US20190241828A1 - Lubricant oil composition and method for manufacturing same - Google Patents
Lubricant oil composition and method for manufacturing same Download PDFInfo
- Publication number
- US20190241828A1 US20190241828A1 US16/318,441 US201716318441A US2019241828A1 US 20190241828 A1 US20190241828 A1 US 20190241828A1 US 201716318441 A US201716318441 A US 201716318441A US 2019241828 A1 US2019241828 A1 US 2019241828A1
- Authority
- US
- United States
- Prior art keywords
- lubricating oil
- oil composition
- mass
- content
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 [1*]C([2*])(=S)[5*]C([3*])([4*])=S Chemical compound [1*]C([2*])(=S)[5*]C([3*])([4*])=S 0.000 description 3
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/044—Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/76—Esters containing free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/02—Sulfurised compounds
- C10M135/06—Esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/12—Thio-acids; Thiocyanates; Derivatives thereof
- C10M135/14—Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
- C10M135/18—Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/32—Heterocyclic sulfur, selenium or tellurium compounds
- C10M135/36—Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/08—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M151/00—Lubricating compositions characterised by the additive being a macromolecular compound containing sulfur, selenium or tellurium
- C10M151/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M157/00—Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
- C10M157/06—Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential at least one of them being a sulfur-, selenium- or tellurium-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M157/00—Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
- C10M157/10—Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential at least one of them being a compound containing atoms of elements not provided for in groups C10M157/02 - C10M157/08
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/003—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/14—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/144—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/106—Thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2221/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/066—Organic compounds derived from inorganic acids or metal salts derived from Mo or W
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/45—Ash-less or low ash content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/52—Base number [TBN]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C10N2230/04—
-
- C10N2230/10—
-
- C10N2230/45—
-
- C10N2230/52—
-
- C10N2240/10—
Definitions
- the present invention relates to a lubricating oil composition and a method for producing the same.
- a lubricating oil composition In an engine equipped with a forced-induction mechanism, a lubricating oil composition is liable to deteriorate due to the high thermal load applied to the lubricating oil composition. A deteriorated lubricating oil composition is insufficient in detergency, and therefore it is necessary to blend a metal-based detergent therewith to retain the detergency and the total base number.
- a sulfated ash content formed from the metal-based detergent or the like may be a factor of deposits in the deterioration of the lubricating oil composition.
- the deposits thus formed may be a factor wearing the engine components.
- a lubricating oil composition having a high fuel efficiency is being demanded from the standpoint of the environmental regulation in recent years. Accordingly, the lubricating oil composition is demanded to retain the friction reducing capability even after the deterioration thereof.
- PTL 1 describes a lubricating oil composition containing at least 90% by weight of a base oil and a particular antioxidant, such as a sulfurized fatty acid.
- PTL 2 describes a lubricating oil composition containing a base oil, a particular hindered amine compound, and an organic molybdenum compound.
- the lubricating oil composition of PTL 1 is suppressed in the deterioration of the lubricating oil composition due to oxidation.
- the lubricating oil composition of PTL 2 is suppressed in the deterioration of the lubricating oil composition due to NOR.
- the lubricating oil compositions of PTLs 1 and 2 do not consider the retention of the friction reducing capability after the deterioration of the lubricating oil composition.
- the present invention has been made in view of the aforementioned circumstances, and an object thereof is to provide a lubricating oil composition that has good detergency irrespective of the small sulfated ash content thereof, and has a good friction reducing capability even after the deterioration thereof, and a method for producing the same.
- the present invention provides the following items [1] and [2].
- the lubricating oil composition of the present invention has good detergency irrespective of the small sulfated ash content thereof, and has a good friction reducing capability even after the deterioration thereof.
- the method for producing a lubricating oil composition of the present invention can readily produce a lubricating oil composition that exhibits the aforementioned effects.
- the lubricating oil composition of the present embodiment contains a base oil (A), a non-metal-containing sulfur antioxidant (B), and a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition, a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, a sulfated ash content of 0.70% by mass or less, and a total base number of 4.0 mgKOH/g or more.
- the base oil (A) may be a mineral oil or a synthetic oil, and a mixed oil of a mineral oil and a synthetic oil may also be used.
- the mineral oil examples include an atmospheric residual oil obtained by distilling a crude oil, such as a paraffin mineral oil, an intermediate base mineral oil, and a naphthene mineral oil, under an atmospheric pressure; a distilled oil obtained by distilling the atmospheric residual oil under reduced pressure; a mineral oil obtained by subjecting the distilled oil to one or more of solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, and the like; and a mineral oil obtained by isomerizing wax produced by the Fischer-Tropsch process or the like (GTL wax (gas-to-liquid wax)).
- the mineral oil is preferably a mineral oil that is classified to Group 3 in the base oil classification by American Petroleum Institute.
- Examples of the synthetic oil include a hydrocarbon synthetic oil and an ether synthetic oil.
- Examples of the hydrocarbon synthetic oil include an ⁇ -olefin oligomer, such as polybutene, polyisobutylene, a 1-octene oligomer, a 1-decene oligomer, and an ethylene-propylene copolymer, or a hydrogenated product thereof, an alkylbenzene, and an alkylnaphthalene.
- Examples of the ether synthetic oil include polyoxyalkylene glycol and polyphenyl ether.
- the base oil may be a single system using any one kind of the mineral oils and the synthetic oils described above, and may be a mixed system, such as a mixture of two or more kinds of the mineral oil, a mixture of two or more kinds of the synthetic oil, and a mixture of one kind or two or more kinds of each of the mineral oil and the synthetic oil.
- the base oil (A) preferably has a kinematic viscosity at 100° C. of from 2.0 to 20.0 mm 2 /s, more preferably from 2.0 to 15.0 mm 2 /s, further preferably from 2.0 to 7.0 mm 2 /s, and still further preferably from 2.0 to 5.0 mm 2 /s.
- the kinematic viscosity at 100° C. of the base oil (A) that is 2.0 mm 2 /s or more is preferred since the evaporation loss may be small.
- the kinematic viscosity at 100° C. of the base oil (A) that is 20.0 mm 2 /s or less is preferred since the power loss due to the viscosity resistance can be suppressed to achieve improvement in fuel efficiency.
- the base oil (A) preferably has a viscosity index of 80 or more, more preferably 100 or more, and further preferably 120 or more, from the standpoint of the suppression of the viscosity change by the temperature change, and the enhancement of the fuel efficiency.
- the base oil (A) is a mixed oil of two or more kinds selected from a mineral oil and a synthetic oil
- the mixed oil preferably has a kinematic viscosity and a viscosity index within the aforementioned ranges.
- kinematic viscosity at 100° C. and the “viscosity index” are values that are measured and calculated according to JIS K2283:2000.
- the content of the base oil (A) is preferably less than 90% by mass based on the total amount (100% by mass) of the lubricating oil composition. With the content of the base oil (A) of less than 90% by mass, the amounts of the non-metal-containing sulfur antioxidant (B) and the hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule described later can be ensured to facilitate the achievement of the effects of the present invention.
- the content of the base oil (A) is more preferably 60% by mass or more and less than 90% by mass, further preferably 70% by mass or more and 85% by mass or less, and still further preferably 75% by mass or more and 85% by mass or less, based on the total amount of the lubricating oil composition.
- the non-metal-containing sulfur antioxidant (B) is a compound that contains at least one sulfur atom and does not contain a metal atom.
- the lubricating oil composition of the present embodiment has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition.
- the friction reducing effect after the deterioration of the lubricating oil composition cannot be retained.
- the content of sulfur atom is a value that is measured according to ASTM D-1552.
- the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom is preferably 800 ppm or more and 6,500 ppm by mass or less, more preferably 1,000 ppm or more and 6,500 ppm by mass or less, and further preferably 1,500 ppm or more and 6,200 ppm by mass or less, based on the total amount of the lubricating oil composition.
- non-metal-containing sulfur antioxidant (B) examples include one or more kind selected from a thiocarbamate compound, a thiadiazole compound, a polysulfide compound, and a sulfurized fat or fatty oil.
- one or more kind selected from a thiocarbamate compound, a thiadiazole compound, and a polysulfide compound is preferred from the standpoint of the suppression of the viscosity increase after deterioration of the lubricating oil composition.
- Examples of the thiocarbamate compound include compounds represented by the following general formulae (1A) and (1B).
- R 1 to R 4 each represent an alkyl group having from 1 to 30 carbon atoms or a phenyl group, in which R 1 to R 4 may be the same as or different from each other; and R 5 represents an alkylene group having from 1 to 10 carbon atoms.
- R 6 and R 7 each represent an alkyl group having from 1 to 30 carbon atoms or a phenyl group, in which R 6 and R 7 may be the same as or different from each other; and R 8 represents a hydrogen atom or an alkyl group having from 1 to 10 carbon atoms.
- R 1 to R 4 each preferably represent an alkyl group having from 1 to 12 carbon atoms or a phenyl group, more preferably represent an alkyl group having from 2 to 8 carbon atoms or a phenyl group, and further preferably represent an alkyl group having from 3 to 5 carbon atoms.
- R 1 to R 4 are preferably the same as each other.
- R 5 preferably represents an alkylene group having 1 or 2 carbon atoms, and more preferably an alkylene group having 2 carbon atoms (i.e., an ethylene group).
- R 6 and R 7 each preferably represent an alkyl group having from 1 to 12 carbon atoms or a phenyl group, more preferably represent an alkyl group having from 2 to 8 carbon atoms or a phenyl group, and further preferably represent an alkyl group having from 3 to 5 carbon atoms.
- R 6 and R 7 are preferably the same as each other.
- R 8 preferably represents an alkylene group having 1 or 2 carbon atoms, and more preferably an alkylene group having 2 carbon atoms (i.e., an ethylene group).
- thiocarbamate compound represented by the formula (1A) examples include methylene bis(diethylthiocarbamate), ethylene bis(diethyldithiocarbamate), methylene bis(dipropylthiocarbamate), ethylene bis(dipropyldithiocarbamate), methylene bis(dibutyldithiocarbamate), ethylene bis(dibutyldithiocarbamate), methylene bis(dipentyldithiocarbamate), ethylene bis(dipentyldithiocarbamate), methylene bis(dihexyldithiocarbamate), and ethylene bis(dihexyldithiocarbamate).
- thiocarbamate compound represented by the formula (1B) include diethylthiocarbamic acid, methylene diethylthiocarbamate, ethylene diethyldithiocarbamate, dipropylthiocarbamic acid, methylene dipropylthiocarbamate, ethylene dipropyldithiocarbamate, dibutyldithiocarbamic acid, methylene dibutyldithiocarbamate, ethylene dibutyldithiocarbamate, dipentyldithiocarbamic acid, methylene dipentyldithiocarbamate, ethylene dipentyldithiocarbamate, methylene dihexyldithiocarbamate, and ethylene dihexyldithiocarbamate.
- thiadiazole compound examples include a compound having a 1,3,4-thiadiazole or 1,2,4-thiadiazole as a skeleton in a molecule.
- thiadiazole compound examples include 2,5-bis(n-hexyldithio)-1,3,4-thiadiazole, 2,5-bis(n-octyldithio)-1,3,4-thiadiazole, 2,5-bis(n-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(1,1,3,3-tetramethylbutldithio)-1,3,4-thiadiazole, 2,5-bis(t-nonyl)-1,3,4-thiadiazole, 2,5-bis(t-nonylamino)-1,3,4-thiadiazole, 2,5-bis(t-nonylthio)-1,3,4-thiadiazole, 2,5-bis(t-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(dimethylhexyl)-1,3,4-thiadiazole, 2,5-bis(dimethylhexylthio)-2,
- polysulfide compound examples include a compound represented by the following general formula (2) (i.e., a dihydrocarbyl polysulfide).
- R 21 and R 22 each independently represent a hydrocarbon group selected from an alkyl group having from 3 to 20 carbon atoms, an aryl group having from 6 to 20 carbon atoms, an alkylaryl group having from 7 to 20 carbon atoms, an arylalkyl group having from 7 to 20 carbon atoms, and an alkenyl group having from 3 to 20 carbon atoms, which may be the same as or different from each other; and x represents an integer of from 2 to 10.
- the alkyl group and the alkenyl group in R 21 and R 22 each may be linear or branched.
- R 21 and R 22 each preferably have from 6 to 18 carbon atoms, and x is preferably from 2 to 8, and more preferably from 3 to 7.
- dihydrocarbyl polysulfide examples include a dialkyl polysulfide, an olefin polysulfide, and a dibenzyl polysulfide.
- Examples of the olefin polysulfide include a compound obtained by reacting an olefin having from 3 to 20 carbon atoms or a dimer to tetramer thereof with a sulfurizing agent, such as sulfur and a sulfur halide.
- a sulfurizing agent such as sulfur and a sulfur halide.
- Preferred examples of the olefin include propylene, isobutene, and diisobutene.
- Examples of the olefin polysulfide include a compound represented by the general formula (2), wherein one of R 21 and R 22 represents an alkenyl group, and the other thereof represents an alkenyl group or an alkyl group.
- the sulfurized fat or fatty oil mean sulfurized product of animal or vegetable oil, and examples thereof include a sulfurized lard, a sulfurized canola oil, sulfurized castor oil, and sulfurized soybean oil.
- the sulfurized fat or fatty oil encompass a disulfurized fatty acid, such as sulfurized oleic acid, and a sulfurized ester, such as sulfurized methyl oleate.
- the content of the non-metal-containing sulfur antioxidant (B) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 3.0% by mass or less, more preferably 0.3% by mass or more and 2.0% by mass or less, and further preferably 0.3% by mass or more and 1.5% by mass or less, based on the total amount of the lubricating oil composition.
- the lubricating oil composition of the present embodiment contains the hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule.
- Examples of the piperidine-derived skeleton include a 2,2,6,6-tetramethylpiperidine skeleton, a 2,2,6,6-tetramethylpiperidine-N-oxyl skeleton, a 2,2,6,6-tetramethylpiperidine-N-alkyl skeleton, and a 2,2,6,6-tetramethylpiperidine-N-acyl skeleton.
- the “hindered amine antioxidant having one piperidine-derived skeleton in a molecule” may be referred to as a “monohindered amine antioxidant”.
- the lubricating oil composition of the present embodiment has a content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
- the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom is less than 100 ppm by mass based on the total amount of the lubricating oil composition, the amount of a metal-based detergent necessary for increasing the total base number is increased, and thus the amount of deposits caused by the sulfated ash content due to the deterioration of the lubricating oil is increased to fail to suppress the wear of the engine components.
- the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom exceeds 400 ppm by mass based on the total amount of the lubricating oil composition, the friction reducing capability after the deterioration of the lubricating oil composition cannot be retained.
- the excessive amount of the monohindered amine antioxidant (C) largely impairs the friction reducing capability based on the molybdenum friction modifier (E).
- a hindered amine antioxidant having two piperidine-derived skeletons in a molecule which may be hereinafter referred to as a “bishindered amine antioxidant”
- a hindered amine antioxidant having three or more piperidine-derived skeletons in a molecule is contained in an amount of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, the amount of a metal-based detergent necessary for increasing the total base number can be decreased, but the friction reducing capability after the deterioration of the lubricating oil composition cannot be retained.
- the monohindered amine antioxidant (C) is used as the hindered amine antioxidant, and the content of the monohindered amine antioxidant is 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
- the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom is preferably 200 ppm by mass or more and 400 ppm by mass or less, more preferably 200 ppm by mass or more and 300 ppm by mass or less, and further preferably 200 ppm by mass or more and 250 ppm by mass or less, based on the total amount of the lubricating oil composition.
- the content of nitrogen atom is a value that is measured according to JIS K2609:1998.
- monohindered amine antioxidant (C) examples include 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, 2,2,6,6-tetramethylpiperidinyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, and 2,2,6,6-tetramethylpiperidin-4-yl dodecanoate.
- the content of the monohindered amine antioxidant (C) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 1.0% by mass or less, more preferably 0.2% by mass or more and 0.9% by mass or less, and further preferably 0.4% by mass or more and 0.7% by mass or less, based on the total amount of the lubricating oil composition.
- the lubricating oil composition of the present embodiment preferably does not substantially contain an amine antioxidant other than the monohindered amine antioxidant from the standpoint of the enhancement of the initial total base number and the standpoint of the retention of the friction reducing capability after the deterioration of the lubricating oil composition.
- the lubricating oil composition of the present embodiment preferably does not substantially contain a hindered amine antioxidant other than the monohindered amine antioxidant and/or a diarylamine antioxidant.
- the expression “not substantially contain” herein means that the content of an amine antioxidant other than the monohindered amine antioxidant is less than 0.1% by mass, and preferably less than 0.01% by mass, based on the total amount of the lubricating oil composition.
- the lubricating oil composition of the present embodiment preferably further contains a metal-based detergent (D).
- the metal-based detergent (D) contained in the lubricating oil composition may suppress the formation of deposits inside the engine, and may suppress the wear of the engine components.
- the metal-based detergent (D) used may be, for example, one or more kind selected from a calcium-based detergent and a magnesium-based detergent, and one or more kind selected from a calcium-based detergent is preferably used from the standpoint of the fuel efficiency.
- Examples of the calcium-based detergent include calcium sulfonate, calcium phenate, and calcium salicylate.
- calcium salicylate which well suppresses the formation of deposits, is preferred.
- magnesium-based detergent examples include magnesium sulfonate, magnesium phenate, and magnesium salicylate.
- magnesium salicylate which well suppresses the formation of deposits, is preferred.
- the metal-based detergent preferably has a total base number of 150 mgKOH/g or more, more preferably from 150 to 500 mgKOH/g, further preferably from 150 to 450 mgKOH/g, and still further preferably from 180 to 400 mgKOH/g, from the standpoint of the detergency.
- the content of the metal-based detergent (D) as converted in terms of metal atom is preferably 700 ppm by mass or more and 1,400 ppm by mass or less, more preferably 850 ppm by mass or more and 1,350 ppm by mass or less, and further preferably 1,000 ppm by mass or more and 1,250 ppm by mass or less, based on the total amount of the lubricating oil composition, from the standpoint of the enhancement of the total base number and the standpoint of the suppression of the sulfated ash content caused by the metal-based detergent (D).
- the content of metal atom (for example, the content of metal atom based on the metal-based detergent (D)) and the content of molybdenum atom based on the molybdenum friction modifier (E)) is a value that is measured according to ASTM D4951.
- the content of the metal-based detergent (D) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 10.0% by mass or less, more preferably 0.2% by mass or more and 5.0% by mass or less, and further preferably 0.5% by mass or more and 3.0% by mass or less, based on the total amount of the lubricating oil composition.
- the lubricating oil composition of the present embodiment preferably further contains a molybdenum friction modifier (E).
- the molybdenum friction modifier (E) contained in the lubricating oil composition may facilitate the improvement of the friction reducing capability of the lubricating oil composition.
- the molybdenum friction modifier (E) used may be an organic compound having a molybdenum atom, and from the standpoint of the friction reduction, a molybdenum dithiophosphate (MoDTP) and a molybdenum dithiocarbamate (MoDTC) are preferred, and a molybdenum dithiocarbamate (MoDTC) is more preferred.
- MoDTP molybdenum dithiophosphate
- MoDTC molybdenum dithiocarbamate
- MoDTC molybdenum dithiocarbamate
- MoDTC molybdenum dithiocarbamate
- R 31 to R 34 each independently represent a hydrocarbon group having from 5 to 18 carbon atoms, and may be the same as or different from each other.
- the number of carbon atoms of the hydrocarbon group is preferably from 5 to 16, more preferably from 8 to 14, and further preferably 12.
- X 31 to X 34 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other.
- the molar ratio of sulfur atom and oxygen atom (sulfur atom/oxygen atom) in X 31 to X 34 is preferably from 1/3 to 3/1, and more preferably from 1.5/2.5 to 3/1, from the standpoint of the enhancement of the solubility thereon in the base oil (A).
- Examples of the hydrocarbon group represented by R 31 to R 34 include an alkyl group having from 5 to 18 carbon atoms, such as a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group; an alkenyl group having from 5 to 18 carbon atoms, such as an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, and a pent
- the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom is preferably 300 ppm by mass or more and 1,300 ppm by mass or less, more preferably 350 ppm by mass or more and 1,000 ppm by mass or less, and further preferably 400 ppm by mass or more and 800 ppm by mass or less, based on the total amount of the lubricating oil composition.
- the content thereof is 300 ppm by mass or more, the friction reducing capability of the lubricating oil composition can be improved, and in the case where the content thereof is 1,300 ppm by mass or less, the sulfated ash content can be decreased.
- the content of the molybdenum friction modifier (E) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.2% by mass or more and 2.0% by mass or less, more preferably 0.3% by mass or more and 1.5% by mass or less, and further preferably 0.5% by mass or more and 1.0% by mass or less, based on the total amount of the lubricating oil composition.
- the lubricating oil composition of the present embodiment may contain additives, such as an ash-free detergent, an ash-free friction modifier, an anti-wear agent, an extreme pressure agent, a viscosity index improver, a metal deactivator, a pour point depressant, a rust inhibitor, and an anti-foaming agent, that do not correspond to the aforementioned components, in such a range that does not impair the effects of the present invention.
- the additives may be used alone or as a combination of two or more kinds thereof.
- the contents of the additives each may be appropriately controlled within a range that does not impair the effects of the present invention, and each are generally from 0.001 to 15% by mass, preferably from 0.005 to 10% by mass, and more preferably from 0.01 to 8% by mass, based on the total amount of the lubricating oil composition.
- the total content of the additives for a lubricating oil is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less, based on the total amount of the lubricating oil composition.
- Examples of the ash-free detergent include an alkenylsuccinimide, such as an alkenylsuccinmonoimide and an alkenylsuccinbisimide, and a boron-modified alkenylsuccinimide.
- Examples of the ash-free friction modifier include an aliphatic amine, an aliphatic ester, an aliphatic amide, a fatty acid, an aliphatic alcohol, and an aliphatic ether, each having at least one alkyl or alkenyl group having from 6 to 30 carbon atoms in a molecule.
- Examples of the anti-wear agent and the extreme pressure agent include a sulfur-containing compound, such as zinc dithiophosphate; a phosphorus-containing compound, such as a phosphite ester compound, a phosphate ester compound, a phosphonate ester compound, and amine salts and metal salts of these compounds; and a sulfur and phosphorus-containing anti-wear agent, such as a thiophosphite ester compound, a thiophosphate ester compound, a thiophosphonate ester compound, and amine salts and metal salts of these compounds.
- a sulfur-containing compound such as zinc dithiophosphate
- a phosphorus-containing compound such as a phosphite ester compound, a phosphate ester compound, a phosphonate ester compound, and amine salts and metal salts of these compounds
- a sulfur and phosphorus-containing anti-wear agent such as a thiophosphite ester compound,
- the viscosity index improver examples include a polymethacrylate, a dispersion type polymethacrylate, an olefin copolymer (such as an ethylene-propylene copolymer), a dispersion type olefin copolymer, and a styrene copolymer (such as a styrene-diene copolymer and a styrene-isoprene copolymer).
- an olefin copolymer such as an ethylene-propylene copolymer
- a dispersion type olefin copolymer such as an ethylene-propylene copolymer
- a styrene copolymer such as a styrene-diene copolymer and a styrene-isoprene copolymer
- Examples of the corrosion inhibitor include a benzotriazole compound, a tolyltriazole compound, an imidazole compound, and a pyrimidine compound.
- pour point depressant examples include an ethylene-vinyl acetate copolymer, a condensate of chlorinated paraffin and naphthalene, a condensate of chlorinated paraffin and phenol, a polymethacrylate, and a polyalkylstyrene.
- rust inhibitor examples include a petroleum sulfonate, an alkylbenzene sulfonate, dinonylnaphthalene sulfonate, an alkenylsuccinate ester, and a polyhydric alcohol ester.
- anti-foaming agent examples include a silicone oil, a fluorosilicone oil, and a fluoroalkyl ether.
- the lubricating oil composition of the present embodiment preferably has a ratio of the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the metal-based detergent (D) as converted in terms of metal atom [(content of monohindered amine antioxidant (C) as converted in terms of nitrogen atom)/(content of metal-based detergent (D) as converted in terms of metal atom)] of from 0.14 to 0.58, and more preferably from 0.15 to 0.30.
- the content of the metal-based detergent (D) can be suppressed to increase the total base number, and thereby the formation of deposits can be suppressed to suppress the wear of the engine components.
- the content of the monohindered amine antioxidant (C) can be suppressed, and thereby the friction reducing capability after the deterioration of the lubricating oil composition can be readily retained, and the monohindered amine antioxidant (C) can be prevented from becoming deposits.
- the lubricating oil composition of the present embodiment preferably has a ratio of the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] of from 0.92 to 13.35, more preferably from 1.00 to 9.00, and further preferably from 2.00 to 9.00.
- the ratio is 0.92 or more
- the increase of the viscosity of the lubricating oil composition in the thermal deterioration thereof can be suppressed.
- the ratio is 13.35 or less, the friction reducing capability after the deterioration of the lubricating oil composition can be readily retained.
- the lubricating oil composition of the present embodiment preferably has a ratio of the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of monohindered amine antioxidant (C) as converted in terms of nitrogen)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] of from 0.15 to 1.35, more preferably from 0.20 to 0.60, and further preferably from 0.25 to 0.60.
- the friction reducing capability based on the molybdenum friction modifier (E) can be readily retained, after the deterioration of the lubricating oil composition.
- the ratio is 1.35 or less, a film of the molybdenum friction modifier (E) can be readily formed on the surface of the engine components.
- the lubricating oil composition of the present embodiment has a sulfated ash content of 0.70% by mass or less.
- the sulfated ash content of the lubricating oil composition exceeds 0.70% by mass, the amount of deposits in the deterioration of the lubricating oil composition is increased, and the wear of the engine components cannot be suppressed.
- the sulfated ash content of the lubricating oil composition is preferably 0.68% by mass or less, more preferably 0.67% by mass or less, and further preferably 0.66% by mass or less.
- the lower limit of the sulfated ash content of the lubricating oil composition is not particularly limited, and is preferably 0.40% by mass or more, more preferably 0.45% by mass or more, and further preferably 0.50% by mass or more, from the standpoint of the increase of the total base number.
- the sulfated ash content is a value that is measured according to JIS K2272:1998.
- the lubricating oil composition of the present embodiment has a total base number of 4.0 mgKOH/g or more.
- the detergency of the lubricating oil composition becomes insufficient to facilitate the formation of deposits and to fail to suppress the wear of the engine components.
- the total base number of the lubricating oil composition is preferably from 4.0 to 7.0 mgKOH/g, more preferably from 4.2 to 7.0 mgKOH/g, and further preferably from 4.5 to 7.0 mgKOH/g.
- the total base number is a value that is measured according to the hydrochloric acid method of JIS K2501:2003.
- the lubricating oil composition of the present embodiment preferably has a content of sulfur atom of from 1,000 to 13,000 ppm by mass, more preferably from 2,000 to 11,000 ppm by mass, and further preferably from 2,000 to 9,000 ppm by mass, based on the total content of the lubricating oil composition.
- the content of sulfur atom is 1,000 ppm by mass or more, the friction reducing capability after the deterioration of the lubricating oil composition can be retained, and in the case where the content thereof is 13,000 ppm by mass or less, the increase of the viscosity in the thermal deterioration of the lubricating oil composition can be suppressed.
- the lubricating oil composition of the present embodiment preferably has a content of nitrogen atom of from 500 to 4,000 ppm by mass, more preferably from 700 to 3,500 ppm by mass, and further preferably from 900 to 3,000 ppm by mass, based on the total content of the lubricating oil composition.
- the detergency dispersibility can be improved, and in the case where the content thereof is 4,000 ppm by mass or less, the compatibility to a resin material, such as rubber, can be improved.
- the lubricating oil composition of the present embodiment preferably has a kinematic viscosity at 100° C. of from 3 to 20 mm 2 /s, more preferably from 3 to 10 mm 2 /s, and further preferably from 5 to 8 mm 2 /s.
- the lubricating oil composition of the present embodiment preferably has a viscosity index of 100 or more, more preferably 120 or more, and further preferably 130 or more.
- the lubricating oil composition of the present embodiment can be favorably used as a lubricating oil composition for an internal combustion engine, such as a gasoline engine, a diesel engine, and a gas engine, of an automobile, such as a four-wheel vehicle and a two-wheel vehicle, an electric power generator, a watercraft, and the like.
- the lubricating oil composition of the present embodiment can be favorably used as a lubricating oil composition for an engine equipped with a forced-induction mechanism, such as a supercharger and a turbocharger.
- the method for producing a lubricating oil composition of the present embodiment includes preparing a lubricating oil composition containing a base oil (A), a non-metal-containing sulfur antioxidant (B), a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and the preparing step is performed to satisfy the following conditions (i) to (iv).
- the preferred embodiments of the constitutional components and the preferred embodiments of the numerical values of the conditions (i) to (iv) are the same as the preferred embodiments of the lubricating oil composition of the present embodiment described above.
- the sulfated ash content was measured according to JIS K2272:1998.
- the total base number was measured according to the hydrochloric acid method of JIS K2501:2003.
- the content of sulfur atom was measured according to ASTM D-1552.
- the content of nitrogen atom was measured according to JIS K2609:1998.
- the content of metal atom was measured according to ASTM D4951.
- the kinematic viscosity was measured according to JIS K2283:2000.
- the viscosity index was measured according to JIS K2283:2000.
- the lubricating oil compositions of Examples and Comparative Examples were prepared according to the compositional ratios shown in Tables 1 and 2. The details of the base oils and the additives used in Examples and Comparative Examples are shown below.
- Bishindered amine antioxidant 1 (Tinuvin 765, a trade name, produced by BASF AG, nitrogen content: 5.3% by mass, number of piperidine-derives skeletons in molecule: 2)
- Bishindered amine antioxidant 2 (Tinuvin 770DF, a trade name, produced by BASF AG, nitrogen content: 5.6% by mass, number of piperidine-derives skeletons in molecule: 2)
- Diarylamine antioxidant (diphenylamine, Irganox L57, a trade name, produced by BASF AG, nitrogen content: 4.6% by mass)
- Molybdenum dithiocarbamate (Sakura-Lube 515, a trade name, produced by Adeka Corporation, molybdenum atom content: 10.0% by mass)
- the lubricating oil composition after the deterioration treatment was subjected to a preconditioning operation under the following condition for 2 hours and then measured for the friction coefficient with the testing machine shown below.
- Testing machine MTM (mini traction machine) tester, produced by PCS Instruments, Ltd.
- Test piece Standard test piece (3 ⁇ 4′′ steel-steel)
- Example 1 2 3 Composition Base oil (A) balance balance balance (% by mass) Non-metal containing sulfur antioxidant (B) B-1 0.50 1.00 2.00 B-2 — — — B-3 — — — B-4 — — — Amine antioxidant Monohindered amine antioxidant (C) 0.50 0.50 0.50 Bishindered amine antioxidant 1 — — — Bishindered amine antioxidant 2 — — — Diphenylamine — — — — Metal-based detergent (D) 1.50 1.50 1.50 Molybdenum friction modifier (E) 0.70 0.70 0.70 Additive mixture 15.00 15.00 15.00 Contents and content Sulfur atom content derived from component (B) (ppm by mass) [i] 1525 3050 6100 ratios of component Nitrogen atom content derived from amine antioxidant (ppm by mass) [ii] 215 215 Metal atom content derived from component (D) (ppm by mass) [iii] 1170 1170 1170 Moly
- the lubricating oil compositions of Examples 1 to 6 can retain the good friction reducing capability even after the deterioration thereof.
- the lubricating oil compositions of Examples 1 to 6 each have a total base number of 4.0 mgKOH/g or more irrespective of the small sulfated ash content of 0.70% by mass or less, and thus are expected to achieve good detergency.
- the lubricating oil compositions of Examples 1 to 6 each have a small sulfated ash content of 0.70% by mass or less, and thus are expected to suppress the wear of the engine components due to deposits.
- the lubricating oil composition of Examples 1 to 6 each have a total base number of 1.0 mgKOH/g or more after the deterioration thereof, and thus are expected to achieve the detergency for a prolonged period of time.
- the lubricating oil compositions of Comparative Examples 1 to 6 cannot retain the good friction reducing capability after the deterioration thereof.
- the lubricating oil compositions of Comparative Examples 1 and 7 each have a total base number of less than 4.0 mgKOH/g, and therefore the lubricating oil compositions are insufficient in detergency, tend to form deposits, and cannot be expected to suppress the wear of the engine components.
- the lubricating oil composition of Comparative Example 2 has a sulfated ash content exceeding 0.70% by mass, and thus cannot be expected to suppress the wear of the engine components due to deposits.
- the lubricating oil compositions of Comparative Examples 1 and 2 each have a total base number of less than 1.0 mgKOH/g after the deterioration thereof, and thus cannot be expected to achieve the detergency for a prolonged period of time.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016235848A JP6863557B2 (ja) | 2016-12-05 | 2016-12-05 | 潤滑油組成物及びその製造方法 |
JP2016-235848 | 2016-12-05 | ||
PCT/JP2017/043138 WO2018105496A1 (ja) | 2016-12-05 | 2017-11-30 | 潤滑油組成物及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190241828A1 true US20190241828A1 (en) | 2019-08-08 |
Family
ID=62491171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/318,441 Abandoned US20190241828A1 (en) | 2016-12-05 | 2017-11-30 | Lubricant oil composition and method for manufacturing same |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190241828A1 (enrdf_load_stackoverflow) |
JP (1) | JP6863557B2 (enrdf_load_stackoverflow) |
CN (1) | CN109477025A (enrdf_load_stackoverflow) |
DE (1) | DE112017006150T5 (enrdf_load_stackoverflow) |
WO (1) | WO2018105496A1 (enrdf_load_stackoverflow) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113293044A (zh) * | 2021-05-26 | 2021-08-24 | 长沙望城石油化工有限公司 | 一种长效抗磨减摩剂组合物及润滑脂及加工油 |
EP3950896A4 (en) * | 2019-03-29 | 2022-12-28 | Idemitsu Kosan Co., Ltd. | LUBRICATING OIL COMPOSITION |
US20240191154A1 (en) * | 2021-03-30 | 2024-06-13 | Idemitsu Kosan Co.,Ltd. | Lubricating oil composition |
US20240376396A1 (en) * | 2021-05-20 | 2024-11-14 | Chevron Japan Ltd. | Low ash lubricating oil composition |
US20250207053A1 (en) * | 2022-03-31 | 2025-06-26 | Idemitsu Kosan Co.,Ltd. | Lubricant composition |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020180267A (ja) * | 2019-04-26 | 2020-11-05 | 出光興産株式会社 | 駆動系機器用潤滑油組成物、その製造方法、駆動系機器の潤滑方法及び駆動系機器 |
US12006485B2 (en) * | 2019-07-26 | 2024-06-11 | Adeka Corporation | Lubricating oil additive and lubricating oil composition containing same |
CN114402059A (zh) * | 2019-09-05 | 2022-04-26 | 雪佛龙奥伦耐有限责任公司 | 润滑油组合物 |
JP7399468B2 (ja) * | 2020-01-24 | 2023-12-18 | 国立大学法人東海国立大学機構 | 有機摩擦調整剤 |
FR3108914B1 (fr) * | 2020-04-01 | 2022-07-01 | Total Marketing Services | Composition lubrifiante comprenant un composé 2,5-dimercapto-1,3,4-thiadiazole alkyl polycarboxylate |
JP6993524B1 (ja) | 2021-03-12 | 2022-02-21 | シェルルブリカンツジャパン株式会社 | 潤滑油組成物 |
US20250092328A1 (en) * | 2022-02-28 | 2025-03-20 | Idemitsu Kosan Co.,Ltd. | Lubricating oil composition for two-wheeled motor vehicles |
CN116948724A (zh) * | 2022-04-15 | 2023-10-27 | 中国石油天然气股份有限公司 | 低灰型轿车发动机润滑油组合物及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150087568A1 (en) * | 2009-02-02 | 2015-03-26 | Vanderbilt Chemicals, Llc | Ashless lubricant composition |
US20150106090A1 (en) * | 2013-10-14 | 2015-04-16 | Samsung Electronics Co., Ltd. | Display apparatus and method of performing voice control |
US20160326453A1 (en) * | 2014-01-10 | 2016-11-10 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710501A (en) | 1980-06-20 | 1982-01-20 | Mitsubishi Electric Corp | Supporting device |
JPS5930904A (ja) | 1982-08-10 | 1984-02-18 | 呉羽化学工業株式会社 | 造花の花弁の開閉方法 |
US6326336B1 (en) * | 1998-10-16 | 2001-12-04 | Ethyl Corporation | Turbine oils with excellent high temperature oxidative stability |
GB0326808D0 (en) * | 2003-11-18 | 2003-12-24 | Infineum Int Ltd | Lubricating oil composition |
CA2549517C (en) * | 2005-06-01 | 2014-01-21 | Infineum International Limited | Lubricating oil composition comprising non-hydrogenated polymer |
EP2049630B1 (en) * | 2006-07-31 | 2015-04-29 | Basf Se | Lubricant composition |
RU2493243C2 (ru) * | 2009-02-02 | 2013-09-20 | Ар.Ти. ВАНДЕРБИЛТ КОМПАНИ, ИНК. | Беззольная смазывающая композиция |
US8841243B2 (en) * | 2010-03-31 | 2014-09-23 | Chevron Oronite Company Llc | Natural gas engine lubricating oil compositions |
BR112013023031A2 (pt) * | 2011-03-10 | 2016-12-13 | Lubrizol Corp | composição lubrificante contendo um composto de tiocarbamato |
CN103509057B (zh) * | 2012-06-21 | 2016-12-21 | 中国石油天然气股份有限公司 | 一种油溶性二烷基二硫代氨基甲酸钼添加剂制备方法 |
EP2878653B1 (en) * | 2012-07-27 | 2018-08-01 | JX Nippon Oil & Energy Corporation | Lubricant oil composition, and method for lubricating sliding material while preventing elution of copper and lead |
JP5930906B2 (ja) * | 2012-07-27 | 2016-06-08 | Jxエネルギー株式会社 | 銅および鉛の溶出を抑制した摺動材料の潤滑方法 |
US9145530B2 (en) * | 2012-12-10 | 2015-09-29 | Infineum International Limited | Lubricating oil compositions containing sterically hindered amines as ashless TBN sources |
JP2014152301A (ja) * | 2013-02-13 | 2014-08-25 | Idemitsu Kosan Co Ltd | 直噴ターボ機構搭載エンジン用潤滑油組成物 |
DK2992044T3 (da) * | 2013-05-03 | 2022-04-04 | Uponor Innovation Ab | Polyolefinrør |
-
2016
- 2016-12-05 JP JP2016235848A patent/JP6863557B2/ja active Active
-
2017
- 2017-11-30 US US16/318,441 patent/US20190241828A1/en not_active Abandoned
- 2017-11-30 DE DE112017006150.4T patent/DE112017006150T5/de active Pending
- 2017-11-30 CN CN201780044795.8A patent/CN109477025A/zh active Pending
- 2017-11-30 WO PCT/JP2017/043138 patent/WO2018105496A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150087568A1 (en) * | 2009-02-02 | 2015-03-26 | Vanderbilt Chemicals, Llc | Ashless lubricant composition |
US20150106090A1 (en) * | 2013-10-14 | 2015-04-16 | Samsung Electronics Co., Ltd. | Display apparatus and method of performing voice control |
US20160326453A1 (en) * | 2014-01-10 | 2016-11-10 | The Lubrizol Corporation | Method of lubricating an internal combustion engine |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3950896A4 (en) * | 2019-03-29 | 2022-12-28 | Idemitsu Kosan Co., Ltd. | LUBRICATING OIL COMPOSITION |
US12043813B2 (en) | 2019-03-29 | 2024-07-23 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition |
US20240191154A1 (en) * | 2021-03-30 | 2024-06-13 | Idemitsu Kosan Co.,Ltd. | Lubricating oil composition |
US20240376396A1 (en) * | 2021-05-20 | 2024-11-14 | Chevron Japan Ltd. | Low ash lubricating oil composition |
CN113293044A (zh) * | 2021-05-26 | 2021-08-24 | 长沙望城石油化工有限公司 | 一种长效抗磨减摩剂组合物及润滑脂及加工油 |
US20250207053A1 (en) * | 2022-03-31 | 2025-06-26 | Idemitsu Kosan Co.,Ltd. | Lubricant composition |
Also Published As
Publication number | Publication date |
---|---|
CN109477025A (zh) | 2019-03-15 |
JP2018090714A (ja) | 2018-06-14 |
WO2018105496A1 (ja) | 2018-06-14 |
DE112017006150T5 (de) | 2019-08-22 |
JP6863557B2 (ja) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190241828A1 (en) | Lubricant oil composition and method for manufacturing same | |
EP3101095B1 (en) | Lubricating oil composition | |
EP2412790B1 (en) | Gear oil composition | |
JP6896384B2 (ja) | 潤滑油組成物 | |
US9410106B2 (en) | Lubricating oil composition | |
JP6235549B2 (ja) | 潤滑油組成物 | |
JP6067027B2 (ja) | トランスミッション用潤滑剤組成物 | |
US20210189284A1 (en) | Lubricating oil composition | |
JPWO2008038667A1 (ja) | 緩衝器用潤滑油組成物 | |
EP3878932A1 (en) | Lubricant oil composition for internal combustion engines and method for producing same, and method for preventing pre-ignition | |
CN111748398A (zh) | 润滑油组合物 | |
US11421175B2 (en) | Gear oil composition for automobile, and lubrication method | |
US20210047581A1 (en) | Lubricating oil composition | |
JP2018016762A (ja) | 潤滑油組成物 | |
US12391897B2 (en) | Lubricating oil composition | |
CN103748199A (zh) | 具有改进的抗磨性质的润滑剂组合物 | |
JP6134852B2 (ja) | 潤滑油組成物 | |
JP2020026488A (ja) | 潤滑油組成物 | |
CN112888770B (zh) | 润滑油组合物、具备润滑油组合物的机械装置及润滑油组合物的制造方法 | |
JP2019123818A (ja) | 潤滑油組成物 | |
JP2022048706A (ja) | 潤滑油組成物 | |
JP2021143309A (ja) | 潤滑油組成物 | |
JPH10287895A (ja) | 潤滑油組成物 | |
JP2017125214A (ja) | 潤滑油組成物 | |
JP2006152313A (ja) | 潤滑油組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IDEMITSU KOSAN CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKI, HIROSHI;KUSUMOTO, TATSUYA;REEL/FRAME:048045/0777 Effective date: 20190107 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |