Cytotoxic and regulatory T-cell molecule Human genes 0.000 description 1
- 101710112752 Cytotoxin Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- 108700022150 Designed Ankyrin Repeat Proteins Proteins 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241001466953 Echovirus Species 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 102100038591 Endothelial cell-selective adhesion molecule Human genes 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 101100179475 Equus asinus IGHA gene Proteins 0.000 description 1
- 241000160765 Erebia ligea Species 0.000 description 1
- 102100036825 Erythroid membrane-associated protein Human genes 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000714201 Feline calicivirus Species 0.000 description 1
- 102000002090 Fibronectin type III Human genes 0.000 description 1
- 108050009401 Fibronectin type III Proteins 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 208000007212 Foot-and-Mouth Disease Diseases 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 101710113436 GTPase KRas Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 206010056740 Genital discharge Diseases 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 1
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 1
- 102100028970 HLA class I histocompatibility antigen, alpha chain E Human genes 0.000 description 1
- 102100028966 HLA class I histocompatibility antigen, alpha chain F Human genes 0.000 description 1
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 1
- 102100031258 HLA class II histocompatibility antigen, DM beta chain Human genes 0.000 description 1
- 102100031547 HLA class II histocompatibility antigen, DO alpha chain Human genes 0.000 description 1
- 102100031546 HLA class II histocompatibility antigen, DO beta chain Human genes 0.000 description 1
- 102100029966 HLA class II histocompatibility antigen, DP alpha 1 chain Human genes 0.000 description 1
- 102100031618 HLA class II histocompatibility antigen, DP beta 1 chain Human genes 0.000 description 1
- 102100036241 HLA class II histocompatibility antigen, DQ beta 1 chain Human genes 0.000 description 1
- 102100036117 HLA class II histocompatibility antigen, DQ beta 2 chain Human genes 0.000 description 1
- 102100040505 HLA class II histocompatibility antigen, DR alpha chain Human genes 0.000 description 1
- 102100040482 HLA class II histocompatibility antigen, DR beta 3 chain Human genes 0.000 description 1
- 102100028636 HLA class II histocompatibility antigen, DR beta 4 chain Human genes 0.000 description 1
- 102100040485 HLA class II histocompatibility antigen, DRB1 beta chain Human genes 0.000 description 1
- 108010075704 HLA-A Antigens Proteins 0.000 description 1
- 108010058607 HLA-B Antigens Proteins 0.000 description 1
- 108010004141 HLA-B35 Antigen Proteins 0.000 description 1
- 108010033369 HLA-B57 antigen Proteins 0.000 description 1
- 108010052199 HLA-C Antigens Proteins 0.000 description 1
- 108010048896 HLA-D Antigens Proteins 0.000 description 1
- 102000009485 HLA-D Antigens Human genes 0.000 description 1
- 108010010378 HLA-DP Antigens Proteins 0.000 description 1
- 102000015789 HLA-DP Antigens Human genes 0.000 description 1
- 108010093061 HLA-DPA1 antigen Proteins 0.000 description 1
- 108010045483 HLA-DPB1 antigen Proteins 0.000 description 1
- 108010086786 HLA-DQA1 antigen Proteins 0.000 description 1
- 108010081606 HLA-DQA2 antigen Proteins 0.000 description 1
- 108010065026 HLA-DQB1 antigen Proteins 0.000 description 1
- 108010067802 HLA-DR alpha-Chains Proteins 0.000 description 1
- 108010021108 HLA-DR12 antigen Proteins 0.000 description 1
- 108010039343 HLA-DRB1 Chains Proteins 0.000 description 1
- 108010061311 HLA-DRB3 Chains Proteins 0.000 description 1
- 108010040960 HLA-DRB4 Chains Proteins 0.000 description 1
- 108010076641 HLA-Dw12 antigens Proteins 0.000 description 1
- 108010024164 HLA-G Antigens Proteins 0.000 description 1
- 101100508941 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) ppa gene Proteins 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 108700022944 Hemochromatosis Proteins 0.000 description 1
- 108010007712 Hepatitis A Virus Cellular Receptor 1 Proteins 0.000 description 1
- 102100034459 Hepatitis A virus cellular receptor 1 Human genes 0.000 description 1
- 102100034676 Hepatocyte cell adhesion molecule Human genes 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 102100038030 High affinity immunoglobulin alpha and immunoglobulin mu Fc receptor Human genes 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 1
- 101000783645 Homo sapiens Adenosine receptor A3 Proteins 0.000 description 1
- 101000999998 Homo sapiens Aggrecan core protein Proteins 0.000 description 1
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 101000776170 Homo sapiens Amphoterin-induced protein 1 Proteins 0.000 description 1
- 101000935638 Homo sapiens Basal cell adhesion molecule Proteins 0.000 description 1
- 101001000001 Homo sapiens Basement membrane-specific heparan sulfate proteoglycan core protein Proteins 0.000 description 1
- 101000766294 Homo sapiens Branched-chain-amino-acid aminotransferase, mitochondrial Proteins 0.000 description 1
- 101000934738 Homo sapiens Butyrophilin-like protein 2 Proteins 0.000 description 1
- 101100166600 Homo sapiens CD28 gene Proteins 0.000 description 1
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000914326 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 6 Proteins 0.000 description 1
- 101000996823 Homo sapiens Cell surface A33 antigen Proteins 0.000 description 1
- 101000623903 Homo sapiens Cell surface glycoprotein MUC18 Proteins 0.000 description 1
- 101000858031 Homo sapiens Coxsackievirus and adenovirus receptor Proteins 0.000 description 1
- 101000882622 Homo sapiens Endothelial cell-selective adhesion molecule Proteins 0.000 description 1
- 101000851733 Homo sapiens Erythroid membrane-associated protein Proteins 0.000 description 1
- 101000986084 Homo sapiens HLA class I histocompatibility antigen, C alpha chain Proteins 0.000 description 1
- 101000986085 Homo sapiens HLA class I histocompatibility antigen, alpha chain E Proteins 0.000 description 1
- 101000986080 Homo sapiens HLA class I histocompatibility antigen, alpha chain F Proteins 0.000 description 1
- 101000866278 Homo sapiens HLA class II histocompatibility antigen, DO alpha chain Proteins 0.000 description 1
- 101000866281 Homo sapiens HLA class II histocompatibility antigen, DO beta chain Proteins 0.000 description 1
- 101000930799 Homo sapiens HLA class II histocompatibility antigen, DQ beta 2 chain Proteins 0.000 description 1
- 101100395312 Homo sapiens HLA-C gene Proteins 0.000 description 1
- 101000872875 Homo sapiens Hepatocyte cell adhesion molecule Proteins 0.000 description 1
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 1
- 101000878580 Homo sapiens High affinity immunoglobulin alpha and immunoglobulin mu Fc receptor Proteins 0.000 description 1
- 101001048995 Homo sapiens Ig-like V-type domain-containing protein FAM187A Proteins 0.000 description 1
- 101000913079 Homo sapiens IgG receptor FcRn large subunit p51 Proteins 0.000 description 1
- 101001055315 Homo sapiens Immunoglobulin heavy constant alpha 1 Proteins 0.000 description 1
- 101001055314 Homo sapiens Immunoglobulin heavy constant alpha 2 Proteins 0.000 description 1
- 101001055308 Homo sapiens Immunoglobulin heavy constant epsilon Proteins 0.000 description 1
- 101000961156 Homo sapiens Immunoglobulin heavy constant gamma 1 Proteins 0.000 description 1
- 101000961146 Homo sapiens Immunoglobulin heavy constant gamma 2 Proteins 0.000 description 1
- 101000961145 Homo sapiens Immunoglobulin heavy constant gamma 3 Proteins 0.000 description 1
- 101000961149 Homo sapiens Immunoglobulin heavy constant gamma 4 Proteins 0.000 description 1
- 101000839684 Homo sapiens Immunoglobulin heavy variable 4-31 Proteins 0.000 description 1
- 101000840257 Homo sapiens Immunoglobulin kappa constant Proteins 0.000 description 1
- 101001138133 Homo sapiens Immunoglobulin kappa variable 1-5 Proteins 0.000 description 1
- 101001047626 Homo sapiens Immunoglobulin kappa variable 2-24 Proteins 0.000 description 1
- 101000840273 Homo sapiens Immunoglobulin lambda constant 1 Proteins 0.000 description 1
- 101000840272 Homo sapiens Immunoglobulin lambda constant 3 Proteins 0.000 description 1
- 101000956885 Homo sapiens Immunoglobulin lambda variable 2-14 Proteins 0.000 description 1
- 101001005365 Homo sapiens Immunoglobulin lambda variable 3-21 Proteins 0.000 description 1
- 101001005336 Homo sapiens Immunoglobulin lambda variable 3-25 Proteins 0.000 description 1
- 101001005330 Homo sapiens Immunoglobulin lambda variable 4-3 Proteins 0.000 description 1
- 101000840267 Homo sapiens Immunoglobulin lambda-like polypeptide 1 Proteins 0.000 description 1
- 101001103039 Homo sapiens Inactive tyrosine-protein kinase transmembrane receptor ROR1 Proteins 0.000 description 1
- 101001042104 Homo sapiens Inducible T-cell costimulator Proteins 0.000 description 1
- 101001050320 Homo sapiens Junctional adhesion molecule B Proteins 0.000 description 1
- 101001050318 Homo sapiens Junctional adhesion molecule-like Proteins 0.000 description 1
- 101001139019 Homo sapiens Kin of IRRE-like protein 1 Proteins 0.000 description 1
- 101000958312 Homo sapiens Lymphocyte antigen 6 complex locus protein G6f Proteins 0.000 description 1
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 1
- 101000636206 Homo sapiens Matrix remodeling-associated protein 8 Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101000635944 Homo sapiens Myelin protein P0 Proteins 0.000 description 1
- 101001115699 Homo sapiens Myelin-oligodendrocyte glycoprotein Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101000589305 Homo sapiens Natural cytotoxicity triggering receptor 2 Proteins 0.000 description 1
- 101000589307 Homo sapiens Natural cytotoxicity triggering receptor 3 Proteins 0.000 description 1
- 101000978730 Homo sapiens Nephrin Proteins 0.000 description 1
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 description 1
- 101000586618 Homo sapiens Poliovirus receptor Proteins 0.000 description 1
- 101000617720 Homo sapiens Pregnancy-specific beta-1-glycoprotein 5 Proteins 0.000 description 1
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 1
- 101000931590 Homo sapiens Prostaglandin F2 receptor negative regulator Proteins 0.000 description 1
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 1
- 101000866971 Homo sapiens Putative HLA class I histocompatibility antigen, alpha chain H Proteins 0.000 description 1
- 101001100327 Homo sapiens RNA-binding protein 45 Proteins 0.000 description 1
- 101000633786 Homo sapiens SLAM family member 6 Proteins 0.000 description 1
- 101000633784 Homo sapiens SLAM family member 7 Proteins 0.000 description 1
- 101000650811 Homo sapiens Semaphorin-3D Proteins 0.000 description 1
- 101000709256 Homo sapiens Signal-regulatory protein beta-1 Proteins 0.000 description 1
- 101000709188 Homo sapiens Signal-regulatory protein beta-1 isoform 3 Proteins 0.000 description 1
- 101000835928 Homo sapiens Signal-regulatory protein gamma Proteins 0.000 description 1
- 101000662909 Homo sapiens T cell receptor beta constant 1 Proteins 0.000 description 1
- 101000658398 Homo sapiens T cell receptor beta variable 19 Proteins 0.000 description 1
- 101000658429 Homo sapiens T cell receptor beta variable 3-1 Proteins 0.000 description 1
- 101000844026 Homo sapiens T cell receptor beta variable 7-2 Proteins 0.000 description 1
- 101000914496 Homo sapiens T-cell antigen CD7 Proteins 0.000 description 1
- 101000669511 Homo sapiens T-cell immunoglobulin and mucin domain-containing protein 4 Proteins 0.000 description 1
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 description 1
- 101000649068 Homo sapiens Tapasin Proteins 0.000 description 1
- 101000762808 Homo sapiens Tapasin-related protein Proteins 0.000 description 1
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 1
- 101000801433 Homo sapiens Trophoblast glycoprotein Proteins 0.000 description 1
- 101000807561 Homo sapiens Tyrosine-protein kinase receptor UFO Proteins 0.000 description 1
- 101000863873 Homo sapiens Tyrosine-protein phosphatase non-receptor type substrate 1 Proteins 0.000 description 1
- 101000955999 Homo sapiens V-set domain-containing T-cell activation inhibitor 1 Proteins 0.000 description 1
- 101100372910 Homo sapiens VPREB1 gene Proteins 0.000 description 1
- 101000860430 Homo sapiens Versican core protein Proteins 0.000 description 1
- 101000818517 Homo sapiens Zinc-alpha-2-glycoprotein Proteins 0.000 description 1
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 1
- 241000714259 Human T-lymphotropic virus 2 Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 102100028084 Hyaluronan and proteoglycan link protein 1 Human genes 0.000 description 1
- 101710191341 Hyaluronan and proteoglycan link protein 1 Proteins 0.000 description 1
- DOMWKUIIPQCAJU-LJHIYBGHSA-N Hydroxyprogesterone caproate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)CCCCC)[C@@]1(C)CC2 DOMWKUIIPQCAJU-LJHIYBGHSA-N 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 102100023822 Ig-like V-type domain-containing protein FAM187A Human genes 0.000 description 1
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 1
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 102100026217 Immunoglobulin heavy constant alpha 1 Human genes 0.000 description 1
- 102100026216 Immunoglobulin heavy constant alpha 2 Human genes 0.000 description 1
- 102100026212 Immunoglobulin heavy constant epsilon Human genes 0.000 description 1
- 102100039345 Immunoglobulin heavy constant gamma 1 Human genes 0.000 description 1
- 102100039346 Immunoglobulin heavy constant gamma 2 Human genes 0.000 description 1
- 102100039348 Immunoglobulin heavy constant gamma 3 Human genes 0.000 description 1
- 102100039347 Immunoglobulin heavy constant gamma 4 Human genes 0.000 description 1
- 102100028310 Immunoglobulin heavy variable 4-31 Human genes 0.000 description 1
- 102100020744 Immunoglobulin iota chain Human genes 0.000 description 1
- 102100029572 Immunoglobulin kappa constant Human genes 0.000 description 1
- 102100020769 Immunoglobulin kappa variable 1-5 Human genes 0.000 description 1
- 102100022947 Immunoglobulin kappa variable 2-24 Human genes 0.000 description 1
- 102100029610 Immunoglobulin lambda constant 1 Human genes 0.000 description 1
- 102100029619 Immunoglobulin lambda constant 3 Human genes 0.000 description 1
- 102100038429 Immunoglobulin lambda variable 2-14 Human genes 0.000 description 1
- 102100025934 Immunoglobulin lambda variable 3-21 Human genes 0.000 description 1
- 102100025876 Immunoglobulin lambda variable 3-25 Human genes 0.000 description 1
- 102100025865 Immunoglobulin lambda variable 4-3 Human genes 0.000 description 1
- 102100029616 Immunoglobulin lambda-like polypeptide 1 Human genes 0.000 description 1
- 102100022516 Immunoglobulin superfamily member 2 Human genes 0.000 description 1
- 102000016844 Immunoglobulin-like domains Human genes 0.000 description 1
- 108050006430 Immunoglobulin-like domains Proteins 0.000 description 1
- 102100039615 Inactive tyrosine-protein kinase transmembrane receptor ROR1 Human genes 0.000 description 1
- 102100021317 Inducible T-cell costimulator Human genes 0.000 description 1
- 108091030087 Initiator element Proteins 0.000 description 1
- 101710167241 Intimin Proteins 0.000 description 1
- 101710198693 Invasin Proteins 0.000 description 1
- 244000050403 Iris x germanica Species 0.000 description 1
- 102100023430 Junctional adhesion molecule B Human genes 0.000 description 1
- 102100023437 Junctional adhesion molecule-like Human genes 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 102100020687 Kin of IRRE-like protein 1 Human genes 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 108700042652 LMP-2 Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000282838 Lama Species 0.000 description 1
- 102000006835 Lamins Human genes 0.000 description 1
- 108010047294 Lamins Proteins 0.000 description 1
- 241000589902 Leptospira Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102000019298 Lipocalin Human genes 0.000 description 1
- 108050006654 Lipocalin Proteins 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 102100038226 Lymphocyte antigen 6 complex locus protein G6f Human genes 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 1
- 241001559185 Mammalian rubulavirus 5 Species 0.000 description 1
- 102100030777 Matrix remodeling-associated protein 8 Human genes 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 244000302512 Momordica charantia Species 0.000 description 1
- 235000009811 Momordica charantia Nutrition 0.000 description 1
- 102000007298 Mucin-1 Human genes 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 241000711386 Mumps virus Species 0.000 description 1
- 101100170937 Mus musculus Dnmt1 gene Proteins 0.000 description 1
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010074084 Muscle Proteins Proteins 0.000 description 1
- 102000008934 Muscle Proteins Human genes 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- 102100030741 Myelin protein P0 Human genes 0.000 description 1
- 102100023302 Myelin-oligodendrocyte glycoprotein Human genes 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 102100032851 Natural cytotoxicity triggering receptor 2 Human genes 0.000 description 1
- 102100032852 Natural cytotoxicity triggering receptor 3 Human genes 0.000 description 1
- 102100035488 Nectin-2 Human genes 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 102100023195 Nephrin Human genes 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000713112 Orthobunyavirus Species 0.000 description 1
- 101100335694 Oryza sativa subsp. japonica G1L6 gene Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 101150012394 PHO5 gene Proteins 0.000 description 1
- 101150095279 PIGR gene Proteins 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 1
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 1
- 102100029740 Poliovirus receptor Human genes 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 102100035187 Polymeric immunoglobulin receptor Human genes 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102100022025 Pregnancy-specific beta-1-glycoprotein 5 Human genes 0.000 description 1
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 1
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102100020864 Prostaglandin F2 receptor negative regulator Human genes 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108010032060 RNA polymerase alpha subunit Proteins 0.000 description 1
- 229940123752 RNA synthesis inhibitor Drugs 0.000 description 1
- 102100038823 RNA-binding protein 45 Human genes 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 101001039269 Rattus norvegicus Glycine N-methyltransferase Proteins 0.000 description 1
- 101100345605 Rattus norvegicus Mill2 gene Proteins 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 206010051497 Rhinotracheitis Diseases 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 102100029197 SLAM family member 6 Human genes 0.000 description 1
- 102100029198 SLAM family member 7 Human genes 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 102100027746 Semaphorin-3D Human genes 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 108010047827 Sialic Acid Binding Immunoglobulin-like Lectins Proteins 0.000 description 1
- 102000007073 Sialic Acid Binding Immunoglobulin-like Lectins Human genes 0.000 description 1
- 102100032770 Signal-regulatory protein beta-1 isoform 3 Human genes 0.000 description 1
- 102100025795 Signal-regulatory protein gamma Human genes 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- 102000018674 Sodium Channels Human genes 0.000 description 1
- 108010052164 Sodium Channels Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 101000677856 Stenotrophomonas maltophilia (strain K279a) Actin-binding protein Smlt3054 Proteins 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241001312524 Streptococcus viridans Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102100037272 T cell receptor beta constant 1 Human genes 0.000 description 1
- 102100034884 T cell receptor beta variable 19 Human genes 0.000 description 1
- 102100034887 T cell receptor beta variable 3-1 Human genes 0.000 description 1
- 102100032177 T cell receptor beta variable 7-2 Human genes 0.000 description 1
- 102100027208 T-cell antigen CD7 Human genes 0.000 description 1
- 102100039367 T-cell immunoglobulin and mucin domain-containing protein 4 Human genes 0.000 description 1
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 description 1
- 102100036014 T-cell surface glycoprotein CD1c Human genes 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 102100028082 Tapasin Human genes 0.000 description 1
- 102100026714 Tapasin-related protein Human genes 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- PDMMFKSKQVNJMI-BLQWBTBKSA-N Testosterone propionate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CC)[C@@]1(C)CC2 PDMMFKSKQVNJMI-BLQWBTBKSA-N 0.000 description 1
- 101710167005 Thiol:disulfide interchange protein DsbD Proteins 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 241000589886 Treponema Species 0.000 description 1
- 102100033579 Trophoblast glycoprotein Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 102100037236 Tyrosine-protein kinase receptor UFO Human genes 0.000 description 1
- 102100029948 Tyrosine-protein phosphatase non-receptor type substrate 1 Human genes 0.000 description 1
- 241000202921 Ureaplasma urealyticum Species 0.000 description 1
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 1
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 108010051583 Ventricular Myosins Proteins 0.000 description 1
- 240000001866 Vernicia fordii Species 0.000 description 1
- 102100028437 Versican core protein Human genes 0.000 description 1
- 102000005456 Vesicular Transport Adaptor Proteins Human genes 0.000 description 1
- 108010031770 Vesicular Transport Adaptor Proteins Proteins 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 102000040856 WT1 Human genes 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 102100021144 Zinc-alpha-2-glycoprotein Human genes 0.000 description 1
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 108010001818 alpha-sarcin Proteins 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000000611 antibody drug conjugate Substances 0.000 description 1
- 229940049595 antibody-drug conjugate Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 102000025171 antigen binding proteins Human genes 0.000 description 1
- 108091000831 antigen binding proteins Proteins 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 108010044540 auristatin Proteins 0.000 description 1
- QQOBRRFOVWGIMD-OJAKKHQRSA-N azaribine Chemical compound CC(=O)O[C@@H]1[C@H](OC(C)=O)[C@@H](COC(=O)C)O[C@H]1N1C(=O)NC(=O)C=N1 QQOBRRFOVWGIMD-OJAKKHQRSA-N 0.000 description 1
- 229950010054 azaribine Drugs 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 229960000419 catumaxomab Drugs 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940038705 chlamydia trachomatis Drugs 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 108010072917 class-I restricted T cell-associated molecule Proteins 0.000 description 1
- 230000010405 clearance mechanism Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- AVMBSRQXOWNFTR-UHFFFAOYSA-N cobalt platinum Chemical compound [Pt][Co][Pt] AVMBSRQXOWNFTR-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 101150118300 cos gene Proteins 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 239000002619 cytotoxin Substances 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229930191339 dianthin Natural products 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 108010067006 heat stable toxin (E coli) Proteins 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 102000054751 human RUNX1T1 Human genes 0.000 description 1
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 229940065346 hydroxyprogesterone acetate Drugs 0.000 description 1
- 229950000801 hydroxyprogesterone caproate Drugs 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000007233 immunological mechanism Effects 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- SGGMZBKLQLBBLK-UHFFFAOYSA-N iron(4+) Chemical compound [Fe+4] SGGMZBKLQLBBLK-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000003367 kinetic assay Methods 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000005053 lamin Anatomy 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000013554 lipid monolayer Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 108010022050 mistletoe lectin I Proteins 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 108010010621 modeccin Proteins 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical class CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 239000002581 neurotoxin Substances 0.000 description 1
- 231100000618 neurotoxin Toxicity 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002405 nuclear magnetic resonance imaging agent Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000009745 pathological pathway Effects 0.000 description 1
- 101150040383 pel2 gene Proteins 0.000 description 1
- 101150050446 pelB gene Proteins 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 108091005706 peripheral membrane proteins Proteins 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 1
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 210000002729 polyribosome Anatomy 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000013930 proline Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 238000010243 pulse-chase analysis Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 102000006844 purple acid phosphatase Human genes 0.000 description 1
- 108010073968 purple acid phosphatase Proteins 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000025053 regulation of cell proliferation Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000013878 renal filtration Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 229960003440 semustine Drugs 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- PTLRDCMBXHILCL-UHFFFAOYSA-M sodium arsenite Chemical compound [Na+].[O-][As]=O PTLRDCMBXHILCL-UHFFFAOYSA-M 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- JJGWLCLUQNFDIS-GTSONSFRSA-M sodium;1-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 JJGWLCLUQNFDIS-GTSONSFRSA-M 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 108010033419 somatotropin-binding protein Proteins 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000011191 terminal modification Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960001712 testosterone propionate Drugs 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 230000034005 thiol-disulfide exchange Effects 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 150000004654 triazenes Chemical class 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70521—CD28, CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
- C07K14/765—Serum albumin, e.g. HSA
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/35—Valency
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/51—Complete heavy chain or Fd fragment, i.e. VH + CH1
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/515—Complete light chain, i.e. VL + CL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/522—CH1 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/524—CH2 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/526—CH3 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2318/00—Antibody mimetics or scaffolds
- C07K2318/20—Antigen-binding scaffold molecules wherein the scaffold is not an immunoglobulin variable region or antibody mimetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/31—Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/32—Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
Definitions
- the present disclosure relates to multi-specific molecules which are capable of simultaneously binding at least two different target antigens or epitopes.
- the molecules comprise at least one binding domain molecule (BDM) which binds to a first target antigen or epitope, the BDM being modified for selective binding to a heterologous target, coupled to a pharmacologically active protein or peptide which is an antibody or antigen-binding fragment thereof or a non-antibody protein or peptide which binds to a second target antigen or epitope, the BDMs being coupled to a C-terminus of a polypeptide present within the pharmacologically active protein or peptide.
- BDM binding domain molecule
- proteins in their unmodified form are known to be rapidly removed in vivo either by renal filtration, cellular clearance mechanisms in the reticulendothelial system, or proteolytic degradation (Francis (1992) Focus on Growth Factors 3: 4-11).
- Various modifications of proteins and peptides have been developed to increase the therapeutic protein's stability, circulation time and biological activity (see Francis (1992) Focus on Growth Factors 3: 4-10).
- Francis (1992) Focus on Growth Factors 3: 4-10 there exists a need in the art for mechanisms which allow such therapeutic proteins to subsist in vivo for longer.
- antibody products Therapeutic monoclonal antibodies and antibody-related products such as antibody-fusion proteins, antibody fragments, and antibody-drug conjugates (collectively referred to hereafter as antibody products) have grown to become the dominant product class within the biopharmaceutical market.
- Antibody products today are approved for the treatment of a variety of diseases, including some cancers, multiple sclerosis, asthma and rheumatoid arthritis to name but a few.
- a bi-specific is generally an engineered protein that is composed of two different antibodies or antibody-like fragments (known as antibody-like scaffolds) that are fused together so that the bi-specific can bind to two different types of targets at the same time (i.e. two specificities).
- antibody like scaffolds are generally constructed from fragments of antibodies or made from antibody like proteins that, like antibodies, can bind to specific targets.
- Dual specificity antibodies allow for more potent antibody drugs which can be designed to redirect and activate immune effector cells such as T-cells to specifically kill tumours; bind to multiple targets and effect multiple pathogenic pathways; bind to multiple sites on the one target cell or protein to increase specificity or induce synergistic induction; and target tumours that are heterogeneous in nature.
- bi-specific has a number of significant drawbacks: Firstly, the small size of bi-specifics created by fusing two or more antibody-like scaffolds together, are generally significantly below the renal threshold and typically show very short blood circulation half-life which is in the range of minutes to hours. Such a short half-life necessitates dosing intervals of every day or via constant infusion which can lead to exceeding the toxicity threshold of the drug. And secondly, the affinity of many antibody-like scaffolds for their target is inadequate due to their monovalent nature (i.e. they have only one antigen binding site compared to antibodies which have two). Full antibodies bind with both antigen binding sites improving the overall strength of binding (knows as an avidity effect) giving a certain advantage compared with monovalent antibody-like scaffolds.
- the present disclosure is based on approaches to improve one or more characteristics of a protein or peptide, including an antibody or an immunoglobulin antigen-binding fragment.
- the present disclosure is based on approaches that improve a poorly therapeutic protein (e.g. therapeutic antibody) by converting it into a multi-specific format.
- Coupling the protein or peptide to at least one binding domain molecule (BDM) described herein provides a bi-specific or multi-specific molecule thus allowing the molecule to bind to different targets by virtue of exploiting the different binding targets (i.e. antigens or epitopes) of the protein and the BDM.
- binding targets i.e. antigens or epitopes
- one or more characteristics of the protein or peptide can be improved including therapeutic efficacy, half-life, immune engagement, avidity, cellular penetration and/or tolerability.
- the molecules thus provide an alternative to traditional bi-specific antibodies.
- the target antigen or epitope bound by the BDM is different to the target antigen or epitope bound by the protein or peptide.
- the protein may bind to a target antigen or epitope present on a cell or tissue and the BDM may bind to a target antigen or epitope present on an immune-modulating cell such as a cytotoxic T cell or protein to facilitate cell killing, or a target antigen on human serum albumin (HSA) so that the half-life of the protein or peptide may be extended.
- an immune-modulating cell such as a cytotoxic T cell or protein to facilitate cell killing, or a target antigen on human serum albumin (HSA) so that the half-life of the protein or peptide may be extended.
- HSA human serum albumin
- the therapeutic efficacy of the protein or peptide can be promoted by utilising the functionality of the target to which the BDM binds.
- the protein or peptide can be converted into bi-specific, tri-specifics or even multi-specifics.
- the smaller size, binding affinity characteristics and solubility of the BDMs make them ideal agents for improving the efficacy of poorly therapeutic proteins or peptides, for example, facilitating the body's natural immunological mechanism for destroying tumour cells.
- the present disclosure thus provides a multi-specific molecule capable of binding to two or more different target antigens or epitopes, the molecule comprising:
- BDM binding domain molecule
- VLD V-like domain
- a pharmacologically active protein or peptide which is an antibody or antigen-biding fragment thereof or a non-antibody protein or peptide which binds to a second target antigen or epitope;
- the at least one BDM is coupled to a C-terminus of a polypeptide present within the pharmacologically active protein or peptide.
- the pharmacologically active protein binds to its native target antigen or epitope.
- the epitopes are on separate antigens.
- the first and second target antigens are different. In one example, the first and second target antigens are the same but the molecule binds to different epitopes on the target antigen. In one example, the first and second target epitopes are different.
- the molecule is a bi-specific. In one example, the molecule is a tri-specific.
- the molecule comprises one, two, three, four or five BDMs (or multiples thereof e.g. BDM dimers). In another example, the molecule comprises one pair or two pairs of BDMs, wherein the BDMs in the pair are identical. In one example, one, two or three BDMs (or multiples thereof e.g. dimers) are coupled to the non-antibody protein or peptide.
- the molecule comprises least two BDMs, or at least one pair of BDMs, wherein each BDM (or BDM pair) binds to a different target antigen or epitope.
- each BDM (or BDM pair) binds to a target antigen or epitope that is different from the target antigen or epitope to which the pharmacologically active protein or peptide binds.
- two, four, six, or eight BDMs are coupled to the full length antibody, wherein the molecule binds to at least two different target antigens or epitopes. In one example, the molecule binds to two different target antigens or epitopes. In another example, the molecule binds to three different target antigens or epitopes. In another example, the molecule binds to four different target antigens or epitopes.
- the pharmaceutically active protein is a full length antibody or an immunoglobulin antigen-binding fragment thereof.
- the protein is a non-antibody protein or peptide.
- the non-antibody protein or peptide is selected from the group consisting of a blood clotting factor, an anticalin, a toxoid, a collagen binding protein, a human serum binding protein (e.g. Human serum albumin, HSA) a tumour necrosis factor (TNF)-alpha receptor binding protein, an integrin binding protein, a vascular endothelial growth factor (VEGF) or mimetic thereof, an erythropoietin (EPO) or mimetic thereof, a C4 binding protein, a urokinase receptor antagonist, a lymphokine, a cytokine, an osteoprotegerin (OPG), or the extracellular domain of a protein selected from programmed cell death 1 protein (PD1), programmed death ligand 1 (PD-L1), NKG2D, MHC class I polypeptide related sequence A (MICA), MHC class I polypeptide related sequence B (MICB), UL16 binding protein (ULBP).
- PD1 programme
- the blood clotting factor is factor VIII or factor IX.
- the toxoid is botulinium toxoid.
- the lymphokine is IL-2 or mimetic thereof or GM-CSF or mimetic thereof.
- the cytokine is a G-CSF or mimetic thereof or stem cell factor (SCF) or a mimetic thereof.
- SCF stem cell factor
- the molecule comprises one BDM coupled to the non-antibody protein.
- the ratio of BDM to non-antibody protein is 1:1.
- the at least one BDM is coupled to a C-terminus of an antibody heavy chain polypeptide. In one example, the at least one BDM is coupled to a C-terminus of both antibody heavy chain polypeptides.
- the at least one BDM is coupled to a C-terminus of an antibody light chain polypeptide. In one example, the at least one BDM is coupled to a C-terminus of both antibody light chain polypeptides.
- the at least one BDM is coupled to a C-terminus of all antibody heavy and light chain polypeptides.
- the at least one BDM is coupled to a C-terminus of the CH1, CH2 or CH3 domain of an antibody heavy chain polypeptide.
- the at least one BDM is coupled to a C-terminus of an antibody Fc.
- At least one BDM is coupled to:
- the full length antibody or immunoglobulin antigen-binding fragment according to the present disclosure may itself be mono-specific or bi-specific.
- a mono-specific antibody it is meant that the antibody binds to a single target or epitope through complementarity heavy and light chain variable domains (i.e. a pair of V H /V L ) which share the same specificity for the target antigen or epitope.
- Bi-specific antibodies comprise one V H /V L pair on each arm of the Y shaped antibody molecule, wherein each V H /N L binds to a different target antigen or epitope.
- a full length antibody comprises two heavy chains and two light chains, each forming a pair. Accordingly, in one example, the ratio of antibody chains to BDMs is 4:2. In one example, the molecule comprises four BDMs coupled to an antibody (i.e. one BDM on each light chain and one BDM on each heavy chain). In one example, the ratio of antibody chains to BDMs is 4:4. In one example, the molecule comprises six BDMs coupled to an antibody. In one example, the ratio of antibody chains to BDM is 4:6. In another example, the molecule comprises eight BDM coupled to an antibody. In another example, the ratio of antibody chains to BDM is 4:8. In another example, the ratio of antibody chains to BDMs is 4:2 n wherein n is a number between 1 and 5, including 1 and 5.
- the immunoglobulin antigen-binding fragment is selected from the group consisting of Fab, F(ab′) 2 , Fab′, scFv, di-scFv, or chemically linked F(ab′) 2 .
- the molecule comprises a single BDM coupled to an immunoglobulin antigen-binding fragment.
- the ratio of immunoglobulin antigen binding fragment chains to BDM is 2:1.
- the ratio of immunoglobulin antigen-binding fragment chains to BDM is 2:2.
- a chain of BDMs may be coupled to the antigen-binding fragment wherein the ratio of immunoglobulin antigen binding fragment chains to BDM is 2:n wherein n is number between 1 and 16.
- n is a number between 1 and 14, between 1 and 12, between 1 and 10, between 1 and 8, between 1 and 4, or 2, or 1.
- the present disclosure contemplates a number of different configurations in which the at least one BDM may be coupled to a full length antibody, for example:
- At least one BDM is coupled to a C-terminus of a CH3 domain of a heavy chain polypeptide of an antibody
- At least one BDM is coupled to a C-terminus of a CH1 domain of a light chain polypeptide
- At least one BDM is coupled to a C-terminus of a CH3 domain of a heavy chain polypeptide and to a C-terminus of a CH1 domain of a light chain polypeptide;
- At least one BDM is coupled to the C-terminus of a CH3 domain of both heavy chain polypeptides
- At least one BDM is coupled to the C-terminus of a CH1 domain of both light chain polypeptides.
- an BDM may be coupled to a C-terminus of either the heavy or light chain of the immunoglobulin fragment.
- an BDM may be coupled to a C-terminus of both the heavy and light chains of the immunoglobulin fragment.
- the BDM may be coupled to a constant domain (e.g. CH1) of either the light and/or heavy chains of the immunoglobulin fragment (e.g. Fab).
- At least one BDM is coupled to a C-terminus of the constant region of a light chain polypeptide of an Fab
- At least one BDM is coupled to a C-terminus of the CH1 of the heavy chain polypeptide of an Fab
- the BDM preferably comprises or consists of a scaffold having three exposed binding loops (BLs) contained within.
- the scaffold may be selected from the group consisting of an immunoglobulin-like (Ig-like) domain containing superfamily member, a V-like domain, an i-body, VNAR or VHH.
- the exposed BL sequences are modified or replaced from the native BL sequences to provide altered binding loops with selective binding to a heterologous target antigen or epitope.
- binding loops are designated BL1, BL2 and BL3 respectively as illustrated in FIG. 1A .
- the BLs are analogous to the CDR1, CDR2 and CDR3 regions of an antibody variable region.
- BL1 and BL3 are modified or replaced from the native BL sequence. In another example, BL1, BL2 and BL3 are modified or replaced from the native BL sequence.
- the BDM scaffold has less than about 20% sequence identity to a human immunoglobulin variable region domain, said scaffold having two or more altered BLs and exhibiting selective binding to a heterologous target antigen or epitope.
- the Ig-like domain containing superfamily member may be selected from the group consisting of a V-like domain (VLD), C-set domain, a ThyOx family member polypeptide, a T cell receptor, CD2, CD4, CD8, class I MHC, class II MHC, CD1, cytokine receptor, G-CSF receptor, GM-CSF receptor, hormone receptors, growth hormone receptor, erythropoietin receptor, interferon gamma receptor, prolactin receptor, NCAM, VCAM, ICAM, N-caderin, E-caderin, fibronectin, tenascin, and I-set containing domain polypeptides or a functional fragment thereof.
- VLD V-like domain
- C-set domain a ThyOx family member polypeptide
- a T cell receptor CD2, CD4, CD8, class I MHC, class II MHC, CD1, cytokine receptor, G-CSF receptor, GM-CSF receptor, hormone receptors, growth hormone receptor, ery
- the BDM scaffold according to the present disclosure may be selected from the group consisting of V-like domain (VLD), a C1 set domain or C2 set domain. Combinations of BDMs coupled to the protein or peptide are also contemplated. By way of illustration, one BDM may be a VLD and another BDM may be C set domain.
- VLD V-like domain
- C1 set domain C1 set domain
- C2 set domain Combinations of BDMs coupled to the protein or peptide are also contemplated.
- one BDM may be a VLD and another BDM may be C set domain.
- the BDM scaffold comprises or consists of the extracellular portion of a native VLD, or a VLD having altered binding loops (i.e. modified BDM) relative to the native VLD, wherein the VLD is from a protein selected from the group consisting of ACAN, ADORA3, ALCAM, JAML, AMIGO1, AXL, basigin, BCAM, BTNL2, 3, 8, 9 or 10, butyrophilin (BTN), cell adhesion molecule (CAM), CD2, CD4, CD7, CD8, CD28, CD33, CD48, CD79, CD80, CD83, CD86, CD101, CD112, CD226, CD274, CD276, CD300, carcinoembryonic antigen-related cell adhesion molecule (CEACAM), CRTAM, CTLA4, CXADR, C10orf54, ERMAP, ESAM,
- CEACAM carcinoembryonic antigen-related cell adhesion molecule
- HPLN Hyaluronan and proteoglycan link protein
- HAVCR1 HEPACAM
- HHLA2, HSPG2, ICOS
- the BDM scaffold comprises or consists of the extracellular portion of a native C-set domain (C1-set or C2-set domain), or a C-set domain having altered binding loops (i.e. modified C-set domain) relative to the native C-set domain, wherein the C-set domain is from a protein selected from the group consisting of AZGP1; basigin, B2M; CEACAM1, 3, 4, 5, 6, 7, 8; CD1A; CD1 B; CD1C; CD1 D; CD1 E; DMA; DQB2; DRB1; ELK2P1; FCGRT; HFE; HHLA2; HLA-A; HLA-B; HLA-B35; HLA-B57; HLA-C; HLA-CW; HLA-Cw; HLA-D; HLA-DMA; HLA-DMB; HLA-DOA; HLA-DOB; HLA-DP; HLA-DPA1; HLA-DPB1; HLA-DQA1; H
- the BDM scaffold comprises or consists of the whole or part thereof of a native Ig-like domain or an Ig-like domain with altered binding loops (i.e. modified Ig-like domain) relative to the native Ig-like domain, wherein the Ig-like domain is selected from the group consisting of a ThyOx family member polypeptide, a T cell receptor, CD2, CD4, CD8, class I MHC, class II MHC, CD1, cytokine receptor, G-CSF receptor, GM-CSF receptor, hormone receptors, growth hormone receptor, erythropoietin receptor, interferon gamma receptor, prolactin receptor, NCAM, VCAM, ICAM, N-caderin, E-caderin, fibronectin, tenascin, and I-set containing domain polypeptides or a functional fragment thereof.
- a ThyOx family member polypeptide a T cell receptor
- CD2, CD4, CD8 class I MHC, class II MHC, CD1, cytokin
- modified VLD refers to a BDM in which at least two, and preferably all three of the exposed binding loops are altered to provide binding to a heterologous target antigen or epitope.
- the alteration may be achieved by amino acid substitution or replacement of the whole or part thereof of individual binding loops.
- the altered amino acid sequences in the binding loops confers selective binding activity towards a target antigen other than that bound by the unaltered Ig-like domain containing scaffold.
- the amino acid alterations can be made at the nucleic acid or polypeptide level using methods known in the art.
- a VLD or C-set domain may encompass a BDM which binds to a heterologous target antigen or epitope.
- a modified VLD or C-set domain may also comprise one or more modifications which alter the affinity of the BDM to its native target. The affinity towards the native target may be increased or decreased compared to the native VLD or C-set domain.
- the modified BDM comprises or consists of a sequence at least about 60%, 70%, 75%, 80%, 85%, 87%, 90%, or 95% identical to the sequence of a native VLD or C-set domain.
- the BDM comprises or consists of the whole or part thereof of a VLD protein or C-set domain protein comprising between 5 and 30 amino acid substitutions, between 5 and 20 amino acid substitutions, between 5 and 15 amino acid substitutions, between 5 and 10 amino acid substitutions, or up to 5 amino acid substitutions compared to the corresponding native VLD or C-set domain protein.
- the BDM is not the CLTA-4 VLD mutant molecule L104EA29Y or L104E described in U.S. Pat. No. 7,094,874.
- the modified BDM comprises one heterologous BL sequence. In another example, the modified BDM comprises two heterologous BL sequences. In yet another example, the BDM comprises three heterologous BL sequences.
- the BDM is a VLD scaffold comprising or consisting of the extracellular portion of CTLA4, CD28 or ICOS.
- the VLD scaffold is the extracellular portion of human CTLA4.
- the BDM VLD comprises or consist of the sequence set forth in
- the alanine (A) at position 31 is substituted with tyrosine (Y).
- the methionine (M) at position 56 is replaced with a threonine (T).
- the BDM VLD scaffold consists of a framework sequence corresponding to residues 1 to 25, 34 to 54, 60 to 96 and 106 to 126 of SEQ ID NO:1.
- the BDM scaffold comprises or consists of a sequence having at least about 70% sequence identity thereto, or at least 75%, 80%, 85%, 87%, 90%, 92%, 93%, 94%, 95%, 96%, 97% 98% or 99% identity to SEQ ID NO:1 or to residues 1 to 25, 34 to 54 and 60-107 and 116 to 136 of SEQ ID NO:1.
- a single exposed binding loop, two exposed binding loops or all three exposed binding loops of the native BDM scaffold may be modified by amino acid substitution, addition or deletion, and/or by any change to one or more physical characteristics (e.g. size, shape, charge, hydrophobicity etc.).
- the exposed binding loop (BL1) sequence ASPGKATE (SEQ ID NO:2) or ASPGKYTE (SEQ ID NO:7), and/or exposed loop (BL2) sequence MMGNE (SEQ ID NO:3) and/or the exposed binding loop (BL3) sequence ELMYPPPYY (SEQ ID NO:4) of the native human CTLA-4 VLD sequence is modified by amino acid substitution, addition or deletion or replaced with a heterologous sequence.
- amino acid residues at positions 26 to 33, and/or positions 55 to 59 and/or positions 98 to 105 of SEQ ID NO:1 are modified or replaced.
- amino acid residues at positions 27 to 33, and/or positions 54 to 62 and/or positions 98 to106 of SEQ ID NO:1 are modified or replaced with heterologous sequence.
- the effect of modifying the native human CTLA-4 VLD is to abolish the natural affinity of the VLD to CD80 and CD86.
- the BDM VLD scaffold comprises or consists of the sequence
- the BDM VLD scaffold comprises or consists of the sequence
- the BL-1, BL-2 and BL-3 of the BDM comprise or consist of respectively ASPGKATE (SEQ ID NO:2) or ASPGKYTE (SEQ ID NO:7), MMGNE (SEQ ID NO:3) and ELMYPPPYYL (SEQ ID NO:9), wherein the BDM binds to B7-1.
- the BL-1, BL-2 and BL-3 of the BDM of the molecule comprise or consist of respectively TVSWVDME (SEQ ID NO:10), WNGRW (SEQ ID NO:11) and QLDPSWGYYWQGYE (SEQ ID NO:12), wherein the BDM binds to sclerostin.
- the BDM VLD comprises or consists of the sequence KAMHVAQPAVVLASSRG IASFVCEYASPGKYTEVRVTVLRQADSQVTEVCAATYMTGNELTFL DDSICTGTSSGNQVNLTIQGLRAMDTGLYICKVELMYPPPYYLGIGNGTQIYVIDPEPSPDSN (SEQ ID NO:13), wherein the BDM binds to B7-1.
- the BDM VLD comprises or consists of the sequence KAMHVAQPAVVLASSRG IASFVCEYTVSWVDM EVRVTVLRQADSQVTEVCAATYWNGRWLT FLDDSICTGTSSGNQVNLTIQGLRAMDTGLYICKVQLDPSWGYYWQGYEG IGNGTQIYVIDPE PSPDSN (SEQ ID NO:14), wherein the BDM binds to sclerostin.
- BL-1, BL-2 and BL-3 of the BDM are replaced with the CDR1, CDR2 and CDR3 sequences respectively of an antibody.
- the antibody from which the CDR sequences are derived may be derived from any species.
- the antibody is derived from a human.
- the antibody is derived from a domestic animal, for example, cat, dog, rabbit, guinea pig or horse.
- the at least one BDM may be present in the molecule in monomeric form or dimeric form. In another example, the at least one BDM may consist of a series of BDM monomers linked together.
- the BDM is a dimer.
- the dimer may be formed through a disulphide bond between cysteine residues (Cys 120 ) in the stalks of the CTLA4 monomers (each stalk corresponding to about 10 residues connecting the VLD to the transmembrane region).
- the dimer may be formed by linking of monomeric units.
- a series (or daisy chain) of monomeric BDMs may be linked together. For example, between 2 and 16
- BDM monomers may be joined head-to-tail in a daisy chain like arrangement.
- between 2 and 14, between 2 and 12, between 2 and 10, between 2 and 8, or between 2 and 4 BDMs are joined head to tail.
- Linking of BDM monomers may be achieved for example by use of covalent or non-covalent bonds or by use of a short peptide linker as described further herein. Any of the linking methodologies referred to herein can be employed to link the BDM monomers together. Alternatively adjacent BDM monomers may be directly fused together.
- the BDM is soluble.
- the ‘solubility’ of the BDM scaffold of the present disclosure correlates with the production of correctly folded, monomeric domains.
- the solubility may be assessed for example, by high performance liquid chromatography (HPLC).
- HPLC high performance liquid chromatography
- soluble, monomeric BDMs will give rise to a single peak on the HPLC chromatograph, whereas insoluble (e.g. multimeric or aggregated) BDMs will give rise to a plurality of peaks.
- Coupling of the at least one BDM and the pharmacologically active protein may be achieved by methods known to persons skilled in the art. Coupling may be achieved, for example, by use of a linker, by direct fusion, by conjugation or by covalent or non-covalent bonding.
- coupling of the pharmacologically active protein and the at least one BDM is achieved by means of a peptide linker.
- a peptide linker Any suitable peptide linker known in the art can be utilised in the present disclosure.
- the linker comprises a sequence (SGGGG) n S, (SEQ ID NO:15) wherein n is any number from 2 to 8, or from 3 to 6 or from 3 to 4.
- the linker comprises or consists of the sequence
- coupling of the pharmacologically active protein and the at least one BDM is achieved without use of a linker.
- the molecule is capable of simultaneous binding to the first, second and/or optionally a third target antigen.
- the molecule is capable of simultaneous binding to B7-1-Fc and sclerostin.
- the pharmacologically active protein or peptide and the at least one BDM specifically bind to their respective target antigens.
- the molecule binds selectively to cells that express two or more different target antigens or epitopes recognised by the individual BDM and pharmaceutically active protein moieties of the molecule but not to cells that express only one of the target antigens or epitopes.
- the present disclosure also provides a polypeptide comprising a BDM scaffold coupled to a pharmacologically active protein or peptide.
- the polypeptide further comprises a linker.
- the linker comprises a sequence (SGGGG)nS, wherein n is any number from 2 to 8, or from 3 to 6 or from 3 to 4.
- the linker comprises or consists of the sequence SGGGGSGGGGSGGGGS (SEQ ID NO:16) or SGGGGSGGGGSGGGGSGGGGS (SEQ ID NO:17).
- the present disclosure also provides a polypeptide selected from the group comprising or consisting of a sequence of any one of SEQ ID NOs: 5, 6, 13, 14, 19, 21, 22, 23, 24, 25, 27, 28 or 29.
- the polypeptide is isolated.
- a polypeptide of the present disclosure includes a polypeptide tag. Examples, of suitable tags include, but are not limited to the p97 molecule, myc, hexa-his tag, flag, E7.
- the molecule according to the disclosure is a nucleic acid.
- the present disclosure also provides a nucleic acid encoding a polypeptide of the present disclosure, in particular a polypeptide of any one of SEQ ID NOs: 5, 6, 13, 19, 21, 22, 23, 24, 25, 27, 28 or 29.
- Nucleic acid can comprise DNA or RNA or both.
- the molecule comprises or consists of the nucleic acid sequence of a BDM VLD set forth in:
- N1 is length of nucleotides encoding a first binding loop
- N2 is a length of nucleotides encoding a second binding loop
- N3 is a length of nucleotides encoding a third binding loop.
- N1, N2 and N2 are between 15 and 45 nucleotides.
- N1 is between 15 and 24 nucleotides.
- N2 is 15 nucleotides and N3 is between 30 and 45 nucleotides.
- N is any nucleotide (A, C, T, G).
- the nucleic acid is provided in an expression construct in which the nucleic acid is operably linked to a promoter.
- an expression construct can be in a vector e.g. a plasmid.
- the expression construct may be a bicistronic expression construct.
- the present disclosure also contemplates separate expression constructs for the heavy and light chains of the antibody or immunoglobulin antigen-binding fragment.
- one vector may comprise a nucleic acid encoding the immunoglobulin light chain and a BDM VLD and the other which comprises a nucleic acid encoding the immunoglobulin heavy chain or vice versa.
- the nucleic acid may further include a moiety e.g. FLAG to facilitate purification and identification.
- a moiety e.g. FLAG to facilitate purification and identification.
- the present disclosure also provides a host cell transformed with a nucleic acid described herein.
- Suitable host cells include bacteria, mammalian cells, yeast, moss (bryophytes), and baculovirus systems.
- the present disclosure also provides a method for producing the polypeptide molecule of the present disclosure comprising culturing the host cell of the present disclosure under conditions enabling expression of the polypeptide and optionally recovering the polypeptide.
- the polypeptide may be glycosylated or unglycosylated.
- the present disclosure also provides a method for making a multi-specific molecule comprising at least one BDM VLD coupled to a pharmacologically active protein, the method comprising:
- the present disclosure also provides a method or making a multi-specific molecule comprising at least one BDM VLD coupled to an antibody, the method comprising:
- the antibody heavy chain consists of the full length sequence. In another example according to the method, the antibody heavy chain consists of the variable region and at least the CH1 region. In another example, the antibody heavy chain consists of the variable region and at least the CH1 and CH2 regions.
- no linker sequence is present and the nucleic acid sequences of the pharmacologically active protein or peptide and BDM VLD are contiguous. In another example, no linker sequence is present and the nucleic acid sequences encoding the antibody heavy and/or light chain and BDM sequences are contiguous.
- the antibody nucleic acid sequence may further comprise the hinge region.
- the present disclosure also provides a vector(s) comprising one or more nucleic acid sequences described herein.
- the vector comprises a nucleic acid sequence encoding a pharmacologically active protein as described herein and the BDM VLD and optionally a nucleic sequence encoding the linker.
- the vector(s) comprises a nucleic acid sequence encoding an antibody light or heavy chain as described herein and a nucleic acid sequence encoding an BDM VLD and optionally a nucleic acid sequence encoding the linker.
- the vector(s) comprises nucleic acid sequences encoding both the antibody heavy and light chains as described herein and a nucleic acid sequence encoding a BDM VLD and optionally a nucleic acid sequence encoding the linker.
- the present disclosure also provides a host cell containing a vector or containing one or more nucleic acid sequences described herein.
- the present disclosure also provides a multi-specific molecule produced by a method described herein.
- the molecule of the present disclosure may be provided in a composition. Accordingly, in another embodiment, the present disclosure provides a pharmaceutical composition comprising the multi-specific molecule described herein, together with a pharmaceutically acceptable carrier and/or excipient.
- the composition may be provided as a medicament.
- the composition is for use in the treatment of a disorder.
- the composition is for anti-ageing or as a cosmetic.
- the molecule may be labelled with an agent to facilitate detection.
- composition of the present disclosure may also be provided in the form of a kit with instructions for use according to a particular treatment indication.
- the present disclosure also provides use of the multi-specific molecule as described herein for detection of one or more target antigens to which one or more moieties of the molecule bind.
- FIG. 1 provides (A) a schematic of the sequence of the native human CTLA4 VLD scaffold showing where the framework sequences and the sequences of binding loops 1, 2 and 3 are located (designated as BL1, BL2 and BL3).
- B shows the location of the binding loop replacements in the CTLA4 VLD wherein BL1 is designated by Xn 1 , BL2 is designated by Xn 2 and BL3 is designated by Xn 3 wherein X is any amino acid and n is a number between 5 and 15.
- C shows the sequence of the sclerostin human VLD scaffold wherein the sequence of the binding loop regions are underlined.
- FIG. 2 shows a schematic of an antibody-VLD bi-specific molecule according to one example of the disclosure.
- the antibody binds to target A via its heavy and light chain V domains.
- the VLDs which are attached to the C-terminus CH3 constant domain of the antibody heavy chain bind to Target B.
- the bi-specific can bind to both Target A and B either individually or at the same time.
- FIG. 3 shows a schematic of an antibody-VLD bi-specific molecule according to one example of the disclosure.
- the antibody binds to Target A via its heavy and light chain V domains.
- a VLD is attached at the C-terminus of each constant domain of the light chain (constant light, CL) and binds to Target B.
- CL constant light
- FIG. 4 shows a schematic of an antibody-VLD tri-specific molecule according to one example of the disclosure.
- the antibody binds to Target A via its heavy and light chain V domains.
- a VLD is attached to the C-terminus of each light chain constant domain (CL) and heavy chain constant domain (CH3).
- the tri-specific can bind to Target A and B and C either individually or at the same time or in a combination of the three targets (e.g. Target A and B or Target A and C or Target B and C).
- FIG. 5 shows a schematic of an Fab-VLD bi-specific molecule according to one example of the disclosure.
- the Fab binds to Target A via its heavy and light chain V domains.
- a VLD is attached to the C-terminus of the heavy chain constant domain (CH1) and binds to Target B.
- the bi-specific can bind to both Target A and B either individually or at the same time.
- FIG. 6 shows a schematic of the Fab-VLD bi-specific molecule according to one example of the disclosure.
- the Fab binds to Target A via its heavy and light chain V domains.
- a VLD is attached to the C-terminus of the light chain constant domain (CL) and binds to Target B.
- the bi-specific can bind to both Target A and B either individually or at the same time.
- FIG. 7 shows a schematic of the Fab-VLD tri-specific molecule according to one example of the disclosure.
- the Fab binds to Target A via its heavy and light chain V domains.
- a VLD is attached to the C-terminus of the light chain constant domain (CL) and binds to Target B and a VLD is attached to the C-terminus of the heavy chain constant domain (CH1) and binds to Target C.
- the tri-specific can bind to Target A and B and C either individually or at the same time or in a combination of the three targets (e.g. Target A and B or Target A and C or Target B and C).
- FIG. 8 shows the expression (SDS PAGE) under non-reducing conditions of the parent D1.3 Fab, and the bi-specific and tri-specific variants.
- D1.3 Fab is the anti-lysozyme Fab
- D1.3 Fab-VLDx1 (HC) is the anti-lysozyme Fab with a VLD fused to the CH1 domain of the heavy chain
- D1.3 Fab-VLDx1 (LC) is the anti-lysozyme Fab with a VLD fused to the CL domain of the light chain
- D1.3 Fab-VLDx2 (HC+LC) is the anti-lysozyme Fab with VLDs fused to the CH1 domain of the heavy chain and to the CL domain of the light chain.
- FIG. 9 shows SDS PAGE expression analysis under reducing conditions of the parent D1.3 Fab, the bi-specific and tri-specific variants.
- D1.3 Fab is the anti-lysozyme Fab
- D1.3 Fab-VLDx1 (HC) is the anti-lysozyme Fab with a VLD fused to the CH1 domain of the heavy chain
- D1.3 VLDx1 (LC) is the anti-lysozyme Fab with a VLD fused to the CL domain of the light chain
- D1.3 VLDx2 (HC+LC) is the anti-lysozyme Fab with VLDs fused to the CH1 domain of the heavy chain and to the CL domain of the light chain.
- FIG. 10 shows BLitz analysis of initial binding of the bi-specific [IgG VLDx2 (HC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to B7.1-Fc.
- the bi-specific has B7-1 binding VLDs fused to the D1.3 antibody [D1.3 IgG] heavy chains.
- Trace 1 is the D1.3 anti-lysozyme antibody binding to lysozyme immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- Trace 2 is the D1.3 anti-lysozyme antibody binding to lysozyme followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- Trace 3 is the bi-specific—D1.3 IgG-VLDx2 (HC) binding to lysozyme immobilised on the biosensor surface followed with an addition of buffer at Point 1.
- Trace 4 is the bi-specific—D1.3 IgG-VLDx2 (HC) binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1. B7-1-Fc was replaced with Buffer at Point 2. The sensorgram demonstrates simultaneous, dual target binding to lysozyme and B7-1-Fc.
- FIG. 11 shows BLitz analysis of initial binding of the bi-specific [IgG VLDx2 (LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to B7-1-Fc.
- the bi-specific has B7-1 binding VLDs fused to the D1.3 antibody [D1.3 IgG] light chains.
- Trace 1 is the D1.3 anti-lysozyme antibody binding to lysozyme immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- Trace 2 is the D1.3 anti-lysozyme antibody binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- Trace 3 is the bi-specific—D1.3 IgG-VLDx2 (LC) binding to lysozyme immobilised on the biosensor surface followed with an addition of buffer at Point 1.
- Trace 4 is the bi-specific—D1.3 IgG-VLDx2 (LC) binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1. B7-1-Fc was replaced with Buffer at Point 2. The sensorgram demonstrates simultaneous, dual target binding to lysozyme and B7-1-Fc.
- FIG. 12 shows BLitz analysis of initial binding of the tri-specific [IgG VLDx4 (HCLC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to B7-1-Fc.
- the tri-specific has B7-1 binding VLDs fused to both the D1.3 antibody [D1.3 IgG] heavy chains and light chains.
- Trace 1 is the D1.3 anti-lysozyme antibody binding to lysozyme immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- Trace 2 is the D1.3 anti-lysozyme antibody binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- Trace 3 is the tri-specific D1.3 IgG-VLDx4 (HCLC)binding to lysozyme immobilised on the biosensor surface followed with an addition of buffer at Point 1.
- Trace 4 is the tri-specific—D1.3 IgG-VLDx4 (HCLC) binding to lysozyme immobilised on the biosensor surface followed by an addition of
- B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- the sensorgram demonstrates simultaneous, dual target binding to lysozyme and B7-1-Fc.
- FIG. 13 shows Blitz® analysis demonstrating increased binding by the tri-specific relative to the bi-specific for B7-1-Fc.
- An equivalent number of antibody, bi-specific and tri-specific molecules were captured on biotin labelled lysozyme attached to a biosensor surface followed by the addition of buffer or B7-1-Fc (at Point 1) to demonstrate increased binding capacity of the tri-specific relative to the bi-specific.
- Trace 1 is the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific and tri-specific. The bound antibody is shown with Buffer only injected at Point 1.
- Trace 2 is the D1.3 anti-lysozyme antibody [D1.3 IgG] shown with B7-1-Fc injected at Point 1 At Point 2, B7-1-Fc was replaced with Buffer.
- Trace 3 is the bi-specific D1.3 anti-lysozyme antibody with VLDs fused to the antibody CL chains [the bi-specific—D1.3 IgG-VLDx2 (LC)]. The captured bi-specific is shown binding to B7-1-Fc which was injected at Point 1. At Point 2, B7-1-Fc was replaced with Buffer.
- Trace 4 is the tri-specific D1.3 anti-lysozyme antibody with VLDs fused to the antibody CH and CL chains [the tri-specific—D1.3 IgG-VLDx4 (HC+LC)]. The captured bi-specific is shown binding to B7-1-Fc which was injected at Point 1. At Point 2, B7-1-Fc was replaced with Buffer.
- FIG. 14 shows a series of SPR binding sensorgrams that have been overlaid showing initial binding of the bi-specific [IgG VLDx2 (HC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (50, 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml).
- the bi-specific has B7-1 binding VLDs fused to the D1.3 antibody [D1.3 IgG] heavy chains.
- FIG. 15 shows a series of SPR binding sensorgrams that have been overlaid showing initial binding of the bi-specific [IgG VLDx2 (LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (50, 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml).
- the bi-specific has B7-1 binding VLDs fused to the D1.3 antibody [D1.3 IgG] light chains.
- FIG. 16 shows a series of SPR binding sensorgrams that have been overlaid showing initial binding of the tri-specific [IgG VLDx4 (HC+LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (50, 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml).
- the tri-specific has B7-1 binding VLDs fused to both the D1.3 antibody [D1.3 IgG] heavy and light chains.
- FIG. 17 shows overlapped SPR binding sensorgrams showing the bi-specific [Fab-VLDx1 (HC)] binding to lysozyme followed by simultaneous binding of a concentration series of B7-1-Fc (at 25, 12.5, 6.25, 3.125, 1.56 ⁇ g/ml).
- the bi-specific has a B7-1 binding VLD fused to the D1.3 Fab [D1.3 Fab] heavy chain.
- FIG. 18 shows overlapped SPR binding sensorgrams showing the bi-specific [Fab-VLDx1 (LC)] binding to lysozyme followed by simultaneous binding of a concentration series of B7-1-Fc (at 25, 12.5, 6.25, 3.125, 1.56 ⁇ g/ml).
- the bi-specific has a B7-1 binding VLD fused to the D1.3 Fab [D1.3 Fab] light chain.
- FIG. 19 shows overlapped SPR binding sensorgrams showing the tri-specific [Fab-VLDx2(HC+LC)] binding to lysozyme followed by simultaneous binding of a concentration series of B7-1-Fc (at 25, 12.5, 6.25, 3.125, 1.56 ⁇ g/ml).
- the tri-specific has B7-1 binding VLDs fused to both the D1.3 Fab [D1.3 Fab] heavy and light chains.
- FIG. 20 shows the binding stoichiometry determined as a percentage of R MAX (maximal capacity) determined by SPR analysis for the bi-specific and tri-specific antibody-VLD molecules binding to B7-1-Fc.
- FIG. 21 shows the binding stoichiometry determined as a percentage of R MAX determined by SPR analysis for the bi-specific and tri-specific Fab-VLD molecules binding to B7-1-Fc.
- FIG. 22 shows a series of SPR binding sensorgrams that have been overlaid demonstrating initial binding of the tri-specific [IgG VLDx4 (Scl-HC)(B7-LC)] to streptavidin captured biotin labelled lysozyme followed by sequential and simultaneous binding to B7-1-Fc and sclerostin.
- the tri-specific has sclerostin (Scl) binding VLDs fused to the D1.3 antibody [D1.3 IgG] heavy chains and B7-1 binding VLD's fused to the light chains.
- the B7-1-Fc only trace is a sensorgram of the tri-specific showing binding to lysozyme immobilised on the biosensor surface followed by the addition of B7-1-Fc.
- the sensorgram demonstrates simultaneous, dual target binding to lysozyme and B7-1-Fc.
- the Sclerostin only trace is a sensorgram of the tri-specific showing binding to lysozyme immobilised on the biosensor surface followed by the addition of sclerostin.
- the sensorgram demonstrates simultaneous, dual target binding to lysozyme and sclerostin.
- the B7-1-Fc and Sclerostin trace is a sensorgram of the tri-specific showing binding to lysozyme immobilised on the biosensor surface followed by the addition of B7-1-Fc, and then followed by the addition of sclerostin.
- the sensorgram demonstrates simultaneous, trio target binding to lysozyme and B7-1-Fc and sclerostin.
- Tri-specific injected Point at which the IgG VLDx4 (Scl-HC)(B7-LC) is added to the sensor surface.
- the trace shows the IgG VLDx4 (Scl-HC)(B7-LC) binding to lysozyme immobilised on the biosensor surface.
- Buffer injected 1 Point at which the injection of IgG VLDx4 (Scl-HC)(B7-LC) is stopped and replaced with buffer.
- the trace shows the dissociation of the IgG VLDx4 (Scl-HC)(B7-LC) from the lysozyme immobilised on the biosensor surface
- B7-1-Fc injected Point at which the second analyte B7-1-Fc is added.
- the trace shows B7-1-Fc binding to the IgG VLDx4 (Scl-HC)(B7-LC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Buffer injected 2 Point at which the injection of B7-1-Fc is stopped and replaced with buffer.
- the trace shows the dissociation of B7-1-Fc from IgG VLDx4 (Scl-HC)(B7-LC) still attached to the lysozyme immobilised on the biosensor surface
- Sclerostin injected Point at which the third analyte sclerostin is added.
- the trace shows sclerostin binding to the IgG VLDx4 (Scl-HC)(B7-LC) that is still bound to the lysozyme immobilised on the biosensor surface while IgG VLDx4 (Scl-HC)(B7-LC) is simultaneously still binding B7-1-Fc.
- Buffer injected 3 Point at which the injection of sclerostin is stopped and replaced with buffer.
- the trace shows the dissociation of sclerostin from IgG VLDx4 (Scl-HC)(B7-LC) still attached to the lysozyme immobilised on the biosensor surface.
- FIG. 23 shows Blitz® binding analysis demonstrating initial binding of the tri-specific [Fab VLDx2 (B7-HC)(Scl-LC)] to streptavidin captured biotin labelled lysozyme followed by sequential and simultaneous binding to B7-1-Fc and sclerostin.
- the tri-specific has a sclerostin binding VLD fused to the D1.3 Fab [D1.3 Fab] light chain and a B7-1 binding VLD fused to the heavy chain.
- the trace shows the tri-specific binding to lysozyme immobilised on the biosensor surface followed by the addition of B7-1-Fc.
- the binding trace demonstrates simultaneous, dual target binding to lysozyme and B7-1-Fc. Sclerostin is added to demonstrate simultaneous, tri-target binding to lysozyme and B7-1-Fc and sclerostin.
- Tri-specific Added Point at which the Fab VLDx2 (B7-I-HC)(Scl-LC) is added to the sensor surface.
- the trace shows the Fab VLDx2 (B7-I-HC)(Scl-LC) binding to lysozyme immobilised on the biosensor surface.
- B7-1-Fc Added Point at which B7-1-Fc is added.
- the trace shows B7-1-Fc binding to the Fab VLDx2 (B71-HC)(Scl-LC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Sclerostin Added Point at which sclerostin is added.
- the trace shows sclerostin binding to the Fab VLDx2 (B71-HC)(Scl-LC) that is still bound to the lysozyme immobilised on the biosensor surface while Fab VLDx2 (B71-HC)(Scl-LC) is simultaneously still binding B7-1-Fc.
- Buffer Added Point at which sclerostin is replaced with buffer.
- FIG. 24 shows Blitz® binding analysis demonstrating initial binding of the tri-specific [Fab VLDx2 (Scl-HC)(B7-LC)] to streptavidin captured biotin labelled lysozyme followed by sequential and simultaneous binding to B7-1-Fc and sclerostin.
- the tri-specific has a sclerostin binding VLD fused to the D1.3 Fab [D1.3 Fab] heavy chain and a B7-1 binding VLD fused to the light chain.
- the trace shows the tri-specific binding to lysozyme immobilised on the biosensor surface followed by the addition of B7-1-Fc.
- the binding trace demonstrates simultaneous, dual target binding to lysozyme and B7-1-Fc. Sclerostin is added to demonstrate simultaneous, tri-target binding to lysozyme and B7-1-Fc and sclerostin.
- Tri-specific Added Point at which the Fab VLDx2 (Scl-HC)(B7-LC) is added to the sensor surface.
- the trace shows the Fab VLDx2 (Scl-HC)(B7-LC) binding to lysozyme immobilised on the biosensor surface.
- B7-1-Fc Added Point at which B7-1-Fc is added.
- the trace shows B7-1-Fc binding to the Fab VLDx2 (Scl-HC)(B7-LC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Sclerostin Added Point at which sclerostin is added.
- the trace shows sclerostin binding to the Fab VLDx2 (Scl-HC)(B7-LC) that is still bound to the lysozyme immobilised on the biosensor surface while Fab VLDx2 (Scl-HC)(B7-LC) is simultaneously still binding B7-1-Fc.
- Buffer Added Point at which sclerostin is replaced with buffer.
- FIG. 25 shows a schematic of a protein (generic representation) coupled to a VLD according to one example of the disclosure.
- the protein binds to target A.
- a VLD is attached to the C-terminus of the protein polypeptide and binds to Target B.
- the bi-specific can bind to both Target A and B either individually or at the same time.
- FIG. 26 shows Western blot analysis and detection with anti-His horse radish peroxidase (HRP) of the purified human serum albumin (HAS)-VLD fusion proteins.
- Lane 1 is HSA with the VLD fused to the C-terminus;
- Lane 2 is HSA with the VLD fused to the N-terminus;
- Lane 3 is HSA with VLDs fused to both the N-terminus and C-terminus.
- FIG. 27 shows analysis using the ForteBio Blitz biosensor to demonstrate binding of the HSA-VLD fusion proteins to B7-2-Fc.
- Trace 1 corresponds to the HSA-VLD fusion protein which as a B7-2 binding VLD attached to the C-terminus of HSA.
- Trace 2 corresponds to the VDL-HSA-VLD construct having a B7-2 binding VLD attached to both the N and C-terminus of HSA.
- Point 1 corresponds to the addition of buffer.
- FIG. 28 shows analysis using the ForteBio Blitz biosensor to demonstrate binding of the HSA-VLD to CD3.
- the trace shown corresponds to the binding of the molecule to CD3de.
- Point 1 corresponds to the addition of buffer.
- FIG. 29 shows analysis using the ForteBio Blitz biosensor to demonstrate binding of HSA-VLD fusion protein to anti-HSA affibody and B7-2-Fc.
- the trace shown corresponds to the binding of the molecule to an anti-HSA affibody.
- Points 1, 2 and 3 correspond to the addition of buffer.
- composition of matter, group of steps or group of compositions of matter shall be taken to encompass one and a plurality (i.e. one or more) of those steps, compositions of matter, groups of steps or groups of compositions of matter.
- variable regions and parts thereof, immunoglobulins, antibodies and fragments thereof herein may be further clarified by the discussion in Kabat Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., 1987 and 1991, Bork et al., J Mol. Biol. 242, 309-320, 1994, Chothia and Lesk J. Mol Biol. 196:901 -917, 1987, Chothia et al. Nature 342, 877-883, 1989 and/or or Al-Lazikani et al., J Mol Biol 273, 927-948, 1997.
- identity means the percentage of identical nucleotide or amino acid residues at corresponding positions in two or more sequences when the sequences are aligned to maximize sequence matching, i.e., taking into account gaps and insertions. Identity can be readily calculated by known methods, including but not limited to those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H.
- Computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Altschul, S. F. et al., J. Molec. Biol. 215: 403-410 (1990) and Altschul et al. Nuc. Acids Res. 25: 3389-3402 (1997)).
- the BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990).
- sequence identity means the percentage of pair-wise identical residues following alignment of the a sequence of a polypeptide of the present disclosure with a sequence in question with respect to the number of residues in the longer of these two sequence. Identity is measured by dividing the number of identical residues by the total number of residues and multiplying the product by 100. Thus the identity between two sequences will typically be expressed as a percentage.
- immunoglobulin refers to a family of polypeptides which retain the immunoglobulin fold characteristics of antibody molecules, which contains two beta sheets and, usually, a conserved disulphide bond.
- Ig superfamily include antibodies, T-cell receptor molecules and the like, ICAM molecules (which are involved in cell adhesion), receptor molecules such as the PDGF receptor which are involved in intracellular signalling.
- the present invention relates to antibodies.
- immunoglobulin-like domain refers to a beta-sandwich structural motif found in proteins of diverse function including for example, extracellular matrix proteins, muscle proteins, immune proteins, cell-surface receptors and enzymes. Ig-like domain members have been divided into various superfamilies, including for example, the immunoglobulin, fibronectin type III and cadherin superfamilies.
- superfamilies containing the Ig-like domain structural motif include, for example, members of the PKD domain, ⁇ -galactosidase/glucuronidase domain, transglutamase two C-terminal domains, actinoxanthin-like, CuZn superoxide dismutase-like, CBD9-like, lamin NC globular tail domain, clathrin adaptor appendage domain, integrin domains, PapD-like, purple acid phosphatase N-terminal domain, superoxide reductase-like, thiol:disulfide interchange protein DsbD N-terminal domain and invasin/intimin cell adhesion fragments superfamilies.
- Ig-like domain structural similarity is maintained between members of different superfamilies irrespective of significant sequence identity.
- the term is intended to include Ig-like domain members within and across each superfamily. Therefore, the term “immunoglobulin-like (Ig-like) domain containing superfamily” is intended to refer to an Ig-like domain containing member polypeptide within any of these superfamilies as well as others known in the art.
- a description of the different Ig-like domain containing superfamilies can be found, for example, in Clarke et al., Structure Fold. Des. 7: 1145-53 (1999) and within structural databases such as at the URL pdb.weizmann.ac.il/scop/data/scop.b.c.b.html.
- antibody can include all classes, for example IgG, IgM, IgA, IgD or IgE or sub-classes e.g. IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 and IgA 2 whether derived from any species naturally producing an antibody, or created by recombinant DNA technology, whether isolated from serum, B cells, hybridomas, transfectomas, yeast or bacteria or synthetically produced.
- the term ‘antibody’ covers monoclonal antibodies, polyclonal antibodies, human antibodies, humanised antibodies, chimeric antibodies, primatised antibodies or synhumanized antibodies.
- human antibody refers to antibodies containing sequences of human origin, except for possible non-human CDR regions and which has minimal immunogenicity in humans.
- full-length antibody as used herein is intended to refer to an antibody in its substantially intact form, as opposed to an antigen binding fragment of an antibody. It may be isolated or recombinant. Specifically, whole antibodies include those with heavy and light chains including an Fc region.
- the constant domains may be wild-type sequence constant domains (e.g., human wild-type sequence constant domains) or amino acid sequence variants thereof.
- the antibody protein comprises a variable region made up of a plurality of polypeptide chains, e.g., a polypeptide comprising a light chain variable region (VL) and a polypeptide comprising a heavy chain variable region (VH).
- An antibody also comprises constant domains, some of which can be arranged into a constant region, which includes a constant fragment or fragment crystallizable (Fc), in the case of a heavy chain.
- a VH and a VL interact to form a Fv comprising an antigen binding region that is capable of specifically binding to one or a few closely related antigens. Binding interaction of the antibody with an antigen can be manifested as an intermolecular contact with one or more amino acid residues of a complementarity determining region (CDR).
- CDR complementarity determining region
- a light chain from mammals is either a ⁇ light chain or a ⁇ light chain and a heavy chain from mammals is ⁇ , ⁇ , ⁇ , ⁇ , or ⁇ .
- Antibodies can be of any type (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.
- the antibody may be a human, humanised, or chimeric antibody.
- the antibody is a shark, camelid, feline or canine antibody.
- immunoglobulin antigen-binding fragment as used herein is intended to refers to a fragment of an antibody, which fragment includes a light chain variable region and a heavy chain variable region having complementarity determining regions (CDRs).
- CDRs complementarity determining regions
- the term encompasses an Fab, F(ab′) 2 , Fab , scFv, di-scFv, or chemically linked F(ab′) 2 .
- Fab is understood to refer to a region of an antibody that binds antigen and is composed of one constant and one variable domain of each of the heavy and the light chain.
- complementary refers to immunoglobulin domains which form cognate pairs.
- a VH and a VL domain of an antibody are complementary, two VH domains are not complementary and two VL domains are not complementary.
- domain refers to a folded protein structure which retains its tertiary structure independently of the rest of the protein.
- CDR or ‘complementarity determining region’ is intended to mean the non-contiguous antigen combining sites found within the variable region of both heavy and light chain polypeptides within an antibody or antibody fragment (which binds to an antigen). These particular regions have been described by Kabat et al., J. Biol. Chem. 252: 6609-6616 (1977); Kabat et al., U.S. Dept. of Health and Human Services, “Sequences of proteins of immunological interest” (1991); by Chothia et al., J. Mol. Biol. 196: 901-917 (1987); and MacCallum et al., J. Mol. Biol.
- a “binding domain molecule” refers to a monomeric domain which has similar structural features to the variable heavy (VH) chain or variable light (VL) chain of an antibody. These similar structural features include BL (Binding Loop) sequences which are surface polypeptide loop structures or regions that function in a similar manner to the complementarity determining regions (CDRs) in antibody variable domains that bind to specific antigens.
- the BDM scaffold consists of a framework sequence and three BL sequences contained within.
- a BDM herein is not an antibody variable domain.
- BDM scaffolds are described herein, including for example CTLA-4, lipocallins, fibronectin, ICOS and CD28.
- a “BL sequence” is surface polypeptide loop structure or region that function in a similar manner to the complementarity determining regions (CDRs) in antibody variable domains that bind to specific antigens.
- CDRs complementarity determining regions
- Three antigen binding loop sequences (referred to herein as BL-1, BL-2 and BL-3 respectively) are present in the BDM and they sit within a scaffold sequence which provides the required three dimensional conformation of the loop sequences.
- Native BL sequences can be replaced with one or more corresponding antibody CDRs which can be grafted onto the scaffold.
- Diversity can be introduced into the BL sites of the BDM by randomising the amino acid sequence of the specific loops of the scaffold e.g. by introducing NNK codons followed by selection for desired binding characteristics using, for example, display technologies. This mechanism is similar to natural selection of high affinity, antigen-specific antibodies.
- binding specificity in the context of a protein, polypeptide or peptide, refers to the ability of the protein or peptide and/or BDM to bind its respective target antigen or epitope which is dependent upon the presence of a particular structure (e.g., an antigenic determinant or epitope) on the target antigen or epitope.
- a protein and/or BDM recognizes and binds to a specific protein structure rather than to proteins generally.
- a protein binds to epitope “A”
- the presence of a molecule containing epitope “A” (or free, unlabelled “A”), in a reaction containing labelled “A” and the protein will reduce the amount of labelled “A” bound to the protein.
- the term should also be understood to include that the pharmacologically active protein or peptide and/or BDM “specifically binds” to a target antigen.
- binding refers to mean that the pharmacologically active protein (or antigen binding domain thereof in the case of an antibody) or peptide and/or the BDM of the present disclosure reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular target antigen than it does with alternative target antigens.
- Reference to ‘binding’ provides explicit support for the term ‘specific binding’ and vice versa.
- the term is used to describe the affinity of a moiety (i.e. protein or BDM herein) for a given target antigen. In some circumstances, it may be desirable to have low affinity binding where toxicity may be an issue. In other circumstances it may be desirable to have high affinity binding to minimise cross-reactivity to other target antigens.
- the binding is specific binding as defined herein.
- binding affinity or “affinity” of a moiety of the molecule (i.e. the protein or the BDM) to a selected target can be measured.
- affinity refers to the equilibrium constant for the reversible binding of two agents and is expressed as a dissociation constant (Kd) or equilibrium dissociation constant (KD).
- the term ‘avidity’ refers to the resistance of a complex of two or more agents to dissociation after dilution.
- antigen means a substance to which the pharmacologically active protein or peptide or BDM binds.
- An antigen will typically comprise one or more antigenic epitopes which are recognised by the BDM or protein or peptide.
- the protein antigen may be a soluble protein or membrane bound protein. Examples of soluble proteins include, but are not limited to transcription factors, antibodies, growth factors, blood proteins (e.g. albumin), or drugs (e.g. steroid, pharmaceutical drugs etc.). Types of membrane bound proteins include growth factor receptors, tumour markers, cell surface markers, or markers which mediate transport into a cell (e.g. transferrin), or Fc receptor. It typically refers to a substance which is capable of raising an immune response in vivo. It may be a polypeptide, protein, nucleic acid (e.g. DNA, RNA or a combination of DNA and RNA) or other molecule.
- nucleic acid e.g. DNA, RNA or a combination of DNA and RNA
- epitope As used herein, the term ‘epitope’ (syn. “antigenic determinant”) shall be understood to mean a region to which a protein (or an antigen-binding domain of an antibody or immunoglobulin antigen-binding fragment) binds or which the BDM of the present disclosure binds. Conventionally, the term refers to a structure bound by an immunoglobulin VH/VL pair. An epitope defines the minimum binding site for an antibody or antibody-like domain (e.g. BDM). This term is not necessarily limited to the specific residues or structure to which a protein and/or the BDM of the molecule makes contact.
- this term includes a region spanning amino acids contacted by the CDRs of the antibody or immunoglobulin antigen-binding fragment or BL sequences of the BDM respectively, and 5-10 (or more) or 2-5 or 1-3 amino acids outside of this region.
- the epitope comprises a series of discontinuous amino acids that are positioned close to one another when a polypeptide is folded and, for example, associated with another polypeptide, i.e., a ‘conformational epitope’.
- the term includes those composed of a linear peptide sequence (i.e., “continuous”) or those composed of non-contiguous amino acid sequences (i.e., “conformational” or “discontinuous”).
- target refers to an antigen or an epitope.
- the target refers to a cell-surface protein e.g. receptor or a viral coat protein.
- the target is a secreted protein.
- the term ‘antigen binding domain’ in the context of an antibody or immunoglobulin antigen-binding fragment shall be taken to mean a region of an antibody or immunoglobulin antigen-binding fragment that is capable of specifically binding to an antigen, more particularly an epitope present on an antigen.
- the antigen binding domain corresponds to the V H and V L . Within the V H and V L regions are the CDRs which make contact with the epitope.
- position or “positions” as used herein means the position of an amino acid within an amino acid sequence depicted herein, typically counting from the left or 5′ end of the sequence.
- corresponding as used herein in the context of the amino acid sequence positions of a BDM refers to the position of an amino acid by reference to the native or “wild-type” BDM sequence.
- the positions will be the amino acids corresponding to the BLS1, and/or BLS2 and/or BLS3 respectively in the native BDM sequence.
- native sequence is intended to refer to a sequence that has the same amino acid sequence as the corresponding polypeptide derived from nature.
- a “native BDM” refers to that polypeptide having an amino acid sequence that is the same amino acid sequence as the corresponding polypeptide derived from nature.
- Such native sequence polypeptide can be produced by recombinant or synthetic means.
- protein shall be taken to include a single continuous and unbranched polypeptide chain, i.e., a series of contiguous amino acids linked by peptide bonds or a series of polypeptide chains covalently or non-covalently linked to one another (i.e., a polypeptide complex).
- the series of polypeptide chains can be covalently linked using a suitable chemical or a disulfide bond.
- non-covalent bonds include hydrogen bonds, ionic bonds, Van der Waals forces, and hydrophobic interactions.
- peptide as used herein is taken to refer to a short chain (typically of about 50 amino acids or less) of amino acid monomers linked by peptide (amide) bonds.
- isolated refers to a polypeptide, antibody, protein etc. that has been identified and separated and/or recovered from a component of its natural environment or the environment from which it has been produced. Contaminant components of its natural environment are materials that would interfere with therapeutic uses for the polypeptide, and can include, for example, enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
- the polypeptide will be purified (1) to greater than 80%, 85%, 90%, 95%, or 99% by weight as determined by the Lowry method, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, and/or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or silver stain.
- isolated polypeptide includes within its scope a polypeptide in situ within recombinant cells since at least one component of the polypeptides natural environment will not be present. Generally, isolation of the polypeptide will include at least one purification step.
- recombinant shall be understood to mean the product of artificial genetic recombination.
- a recombinant polypeptide also encompasses a polypeptide expressed by artificial recombinant means when it is within a cell, tissue or subject, e.g., in which it is expressed.
- detect or “detecting” as used herein is understood both on a quantitative and a qualitative level, as well as a combination thereof. It thus includes quantitative, semi-quantitative and qualitative measurements of a molecule of interest.
- the term ‘subject’ shall be taken to mean any animal including humans, for example a mammal. Exemplary subjects include but are not limited to humans and non-human primates. For example, the subject is a human. The term ‘subject’ is also intended to include non-human subjects such as for example, hamsters, rats, rabbits, cats, dogs and horses.
- BDMs Binding Domain Molecules
- the binding domain molecules (BDMs) of the present disclosure preferably contain a protein scaffold having three exposed binding loops (BLs).
- the BLs can be altered i.e. replaced or modified by amino acid substitution to confer binding specificity of the BDM to a given target antigen.
- the BDM scaffold of the present disclosure may be selected from the group consisting of an immunoglobulin-like (Ig-like) domain containing superfamily member, i-body, VNAR or VHH.
- the Ig-like domain containing superfamily member may be selected from the group consisting of V-like domain (e.g. VLD) such as CTLA-4, C-set domain, a ThyOx family member polypeptide, a T cell receptor, CD2, CD4, CD8, class I MHC, class II MHC, CD1, cytokine receptor, G-CSF receptor, GM-CSF receptor, hormone receptors, growth hormone receptor, erythropoietin receptor, interferon gamma receptor, prolactin receptor, NCAM, VCAM, ICAM, N-caderin, E-caderin, fibronectin, tenascin, and I-set containing domain polypeptides or a functional fragment thereof.
- V-like domain e.g. VLD
- CTLA-4 C-set domain
- ThyOx family member polypeptide e.g. T cell receptor
- CD2, CD4, CD8 class I MHC, class II MHC, CD1, cytokine receptor, G-CSF
- BDMs examples include lipocalin, protein A derived molecules such as Z-domain of Protein A (affibody, SpA), an affibody, adnectin (e,g, fibronectin) or Ankyrin repeat protein (DARPin).
- protein A derived molecules such as Z-domain of Protein A (affibody, SpA)
- an affibody e.g, fibronectin
- DARPin Ankyrin repeat protein
- the BDMs of the present disclosure have the advantages of being stable and modular in both the scaffold domain structures as well as in the ability to accept a broad range of heterologous binding loop sequences. Additionally, the BDM scaffold can be readily obtainable from human sources so that their immunogenicity when used as a human therapeutic is negligible. The BDM scaffolds can also be readily constructed to contain or omit naturally occurring polysaccharide chains.
- Joinder of the heterologous binding loop sequences into the BDM scaffold can be performed by, for example, chemical, biochemical or recombinant means.
- a BDM of the present disclosure refers to a molecule other than a human antibody as produced by a B cell.
- a BDM molecule of the present disclosure is also intended to exclude antibody fragments greater than complementarity determining regions (CDRs). Therefore human antibody variable region fragments greater than about 50, 75, 100 or 110 amino acids are not encompassed within the term BDM.
- a BDM does not include an antibody variable region such as dAb, VH-VH or VL-VL structures.
- scaffold is intended to mean a supporting polypeptide framework used to organise, orient and harbour heterologous binding loops or altered amino acid sequences conferring binding specificity to a given target.
- a scaffold can be structurally separable from the amino acid sequences conferring binding specificity.
- the structurally separable portion of a scaffold can include a variety of different structural motifs including, for example, beta-sandwich, beta-sheet, alpha-helix, beta-barrel, coil-coiled and other polypeptide secondary and tertiary structures known in the art.
- a scaffold of the present disclosure will also contain one or more regions that can be varied in amino acid sequence without substantially reducing the stability of the supporting framework structure.
- An exemplary region that can be varied includes a binding loop segment that joins two strands of a beta-sandwich or beta-sheet.
- a BDM scaffold of the present disclosure preferably exhibits less than about 50% amino acid identity to a human immunoglobulin variable heavy or light chain sequence.
- the scaffold will exhibit, for example, amino acid sequence identity less than about 45%, about 40%, about 30%, about 20%, about 15%, or about 10% compared to a human immunoglobulin variable heavy or light chain amino acid sequence.
- Residues of a scaffold that can be varied are referred to herein as external binding loops or binding loop sequences (designed herein as BL-1, BL-2 and BL-3 respectively). Residues conferring secondary or tertiary structural properties can be retained, modified or conserved so long as the overall structure of the scaffold is maintained. Those skilled in the art know, or can determine which residues function in structural stability of a polypeptide scaffold as well as the extent to which such residues can be modified.
- the BDM scaffold is a V-like domain (VLD) protein.
- VLD V-like domain
- VLDs are typically distinguished from those of antibodies or T-cell receptors because they have no propensity to join together into Fv-type molecules. VLD are discussed in The Leucocyte Antigen Facts Book 1993, Eds Barclay et al., Academic Press, London; and in CD Antigens 1996 (1997) Immunology Today 18, 100-101, and in Arlene H Sharpe and Gordon J Freeman, (2002) Nature Reviews Immunology 2, 116-126, the entire contents of which are incorporated herein by reference.
- VLD containing proteins such as CTLA-4 can provide an alternative framework for the development of novel binding moieties with high affinities for target molecules. Single domain V-like binding molecules derived from these binding moieties are soluble and therefore desirable.
- suitable binding moieties containing a VLD are CTLA-4, CD28 and ICOS (Hutloff A et al, (1999) Nature 397(6716): 263-6).
- CTLA-4 Cytotoxic T-lymphocyte associated antigen 4
- CD28 and ICOS are involved in T-cell regulation during the immune response.
- CTLA-4 is a 44 kDa homodimer expressed primarily and transiently on the surface of activated T-cells, where it interacts with CD80 and CD86 surface antigens on antigen presenting cells to effect regulation of the immune response (Waterhouse et al. (1996) Immunol Rev 153: 183-207, van der Merwe et al. (1997) J Exp Med 185(3): 393-403).
- CD28 is a 44 kDa homodimer expressed predominantly on T-cells and, like CTLA-4, interacts with CD80 and CD86 surface antigens on antigen presenting cells to effect regulation of the immune response (Linsley et al. (1990) J Immunol 182(5): 2559-63). Current theory suggests that competition between CTLA-4 and CD28 for available ligands controls the level of immune response, for example, gene deletion of CTLA-4 in knock-out mice results in a massive over-proliferation of activated T-cells (Waterhouse et al. (1995) Science 270(5238): 985-8).
- Each CTLA-4 monomeric subunit consists of an N-terminal extracellular domain, transmembrane region and C-terminal intracellular domain.
- the extracellular domain comprises an N-terminal V-like domain (VLD; of approximately 14 kDa predicted molecular weight by homology to the immunoglobulin superfamily) and a stalk of about 10 residues connecting the VLD to the transmembrane region.
- VLD comprises surface loops corresponding to BL-1, BL-2 and BL-3 respectively (Metzler W J et al (1997) Nat Struct Biol 4(7): 527-31) which binds to CD80 and/or CD86.
- the sequence of human CTLA-4 has been previously determined (U.S. Pat. No. 5,434,131; 5,844,095; 5,851,795).
- CD278 or ICOS inducible T-cell co-stimulator
- ICOS inducible T-cell co-stimulator
- the protein belongs to the CD28 and CTLA-4 cell surface receptor family. It forms homodimers and plays a role in signalling, immune responses and regulation of cell proliferation.
- CTLA-4 The human sequence for CTLA-4 is available as UniProt reference P16410.
- the extracellular domain of CTLA-4 corresponds to positions 36-161 of the sequence (wherein the CTLA-4 has a total length of 126 amino acids).
- Amino acid residues 1-35 correspond to the signal peptide.
- the human sequence for CD28 is available as UniProt reference P10747.
- the extracellular domain corresponds to positions 19-152 of the sequence.
- the human sequence for ICOS is available as UniProt reference Q9Y6W8.
- the Ig-like VLD corresponds to positions 30-132 of the sequence.
- the BDM is an immunoglobulin C-set domain protein, more preferably a C1-set domain protein.
- C-set domains are classical Ig-like domains resembling the antibody constant domain and are found almost exclusively in molecules involved in the immune system, including the major histocompatibility complex (MHC) class I and II complex molecules and in various T cell receptors.
- MHC major histocompatibility complex
- Proteins such as basigin contain a C-set domain (Xiao-Ling Yu et al. (2008) JBC vol 283(26): 18056-18065). Further examples of C-set domains include ROR1 extracellular domain, CEA family members such as CEACAM1-8.
- BDMs can be affinity matured using known selection and/or mutagenesis methods.
- Affinity matured BDMs can have an affinity which is two times, five times, ten times, twenty times , thirty times or greater than the starting BDM.
- Apparent affinities can be determined by methods such as ELISA or other technique familiar to persons skilled in the art e.g. surface plasmon resonance technique.
- An i-body is a single domain antibody-like molecule of human origin.
- the i-body framework resembles the single domain antibody from sharks and as a result shares the favourable biophysical and targeting properties of the shark antibody. They are described in for example, U.S. Pat. No. 7,977,071.
- VNAR variable new antigen receptor
- IgNAR shark immunoglobulin new antigen receptor antibody
- VHH variable domain of heavy chain domain or nanobody refers to a single monomeric variable antibody domain derived from camelid antibodies. They are described, for example in Harmsen M M and H J De Haard (2007) Appl Microbiol Biotechnol. 77(1): 13-22.
- the binding specificity of the BDM and pharmacologically active protein moieties of the molecule can be exploited to allow the molecule to bind to one or more different target antigens or epitopes, preferably at least two different target antigens or epitopes.
- the protein has binding specificity for a first target antigen and the at least one BDM has binding specificity for a second target antigen.
- the protein can have binding specificity for a first target antigen, and the BDM can have binding specificity for a second target antigen, and a further BDM (if present) can have binding specificity for a third target antigen.
- the protein is an antibody or immunoglobulin antigen-binding fragment
- the antibody or antigen-binding fragment can have binding specificity for a first target antigen
- BDM or pair thereof if an BDM is present for example on each heavy chain or each light chain
- a further BDM (or pair thereof) can have binding specificity for a third target antigen.
- the molecule of the present disclosure may bind to at least one target antigen, at least two different target antigens, at least three different target antigens, at least four different target antigens or at least five different target antigens.
- the molecule binds to one target antigen, two different target antigens or three different target antigens.
- Various non-limiting examples are contemplated, including:
- the protein or peptide binds to a first target antigen which is the same or different as the second target antigen bound by the BDM;
- the antibody or immunoglobulin antigen-binding fragment binds to a first target antigen which is the same as the second target antigen bound by the BDM;
- the antibody or immunoglobulin antigen-binding fragment binds to a first target antigen which is different from the second target antigen bound by the BDM;
- the antibody or immunoglobulin antigen-binding fragment binds to a first target antigen, an BDM binds to a second target antigen which is the same as the first target antigen, and a further BDM binds to a third target antigen which is different from the first and second target antigens;
- the antibody or immunoglobulin antigen-binding fragment binds to a first target antigen, a BDM and further BDM bind to a second and third target antigen respectively, wherein the second and third target antigens may be the same or different, but wherein the second and third target antigens are different from the first target antigen;
- the antibody or immunoglobulin antigen-binding fragment binds to a first target antigen, a BDM binds to a second target antigen and a further BDM binds to a third target antigen wherein the first, second and third target antigens are different.
- binding loop structures in the BDM domain e.g. CTLA-4
- heterologous binding loop sequences for sclerostin or CD3 resulted in the production of soluble, monomeric, unglycosylated binding molecules using a bacterial expression system.
- the V-like domains thus provide a basic framework for constructing soluble, single domain molecules wherein the binding specificity of the molecule may be engineered by modifications of the binding loop structures.
- the framework residues of the BDM may be modified in accordance with structural features present in camelid antibodies.
- the camel heavy chain immunoglobulins differ from conventional antibody structures by consisting of a single VH domain.
- the method involves the application of well-known molecular evolution techniques to V-like domains derived from members of the immunoglobulin superfamily.
- the method may involve the production of phage or ribosomal display libraries for screening large numbers of mutated V-like domains.
- Filamentous fd-bacteriophage genomes are engineered such that the phage display, on their surface, proteins such as the Ig-like proteins (Fabs) which are encoded by the DNA that is contained within the phage (Smith, 1985; Huse et al., 1989; McCafferty et al., 1990; Hoogenboom et al., 1991). Protein molecules can be displayed on the surface of Fd bacteriophage, covalently coupled to phage coat proteins encoded by gene III, or less commonly gene VIII. Insertion of antibody genes into the gene III coat protein give expression of 3-5 recombinant protein molecules per phage, situated at the ends.
- Fabs Ig-like proteins
- insertion of antibody genes into gene VIII has the potential to display about 2000 copies of the recombinant protein per phage particle, however this is a multivalent system which could mask the affinity of a single displayed protein.
- Fd phagemid vectors are also used, since they can be easily switched from the display of functional Ig-like fragments on the surface of Fd-bacteriophage to secreting soluble Ig-like fragments in E. coli .
- Phage-displayed recombinant protein fusions with the N-terminus of the gene III coat protein are made possible by an amber codon strategically positioned between the two protein genes. In amber suppressor strains of E. coli , the resulting Ig domain-gene III fusions become anchored in the phage coat.
- a selection process based on protein affinity can be applied to any high-affinity binding reagents such as antibodies, antigens, receptors and ligands (see, for example, Winter and Milstein, (1991) Nature 349: 293-299, the entire contents of which are incorporated herein by reference).
- Ig-displaying phage can be affinity selected by binding to cognate binding partners covalently coupled to beads or adsorbed to plastic surfaces in a manner similar to ELISA or solid phase radioimmunoassays. While almost any plastic surface will adsorb protein antigens, some commercial products are especially formulated for this purpose, such as Nunc Immunotubes.
- Ribosomal display libraries involve polypeptides synthesized de novo in cell-free translation systems and displayed on the surface of ribosomes for selection purposes (Hanes and Pluckthun, (1997) Proc Natl Acad Sci USA 94: 4937-4942; He and Taussig, (1997) Nucl Acids Res 25: 5132-5134).
- the “cell-free translation system” comprises ribosomes, soluble enzymes required for protein synthesis (usually from the same cell as the ribosomes), transfer RNAs, adenosine triphosphate, guanosine triphosphate, a ribonucleoside triphosphate regenerating system (such as phosphoenol pyruvate and pyruvate kinase), and the salts and buffer required to synthesize a protein encoded by an exogenous mRNA.
- the translation of polypeptides can be made to occur under conditions which maintain intact polysomes, i.e. where ribosomes, mRNA molecule and translated polypeptides are associated in a single complex. This effectively leads to “ribosome display” of the translated polypeptide.
- the translated polypeptides in association with the corresponding ribosome complex, are mixed with a target molecule which is bound to a matrix (e.g. Dynabeads).
- the target molecule may be any compound of interest (or a portion thereof) such as a DNA molecule, a protein, a receptor, a cell surface molecule, a metabolite, an antibody, a hormone or a virus.
- the ribosomes displaying the translated polypeptides will bind the target molecule and these complexes can be selected and the mRNA re-amplified using RT-PCR.
- binding molecules conforms to a pattern in which individual binding reagents are selected from display libraries by affinity to their cognate receptor.
- the genes encoding these reagents are modified by any one or combination of a number of in vivo and in vitro mutation strategies and constructed as a new gene pool for display and selection of the highest affinity binding molecules.
- the BDM moiety of the molecule is dimer of BDM monomers. Dimer formation may occur naturally or be facilitated by use of a linker. For example, where the BDM is a CTLA-4 VLD, dimerization may occur through a disulphide bond between cysteine residues (Cys 120 ) in the two stalks if these sequences are retained.
- a linker can be used to couple BDM monomers (e.g. CTLA-4 monomers) together.
- BDM monomers e.g. CTLA-4 monomers
- This same principle can also be used to link a number of BDM monomers together in tandem to form a string.
- the linker can facilitate enhanced flexibility, and/or reduce the steric hindrance between any two monomers.
- the linker can be of natural origin.
- linkers that can be used are those described further below, including the (Gly-Gly-Gly-Gly-Ser)n linker.
- AU 60590/96 describes the preferred soluble form of CTLA-4 VLDs as a recombinant CTLA-4/Ig fusion protein expressed in eukaryotic cells and does not solve the aggregation problem in prokaryote expression systems.
- EP 0757099A2 describes the use of CTLA-4 mutant molecules, for example the effect of changes on ligand binding of mutations in the BL sequence.
- B7-1 (CD80) Protein and B7-2 (CD86) Protein
- the B7 protein is a peripheral membrane protein found on activated antigen presenting cells (APC) that, when paired with either a CD28 or CD152 (CTLA-4) surface protein on a T-cell, can produce a co-stimulatory signal or a co-inhibitory signal to enhance or decrease the activity of a MHC-TCR signal between the APC and the T cell, respectively.
- APC activated antigen presenting cells
- CTL-4 CD152
- B7 is also found on T-cells.
- the B7 protein comprises a number of family members which include B7-1, B7-2, B7-DC, B7-H1 to B7-H7.
- the B7-1 protein is also referred to as CD80 and binds to CD28 and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4).
- CTLA-4 cytotoxic T-lymphocyte-associated protein 4
- the BDM binds to B7-1 human protein. In one example the BDM binds to the B7-2 protein.
- Sclerostin is a secreted glycoprotein with a C-terminal cysteine knot-like domain and sequence similarity to the DAN (differential screening-selected gene aberrative in neuroblastoma) family of bone morphogenic protein (BMP) antagonists. Sclerostin is produced by the osteocyte and has anti-anaebolic effects of bone formation.
- the Uniprot reference of the human sequence is Q9BQB4.
- the BDM binds to sclerostin human protein.
- proteins completed in the present disclosure are those which are pharmacologically active.
- proteins include an antibody (e.g. full-length antibody) or immunoglobulin antigen-binding fragment or non-antibody proteins as described herein.
- the term “pharmacologically active” means a substance which is determined to have activity that affects a medical parameter or a disease state or causes activation of a cell involved in the immune response.
- the protein may be an agonist protein, an antagonist protein or mimetic.
- the protein may also be a therapeutic antibody.
- mametic or “agonist” refer to proteins (or peptides) having biological activity comparable to the natural protein (e.g. EPO or G-CSF).
- Exemplary proteins that are suitable in accordance with the present disclosure include, but are not limited to a blood clotting factor, an anticalin, a toxoid, a human serum albumin, a collagen binding protein, a TNF-alpha receptor binding protein, an integrin binding protein, a VEGF or mimetic thereof, an EPO or mimetic thereof, a C4 binding protein, a urokinase receptor antagonist, a lymphokine, a cytokine, an osteoprotegerin (OPG), or the extracellular domain of a protein selected from programmed cell death 1 protein (PD1), programmed death ligand 1 (PD-L1), NKG2D, MHC class I polypeptide related sequence A (MICA), MHC class I polypeptide related sequence B (MICB), UL16 binding protein (ULBP).
- PD1 programmed cell death 1 protein
- PD-L1 programmed death ligand 1
- MICA MHC class I polypeptide related sequence A
- MIMICB
- Blood clotting factors are known in the art, examples include factor VIII and factor IX which are associated with haemophilia.
- the toxoid is botulinium toxoid.
- the toxoid may be botulinium type A or botulinium type B. Synthetic forms of botulinium toxoid are also contemplated.
- the lymphokine is IL-2 or GM-CSF or mimetic thereof.
- the cytokine is a G-CSF or mimetic thereof or stem cell factor or mimetic thereof.
- the protein is coupled to an BDM which binds to human serum albumin so that the half-life of the protein is extended in vivo compared to the protein without the presence of the BDM.
- the multi-specific molecule comprises a full length antibody.
- the antibody is a humanised antibody.
- the antibody is a human antibody.
- the antibody is a chimeric antibody.
- humanized antibody shall be understood to refer to a subclass of chimeric antibodies having an antigen binding site or variable region derived from an antibody from a non-human species and the remaining antibody structure based upon the structure and/or sequence of a human antibody.
- the antigen-binding site generally comprises the complementarity determining regions (CDRs) from a non-human antibody grafted onto appropriate framework regions (FRs) in the variable regions of a human antibody and the remaining regions from a human antibody.
- Antigen binding sites may be wild-type (i.e., identical to those of the non-human antibody) or modified by one or more amino acid substitutions.
- FR residues of the human antibody are replaced by corresponding non-human residues.
- the humanised antibody will comprise substantially all of at least one, and typically two variable domains in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
- a humanised antibody of the present disclosure will also contain an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., (1986) Nature, 321: 522-525; Riechmann et al., (1988) Nature, 332: 323-329; and Presta, (1992) Curr. Op. Struct. Biol. 2: 593-596).
- Fc immunoglobulin constant region
- human antibody refers to antibodies having variable regions (e.g. VH, VL) and, optionally constant regions derived from or corresponding to sequences found in humans, e.g. in the human germline or somatic cells.
- the ‘human’ antibodies can include amino acid residues not encoded by human sequences, e.g. mutations introduced by random or site directed mutations in vitro (in particular mutations which involve conservative substitutions or mutations in a small number of residues of the antibody, e.g. in 1, 2, 3, 4, 5 or 6 of the residues of the antibody, e.g. in 1, 2, 3, 4, 5 or 6 of the residues making up one or more of the CDRs of the antibody).
- human antibodies do not actually need to be produced by a human, rather, they can be produced using recombinant means and/or isolated from a transgenic animal (e.g., mouse in which the endogenous immunoglobulin genes have been partially or completely inactivated) comprising nucleic acid encoding human antibody constant and/or variable regions (e.g., as described above).
- Human antibodies can be produced using various techniques known in the art, including phage display libraries (e.g., as described in U.S. Pat. No. 5,885,793).
- Human antibodies which recognize a selected epitope can also be generated using a technique referred to as “guided selection.”
- a selected non-human monoclonal antibody e.g., a mouse antibody
- is used to guide the selection of a completely human antibody recognizing the same epitope e.g., as described in U.S. Pat. No. 5,565,332.
- Humanized immunoglobulins including humanized antibodies, have been constructed by means of genetic engineering. Most humanized immunoglobulins that have been previously described have comprised a framework that is identical to the framework of a particular human immunoglobulin chain (i.e., an acceptor or recipient), and three CDRs from a non-human (donor) immunoglobulin chain. Humanization can also include criteria by which a limited number of amino acids in the framework of a humanized immunoglobulin chain are identified and chosen to be the same as the amino acids at those positions in the donor rather than in the acceptor, in order to increase the affinity of an antibody comprising the humanized immunoglobulin chain.
- Humanized antibodies generally have at least three potential advantages over mouse or chimeric antibodies for use in human therapy. Because the effector portion of an antibody is human, it is believed to interact better with the other parts of the human immune system (e.g., destroy the target cells more efficiently by complement-dependent cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC)). Additionally, the human immune system should not recognize the framework or constant region of the humanized antibody as foreign, and therefore the antibody response against such an injected antibody should be less than against a totally foreign mouse antibody or a partially foreign chimeric antibody. Finally, mouse antibodies are known to have a half-life in the human circulation that is much shorter than the half-life of human antibodies. Humanized antibodies can, presumably, have a half-life more similar to naturally-occurring human antibodies, allowing smaller and less frequent doses to be given.
- CDC complement-dependent cytotoxicity
- ADCC antibody-dependent cellular cytotoxicity
- any full length antibody which binds to a desired target can be used in the present disclosure.
- the full length antibody is further affinity matured before coupling to the BDM.
- the full length immunoglobulin is a non-human immunoglobulin.
- the immunoglobulin is a mouse, rat, hamster, cat, dog, horse or cow immunoglobulin.
- polyclonal antisera or monoclonal antibodies can be made using standard methods.
- a mammal e.g., a mouse, hamster, or rabbit
- an immunogenic form of the peptide that elicits an antibody response in the mammal.
- Techniques for conferring enhanced immunogenicity on a peptide include conjugation to carriers or other techniques well known in the art.
- the protein or peptide can be administered in the presence of adjuvant.
- the progress of immunization can be monitored by detection of antibody titres in plasma or serum.
- Standard ELISA or other immunoassay procedures can be used with the immunogen as antigen to assess the levels of antibodies.
- Folio wing immunization, antisera can be obtained and, if desired, polyclonal antibodies isolated from the sera.
- the antibodies can be generated in cell culture, in phage, or in various animals, including but not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, apes. Therefore, an antibody useful in the present disclosure is typically a mammalian antibody. Phage techniques can be used to isolate an initial antibody or to generate variants with altered specificity or avidity characteristics. Such techniques are routine and well known in the art.
- the antibody is one produced by recombinant means known in the art.
- a recombinant antibody can be produced by transfecting a host cell with a vector comprising a DNA sequence encoding the antibody.
- One or more vectors can be used to transfect the DNA sequence expressing at least one VL and one VH region in the host cell.
- Exemplary descriptions of recombinant means of antibody generation and production include: Delves, Antibody Production: Essential Techniques (Wiley, 1997); Shephard, et al., Monoclonal Antibodies (Oxford University Press, 2000); and Goding, Monoclonal Antibodies: Principles and Practice (Academic Press, 1993).
- cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulphide bond formation in this region.
- the antibody thus generated can have improved internalisation capability and/or increased complement mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., (1992) J. Exp Med., 176: 1191-1195 and Shopes, (1992) J. Immunol., 148: 2918-2922.
- Antibody fragments comprise a portion of an intact antibody and can include the antigen binding or variable region of an intact antibody.
- antibody fragments suitable for use in the present disclosure include Fab, F(ab′) 2 , Fab′, scFv, di-scFv, or chemically linked F(ab′) 2 .
- the antibody fragment is an Fab.
- An Fv refers to antibody fragment which contain a complete antigen-recognition and binding site. This region consists of a dimer of one heavy and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody fragment.
- An Fab fragment contains an Fv and also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain.
- Fab fragments differ from Fab′ fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain include one or more cysteines from the antibody hinge region.
- F(ab′) 2 fragments are produced as pairs of Fab′ fragments which have hinge cysteines between them.
- Chemically linked F(ab′) 2 are bi-specific molecules formed by pairing two different Fab′ fragments together each of which has a different binding specificity.
- Techniques for generating bi-specific antibodies from antibody fragments have been described in the literature. For example, bi-specific antibodies can be prepared using chemical linkage.
- Brennan et al (1985) Science 229: 81 describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′) 2 fragments. These fragments are reduced in the presence of dithiol complexing agent sodium arsenite to stabilise vicinal dithiols and prevent intermolecular disulphide formation.
- the Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
- One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bi-specific antibody.
- the present disclosure also provides methods for making a multi-specific molecule of the present disclosure.
- Expression of the molecules can be in prokaryotic or eukaryotic cells.
- Prokaryotes most frequently are represented by various strains of bacteria.
- the bacteria may be a gram positive or a gram negative.
- gram-negative bacteria such as E. coli are preferred.
- Other microbial strains may also be used.
- Sequences encoding the molecules can be cloned into vectors designed for expressing foreign sequence in prokaryotic cells such as E. coli .
- These vectors can include commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta-lactamase (penicillinase) and lactose (lac) promoter systems (Chang, et al., (1977) Nature 198: 1056), the tryptophan (trp) promoter system (Goeddel, et al., (1980) Nucleic Acids Res. 8: 4057) and the lambda derived PL promoter and N-gene ribosome binding site (Shimatake, et al., (1981) Nature 292: 128).
- promoters as the beta-lactamase (penicillinase) and lactose (lac) promoter
- Such expression vectors will also include origins of replication and selectable markers, such as a beta-lactamase or neomycin phosphotransferase gene conferring resistance to antibiotics, so that the vectors can replicate in bacteria and cells carrying the plasmids can be selected for when grown in the presence of antibiotics, such as ampicillin or kanamycin.
- origins of replication such as a beta-lactamase or neomycin phosphotransferase gene conferring resistance to antibiotics, so that the vectors can replicate in bacteria and cells carrying the plasmids can be selected for when grown in the presence of antibiotics, such as ampicillin or kanamycin.
- Suitable host cells include bacteria, mammalian cells, yeast and baculovirus systems.
- Suitable host cells include bacteria, mammalian cells, yeast and baculovirus systems.
- Mammalian cell lines available in the art for expression of a heterologous polypeptide include Chinese hamster ovary cells, HeLa cells, Human Embryonic Kidney Cells, baby hamster kidney cells, NSO mouse melanoma cells and many others.
- Suitable hosts will be selected by consideration of, e.g., their compatibility with the chosen vector, their secretion characteristics, their ability to fold proteins correctly, and their fermentation requirements, as well as the toxicity to the host of the product encoded by the DNA sequences to be expressed, and the ease of purification of the expression products.
- nucleic acid is inserted operably linked to a promoter in an expression construct or expression vector for further cloning (amplification of the DNA) or for expression in a cell-free system or in cells.
- Vectors can be plasmids, viral e.g. ‘phage, or phagemid, as appropriate.
- nucleic acid sequence encoding an antibody light chain sequence, heavy chain sequence, and a linker sequence as described herein and an BDM sequence is cloned by standard methods into a suitable vector.
- the BDM will be cloned at a C-terminal end of the antibody light chain sequence. In some examples, the BDM will be cloned at a C-terminal end of the antibody heavy chain sequence. In some examples, the BDM will be cloned at an N-terminal end of the antibody light chain sequence. In some examples, the BDM will be cloned at a N-terminal end of the antibody heavy chain sequence. In some examples, BDMs will be cloned at both an N-terminal and a C-terminal ends of the antibody light chain sequence. In some examples, BDMs will be cloned at both an N-terminal and a C-terminal ends of the antibody heavy chain sequence.
- BDMs will be cloned at both an N-terminal and a C-terminal ends of both the antibody light chain sequence and heavy chain sequence.
- the nucleic acid sequence encoding the antibody heavy or light chain and BDM is provided in one vector and the other antibody chain is provided on another vector.
- a nucleic acid sequence encoding an antibody light chain sequence, a linker sequence and a BDM sequence are cloned into one vector and a nucleic acid sequence encoding an antibody heavy chain sequence, a linker sequence and a BDM sequence are cloned into another vector.
- a bicistronic vector may be used whereby both antibody light and heavy chains are expressed on the same vector.
- the heavy and light chain coding sequences may reside on a single vector, for example in tow expression cassettes in the same vector.
- Nucleic acid sequences encoding the molecules can also be inserted into a vector designed for expressing foreign sequences in a eukaryotic host.
- the regulatory elements of the vector can vary according to the particular eukaryotic host.
- Useful expression vectors can consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences.
- Suitable vectors include derivatives of SV40 and known bacterial plasmids, e.g., E. coli plasmids col El, Pcr1, Pbr322, Pmb9 and their derivatives, plasmids such as RP4; phage DNAs, e.g., the numerous derivatives of phage A, e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2u plasmid or derivatives thereof; vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences; and the like.
- Nucleic acid sequences encoding the molecules can integrate into the genome of the eukaryotic host cell and replicate as the host genome replicates.
- the vector carrying the nucleic acid sequences can contain origins of replication allowing for extrachromosomal replication.
- promoter is to be taken in its broadest context and includes the transcriptional regulatory sequences of a genomic gene, including the TATA box or initiator element, which is required for accurate transcription initiation, with or without additional regulatory elements (e.g., upstream activating sequences, transcription factor binding sites, enhancers and silencers) that alter expression of a nucleic acid, e.g., in response to a developmental and/or external stimulus, or in a tissue specific manner.
- promoter is also used to describe a recombinant, synthetic or fusion nucleic acid, or derivative which confers, activates or enhances the expression of a nucleic acid to which it is operably linked.
- Exemplary promoters can contain additional copies of one or more specific regulatory elements to further enhance expression and/or alter the spatial expression and/or temporal expression of said nucleic acid.
- operably linked to means positioning a promoter relative to a nucleic acid such that expression of the nucleic acid is controlled by the promoter.
- the vector components generally include, but are not limited to, one or more of the following: a signal sequence, a sequence encoding a protein (e.g., derived from the information provided herein), an enhancer element, a promoter, polyadenylation sequences and a transcription termination sequence.
- a signal sequence e.g., a sequence encoding a protein (e.g., derived from the information provided herein)
- an enhancer element e.g., derived from the information provided herein
- a promoter e.g., derived from the information provided herein
- polyadenylation sequences e.g., a promoter
- a transcription termination sequence e.g., a transcription termination sequence.
- Exemplary signal sequences include prokaryotic secretion signals (e.g., pelB, alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II), yeast secretion signals (e.g., invertase leader, a factor leader, or acid phosphatase leader) or mammalian secretion signals (e.g., herpes simplex gD signal).
- prokaryotic secretion signals e.g., pelB, alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II
- yeast secretion signals e.g., invertase leader, a factor leader, or acid phosphatase leader
- mammalian secretion signals e.g., herpes simplex gD signal.
- Exemplary promoters active in mammalian cells include cytomegalovirus immediate early promoter (CMV-IE), human elongation factor 1- ⁇ promoter (EF1), small nuclear RNA promoters (U1a and U1b), ⁇ -myosin heavy chain promoter, Simian virus 40 promoter (SV40), Rous sarcoma virus promoter (RSV), Adenovirus major late promoter, ⁇ -actin promoter; hybrid regulatory element comprising a CMV enhancer/ ⁇ -actin promoter or an immunoglobulin promoter or active fragment thereof.
- CMV-IE cytomegalovirus immediate early promoter
- EF1 human elongation factor 1- ⁇ promoter
- U1a and U1b small nuclear RNA promoters
- ⁇ -myosin heavy chain promoter ⁇ -myosin heavy chain promoter
- Simian virus 40 promoter SV40
- Rous sarcoma virus promoter RSV
- Adenovirus major late promoter ⁇ -
- Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells sub-cloned for growth in suspension culture; baby hamster kidney cells (BHK, ATCC CCL 10); or Chinese hamster ovary cells (CHO).
- COS-7 monkey kidney CV1 line transformed by SV40
- human embryonic kidney line (293 or 293 cells sub-cloned for growth in suspension culture
- baby hamster kidney cells BHK, ATCC CCL 10
- Chinese hamster ovary cells CHO
- Means for introducing the isolated nucleic acid or expression construct comprising same into a host cell for expression are known to those skilled in the art. The technique used for a given cell depends on the known successful techniques. Means for introducing recombinant DNA into cells include microinjection, transfection mediated by DEAE-dextran, transfection mediated by liposomes such as by using lipofectamine (Gibco, Md., USA) and/or cellfectin (Gibco, Md., USA), PEG-mediated DNA uptake, retroviral transduction, electroporation and microparticle bombardment such as by using DNA-coated tungsten or gold particles (Agracetus Inc., Wis., USA) amongst others.
- the introduction can be followed by causing or allowing expression from the nucleic acid, e.g. by culturing host cells under conditions for expression.
- the present disclosure also provides a method which comprises using a construct as stated above in an expression system in order to express the antibody or immunoglobulin antigen-binding fragment chains and BDM.
- the present disclosure also provides a recombinant host cell which comprises one or more nucleic acid sequences described herein.
- the host cells used to produce the protein may be cultured in a variety of media, depending on the cell type used.
- Commercially available media such as Ham's FIO (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing mammalian cells.
- Media for culturing other cell types discussed herein are known in the art.
- a wide variety of host/expression vector combinations can be employed in expressing the nucleic acid sequences of this disclosure.
- Useful expression vectors can consist of segments of chromosomal, non- chromosomal and synthetic DNA sequences.
- Suitable vectors include derivatives of SV40 and known bacterial plasmids, e.g., E. coli plasmids col El, Perl, Pbr322, Pmb9 and their derivatives, plasmids such as RP4; phage DNAs, e.g., the numerous derivatives of phage ⁇ e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2u plasmid or derivatives thereof; vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences; and the like Also provided here
- useful expression control sequences include, for example, the early or late promoters of SV40, CMV, vaccinia, polyoma or adenovirus, the lac system, the tip system, the TAC system, the TRC system, the LTR system, the major operator and promoter regions of phage A, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase (e.g., Pho5), the promoters of the yeast -mating factors, and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof.
- the present disclosure provides an isolated polynucleotide (nucleic acid) encoding a polypeptide as described herein, vectors containing such polynucleotides, and host cells and expression systems for transcribing and translating such polynucleotides into polypeptides.
- the present disclosure also provides constructs in the form of plasmids, vectors, transcription or expression cassettes as described elsewhere herein which comprise at least one polynucleotide as above.
- the present disclosure also provides a host cell containing one or more polynucleotides as disclosed herein.
- nucleic acid molecules and vectors described herein can be provided isolated and/or purified, e.g., from their natural environment, in substantially pure or homogeneous form, or, in the case of nucleic acid, free or substantially free of nucleic acid or genes origin other than the sequence encoding a polypeptide with the required function.
- Nucleic acid can comprise DNA or RNA and can be wholly or partially synthetic.
- yeast vectors For expressing the nucleic acid sequences in Saccharomyces cerevisiae , the origin of replication from the endogenous yeast plasmid, the 2 ⁇ circle can be used. (Broach, (1983) Meth. Enz. 101: 307). Alternatively, sequences from the yeast genome capable of promoting autonomous replication can be used (see, for example, Stinchcomb et al., (1979) Nature 282: 39); Tschemper et al., (1980) Gene 10: 157; and Clarke et al., (1983) Meth. Enz. 101: 300). Transcriptional control sequences for yeast vectors include promoters for the synthesis of glycolytic enzymes (Hess et al., (1968) J. Adv.
- Additional promoters known in the art include the CMV promoter provided in the CDM8 vector (Toyama and Okayama, (1990) FEBS 268: 217-221); the promoter for 3-phosphoglycerate kinase (Hitzeman et al., (1980) J. Biol. Chem. 255: 2073), and those for other glycolytic enzymes.
- polypeptides can be detected by methods known in the art.
- the molecules can be detected by Coomassie staining SDS-PAGE gels and immunoblotting using antibodies that bind either the antibody, immunoglobulin antigen-binding fragment or BDM.
- Protein recovery can be performed using standard protein purification means, e.g., affinity chromatography or ion-exchange chromatography, to yield substantially pure product (R. Scopes in: “Protein Purification, Principles and Practice”, Third Edition, Springer-Verlag (1994)).
- the present disclosure also provides a method of producing a multi-specific molecule of the present disclosure which method comprises the steps of:
- step (iii) culturing the host cells of step (b) under conditions conducive to the secretion of the proteins from the host cell into the culture media;
- step (iv) recovering the secreted proteins of step (iii).
- the method comprises:
- a nucleic acid encoding a polypeptide of the present disclosure can be prepared synthetically in addition to, or rather than, cloned.
- the nucleic acid can be designed with the appropriate codons for the polypeptide moieties (e.g. immunoglobulin and BDM). In general, one will select preferred codons for an intended host if the sequence will be used for expression. In general one will select preferred codons for the intended host if the sequence will be used for expression.
- the complete polynucleotide can be assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence.
- supernatants from such expression systems can be first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
- a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
- supernatants can be filtered and/or separated from cells expressing the polypeptide, e.g., using continuous centrifugation.
- polypeptides prepared from the host cells can be purified using, for example, ion exchange, hydroxyapatite chromatography, hydrophobic interaction chromatography, gel electrophoresis, dialysis, affinity chromatography (e.g., protein A affinity chromatography or protein G chromatography), or any combination of the foregoing.
- affinity chromatography e.g., protein A affinity chromatography or protein G chromatography
- a polypeptide of the present disclosure is fused to a heterologous amino acid sequence, without affecting the biological activity (i.e. binding to its targets), such as for instance a signal sequence or an affinity tag.
- a polypeptide can be modified to include an affinity tag to facilitate purification or detection, e.g., a poly-histidine tag, e.g., a hexa-histidine tag, or an influenza virus hemagglutinin (HA) tag, or a Simian Virus 5 (V5) tag, or a FLAG tag, or a glutathione S-transferase (GST) tag.
- an affinity tag to facilitate purification or detection
- a poly-histidine tag e.g., a hexa-histidine tag, or an influenza virus hemagglutinin (HA) tag, or a Simian Virus 5 (V5) tag, or a FLAG tag, or a glutathione S-transferase (GST) tag.
- affinity tag to facilitate purification or detection
- a poly-histidine tag e.g., a hexa-histidine tag, or an influenza virus hemagglutin
- a polypeptide comprising a hexa-his tag is purified by contacting a sample comprising the polypeptide with nickel-nitrilotriacetic acid (Ni-NTA) that specifically binds a hexa-his tag immobilized on a solid or semi-solid support, washing the sample to remove unbound protein, and subsequently eluting the bound protein.
- Ni-NTA nickel-nitrilotriacetic acid
- Coupling of the pharmacologically active protein or peptide and at least BDM according to present disclosure can be prepared using chemical linkage (Brennan et al (1985) Science 229: 81) or chemical coupling (Shalaby et al (1992) J Exp Med 175: 217-225) or gene fusion.
- fusion or linkage between a protein (e.g. antibody) and a BDM may be achieved by conventional covalent or ionic bonds, protein fusions, or heterobifunctional cross-linkers, e.g., carbodiimide, glutaraldehyde, and the like.
- Conventional inert linker sequences e.g. peptide linkers
- the design of such linkers is well known to those of skill in the art and is described for example in U.S. Pat. No. 8,580,922; 5,525,491; and 6,165,476.
- cross-linking agents can be used for covalent conjugation of proteins.
- cross-linking agents include protein A, carbodiimide, N-succinimidyl-S-acetyl-thioacetate (SATA), 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), o-phenylenedimaleimide (oPDM), N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), and sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohaxane-1-carboxylate (sulfo- SMCC) (see e.g., Karpovsky el al.
- the linker can facilitate enhanced flexibility, and/or reduce steric hindrance between any two proteins.
- the linker can be of natural origin, such as a sequence determined to exist in random coil between two domains of a protein.
- An exemplary linker sequence is the linker found between the C-terminal and N-terminal domains of the RNA polymerase alpha subunit.
- Other examples of naturally occurring linkers include linkers found in the 1Cl and LexA proteins.
- the amino acid sequence may be varied based on the preferred characteristics of the linker as determined empirically or as revealed by modelling. Considerations in choosing a linker include flexibility of the linker, charge of the linker, and presence of some amino acids of the linker in the naturally-occurring subunits.
- the linker can also be designed such that residues in the linker contact DNA, thereby influencing binding affinity or specificity, or to interact with other proteins. In some cases, particularly when it is necessary to span a longer distance between subunits or when the domains must be held in a particular configuration, the linker may optionally contain an additional folded domain.
- linker In some examples it is preferable that the design of a linker involve an arrangement of domains which requires the linker to span a relatively short distance, preferably less than about 10 Angstroms ( ⁇ ). However, in certain embodiments, linkers span a distance of up to about 50 ⁇ or more.
- peptide linker refers to a short peptide fragment that connects or couples the protein and the BDM moieties of the polypeptide of the multi-specific molecule.
- the linker is preferably made up of amino acids linked together by peptide bonds.
- the peptide linker can comprise small amino acid residues or hydrophilic amino acid residues (e.g. glycine, serine, threonine, proline, aspartic acid, asparagine, etc).
- the peptide linkers are peptides with an amino acid sequence with a length of at least 5 amino acids, or with a length of about 5 to about 100 amino acids, or with a length of about 10 to 50 amino acids, or a length of about 10 to 15 amino acids.
- the linker is made up of a majority of amino acids that are sterically unhindered such as glycine and alanine.
- the linkers are polyclycines, polyalanines or polyserines.
- the short peptide linkers may comprise repeat units to increase the linker length.
- the linker comprises a formula (Gly-Gly-Gly-Gly-Ser)n or comprising the formula (Ser-Gly-Gly-Gly-Gly)n Ser wherein n is a number from 3 to 6.
- the linker comprises or consist of the sequence
- Non-peptide linkers are also possible.
- These alkyl linkers may be further substituted by any non-sterically hindering group such as lower alkyl (e.g. C 1 -C 6 ), lower acyl, halogen (e.g. Cl, Br), CN, NH 2 , phenyl.
- An exemplary non-peptide linker is a PEG linker having a molecular weight of 100 to 5000 kD, preferably 100 to 500 kD.
- linkers which are suitable for use include GSTVAAPS, TVAAPSGS or GSTVAAPSGS or multiples of such linkers.
- the linker is GS.
- the protein (or peptide) and BDM moieties of the present disclosure can be assayed by various means according to known methods.
- assays may include functional assays e.g. cell killing assays, cAMP or calcium flux assays or binding assays e.g. ELISA or competition assays.
- the type of functional assays employed will depend on the targets to which the protein or peptide and BDM moieties of the polypeptide bind.
- Half-life assays may also be employed. Such methods are known in the art. Two methods commonly used to determine a protein's half-life are the radioactive pulse-chase analysis and the cycloheximide chase (Zhou P (2004) Methods Mol. Biol. 284: 67-77.
- Binding of epitopes can be measured by conventional by conventional antigen binding assays, such as ELISA, by fluorescence based techniques, including FRET, or by techniques such as surface plasmon resonance which measure the mass of molecules.
- Specific binding of an antigen binding protein (e.g. BDM) to an antigen or epitope can be determined by suitable assay, including, for example, Scatchard analysis and/or competitive binding assays such as radioimmunoassay (RIA), enzyme immunoassays such as ELISA and sandwich competition assays.
- suitable assay including, for example, Scatchard analysis and/or competitive binding assays such as radioimmunoassay (RIA), enzyme immunoassays such as ELISA and sandwich competition assays.
- Competition assays such as surface plasmon resonance assays can be used to determine whether a BDM which has been engineered to bind a particular target is capable of doing so.
- a BDM can be engineered to bind to the stem cell factor receptor (CSFR or c-kit receptor) and tested for its ability to compete with binding of the natural ligand (c-kit).
- CSFR stem cell factor receptor
- c-kit natural ligand
- In vitro competition assays for determining the ability of a modified BDM to compete for binding to a target as well as determining the dissociation constant (K D ) are known in the art.
- the binding affinity or dissociation constant (K D ) of the interaction between the protein or BDM moiety of the polypeptide and its respective target can be measured by a number of methods known in the art. Such methods include, but are not limited to, fluorescence titration, competition ELISA, calorimetric methods, such as isothermal titration calorimetry (ITC) and surface plasmon resonance (BIAcore) or Bio-layer interferometry (e.g. Blitz system (ForteBio).
- ITC isothermal titration calorimetry
- BIOAcore surface plasmon resonance
- Bio-layer interferometry e.g. Blitz system (ForteBio).
- a preferred surface plasmon resonance assay is BIAcore which is known in the art.
- binding moieties have K D values in the low micromolar (10 ⁇ 6 ) to nanomolar (10 ⁇ 7 to 10 ⁇ 9 ) range.
- High affinity binding moieties are generally considered to be in the low nanomolar range (10 ⁇ 9 ) with very high affinity binding moieties being in the picomolar (10 ⁇ 12 ) range.
- the complex formation between the respective moiety and its target is influenced by many different factors such as the concentrations of the respective binding partners, the presence of competitors. pH and the ionic strength of the buffer system used, and the experimental method used for determination of the K D (for example, fluorescence titration, competition ELISA or surface plasmon resonance) or even the mathematical algorithm which is used for evaluation of the experimental data.
- the K D values may vary within a certain experimental range, depending on the method and experimental setup that is used for determining the affinity of a particular immunoglobulin or BDM for a given target. This means that there may be a slight deviation in the measured KD values or a tolerance range depending on whether the KD value was determined by surface plasmon resonance (Biacore), by competition ELISA or by “direct ELISA”.
- the KD value is determined by using surface plasmon resonance assays, e.g., using BIAcore surface plasmon resonance (BIAcore, Inc., Piscataway, N.J.) to an immobilised target.
- surface plasmon resonance assays e.g., using BIAcore surface plasmon resonance (BIAcore, Inc., Piscataway, N.J.) to an immobilised target.
- Affinity can be at least 1-fold greater, at least 2-fold greater, at least 3-fold greater, at least 4-fold greater, at least 5-fold greater, at least 6-fold greater, at least 7-fold greater, at least 8-fold greater, at least 9-fold greater, at least 10-fold greater, at least 20-fold greater, at least 30-fold greater, at least 40-fold greater, at least 50-fold greater, at least 60-fold greater, at least 70-fold greater, at least 80-fold greater, at least 90-fold greater, at least 100-fold greater, or at least 1000-fold greater, or more, than the affinity of the protein or the BDM for unrelated amino acid sequences.
- Affinity of a protein or BDM to a target e.g.
- protein antigen can be, for example, from about 100 nanomolar (nM) to about 0.1 nM, from about 100 nM to about 1 picomolar (pM), or from about 100 nM to about 1 femtomolar (fM) or more.
- the protein has an affinity measured by KD of about 200 nM or lower, about 100 nM or lower, about 50 nM or lower, about 25 nM or lower, about 10 nM or lower, of about 5 nM or lower, of about 1 nM or lower or of about 0.5 nM or lower.
- the BDM has an affinity measured by KD of about 200 nM or lower, about 100 nM or lower, about 50 nM or lower, about 25 nM or lower, 10 nM or lower, of about 5 nM or lower, of about 1 nM or lower or of about 0.5 nM or lower.
- Bio-layer interferometry is a label-free technology for measuring biomolecular interactions within the interactome. It is an optical analytical technique that analyses the interference pattern of white light reflected from two surfaces: a layer of immobilized protein on the biosensor tip, and an internal reference layer. Any change in the number of molecules bound to the biosensor tip causes a shift in the interference pattern that can be measured in real-time.
- the binding between a ligand immobilized on the biosensor tip surface and an analyte in solution produces an increase in optical thickness at the biosensor tip, which results in a wavelength shift, ⁇ which is a direct measure of the change in thickness of the biological layer. Interactions are measured in real time, providing the ability to monitor binding specificity, rates of association and dissociation, or concentration, with precision and accuracy.
- the target according to the present disclosure is preferably an antigen.
- the antigen may be selected from a protein, a glycan, a lipid, a lipoprotein or nucleic acid.
- the protein may be a human protein, non-human protein (e.g. primate, canine, feline etc.), viral protein, yeast protein, bacterial protein, algae protein, plant protein or protozoal protein.
- the protein may be a soluble protein or membrane bound protein. Examples of soluble proteins include, but are not limited to transcription factors, antibodies, growth factors, blood proteins (e.g. albumin), or drugs (e.g. steroid, pharmaceutical drugs etc.). Types of membrane bound proteins include growth factor receptors, tumour markers, or markers which mediate transport into a cell (e.g. transferrin), or Fc receptor.
- the nucleic acid target may be DNA, RNA or a combination of DNA and RNA.
- the target is an epitope present on the antigen.
- an antigen may comprise a number of unique epitopes, each of which will be recognised by a protein (e.g. antibody) or BDM.
- the polypeptide of the present disclosure can bind to different targets.
- the different targets are two or three different antigens. Each antigen may be present on different cells.
- the polypeptide may bind to two or three different targets (e.g. epitopes) on the same antigen.
- the target to which protein binds is different from the target to which the BDM binds.
- target antigen may be a protein, peptide, a glycoprotein, a polysaccharide, a glycan, a lipid, a lipoprotein or nucleic acid.
- Target antigens according to the present disclosure may be secreted or membrane bound.
- Such antigens may be derived from bacterial, mammalian (human and non-human), fungal, algael, protozoal sources.
- the protein may be a human protein, non-human protein (e.g. primate, canine, feline etc.), viral protein, yeast protein, bacterial protein, algae protein, plant protein or protozoal protein.
- first target antigen “second target antigen” etc. being the same will be understood to mean that the pharmacologically active protein and the at least one BDM moiety bind to the same antigen but may bind to different epitopes present on the antigen.
- first target antigen “second target antigen” etc. being different will be understood to mean that the pharmacologically active protein moiety and the at least one BDM moiety bind to different antigens and thus different epitopes present on different cells.
- the antigen can be derived from bacteria, including but not limited to, Helicobacter pylori, Chlamydia pneumoniae, Chlamydia trachomatis, Ureaplasma urealyticum, Mycoplasma pneumoniae, Staphylococcus spp., Staphylococcus aureus, Streptococcus spp., Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus viridans, Enterococcus faecalis, Neisseria meningitidis, Neisseria gonorrhoeae, Bacillus anthracis, Salmonella spp., Salmonella typhi, Vibrio cholera, Pasteurella pestis, Pseudomonas aeruginosa, Campylobacter spp., Campylobacter jejuni, Clostridium spp., Clostridium difficile, Mycobacterium s
- the antigen can be derived from viruses, including but not limited to, Influenza viruses, a Parainfluenza viruses, Mumps virus, Adenoviruses, Respiratory syncytial virus, Epstein-Barr virus, Rhinoviruses, Polioviruses, Coxsackieviruses, Echoviruses, Rubeola virus, Rubella virus, Varicell-zoster virus, Herpes viruses (human and animal), Herpes simplex virus, Parvoviruses (human and animal), Cytomegalovirus, Hepatitis viruses, Human papillomavirus, Alphaviruses, Flaviviruses, Bunyaviruses, Rabies virus, Arenaviruses, Filoviruses, HIV 1, HIV 2, HTLV-1, HTLV-II, FeLV, Bovine LV, FeIV, Canine distemper virus, Canine contagious hepatitis virus, Feline calicivirus, Feline rhinotracheitis virus, TGE virus (swine), and Foot
- the target antigen may be a tumour associated antigen.
- tumour associated antigens include, but are not limited to, MUC-1 and peptide fragments thereof, protein MZ2-E, polymorphic epithelial mucin, folate-binding protein LK26, MAGE-1 or MAGE-3 and peptide fragments thereof, Human chorionic gonadotropin (HCG) and peptide fragments thereof, Carcinoembryonic antigen (CEA) and peptide fragments thereof, Alpha fetoprotein (AFP) and peptide fragments thereof, Pancreatic oncofetal antigen and peptide fragments thereof, CA 125, 15-3,19-9, 549, 195 and peptide fragments thereof, Prostate-specific antigens (PSA) and peptide fragments thereof, Prostate-specific membrane antigen (PSMA) and peptide fragments thereof, Squamous cell carcinoma antigen (SCCA) and peptide fragments thereof, Ovarian cancer antigen (OCA) and peptide fragments thereof
- the target antigen may be an antigen or epitope present on a cell located within the heart, blood system, lungs, intestine, stomach, rectum, prostate, thyroid, liver or oesophagus.
- the target antigen may be an antigen or epitope present on a secreted protein. Examples of secreted proteins include, but are not limited to hormones, enzymes, toxins and anticmicrobial, peptides. Alternatively, the antigen or epitope is present on a non-membrane bound protein.
- the molecule can bind selectively to cells that express two or more of the different target antigens of the multi-specific molecule over cells that express only one of the target antigens.
- Such cell selectivity can be achieved by titrating the binding affinity of each moiety (e.g. protein or BDM) on the bi-specific or tri-specific such that each individual moiety bound insufficiently to its target to enable fluorescence activated cell sorting (FACS) or immunofluoresnce labelling or cell killing or cells expressing that target in the absence of the other targets bound by the bi-specific or tri-specific but wherein the combination of the weak binding moieties prompt sufficient avidity of the bi-specific or tri-specific to enable selective binding of cells co-expressing the relevant target molecules compared to cells expressing only one such target, such that selective FACS sorting, immunofluorescent labelling or cell killing could be achieved.
- FACS fluorescence activated cell sorting
- the multi-specific molecules of the present disclosure can be used as a composition when combined with a pharmaceutically acceptable carrier or excipient. Such pharmaceutical compositions are useful for administration to a subject in vivo.
- Pharmaceutically acceptable carriers are physiologically acceptable to the administered patient and retain the therapeutic properties of the molecule with which it is administered.
- Pharmaceutically-acceptable carrier and their formulations are generally described in, for example, Remington' pharmaceutical Sciences 18 th edn. Ed. A Gennaro, Mack Publishing Co., Easton Pa. 1990).
- One exemplary carrier is physiological saline.
- pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the polypeptides from the administration site of one organ or potion of the body, to another organ, or portion of the body.
- Each carrier must be acceptable in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- the pharmaceutically acceptable excipient may include a preservative or cyropreservative.
- compositions can be formulated to be compatible with a particular route of administration, systemic or local.
- composition described herein can be administered orally, parenterally, by inhalation spray, adsorption, absorption, topically, rectally, nasally, bucally, vaginally, intraventricularly, via an implanted reservoir in dosage formulations containing conventional non-toxic pharmaceutically-acceptable carriers, or by any other convenient dosage form.
- parenteral as used herein includes subcutaneous, intravenous, intramuscular, intraperitoneal, intrathecal, intraventricular, intrasternal, and intracranial injection or infusion techniques.
- Methods for preparing a molecule into a suitable form for administration to a subject are known in the art and include, for example, methods as described in Remington's Pharmaceutical Sciences (18th ed., Mack Publishing Co., Easton, Pa., 1990) and U.S. Pharmacopeia: National Formulary (Mack Publishing Company, Easton, Pa., 1984).
- compositions of this disclosure are particularly useful for parenteral administration, such as intravenous administration or administration into a body cavity or lumen of an organ or joint.
- the compositions for administration will commonly comprise a solution of polypeptide dissolved in a pharmaceutically acceptable carrier, for example an aqueous carrier.
- a pharmaceutically acceptable carrier for example an aqueous carrier.
- aqueous carriers can be used, e.g., buffered saline and the like.
- the compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- concentration of proteins of the present disclosure in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs.
- exemplary carriers include water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin.
- Non-aqueous vehicles such as mixed oils and ethyl oleate may also be used.
- Liposomes may also be used as carriers.
- the vehicles may contain minor amounts of additives that enhance isotonicity and chemical stability, e.g., buffers, preservatives or additives.
- polypeptides of the present disclosure will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically/prophylactically effective.
- Formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but other pharmaceutically acceptable forms are also contemplated, e.g., tablets, pills, capsules or other solids for oral administration, suppositories, pessaries, nasal solutions or sprays, aerosols, inhalants, liposomal forms and the like.
- Pharmaceutical “slow release” capsules or compositions may also be used. Slow release formulations are generally designed to give a constant drug level over an extended period and may be used to deliver compounds of the present disclosure.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. Fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Antibacterial and antifungal agents include, for example, parabens, chlorobutanol, phenol, ascorbic acid and thimerosal.
- Isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, and sodium chloride may be included in the composition.
- the resulting solutions can be packaged for use as is, or lyophilized; the lyophilized preparation can later be combined with a sterile solution prior to administration.
- Pharmaceutically acceptable carriers can contain a compound that stabilizes, increases or delays absorption or clearance.
- Such compounds include, for example, carbohydrates, such as glucose, sucrose, or dextrans; low molecular weight proteins; compositions that reduce the clearance or hydrolysis of peptides; or excipients or other stabilizers and/or buffers.
- Agents that delay absorption include, for example, aluminum monostearate and gelatin.
- Detergents can also be used to stabilize or to increase or decrease the absorption of the pharmaceutical composition, including liposomal carriers.
- the compound can be complexed with a composition to render it resistant to acidic and enzymatic hydrolysis, or the compound can be complexed in an appropriately resistant carrier such as a liposome.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations are known to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to cells or tissues using antibodies or viral coat proteins) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known in the art, for example, as described in U.S. Pat. Nos.
- Molecules of the present disclosure can be incorporated within micelles (see, e.g., Suntres (1994) J. Pharm. Pharmacol. 46: 23 28; Woodle (1992) Pharm. Res. 9:2 60 265).
- the molecule can be attached to the surface of the lipid monolayer or bilayer.
- molecules can be attached to hydrazide-PEG-(distearoylphosphatidy-I) ethanolamine-containing liposomes (see, e.g., Zalipsky (1995) Bioconjug. Chem. 6: 705 708).
- lipid membrane such as a planar lipid membrane or the cell membrane of an intact cell, e.g., a red blood cell
- Liposomal and lipid-containing formulations can be delivered by any means, including, for example, intravenous, transdermal (see, e.g., Vutla (1996) J. Pharm. Sci. 85:5 8), transmucosal, or oral administration.
- compositions of the present disclosure can be combined with other therapeutic moieties or imaging/diagnostic moieties as provided herein.
- Therapeutic moieties and/or imaging moieties can be provided as a separate composition, or as a conjugated moiety.
- Linkers can be included for conjugated moieties as needed and have been described elsewhere herein.
- the molecules disclosed herein may also be formulated as immunoliposomes.
- Liposomes containing the polypeptide are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
- Formulations for in vivo administration are sterile. Sterilization can be readily accomplished via filtration through sterile filtration membranes.
- compositions of the present disclosure can be administered with other therapeutic agents, e.g. chemotherapeutic agents.
- Chemotherapeutic agents are known in the art and include cytotoxic and cytostatic drugs. Non-limiting examples include paclitaxel, cisplatin, methotrexate, doxorubicin, fludarabine etc,. Other therapeutic agents are contemplated depending on the condition to be treated.
- One embodiment of the present disclosure contemplates the use of any of the pharmaceutical compositions of the present disclosure to make a medicament for treating a disorder.
- Medicaments can be packaged in a suitable pharmaceutical package with appropriate labels wherein the label is for the indication of treating a disorder in a subject.
- the present disclosure provides a molecule described herein labelled with an agent.
- the agent is an imaging/detectable moiety.
- the agent is a therapeutic moiety.
- label or “labelled” is intended to encompass direct labelling of the protein (e.g. antibody) or BDM by coupling coupling (i.e. physically linking) a detectable substance to said protein or BDM, as well as indirect labelling by reactivity with another reagent that is directly labelled.
- label also includes covalent or non-covalent coupling.
- the molecule can be labelled with a toxin, a radionuclide, iron-related compound, a dye, an imaging agent or a fluorescent label or a chemotherapeutic agent.
- the molecule can be labelled with detectable label, such as a radionuclide, iron-related compound, a dye, an imaging agent or a fluorescent agent for immunodetection of target antigens.
- detectable label such as a radionuclide, iron-related compound, a dye, an imaging agent or a fluorescent agent for immunodetection of target antigens.
- Radiolabels include, for example, 32 P, 33 P, 43 K, 52 Fe, 57 Co, 64 Cu, 67 Ga, 67 Cu, 68 Ga, 71 Ge, 75 Br, 76 Br, 77 Br, 77 As, 81 Rb/ 81 MKr, 87 MSr, 90 Y, 97 Ru, 99 Tc, 100 Pd, 101 Rh, 103 Pb, 105 Rh, 109 Pd, 111 Ag, 111 In, 113 In, 119 Sb, 121 Sn, 123 I, 125 I, 127 Cs, 128 Ba, 129 Cs, 131 I, 131 Cs, 143Pr, 153 Sm, 161 Tb, 166 Ho, 169 Eu, 177 Lu, 186 Re, 188 Re, 189Re, 191Os, 193Pt, 194 Ir, 197 Hg, 199 Au, 203 Pb, 211 At, 212 Pb, 212 Bi and 213 Bi.
- radionuclides are available for the production of radioconjugated proteins. Examples include, but are not limited to, low energy radioactive nuclei (e.g., suitable for diagnostic purposes), such as 130 C, 15 N , 2 H, 125 I, 123 I, 99 Tc, 43 K, 52 Fe, 67 Ga, 68 Ga, 111 In and the like.
- the radionuclide is a gamma, photon, or positron-emitting radionuclide with a half-life suitable to permit activity or detection after the elapsed time between administration and localization to the imaging site.
- the present disclosure also encompasses high energy radioactive nuclei (e.g., for therapeutic purposes), such as 125 I, 131 I, 123 I, 111 In, 105 Rn, 153 Sm, 67 Cu, 67 Ga, 166 Ho, 177 Lu, 186 Re and 188 Re.
- high energy radioactive nuclei e.g., for therapeutic purposes
- isotopes typically produce high energy ⁇ - or ⁇ -particles which have a short path length.
- Such radionuclides kill cells to which they are in close proximity, for example neoplastic cells to which the conjugate has attached or has entered. They have little or no effect on non-localized cells and are essentially non-immunogenic.
- high-energy isotopes may be generated by thermal irradiation of an otherwise stable isotope, for example as in boron neutron-capture therapy (Guan et al., 1998).
- isotopes which may be suitable are described in Carter. (2001) Nature Reviews Cancer 1, 118-29, Goldmacher et al. (2011) Therapeutic Delivery 2; 397-416, Payne (2003) Cancer Cell 3, 207-212, Schrama et al, (2006) Nature Rev. Drug Discov. 5, 147-159, Reichert et al. (2007) Nature Reviews Drug Discovery 6; 349-356.
- a toxin includes any agent that is detrimental to (e.g., kills) cells. Additional techniques relevant to the preparation of antibody immunotoxin conjugates are provided in for instance in U.S. Pat. No. 5,194,594 and may be utilised in the present disclosure.
- Non-limiting examples of toxins include, for example, diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa ), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, tricothecenes, Clostridium perfringens phospholipase C (PLC), bovine pancreatic ribonuclease (BPR), antiviral protein (PAP), abrin, cobra venom factor (CVF), gelonin (GEL), saporin (SAP)
- Non-limiting examples of iron-related compounds include, for example, magnetic iron-oxide particles, ferric or ferrous particles, Fe203 and Fe304.
- Iron- related compounds and methods of labelling polypeptides, proteins and peptides can be found, for example, in U.S. Pat. Nos. 4,101,435 and 4,452,773, and U.S. published applications 20020064502 and 20020136693, all of which are hereby incorporated by reference in their entirety.
- the molecule can be labelled to a cytotoxin or other cell proliferation inhibiting compound, in order to localize delivery of that agent to a tumor cell.
- the agent can be selected from the group consisting agents, enzyme inhibitors, proliferation inhibitors, lytic agents, DNA or RNA synthesis inhibitors, membrane permeability modifiers, DNA metabolites, dichloroethylsulfide derivatives, protein production inhibitors, ribosome inhibitors, inducers of apoptosis, and neurotoxins.
- a molecule as described herein comprises one or more detectable markers to facilitate detection and/or isolation.
- the polypeptide comprises a fluorescent label such as, for example, fluorescein (FITC), 5,6-carboxymethyl fluorescein, Texas red, nitrobenz-2-oxa-1,3-diazol-4-yl (NBD), coumarin, dansyl chloride, rhodamine, 4′-6-diamidino-2-phenylinodole (DAPI), and the cyanine dyes Cy3, Cy3.5, Cy5, Cy5.5 and Cy7, fluorescein (5-carboxyfluorescein-N-hydroxysuccinimide ester), rhodamine (5,6-tetramethyl rhodamine).
- FITC fluorescein
- NBD nitrobenz-2-oxa-1,3-diazol-4-yl
- DAPI nitrobenz-2-oxa-1,3-diazol-4-yl
- the absorption and emission maxima, respectively, for these fluors are: FITC (490 nm; 520 nm), Cy3 (554 nm; 568 nm), Cy3.5 (581 nm; 588 nm), Cy5 (652 nm: 672 nm), Cy5.5 (682 nm; 703 nm) and Cy7 (755 nm; 778 nm).
- the molecule can be coupled with an agent useful in imaging tumours.
- agents include: metals; metal chelators; lanthanides; lanthanide chelators; radiometals; radiometal chelators; positron-emitting nuclei; microbubbles (for ultrasound); liposomes; molecules microencapsulated in liposomes or nanosphere; monocrystalline iron oxide nanocompounds; magnetic resonance imaging contrast agents; light absorbing, reflecting and/or scattering agents; colloidal particles; fluorophores, such as near-infrared fluorophores.
- such secondary functionality/moiety will be relatively large, e.g., at least 25 amu in size, and in many instances can be at least 50,100 or 250 amu in size.
- the secondary functionality is a chelate moiety for chelating a metal, e.g., a chelator for a radiometal or paramagnetic ion. In additional examples, it is a chelator for a radionuclide useful for radiotherapy or imaging procedures.
- the molecule may be labelled with, for example, a magnetic or paramagnetic compound, such as, iron, steel, nickel, cobalt, rare earth materials, neodymium-iron-boron, ferrous-chromium-cobalt, nickel-ferrous, cobalt- platinum, or strontium ferrite.
- a magnetic or paramagnetic compound such as, iron, steel, nickel, cobalt, rare earth materials, neodymium-iron-boron, ferrous-chromium-cobalt, nickel-ferrous, cobalt- platinum, or strontium ferrite.
- the molecule is conjugated to a “receptor” (such as streptavidin) for utilization in cell pretargeting wherein the conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is conjugated to a therapeutic agent (e.g., a radionucleotide).
- a receptor such as streptavidin
- a “ligand” e.g., avidin
- a therapeutic agent e.g., a radionucleotide
- Exemplary therapeutic agents include, but are not limited to an anti-angiogenic agent, an anti-neovascularization and/or other vascularization agent, an anti-proliferative agent, a pro-apoptotic agent, a chemotherapeutic agent, anti-mitotic agents (eg anti-mitotic agent Auristatin, (MMAF/MMAE as per Angew. Chem. Int. Ed. 2014, 53, 1-6) or a therapeutic nucleic acid.
- an anti-angiogenic agent an anti-neovascularization and/or other vascularization agent
- an anti-proliferative agent e.g., a pro-apoptotic agent
- a chemotherapeutic agent eg anti-mitotic agent Auristatin, (MMAF/MMAE as per Angew. Chem. Int. Ed. 2014, 53, 1-6
- a therapeutic nucleic acid eg anti-mitotic agent Auristatin, (MMAF/MMAE as per Angew. Chem
- Chemotherapeutics useful as agents herein include cytotoxic and cytostatic drugs. Chemotherapeutics may include those which have other effects on cells such as reversal of the transformed state to a differentiated state or those which inhibit cell replication. Examples of known cytotoxic agents useful in the present invention are listed, for example, in Goodman et al., “The Pharmacological Basis of Therapeutics,” Sixth Edition, A. B. Gilman et al., eds./Macmillan Publishing Co. New York, 1980.
- taxanes such as paclitaxel and docetaxel
- nitrogen such as mechlorethamine, melphalan, uracil mustard and chlorambucil
- ethylenimine derivatives such as thiotepa
- alkyl sulfonates such as busulfan
- nitrosoureas such as lomustine, semustine and streptozocin
- triazenes such as dacarbazine
- folic acid analogs such as methotrexate
- pyrimidine analogs such as fluorouracil, cytarabine and azaribine
- purine analogs such as mercaptopurine and thioguanine
- vinca alkaloids such as vinblastine and vincristine
- antibiotics such as dactinomycin, daunorubicin, doxorubicin, and mitomycin
- enzymes platinum coordination complexes, such as cisplatin
- substituted urea such as
- multi-specific molecule as described herein is further conjugated or linked to another protein (e.g. Human Serum Albumin or HSA).
- another protein e.g. Human Serum Albumin or HSA
- the non-antibody protein is HSA.
- the molecule may also be conjugated or linked to a therapeutic agent or a liposome (e.g. drug containing liposome).
- Drugs that interfere with protein synthesis can also be used; such drugs are known to those skilled in the art and include puromycin, cycloheximide, and ribonuclease.
- the molecules of the present disclosure can be modified to contain additional nonproteinaceous moieties that are known in the art and readily available.
- the moieties suitable for derivatization of the protein are physiologically acceptable polymer, e.g., a water soluble polymer.
- physiologically acceptable polymer e.g., a water soluble polymer.
- water soluble polymers include, but are not limited to, polyethylene glycol (PEG), polyvinyl alcohol (PVA), or propropylene glycol (PPG).
- the molecules of the present disclosure can be used for affinity purification or detection of desired antigens bearing an epitope to which the protein (or peptide) and/or BDM binds.
- the present disclosure also provides a method for detecting a target to which either or both of the protein and BDM moieties of the polypeptide bind.
- Such methods may for example, employ the use of detectable labels as described above.
- different labels could be utilised for the protein and the BDM to identify whether the target bound is that bound by the protein or the BDM.
- a variety of formats can be employed to determine whether a sample contains a target (e.g. protein) that binds to the protein or peptide and/or BDM.
- a target e.g. protein
- formats include, but are not limited to, enzyme immunoassay (EIA), radioimmunoassay (RIA), Western blot analysis and enzyme linked immunoabsorbant assay (ELISA).
- the polypeptide in one format, can be used in methods such as Western blots or immunofluorescence techniques to detect a target.
- the polypeptide or target antigen to which the protein (or peptide) or BDM binds may be immobilised on a solid support.
- the multi-specific molecule may be bound to a solid support.
- Suitable solid phase supports or carriers include any support capable of binding an antigen (i.e. target) or an immunoglobulin or BDM.
- Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite.
- One skilled in the art will know many other suitable carriers for binding the protein, BDM or target antigen, and will be able to adapt such support for use with the present disclosure.
- target protein can be run on a polyacrylamide gel electrophoresis and immobilized onto a solid phase support such as nitrocellulose.
- the support can then be washed with suitable buffers followed by treatment with the detectably labelled polypeptide.
- the solid phase support can then be washed with the buffer a second time to remove unbound polypeptide.
- the amount of bound label on the solid support can then be detected by conventional means.
- the molecules of the present disclosure can be used as medicaments.
- a factor VIII protein can be coupled to a VLD that binds to human serum albumin so that the half-life of the protein is increased. This has obvious advantages in terms of less frequent dosing for subjects with haemophilia.
- the molecules according to the present disclosure provide advantages over therapeutics based on bi-specific antibodies.
- a simple and efficient approach for improving one or more characteristics of an antibody, e.g. poorly therapeutic antibody is to attach one or more single binding domain molecules (BDM) that bind to specific therapeutic targets to an antibody or an immunoglobulin antigen-binding fragment which has specificity to a target of interest.
- BDM single binding domain molecules
- bi-specific approach simple and highly efficient bi-specific antibody generation; the approach is applicable to any antibody sequence; the parent antibody retains its original binding sites and specificity; the parent antibody retains its avidity; the parent antibody retains its original structure and function and antibody-mediated effector functions are retained for select applications; antibody pharmacokinetics including serum half-life are retained; the bi-specific product integrates seamlessly into existing IgG production processes such as manufacturing, purification, formulation and all other processes based on standard IgG processes.
- bi-specifics based on antibody Fab fragments will also be desirable due to their smaller molecular weight, shorter half-life in the blood stream and an improved molecular weight to binding site ratio relative to whole antibodies.
- the neutralisation of toxic substances which have been traditionally treated with whole antibodies can be more effectively treated with Fabs. Due to the relatively large molecular weight of an antibody (150 kDa) as compared to the toxic substance (typically less than 1 kDa), a large quantity of antibody is required to bind stoichiometrically to the toxin. Bi-specific or tri-specific Fabs described herein can be used at lower dose due to the multiple binding sites offered by the bi-specific or tri-specific. The small size of Fabs relative to antibodies sees the toxic substance-Fab complexes quickly excreted via the kidneys. Again, an efficient and simple approach for generating Fab-based bi-specifics is to attach BDM's that bind to specific targets to an existing Fab which has specificity to a target of interest.
- kits comprising a multi-specific molecule described herein, together with instructions for use.
- the kit can contain further preparations of solutions to reconstitute the preparations.
- the instructions may be on ‘printed matter’, e.g., on paper or cardboard within or affixed to the kit, or on a label affixed to the kit or packaging material, or attached to a vial or tube containing a component of the kit.
- kits can further include any of the other moieties provided herein such as, for example, a chemotherapeutic agent.
- kits can further include the components for an assay provided herein, for example an ELISA assay.
- the kit may further include a label specifying, for example a product description, mode of administration and indication of treatment.
- the label or packaging insert can include appropriate written instructions.
- CTLA-4 BDMs were obtained from a library (Geneart).
- the gene library 1696327 was assembled using synthetic degenerated oligonucleotides with the objective of containing different substitutions in the DNA sequence corresponding to the binding loop regions.
- CTLA-4 sequence used in these examples comprise a C-terminal modification of the native sequence wherein the native sequence PEPCPDSDGSTG is replaced with PEPSPDSN. These sequence does not contain the C-terminus Cys residue which allows the BDM to remain in monomeric form.
- Nucleic acid constructs encoding anti-lysozyme IgG1 heavy chain sequence fused to the B7-1 binding CTLA-4 V-like domain sequence designated D1.3 IgG-VLDx2 (HC)
- anti-lysozyme IgG kappa light chain sequence fused to B7-1 binding V-like domain sequence designated D1.3 IgG-VLDx2 (LC)
- the VLD was coupled to the antibody heavy (H) or light (L) chain respectively through a Gly-Ser linker sequence. All DNA constructs were verified by restriction analysis and DNA sequencing and tested for expression of recombinant protein by standard and well-understood techniques.
- VLD B7-1 binding V-like domain
- Linker sequence (SEQ ID NO: 16) SGGGGSGGGGSGGGGS Linker sequence (SEQ ID NO: 17) SGGGGSGGGGSGGGGSGGGGS Anti-Lysozyme IgG1 heavy chain sequence used in antibody-VLD fusions (SEQ ID NO: 18) EVKLQESGPGLVAPSQSLSITCTVSGFSLTGYGVNWVRQPPGKGLEWLGMIWGDGNTDYNS ALKSRLSISKDNSKSQVFLKMNSLHTDDTARYYCARERDYRLDYWGQGTTVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT VPSSSLGTQTYICNVNHKPSNTKVDKKVEPPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKD TLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL
- Anti-Lysozyme IgG kappa light chain (SEQ ID NO: 20) DIELTQSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQLLVYYTTTLADGVPSRFSG SGSGTQYSLKINSLQPEDFGSYYCQHFWSTPRTFGGGTKLELKRTVAAPSVFIFPPSDEQLKS GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH KVYACEVTHQGLSSPVTKSFNRGEC Anti-Lysozyme IgG kappa light chain coupled to B7-1 binding VLD with a 21 aa Gly-Ser linker (designated D1.3 IgG-VLDx2 (LC)) (SEQ ID NO: 21) DIELTQSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQLLVYYTTTLADGVPSRFSG
- Anti-lysozyme Fab heavy chain coupled to B7.1 binding VLD with 21 aa Gly-Ser linker designated D1.3 Fab-VLDx1 (HC) (SEQ ID NO: 23) EVKLQESGPGLVAPSQSLSITCTVSGFSLTGYGVNWVRQPPGKGLEWLGMIWGDGNTDYNS ALKSRLSISKDNSKSQVFLKMNSLHTDDTARYYCARERDYRLDYWGQGTTVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT VPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCSGGGGSGGGGSGGGGSGGGGSKAMHVA QPAVVLASSRGIASFVCEY ASPGKYTE VRVTVLRQADSQVTEVCAATY MTGNEL TFLDDSICT GTSSGNQVNLTIQGLRAMDTGLYICKV ELMYPPPYY LGIGNG
- Anti-lysozyme Fab Heavy chain (with C-terminal His6 and myc tags) (SEQ ID NO: 24) EVKLQESGPGLVAPSQSLSITCTVSGFSLTGYGVNWVRQPPGKGLEWLGMIWGDGNTDYNS ALKSRLSISKDNSKSQVFLKMNSLHTDDTARYYCARERDYRLDYWGQGTTVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT VPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCAAAGLGGHHHHHHGAAEQKLISEEDL
- FIG. 2 shows a schematic of the antibody-VLD bi-specific molecule according to one example created by coupling of a target specific VLD (e.g. that bind to Target B) to the terminal end of each constant heavy (CH3) chain sequence of the anti-Lysozyme IgG1 antibody heavy chain [D1.3 IgG-VLDx2 (HC)].
- the antibody molecule binds to target A via the antibody heavy and light chain variable regions and to target B via the VLD on the heavy chain.
- FIG. 3 shows a schematic of the antibody-VLD bi-specific molecule according to one example created by coupling a target specific VLD (e.g. that bind to Target B) to the terminal end of each constant light (CL) chain sequence of the anti-Lysozyme IgG1 antibody light chain
- a target specific VLD e.g. that bind to Target B
- CL constant light
- the molecule binds to target A via the antibody heavy and light chain variable regions and to target B via the VLD on the light chain.
- FIG. 4 shows a schematic of the antibody-VLD tri-specific molecule according to one example created by coupling of a target specific VLD (e.g. that bind to Target B) to both the heavy and light chains D1.3 IgG-VLDx4 (LC+HC) where a VLD is coupled to the terminal CL sequence and also to the terminal end of the heavy CH3 sequence.
- the molecule binds to target A via the antibody heavy and light chain variable regions, to target B via the VLD on the light chain and to target C via the same VLD or a different VLD to that which binds target B.
- the tri-specific can bind to Target A, B and C either individually or at the same time or in a combination of the three targets (e.g. Target and B or Target A and C or Target B and C).
- FIG. 5 shows a schematic of the bi-specific Fab-VLD molecule (D1.3 Fab-VLDx1 (HC)) according to one example the disclosure.
- the bi-specific is created by a fusion of a target specific VLD (e.g. in this example the VLD is specific for Target B) to the terminal end of the constant region (CH1) sequence of a Fab that binds to Target A (e.g. in this example the Fab is specific for Target A).
- the bi-specific can bind to both Target A and B either individually or at the same time.
- FIG. 6 shows a schematic of the bi-specific Fab-VLD molecule (D1.3 Fab-VLDx1 (LC)) according to one example of the disclosure.
- the bi-specific is created by a fusion of a target specific VLD (e.g. in this example the VLD is specific for Target B) to the terminal end of the CL sequence of a Fab that binds to Target A (e.g. in this example the Fab is specific for Target A).
- the bi-specific can bind to both Target A and B either individually or at the same time.
- FIG. 7 shows a schematic of the tri-specific Fab-VLD molecule (D1.3 Fab-VLDx2 (LC+HC)) according to the disclosure.
- the tri-specific is created by a fusion of a target specific VLD (e.g. in this example the VLD is specific for Target B) to the terminal end of the Fab CL sequence and a fusion of a second target specific VLD (e.g. in this example the VLD is specific for Target C) to the terminal end of the Fab CH3 sequence that binds to Target A (e.g. in this example the Fab is specific for Target A).
- the tri-specific can bind to Target A and B and C either individually or at the same time or in a combination of the three targets (e.g. Target A and B or Target A and C or Target B and C).
- Vector transformation of bacteria was performed according to standard techniques using 2 ng of DNA using the electroporation competent cell line (e.g. ElectroTen-Blue cells, Stratagene Cat #200159).
- electroporation competent cell line e.g. ElectroTen-Blue cells, Stratagene Cat #200159.
- the antibody or Fab binds to lysozyme and the VLD binds to B7.1.
- ProsepA purification was used for purification of the bi-specific and tri-specific molecules.
- the ProsepA column was equilibrated with 5 column volumes of PBS/Tris (2 mM Tris, pH 8). Transfected cell supernatant containing the bi-specific molecule at pH 8 was loaded onto the column and the column washed with 10 column volumes of PBS, 2 mM Tris, pH 8. The protein was eluted with 0.1 M Glycine pH 3. The eluted protein fraction was neutralized to -pH 7 with 1 M Tris, pH 8. and dialysed according to standard methods.
- Protein expression levels of the variants were determined by SDS PAGE. Values were obtained from 30m1 expression cultures which were purified via affinity chromatography (not shown).
- D1.3 Fab expression of parent D1.3 Fab, and its bi-specifics and tri-specific variants which were expressed in a non-optimised standard Expi293 expression system were analysed by SDS PAGE under non-reducing and reducing conditions. Values were obtained from 30 ml expression cultures which were purified via affinity chromatography.
- the parent Fab is D1.3 Fab
- the bi-specific are D1.3 Fab-VLDx1 (HC) which is the D1.3 Fab plus a VLD fused to the terminal end of the CH sequence of the D1.3 Fab
- D1.3 Fab-VLDx1 (CL) which is the D1.3 Fab plus a VLD fused to the terminal end of the CL sequence of the D1.3 Fab.
- D1.3 Fab-VLDx2 (HC+LC) which is the D1.3 Fab plus VLDs fused to both the terminal end of the CH sequence and CL sequence of the D1.3 Fab. Results are shown in FIG. 8 under non-reducing conditions. Results are known in FIG. 9 under reducing conditions. Analysis indicated that appropriate heavy and light chain fusions were at the size ranges expected.
- the binding properties of the purified bi-specific and tri-specific molecules were characterised using the ForteBio Blitz biosensor using standard chemistry and reagents.
- Affinity chromatography purified antibodies, antibody-VLD bi-specific and antibody-VLD tri-specific molecules were used with commercially available Lysozyme (Sigma Aldrich cat# L4919) and B7-1-Fc (R&D Systems Cat # 140-B1).
- a streptavidin capturing surface SA Sensor ForteBio cat# 18-5019, or Sensor Chip SA, GE Cat# BR-1000-32 was used to capture biotin labelled lysozyme.
- the antibody, antibody-VLD bi-specific and antibody-VLD tri-specific molecules were passed over the target captured on the biosensor surface to generate a binding sensorgram (i.e. first specificity). Over the same target, during the dissociation phase, B7-1-Fc was passed over the already bound antibody, antibody-VLD bi-specific and antibody-VLD tri-specific molecules (i.e. the second specificity) to demonstrate the second binding interaction.
- FIG. 10 shows preliminary analysis using the ForteBio Blitz biosensor to demonstrate binding of the bi-specific [IgG VLDx2 (HC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to B7.1-Fc.
- the bi-specific has B7-1 binding VLDs coupled to the D1.3 antibody [D1.3 IgG] heavy chains.
- Trace 1 is a sensorgram of the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific.
- the antibody is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- Trace 2 is a sensorgram of the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific.
- the antibody is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- Trace 3 is a sensorgram of the bi-specific D1.3 anti-lysozyme antibody with VLDs coupled to the antibody constant heavy (CH) chains [the bi-specific—D1.3 IgG-VLDx2 (HC)].
- the bi-specific is shown binding to lysozyme immobilised on the biosensor surface followed with an addition of buffer at Point 1.
- Trace 4 is a sensorgram of the bi-specific D1.3 anti-lysozyme antibody with VLDs coupled to the antibody CH chains [the bi-specific—D1.3 IgG-VLDx2 (HC)].
- the bi-specific is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- FIG. 11 shows preliminary analysis using the ForteBio Blitz biosensor to demonstrate binding of the bi-specific [IgG VLDx2 (LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to B7-1-Fc.
- the bi-specific has B7-1 binding VLDs coupled to the D1.3 antibody [D1.3 IgG] light chains.
- Trace 1 is a sensorgram of the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific.
- the antibody is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- Trace 2 is a sensorgram of the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific.
- the antibody is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- Trace 3 is a sensorgram of the bi-specific D1.3 anti-lysozyme antibody with VLDs coupled to the antibody constant light (CL) chains [the bi-specific—D1.3 IgG-VLDx2 (LC)].
- the bi-specific is shown binding to lysozyme immobilised on the biosensor surface followed with an addition of buffer at Point 1.
- Trace 4 is a sensorgram of the bi-specific D1.3 anti-lysozyme antibody with VLDs coupled to the antibody CL chains [the bi-specific—D1.3 IgG-VLDx2 (LC)].
- the bi-specific is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- FIG. 12 shows preliminary analysis using the ForteBio Blitz biosensor to demonstrate binding of the tri-specific [IgG VLDx4 (HC+LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to B7-1-Fc.
- the tri-specific has B7-1 binding VLDs coupled to both the D1.3 antibody [D1.3 IgG] heavy chains and light chains.
- Trace 1 is a sensorgram of the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific. The antibody is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- Trace 2 is a sensorgram of the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific.
- the antibody is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- Trace 3 is a sensorgram of the tri-specific D1.3 anti-lysozyme antibody with VLDs coupled to the antibody CH and CL chains [the tri-specific—D1.3 IgG-VLDx4 (HCLC)].
- the tri-specific is shown binding to lysozyme immobilised on the biosensor surface followed with an addition of buffer at Point 1.
- Trace 4 is a sensorgram of the tri-specific D1.3 anti-lysozyme antibody with VLDs coupled to the antibody CH and CL chains [the tri-specific—D1.3 IgG-Imx4 (HC+LC)].
- the tri-specific is shown binding to lysozyme immobilised on the biosensor surface followed by an addition of B7-1-Fc at Point 1.
- B7-1-Fc was replaced with Buffer at Point 2.
- FIG. 13 shows preliminary analysis using the ForteBio Blitz biosensor to demonstrate increased binding of the tri-specific molecule relative to the bi-specific molecule.
- the figure demonstrates increased binding levels to B7-1-Fc of the tri-specific relative to the bi-specific.
- An equivalent number of antibody, bi-specific and tri-specific molecules were captured on biotin labelled lysozyme attached to a biosensor surface followed by the addition of buffer or B7-1-Fc (at Point 1) to demonstrate increased binding capacity of the tri-specific relative to the bi-specific.
- Trace 1 is the D1.3 anti-lysozyme antibody [D1.3 IgG] used to construct the bi-specific and tri-specific. The bound antibody is shown with Buffer only injected at Point 1.
- Trace 2 is the D1.3 anti-lysozyme antibody [D1.3 IgG] shown with B7-1-Fc injected at Point 1 At Point 2, B7-1-Fc was replaced with Buffer.
- Trace 3 is the bi-specific D1.3 anti-lysozyme antibody with VLDs fused to the antibody CL chains [the bi-specific—D1.3 IgG-VLDx2 (LC)]. The captured bi-specific is shown binding to B7-1-Fc which was injected at Point 1. At Point 2, B7-1-Fc was replaced with Buffer.
- Trace 4 is the tri-specific D1.3 anti-lysozyme antibody with VLDs fused to the antibody CH and CL chains [the tri-specific—D1.3 IgG-VLDx4 (HCLC)]. The captured bi-specific is shown binding to B7-1-Fc which was injected at Point 1. At Point 2, B7-1-Fc was replaced with Buffer.
- FIG. 14 shows binding of bi-specific [IgG VLDx2 (HC))] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (50, 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml) was determined by SPR analysis with the concentration series of SPR binding sensorgrams overlaid.
- the bi-specific has B7-1 binding VLDs fused to the D1.3 antibody [D1.3 IgG] heavy chains as illustrated in FIG. 2 .
- Bi-specific injected is the point at which the IgG VLDx2 (HC) is added to the sensor surface.
- the trace shows the IgG VLDx2 (HC) binding to lysozyme immobilised on the biosensor surface.
- Buffer injected 1 Point at which the injection of IgG VLDx2 (HC) is stopped and replaced with buffer.
- the trace shows the dissociation of the IgG VLDx2 (HC) from the lysozyme immobilised on the biosensor surface.
- B7-1-Fc injected Point at which the second analyte B7-1-Fc is added at specified concentrations (at 50, 25, 12.5, 6.25, 3.125, 1.56 and 0 u ⁇ g/ml).
- the trace shows B7-1-Fc binding to the IgG VLDx2 (HC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Buffer injected 2 Point at which the injection of B7-1-Fc is stopped and replaced with buffer.
- the trace shows the dissociation of B7-1-Fc from IgG VLDx2 (HC) still attached to the lysozyme immobilised on the biosensor surface.
- FIG. 15 shows binding of the bi-specific [IgG VLDx2 (LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (at 50, 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ ug/ml) was determined by SPR analysis with the concentration series of SPR binding sensorgrams overlaid.
- the bi-specific has B7-1 binding VLDs fused to the D1.3 antibody [D1.3 IgG] light chains as illustrated in FIG. 3 .
- Bi-specific injected Point at which the IgG VLDx2 (LC) is added to the sensor surface. The trace shows the IgG VLDx2 (LC) binding to lysozyme immobilised on the biosensor surface.
- Buffer injected 1 Point at which the injection of IgG VLDx2 (LC) is stopped and replaced with buffer. The trace shows the dissociation of the IgG VLDx2 (LC) from the lysozyme immobilised on the biosensor surface.
- B7-1-Fc injected Point at which the second analyte B7-1-Fc is added at specified concentrations (at 50, 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml).
- the trace shows B7-1-Fc binding to the IgG VLDx2 (LC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Buffer injected 2 Point at which the injection of B7-1-Fc is stopped and replaced with buffer.
- the trace shows the dissociation of B7-1-Fc from IgG VLDx2 (LC) still attached to the lysozyme immobilised on the biosensor surface.
- FIG. 16 shows binding of the tri-specific [IgG VLDx4 (HC+LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml) was determined by SPR analysis with the concentration series of SPR binding sensorgrams overlaid.
- the tri-specific has B7-1 binding VLDs fused to both the D1.3 antibody [D1.3 IgG] heavy and light chains as illustrated in FIG. 4 .
- Tri-specific injected Point at which the IgG VLDx4 (HC+LC) is added to the sensor surface.
- the trace shows the IgG Imx4 (HCLC) binding to lysozyme immobilised on the biosensor surface.
- Buffer injected 1 Point at which the injection of IgG VLDx4 (HC+LC) is stopped and replaced with buffer.
- the trace shows the dissociation of the IgG VLDx4 (HC+LC) from the lysozyme immobilised on the biosensor surface
- B7-1-Fc injected Point at which the second analyte B7-1-Fc is added at specified concentrations (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml).
- the trace shows B7-1-Fc binding to the IgG VLDx4 (HC+LC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Buffer injected 2 Point at which the injection of B7-1-Fc is stopped and replaced with buffer.
- the trace shows the dissociation of B7-1-Fc from IgG VLDx4 (HC+LC) still attached to the lysozyme immobilised on the biosensor surface
- the binding properties of the purified Fab, Fab-VLD bi-specific and tri-specific molecules were also characterised using surface plasmon resonance (SPR).
- FIG. 17 shows a series of SPR binding sensorgrams that have been overlaid demonstrating initial binding of the bi-specific [Fab-VLDx1 (HC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ug/ml).
- the bi-specific has a B7-1 binding VLD fused to the D1.3 Fab [D1.3 Fab] heavy chain as illustrated in FIG. 5 .
- Bi-specific Injected Point at which the Fab-VLDx1 (HC) is added to the sensor surface.
- the trace shows the Fab-VLDx1(HC) binding to lysozyme immobilised on the biosensor surface.
- Buffer Injected 1 Point at which the injection of Fab-VLDx1(HC) is stopped and replaced with buffer.
- the trace shows the dissociation of the Fab-VLDx1(HC) from the lysozyme immobilised on the biosensor surface
- B7-1-Fc Injected Point at which the second analyte B7-1-Fc is added at specified concentrations (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ug/ml).
- the trace shows B7-1-Fc binding to the Fab-VLDx1 (HC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Buffer Injected 2 Point at which the injection of B7-1-Fc is stopped and replaced with buffer. The trace shows the dissociation of B7-1-Fc from Fab-VLDx1(HC) still attached to the lysozyme immobilised on the biosensor surface.
- FIG. 18 shows a series of SPR binding sensorgrams that have been overlaid demonstrating initial binding of the bi-specific [Fab-VLDx1 (LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ug/ml).
- the bi-specific has a B7-1 binding VLD fused to the D1.3 Fab [D1.3 Fab] light chain as illustrated in FIG. 6 .
- Bi-specific Injected Point at which the Fab-VLDx1 (LC) is added to the sensor surface. The trace shows the Fab-VLDx1 (LC) binding to lysozyme immobilised on the biosensor surface.
- Buffer Injected 1 Point at which the injection of Fab-VLDx1 (LC) is stopped and replaced with buffer. The trace shows the dissociation of the Fab-VLDx1 (LC) from the lysozyme immobilised on the biosensor surface.
- B7-1-Fc Injected Point at which the second analyte B7-1-Fc is added at specified concentrations (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ug/ml).
- the trace shows B7-1-Fc binding to the Fab-VLDx1 (LC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Buffer Injected 2 Point at which the injection of B7-1-Fc is stopped and replaced with buffer.
- the trace shows the dissociation of B7-1-Fc from Fab-VLDx1 (LC) still attached to the lysozyme immobilised on the biosensor surface.
- FIG. 19 shows a series of SPR binding sensorgrams that have been overlaid demonstrating initial binding of the tri-specific [Fab-VLDx2(HC+LC)] to streptavidin captured biotin labelled lysozyme followed by secondary binding to a concentration series of B7-1-Fc (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml).
- the tri-specific has B7-1 binding VLDs fused to both the D1.3 Fab [D1.3 Fab] heavy and light chains as illustrated in FIG. 7 .
- Tri-specific Injected Point at which the Fab-VLDx2(HC+LC) is added to the sensor surface.
- the trace shows the Fab-VLDx2(HC+LC) binding to lysozyme immobilised on the biosensor surface.
- Buffer Injected 1 Point at which the injection of Fab-VLDx2(HC+LC) is stopped and replaced with buffer.
- the trace shows the dissociation of the Fab-VLDx2(HC+LC) from the lysozyme immobilised on the biosensor surface
- B7-1-Fc Injected Point at which the second analyte B7-1-Fc is added at specified concentrations (at 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml).
- the trace shows B7-1-Fc binding to the Fab-VLDx2(HC+LC) that is still bound to the lysozyme immobilised on the biosensor surface.
- Buffer injected 2 Point at which the injection of B7-1-Fc is stopped and replaced with buffer.
- the trace shows the dissociation of B7-1-Fc from Fab-VLDx2(HC+LC) still attached to the lysozyme immobilised on the biosensor surface.
- Binding stoichiometry of the bi-specific [IgG VLDx2 (HC)] and tri-specific [IgG Imx4 (HC+LC)] for B7-1-Fc were also determined by SPR ( FIG. 20 ).
- the kinetic assays were performed for IgG-VLDx2 (HC), IgG-VLDx2 (LC) and IgG-VLDx4 (HCLC) by capturing on a biotin-lysozyme surface, and running a series of concentrations of B7-1-Fc (50, 25, 12.5, 6.25, 3.125, 1.56 and 0 ⁇ g/ml) as the analyte.
- the theoretical maximum binding signal for the analyte (Rmax) was calculated based on the amount of captured IgG-VLD protein, accounting for the molecular weight of the analyte and ligand.
- the binding level of analyte to ligand was plotted as a percentage of the Rmax value, for each concentration. As the analyte concentration increased to 25 ⁇ g/ml, the binding levels neared saturation or equilibrium levels.
- the equilibrium binding level for the tetravalent protein, IgG-VLDx4(HC+LC) (103.9% of Rmax) was around double that of the bivalent proteins IgG-VLDx2(HC) (56.7%) and IgG-VLDx2(LC) (51.4%). This suggests that IgG-VLDx4(HC+LC) is able to bind B7.1-Fc through the heavy and light chain-fused VLD domains simultaneously.
- the binding kinetics of the antibody-VLD bi-specific and tri-specific molecules and the Fab-VLD bi-specific and tri-specific molecules was determined by surface plasmon resonance.
- the association constant (Ka), dissociation constant (Kd) and equilibrium dissociation constant/binding constant K D are shown in Tables 3 and 4 respectively.
- the IgG VLDx4 (HCLC) construct was modified whereby sclerostin (Scl) binding VLDs were coupled to the C terminus of the heavy chains of the anti-lysozyme antibody D1.3 and B7-1 binding VLDs were coupled to the antibody constant light (CL) chains of an anti-lysozyme antibody.
- This tri-specific molecule was designated [IgG VLDx4 (Scl-HC)(B7-LC)].
- sequence of the anti-Lysozyme IgG1 heavy chain fused to anti-Sclerostin VLD ‘1E1’ is shown below (SEQ ID NO:25):
- VLD binding loops of SEQ ID NO:25 and SEQ ID NO:14 are underlined.
- sclerostin R&D Systems catalogue number 1406-ST/CF
- sclerostin R&D Systems catalogue number 1406-ST/CF
- the surface was regenerated by injecting 10 mM Glycine buffer at pH 2.1 for 30 seconds.
- FIG. 22 shows a series of SPR binding sensorgrams that have been overlaid demonstrating initial binding of the tri-specific [IgG VLDx4 (Scl-HC)(B7-LC)] to streptavidin captured biotin labelled lysozyme followed by simultaneous binding to B7-1-Fc and sclerostin.
- the tri-specific has sclerostin binding VLDs fused to the D1.3 antibody [D1.3 IgG] heavy chains and B7-1 binding VLD's fused to the light chains.
- the B7-1-Fc only trace is a sensorgram of the tri-specific showing binding to lysozyme immobilised on the biosensor surface followed by the addition of B7-1-Fc.
- the sensorgram demonstrates simultaneous, dual target binding to lysozyme and B7-1-Fc.
- the Sclerostin only trace is a sensorgram of the tri-specific showing binding to lysozyme immobilised on the biosensor surface followed by the addition of sclerostin.
- the sensorgram demonstrates simultaneous, dual target binding to lysozyme and sclerostin.
- the B7-1-Fc and Sclerostin trace is a sensorgram of the tri-specific showing binding to lysozyme immobilised on the biosensor surface followed by the addition of B7-1-Fc, and then followed by the addition of sclerostin.
- the sensorgram demonstrates simultaneous, trio target binding to lysozyme and B7-1-Fc and sclerostin.
- Binding of the molecule to B7-1 and sclerostin was examined by SPR as shown in FIG. 22 .
- the results show that the tri-specific was capable of simultaneous binding to both B7-1 and sclerostin.
- the Fab VLDx2 (HC+LC) construct was modified whereby a B7-1 binding VLD was coupled to the C terminus of the heavy chain of the anti-lysozyme Fab D3.1 and a sclerostin (Scl) binding VLD was coupled to the Fab constant light (CL) chain of an anti-lysozyme Fab.
- This tri-specific molecule was designated [Fab VLDx2 (B7-1-HC)(Scl-LC)].
- a second construct was made whereby a sclerostin binding VLD was coupled to the C terminus of the heavy chain of the anti-lysozyme Fab D3.1 and a B7-1 binding VLD was coupled to the Fab constant light (CL) chain of an anti-lysozyme Fab.
- This tri-specific molecule was designated [Fab VLDx2 (Scl-HC)(B7-1-LC)]
- FIG. 23 shows binding analysis for the tri-specific Fab VLDx2 (B7-1-HC)(Scl-LC) and FIG. 24 shows the binding analysis for the tri-specific Fab VLDx2 (Scl-HC)(B7-1-LC). Binding analysis was performed using the ForteBio Blitz. The binding traces demonstrate initial binding of the tri-specifics (Fab VLDx2 (B7-HC)(Scl-LC) in FIG. 23 and Fab VLDx2 (Scl-HC)(B7-1-LC) in FIG. 24 ) to streptavidin captured biotin labelled lysozyme followed by sequential and simultaneous binding to B7-1-Fc and sclerostin.
- the biosensor traces show the tri-specifics initially binding to lysozyme immobilised on the biosensor surface followed by binding to B7-1-Fc (B7-1-Fc was added at the point indicated).
- the binding traces demonstrate simultaneous, dual target binding to lysozyme and B7-1-Fc.
- Sclerostin is subsequently added at the point indicated and the biosensor trace shows simultaneous, tri-target binding to lysozyme and B7-1-Fc and sclerostin for both the Fab VLDx2 (B7-1-HC)(Scl-LC) and Fab VLDx2 (Scl-HC)(B7-1-LC) molecules.
- sclerostin is replaced with buffer to show the dissociation rate.
- FIG. 25 shows a schematic of a protein coupled to a VLD according to one example of the disclosure.
- the bi-specific can bind to both Target A and B either individually or at the same time.
- Sequences encoding human serum albumin (HSA) fused to one or two VLDs were produced, including a 16 amino acid linker sequence (SGGGGSGGGGSGGGGS) highlighted and a C-terminal histidine tag.
- the sequences were cloned into a mammalian expression vector.
- the vector used was the pcDNA3.4 vector (Thermo Fisher).
- the sequences were cloned with a signal peptide to allow the protein to be secreted.
- the sequence of the peptide was as follows MAWMMLLLGLLAYGSG (SEQ ID NO:8).
- Vector transformation of bacteria was performed according to standard techniques using electroporation competent cells (e.g. ElectroTen-Blue cells, Stratagene Cat #200159).
- Plasmid DNA was extracted and prepared using Qiagen HiSpeed Plasmid Maxi Kit (Cat # 12663) or Promega PureYieldTM Plasmid Midiprep System (Cat # A2492). DNA was eluted in nuclease free purified water.
- the proteins were purified by affinity chromatography using Nickel Sepharose Excel (GE, Cat # 17-3712-01).
- a Nickel Sepharose column was equilibrated with 5 column volumes of 20 mM sodium phosphate, 0.5 M NaCl, ph7.4.
- the transfected cell culture supernatant containing the His-tagged HSA-VLD protein was loaded onto the column, and the column was washed with 10 column volumes of 20 mM sodium phosphate, 0.5 M NaCl, 5 mM imidazole, ph7.4.
- the protein was eluted with 20mM sodium phosphate, 0.5 M NaCl, 500 mM imidazole ph7.4.
- the eluted fractions were pooled and dialysed with PBS according to standard methods.
- FIG. 26 shows western blot analysis and detection with anti-His HRP (Sigma Aldrich, Cat # 11965085001) of the purified HSA fusion proteins, which comprise of VLDs fused to the C-terminus, the N-terminus, or both the C-terminus and N-terminus of HSA.
- the estimated sizes of the proteins, respectively, are: 67 kDa (predicted size: 81.9 kDa); 69.3 kDa (predicted size: 81.8 kDa); and 94.4 kDa (predicted size: 96.2 kDa).
- the binding properties of the purified molecules were characterised using the ForteBio Blitz biosensor using standard chemistry and reagents.
- the affinity purified molecules were tested with commercially available B7.2-Fc protein (R&D Systems, Cat# 141-B2), CD3 (Acrobiosystems, Cat# CDD-H52W3), and biotinylated anti-HSA affibody (Abcam, Cat # 31898).
- CD3 and B7.2Fc proteins were biotinylated at 1:1 molar ratio using EZ-Link Sulfo-NHS-LC-Biotin (ThermoFisher, Cat # 21327) according to standard methods.
- a streptavidin capturing surface (SA Sensor, ForteBio cat# 18-5019) was used to capture biotin labelled protein.
- the HSA-VLD molecule was passed over the target captured on the biosensor surface to generate a binding sensorgram.
- FIG. 27 shows analysis using the ForteBio Blitz biosensor to demonstrate binding of the HSA-VLD molecules to streptavidin captured biotin labelled B7.2-Fc.
- Trace 1 is a sensorgram of the HSA-VLD fusion protein, which has a B7-binding VLD attached to the C-terminus.
- Trace 2 is a sensorgram of the VLD-HSA-VLD fusion protein, which has a B7-binding VLD attached to both the N-terminus and the C-terminus. The molecules are shown binding to B7.2-Fc immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- FIG. 28 shows analysis using the ForteBio Blitz biosensor to demonstrate binding of the HSA-VLD molecule to streptavidin captured biotin labelled CD3 delta/epsilon (de) heterodimer.
- the trace shown is a sensorgram of the HSA-VLD fusion protein, which has a CD3-binding VLD attached to the C-terminus.
- the molecule is shown binding to CD3de immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- FIG. 29 shows analysis using the ForteBio Blitz biosensor to demonstrate binding of the HSA-VLD molecule to streptavidin captured biotin labelled anti-HSA affibody.
- the trace shown is a sensorgram of the HSA-VLD fusion protein, which has a B7-binding VLD attached to the C-terminus.
- the molecule is shown binding to anti-HSA affibody immobilised on the biosensor surface followed by an addition of Buffer at Point 1.
- B7.2Fc protein was allowed to bind to the captured molecules on the sensor surface. B7.2Fc was then replaced with buffer at Point 3.
- CD3 Binding VLD (Referred to as AF3) Fused to the C-Terminus of Human Serum Albumin
- CD3-binding VLD “AF3” fused to the C-terminus of HSA (SEQ ID NO: 29): DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCD KSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCT AFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEG KASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLL ECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDV CKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFK PLVEEPQNLIKQNCELF
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2016900708A AU2016900708A0 (en) | 2016-02-26 | Multi-specific molecules 1 | |
| AU2016900709 | 2016-02-26 | ||
| AU2016900708 | 2016-02-26 | ||
| AU2016900709A AU2016900709A0 (en) | 2016-02-26 | Multi-specific molecules 2 | |
| PCT/AU2017/050168 WO2017143406A1 (en) | 2016-02-26 | 2017-02-27 | Multi-specific molecules |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2017/050168 A-371-Of-International WO2017143406A1 (en) | 2016-02-26 | 2017-02-27 | Multi-specific molecules |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/946,451 Continuation US20210040177A1 (en) | 2016-02-26 | 2020-06-22 | Multi-Specific Molecules |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190338013A1 true US20190338013A1 (en) | 2019-11-07 |
Family
ID=59685848
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/079,949 Abandoned US20190338013A1 (en) | 2016-02-26 | 2017-02-27 | Multi-Specific Molecules |
| US16/946,451 Abandoned US20210040177A1 (en) | 2016-02-26 | 2020-06-22 | Multi-Specific Molecules |
| US17/223,935 Active US11345736B2 (en) | 2016-02-26 | 2021-04-06 | Multi-specific molecules |
| US18/239,052 Pending US20240182542A1 (en) | 2016-02-26 | 2023-08-28 | Multi-Specific Molecules |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/946,451 Abandoned US20210040177A1 (en) | 2016-02-26 | 2020-06-22 | Multi-Specific Molecules |
| US17/223,935 Active US11345736B2 (en) | 2016-02-26 | 2021-04-06 | Multi-specific molecules |
| US18/239,052 Pending US20240182542A1 (en) | 2016-02-26 | 2023-08-28 | Multi-Specific Molecules |
Country Status (7)
| Country | Link |
|---|---|
| US (4) | US20190338013A1 (enExample) |
| EP (1) | EP3419667A4 (enExample) |
| JP (3) | JP7536424B2 (enExample) |
| CN (1) | CN109310766A (enExample) |
| AU (2) | AU2017222700B2 (enExample) |
| TW (1) | TW201734037A (enExample) |
| WO (1) | WO2017143406A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022081529A1 (en) * | 2020-10-12 | 2022-04-21 | Greffex, Inc. | Antibody constructs to target t cell responses to sars-cov protein expressing cells, their design and uses |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017143406A1 (en) * | 2016-02-26 | 2017-08-31 | Imunexus Pty Ltd | Multi-specific molecules |
| WO2018014260A1 (en) | 2016-07-20 | 2018-01-25 | Nanjing Legend Biotech Co., Ltd. | Multispecific antigen binding proteins and methods of use thereof |
| WO2018068201A1 (en) | 2016-10-11 | 2018-04-19 | Nanjing Legend Biotech Co., Ltd. | Single-domain antibodies and variants thereof against ctla-4 |
| CN110944651A (zh) | 2017-02-08 | 2020-03-31 | 蜻蜓疗法股份有限公司 | 用于自然杀伤细胞激活的多特异性结合蛋白及其治疗癌症的治疗性用途 |
| ES2955074T3 (es) | 2017-02-20 | 2023-11-28 | Dragonfly Therapeutics Inc | Proteínas que se unen a HER2, NKG2D Y CD16 |
| MX2019013648A (es) | 2017-05-19 | 2021-01-08 | Wuxi Biologics Shanghai Co Ltd | Anticuerpos monoclonales novedosos para proteina 4 asociada con el linfocito t citotoxico (ctla-4). |
| EP3668893A4 (en) * | 2017-08-16 | 2021-08-04 | Dragonfly Therapeutics, Inc. | PROTEINS BINDING TO NKG2D, CD16 AND EGFR, HLA-E, CCR4, OR PD-L1 |
| CN117050184A (zh) | 2017-12-28 | 2023-11-14 | 南京传奇生物科技有限公司 | 针对tigit的单域抗体和其变体 |
| TW201930349A (zh) * | 2018-01-08 | 2019-08-01 | 大陸商南京傳奇生物科技有限公司 | 多重特異性抗原結合蛋白及其使用方法 |
| JP7366908B2 (ja) | 2018-01-15 | 2023-10-23 | ナンジン レジェンド バイオテック カンパニー,リミテッド | Pd-1に対する単一ドメイン抗体及びその変異体 |
| CA3090236A1 (en) | 2018-02-08 | 2019-08-15 | Dragonfly Therapeutics, Inc. | Combination therapy of cancer involving multi-specific binding proteins that activate natural killer cells |
| SG11202007482WA (en) | 2018-02-08 | 2020-09-29 | Dragonfly Therapeutics Inc | Antibody variable domains targeting the nkg2d receptor |
| KR102832460B1 (ko) | 2018-02-20 | 2025-07-11 | 드래곤플라이 쎄라퓨틱스, 인크. | Cd33, nkg2d, 및 cd16에 결합하는 다중-특이적 결합 단백질, 및 이의 사용 방법 |
| EA202091888A1 (ru) | 2018-08-08 | 2020-10-23 | Драгонфлай Терапьютикс, Инк. | Вариабельные домены антител, нацеленные на рецептор nkg2d |
| MA53293A (fr) | 2018-08-08 | 2021-11-17 | Dragonfly Therapeutics Inc | Protéines de liaison multi-spécifiques se liant à bcma, nkg2d et cd16, et méthodes d'utilisation |
| MX2021001527A (es) | 2018-08-08 | 2021-06-15 | Dragonfly Therapeutics Inc | Proteínas de unión a nkg2d, cd16 y a un antígeno asociado a tumor. |
| BR112021012631A2 (pt) | 2018-12-26 | 2021-12-14 | Xilio Dev Inc | Anticorpos anti-ctla4 e métodos de uso dos mesmos |
| KR20210131373A (ko) * | 2019-02-18 | 2021-11-02 | 커리어 테라퓨틱스, 인코포레이티드. | 오르토폭스바이러스 주요 조직적합성 복합체(mhc) 클래스 i-유사 단백질(omcp) 및 종양-특이 결합 파트너를 사용한 이중특이적 융합 단백질 |
| JP2022527761A (ja) * | 2019-03-26 | 2022-06-06 | フォーティ セブン, インコーポレイテッド | がん治療のための多重特異性作用物質 |
| EP3816185A1 (en) * | 2019-11-04 | 2021-05-05 | Numab Therapeutics AG | Multispecific antibody directed against pd-l1 and a tumor-associated antigen |
| EP4093745A4 (en) * | 2020-01-20 | 2024-03-06 | Wuxi Biologics Ireland Limited | NEW WASH BUFFER SOLUTION FOR AFFINITY CHROMATOGRAPHY |
| MX2022013944A (es) | 2020-05-06 | 2022-11-30 | Dragonfly Therapeutics Inc | Proteinas que se unen al receptor activador de celulas asesinas naturales grupo 2 miembro d (nkg2d), cumulo de diferenciacion (cd16) y miembro a de la familia de dominios de lectina tipo c 12 (clec12a). |
| WO2022187539A1 (en) | 2021-03-03 | 2022-09-09 | Dragonfly Therapeutics, Inc. | Methods of treating cancer using multi-specific binding proteins that bind nkg2d, cd16 and a tumor-associated antigen |
| US20250345423A1 (en) * | 2021-11-26 | 2025-11-13 | Imunexus Therapeutics Limited | Binding domain molecules on cell surfaces |
| CN115078718B (zh) * | 2022-07-22 | 2024-11-12 | 福建师范大学 | 一种基于表面增强拉曼技术检测透明质酸酶的方法 |
| EP4615859A2 (en) * | 2022-11-09 | 2025-09-17 | Repligen Corporation | Affinity agents |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AUPP221098A0 (en) * | 1998-03-06 | 1998-04-02 | Diatech Pty Ltd | V-like domain binding molecules |
| EP1163339A1 (en) * | 1999-04-01 | 2001-12-19 | Innogenetics N.V. | A polypeptide structure for use as a scaffold |
| US20100081792A1 (en) * | 2001-06-28 | 2010-04-01 | Smithkline Beecham Corporation | Ligand |
| US9321832B2 (en) * | 2002-06-28 | 2016-04-26 | Domantis Limited | Ligand |
| DE112008003232T5 (de) * | 2007-11-30 | 2011-02-24 | Glaxo Group Limited, Greenford | Antigen-Bindungskonstrukte |
| HRP20180045T1 (hr) * | 2008-10-02 | 2018-03-23 | Aptevo Research And Development Llc | Proteini antagonisti cd86 koji se vežu na više meta |
| CA2763493A1 (en) * | 2009-05-28 | 2010-12-02 | Glaxo Group Ltd. | Antigen-binding proteins |
| CN102458471A (zh) | 2009-05-28 | 2012-05-16 | 葛兰素集团有限公司 | 用于治疗或预防眼病的TNFα拮抗剂和VEGF拮抗剂的组合 |
| WO2017143406A1 (en) * | 2016-02-26 | 2017-08-31 | Imunexus Pty Ltd | Multi-specific molecules |
-
2017
- 2017-02-27 WO PCT/AU2017/050168 patent/WO2017143406A1/en not_active Ceased
- 2017-02-27 US US16/079,949 patent/US20190338013A1/en not_active Abandoned
- 2017-02-27 AU AU2017222700A patent/AU2017222700B2/en active Active
- 2017-02-27 EP EP17755659.4A patent/EP3419667A4/en active Pending
- 2017-02-27 CN CN201780024999.5A patent/CN109310766A/zh active Pending
- 2017-02-27 JP JP2018563747A patent/JP7536424B2/ja active Active
- 2017-03-01 TW TW106106646A patent/TW201734037A/zh unknown
-
2019
- 2019-01-02 AU AU2019200005A patent/AU2019200005A1/en not_active Abandoned
-
2020
- 2020-06-22 US US16/946,451 patent/US20210040177A1/en not_active Abandoned
-
2021
- 2021-04-06 US US17/223,935 patent/US11345736B2/en active Active
-
2022
- 2022-05-11 JP JP2022078237A patent/JP2022105574A/ja active Pending
-
2023
- 2023-08-28 US US18/239,052 patent/US20240182542A1/en active Pending
- 2023-12-26 JP JP2023219531A patent/JP2024026531A/ja active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022081529A1 (en) * | 2020-10-12 | 2022-04-21 | Greffex, Inc. | Antibody constructs to target t cell responses to sars-cov protein expressing cells, their design and uses |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2022105574A (ja) | 2022-07-14 |
| CN109310766A (zh) | 2019-02-05 |
| US20240182542A1 (en) | 2024-06-06 |
| TW201734037A (zh) | 2017-10-01 |
| US20210230249A1 (en) | 2021-07-29 |
| US20210040177A1 (en) | 2021-02-11 |
| AU2017222700B2 (en) | 2018-09-27 |
| EP3419667A1 (en) | 2019-01-02 |
| JP7536424B2 (ja) | 2024-08-20 |
| EP3419667A4 (en) | 2019-10-23 |
| AU2017222700A1 (en) | 2018-03-22 |
| WO2017143406A1 (en) | 2017-08-31 |
| AU2019200005A1 (en) | 2019-01-24 |
| JP2019510812A (ja) | 2019-04-18 |
| JP2024026531A (ja) | 2024-02-28 |
| US11345736B2 (en) | 2022-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11345736B2 (en) | Multi-specific molecules | |
| US20250295767A1 (en) | Ror1-specific antigen binding molecules | |
| CN116761815A (zh) | T细胞和嵌合刺激受体及其应用 | |
| US8329183B2 (en) | Recombinant fusion protein and polynucleotide construct for immunotoxin production | |
| JP2019523651A (ja) | 抗psma抗体およびその使用 | |
| US11912771B2 (en) | MAGE-A4 peptide-MHC antigen binding proteins | |
| US20230203167A1 (en) | Anti-pd-l1 and pd-l2 antibody and derivatives and use thereof | |
| KR20220161362A (ko) | 다중특이적 항체를 작제하기 위한 플랫폼 | |
| CN117964767B (zh) | 抗rage抗体、细胞外囊泡及其制备方法和应用 | |
| JP2024100838A (ja) | 抗ラムダ骨髄腫抗原(lma)発現がん及び自己免疫障害を処置するlma結合タンパク質 | |
| US20240101680A1 (en) | Antibodies Targeting Integrin Beta-2 | |
| KR20250085636A (ko) | 신규 항-myct1 인간항체 및 이의 용도 | |
| WO2025148933A1 (zh) | 抗体及其药物偶联物和用途 | |
| WO2025146128A1 (zh) | 抗liv-1的抗体及其用途 | |
| KR20250001441A (ko) | 인간화 항-myct1 항체 및 이의 용도 | |
| WO2025215160A1 (en) | Antigen binding proteins targeting an hla-restricted prame peptide | |
| US8597655B2 (en) | Recombinant fusion protein and polynucleotide construct for immunotoxin production | |
| CN117751146A (zh) | Mage-a4肽-mhc抗原结合蛋白 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: IMUNEXUS PTY LTD., AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBERTS, ANTHONY;KOPSIDAS, GEORGE;LUKE, MICHAEL;AND OTHERS;SIGNING DATES FROM 20160103 TO 20170608;REEL/FRAME:047156/0055 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |