US20190241828A1 - Lubricant oil composition and method for manufacturing same - Google Patents

Lubricant oil composition and method for manufacturing same Download PDF

Info

Publication number
US20190241828A1
US20190241828A1 US16/318,441 US201716318441A US2019241828A1 US 20190241828 A1 US20190241828 A1 US 20190241828A1 US 201716318441 A US201716318441 A US 201716318441A US 2019241828 A1 US2019241828 A1 US 2019241828A1
Authority
US
United States
Prior art keywords
lubricating oil
oil composition
mass
content
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/318,441
Inventor
Hiroshi Oki
Tatsuya Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Assigned to IDEMITSU KOSAN CO., LTD. reassignment IDEMITSU KOSAN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUSUMOTO, Tatsuya, OKI, HIROSHI
Publication of US20190241828A1 publication Critical patent/US20190241828A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/76Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/02Sulfurised compounds
    • C10M135/06Esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/32Heterocyclic sulfur, selenium or tellurium compounds
    • C10M135/36Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M151/00Lubricating compositions characterised by the additive being a macromolecular compound containing sulfur, selenium or tellurium
    • C10M151/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M157/00Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
    • C10M157/06Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential at least one of them being a sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M157/00Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
    • C10M157/10Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential at least one of them being a compound containing atoms of elements not provided for in groups C10M157/02 - C10M157/08
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/066Organic compounds derived from inorganic acids or metal salts derived from Mo or W
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2230/04
    • C10N2230/10
    • C10N2230/45
    • C10N2230/52
    • C10N2240/10

Definitions

  • the present invention relates to a lubricating oil composition and a method for producing the same.
  • a lubricating oil composition In an engine equipped with a forced-induction mechanism, a lubricating oil composition is liable to deteriorate due to the high thermal load applied to the lubricating oil composition. A deteriorated lubricating oil composition is insufficient in detergency, and therefore it is necessary to blend a metal-based detergent therewith to retain the detergency and the total base number.
  • a sulfated ash content formed from the metal-based detergent or the like may be a factor of deposits in the deterioration of the lubricating oil composition.
  • the deposits thus formed may be a factor wearing the engine components.
  • a lubricating oil composition having a high fuel efficiency is being demanded from the standpoint of the environmental regulation in recent years. Accordingly, the lubricating oil composition is demanded to retain the friction reducing capability even after the deterioration thereof.
  • PTL 1 describes a lubricating oil composition containing at least 90% by weight of a base oil and a particular antioxidant, such as a sulfurized fatty acid.
  • PTL 2 describes a lubricating oil composition containing a base oil, a particular hindered amine compound, and an organic molybdenum compound.
  • the lubricating oil composition of PTL 1 is suppressed in the deterioration of the lubricating oil composition due to oxidation.
  • the lubricating oil composition of PTL 2 is suppressed in the deterioration of the lubricating oil composition due to NOR.
  • the lubricating oil compositions of PTLs 1 and 2 do not consider the retention of the friction reducing capability after the deterioration of the lubricating oil composition.
  • the present invention has been made in view of the aforementioned circumstances, and an object thereof is to provide a lubricating oil composition that has good detergency irrespective of the small sulfated ash content thereof, and has a good friction reducing capability even after the deterioration thereof, and a method for producing the same.
  • the present invention provides the following items [1] and [2].
  • the lubricating oil composition of the present invention has good detergency irrespective of the small sulfated ash content thereof, and has a good friction reducing capability even after the deterioration thereof.
  • the method for producing a lubricating oil composition of the present invention can readily produce a lubricating oil composition that exhibits the aforementioned effects.
  • the lubricating oil composition of the present embodiment contains a base oil (A), a non-metal-containing sulfur antioxidant (B), and a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition, a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, a sulfated ash content of 0.70% by mass or less, and a total base number of 4.0 mgKOH/g or more.
  • the base oil (A) may be a mineral oil or a synthetic oil, and a mixed oil of a mineral oil and a synthetic oil may also be used.
  • the mineral oil examples include an atmospheric residual oil obtained by distilling a crude oil, such as a paraffin mineral oil, an intermediate base mineral oil, and a naphthene mineral oil, under an atmospheric pressure; a distilled oil obtained by distilling the atmospheric residual oil under reduced pressure; a mineral oil obtained by subjecting the distilled oil to one or more of solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, and the like; and a mineral oil obtained by isomerizing wax produced by the Fischer-Tropsch process or the like (GTL wax (gas-to-liquid wax)).
  • the mineral oil is preferably a mineral oil that is classified to Group 3 in the base oil classification by American Petroleum Institute.
  • Examples of the synthetic oil include a hydrocarbon synthetic oil and an ether synthetic oil.
  • Examples of the hydrocarbon synthetic oil include an ⁇ -olefin oligomer, such as polybutene, polyisobutylene, a 1-octene oligomer, a 1-decene oligomer, and an ethylene-propylene copolymer, or a hydrogenated product thereof, an alkylbenzene, and an alkylnaphthalene.
  • Examples of the ether synthetic oil include polyoxyalkylene glycol and polyphenyl ether.
  • the base oil may be a single system using any one kind of the mineral oils and the synthetic oils described above, and may be a mixed system, such as a mixture of two or more kinds of the mineral oil, a mixture of two or more kinds of the synthetic oil, and a mixture of one kind or two or more kinds of each of the mineral oil and the synthetic oil.
  • the base oil (A) preferably has a kinematic viscosity at 100° C. of from 2.0 to 20.0 mm 2 /s, more preferably from 2.0 to 15.0 mm 2 /s, further preferably from 2.0 to 7.0 mm 2 /s, and still further preferably from 2.0 to 5.0 mm 2 /s.
  • the kinematic viscosity at 100° C. of the base oil (A) that is 2.0 mm 2 /s or more is preferred since the evaporation loss may be small.
  • the kinematic viscosity at 100° C. of the base oil (A) that is 20.0 mm 2 /s or less is preferred since the power loss due to the viscosity resistance can be suppressed to achieve improvement in fuel efficiency.
  • the base oil (A) preferably has a viscosity index of 80 or more, more preferably 100 or more, and further preferably 120 or more, from the standpoint of the suppression of the viscosity change by the temperature change, and the enhancement of the fuel efficiency.
  • the base oil (A) is a mixed oil of two or more kinds selected from a mineral oil and a synthetic oil
  • the mixed oil preferably has a kinematic viscosity and a viscosity index within the aforementioned ranges.
  • kinematic viscosity at 100° C. and the “viscosity index” are values that are measured and calculated according to JIS K2283:2000.
  • the content of the base oil (A) is preferably less than 90% by mass based on the total amount (100% by mass) of the lubricating oil composition. With the content of the base oil (A) of less than 90% by mass, the amounts of the non-metal-containing sulfur antioxidant (B) and the hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule described later can be ensured to facilitate the achievement of the effects of the present invention.
  • the content of the base oil (A) is more preferably 60% by mass or more and less than 90% by mass, further preferably 70% by mass or more and 85% by mass or less, and still further preferably 75% by mass or more and 85% by mass or less, based on the total amount of the lubricating oil composition.
  • the non-metal-containing sulfur antioxidant (B) is a compound that contains at least one sulfur atom and does not contain a metal atom.
  • the lubricating oil composition of the present embodiment has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition.
  • the friction reducing effect after the deterioration of the lubricating oil composition cannot be retained.
  • the content of sulfur atom is a value that is measured according to ASTM D-1552.
  • the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom is preferably 800 ppm or more and 6,500 ppm by mass or less, more preferably 1,000 ppm or more and 6,500 ppm by mass or less, and further preferably 1,500 ppm or more and 6,200 ppm by mass or less, based on the total amount of the lubricating oil composition.
  • non-metal-containing sulfur antioxidant (B) examples include one or more kind selected from a thiocarbamate compound, a thiadiazole compound, a polysulfide compound, and a sulfurized fat or fatty oil.
  • one or more kind selected from a thiocarbamate compound, a thiadiazole compound, and a polysulfide compound is preferred from the standpoint of the suppression of the viscosity increase after deterioration of the lubricating oil composition.
  • Examples of the thiocarbamate compound include compounds represented by the following general formulae (1A) and (1B).
  • R 1 to R 4 each represent an alkyl group having from 1 to 30 carbon atoms or a phenyl group, in which R 1 to R 4 may be the same as or different from each other; and R 5 represents an alkylene group having from 1 to 10 carbon atoms.
  • R 6 and R 7 each represent an alkyl group having from 1 to 30 carbon atoms or a phenyl group, in which R 6 and R 7 may be the same as or different from each other; and R 8 represents a hydrogen atom or an alkyl group having from 1 to 10 carbon atoms.
  • R 1 to R 4 each preferably represent an alkyl group having from 1 to 12 carbon atoms or a phenyl group, more preferably represent an alkyl group having from 2 to 8 carbon atoms or a phenyl group, and further preferably represent an alkyl group having from 3 to 5 carbon atoms.
  • R 1 to R 4 are preferably the same as each other.
  • R 5 preferably represents an alkylene group having 1 or 2 carbon atoms, and more preferably an alkylene group having 2 carbon atoms (i.e., an ethylene group).
  • R 6 and R 7 each preferably represent an alkyl group having from 1 to 12 carbon atoms or a phenyl group, more preferably represent an alkyl group having from 2 to 8 carbon atoms or a phenyl group, and further preferably represent an alkyl group having from 3 to 5 carbon atoms.
  • R 6 and R 7 are preferably the same as each other.
  • R 8 preferably represents an alkylene group having 1 or 2 carbon atoms, and more preferably an alkylene group having 2 carbon atoms (i.e., an ethylene group).
  • thiocarbamate compound represented by the formula (1A) examples include methylene bis(diethylthiocarbamate), ethylene bis(diethyldithiocarbamate), methylene bis(dipropylthiocarbamate), ethylene bis(dipropyldithiocarbamate), methylene bis(dibutyldithiocarbamate), ethylene bis(dibutyldithiocarbamate), methylene bis(dipentyldithiocarbamate), ethylene bis(dipentyldithiocarbamate), methylene bis(dihexyldithiocarbamate), and ethylene bis(dihexyldithiocarbamate).
  • thiocarbamate compound represented by the formula (1B) include diethylthiocarbamic acid, methylene diethylthiocarbamate, ethylene diethyldithiocarbamate, dipropylthiocarbamic acid, methylene dipropylthiocarbamate, ethylene dipropyldithiocarbamate, dibutyldithiocarbamic acid, methylene dibutyldithiocarbamate, ethylene dibutyldithiocarbamate, dipentyldithiocarbamic acid, methylene dipentyldithiocarbamate, ethylene dipentyldithiocarbamate, methylene dihexyldithiocarbamate, and ethylene dihexyldithiocarbamate.
  • thiadiazole compound examples include a compound having a 1,3,4-thiadiazole or 1,2,4-thiadiazole as a skeleton in a molecule.
  • thiadiazole compound examples include 2,5-bis(n-hexyldithio)-1,3,4-thiadiazole, 2,5-bis(n-octyldithio)-1,3,4-thiadiazole, 2,5-bis(n-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(1,1,3,3-tetramethylbutldithio)-1,3,4-thiadiazole, 2,5-bis(t-nonyl)-1,3,4-thiadiazole, 2,5-bis(t-nonylamino)-1,3,4-thiadiazole, 2,5-bis(t-nonylthio)-1,3,4-thiadiazole, 2,5-bis(t-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(dimethylhexyl)-1,3,4-thiadiazole, 2,5-bis(dimethylhexylthio)-2,
  • polysulfide compound examples include a compound represented by the following general formula (2) (i.e., a dihydrocarbyl polysulfide).
  • R 21 and R 22 each independently represent a hydrocarbon group selected from an alkyl group having from 3 to 20 carbon atoms, an aryl group having from 6 to 20 carbon atoms, an alkylaryl group having from 7 to 20 carbon atoms, an arylalkyl group having from 7 to 20 carbon atoms, and an alkenyl group having from 3 to 20 carbon atoms, which may be the same as or different from each other; and x represents an integer of from 2 to 10.
  • the alkyl group and the alkenyl group in R 21 and R 22 each may be linear or branched.
  • R 21 and R 22 each preferably have from 6 to 18 carbon atoms, and x is preferably from 2 to 8, and more preferably from 3 to 7.
  • dihydrocarbyl polysulfide examples include a dialkyl polysulfide, an olefin polysulfide, and a dibenzyl polysulfide.
  • Examples of the olefin polysulfide include a compound obtained by reacting an olefin having from 3 to 20 carbon atoms or a dimer to tetramer thereof with a sulfurizing agent, such as sulfur and a sulfur halide.
  • a sulfurizing agent such as sulfur and a sulfur halide.
  • Preferred examples of the olefin include propylene, isobutene, and diisobutene.
  • Examples of the olefin polysulfide include a compound represented by the general formula (2), wherein one of R 21 and R 22 represents an alkenyl group, and the other thereof represents an alkenyl group or an alkyl group.
  • the sulfurized fat or fatty oil mean sulfurized product of animal or vegetable oil, and examples thereof include a sulfurized lard, a sulfurized canola oil, sulfurized castor oil, and sulfurized soybean oil.
  • the sulfurized fat or fatty oil encompass a disulfurized fatty acid, such as sulfurized oleic acid, and a sulfurized ester, such as sulfurized methyl oleate.
  • the content of the non-metal-containing sulfur antioxidant (B) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 3.0% by mass or less, more preferably 0.3% by mass or more and 2.0% by mass or less, and further preferably 0.3% by mass or more and 1.5% by mass or less, based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment contains the hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule.
  • Examples of the piperidine-derived skeleton include a 2,2,6,6-tetramethylpiperidine skeleton, a 2,2,6,6-tetramethylpiperidine-N-oxyl skeleton, a 2,2,6,6-tetramethylpiperidine-N-alkyl skeleton, and a 2,2,6,6-tetramethylpiperidine-N-acyl skeleton.
  • the “hindered amine antioxidant having one piperidine-derived skeleton in a molecule” may be referred to as a “monohindered amine antioxidant”.
  • the lubricating oil composition of the present embodiment has a content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
  • the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom is less than 100 ppm by mass based on the total amount of the lubricating oil composition, the amount of a metal-based detergent necessary for increasing the total base number is increased, and thus the amount of deposits caused by the sulfated ash content due to the deterioration of the lubricating oil is increased to fail to suppress the wear of the engine components.
  • the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom exceeds 400 ppm by mass based on the total amount of the lubricating oil composition, the friction reducing capability after the deterioration of the lubricating oil composition cannot be retained.
  • the excessive amount of the monohindered amine antioxidant (C) largely impairs the friction reducing capability based on the molybdenum friction modifier (E).
  • a hindered amine antioxidant having two piperidine-derived skeletons in a molecule which may be hereinafter referred to as a “bishindered amine antioxidant”
  • a hindered amine antioxidant having three or more piperidine-derived skeletons in a molecule is contained in an amount of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, the amount of a metal-based detergent necessary for increasing the total base number can be decreased, but the friction reducing capability after the deterioration of the lubricating oil composition cannot be retained.
  • the monohindered amine antioxidant (C) is used as the hindered amine antioxidant, and the content of the monohindered amine antioxidant is 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
  • the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom is preferably 200 ppm by mass or more and 400 ppm by mass or less, more preferably 200 ppm by mass or more and 300 ppm by mass or less, and further preferably 200 ppm by mass or more and 250 ppm by mass or less, based on the total amount of the lubricating oil composition.
  • the content of nitrogen atom is a value that is measured according to JIS K2609:1998.
  • monohindered amine antioxidant (C) examples include 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, 2,2,6,6-tetramethylpiperidinyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, and 2,2,6,6-tetramethylpiperidin-4-yl dodecanoate.
  • the content of the monohindered amine antioxidant (C) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 1.0% by mass or less, more preferably 0.2% by mass or more and 0.9% by mass or less, and further preferably 0.4% by mass or more and 0.7% by mass or less, based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment preferably does not substantially contain an amine antioxidant other than the monohindered amine antioxidant from the standpoint of the enhancement of the initial total base number and the standpoint of the retention of the friction reducing capability after the deterioration of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment preferably does not substantially contain a hindered amine antioxidant other than the monohindered amine antioxidant and/or a diarylamine antioxidant.
  • the expression “not substantially contain” herein means that the content of an amine antioxidant other than the monohindered amine antioxidant is less than 0.1% by mass, and preferably less than 0.01% by mass, based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment preferably further contains a metal-based detergent (D).
  • the metal-based detergent (D) contained in the lubricating oil composition may suppress the formation of deposits inside the engine, and may suppress the wear of the engine components.
  • the metal-based detergent (D) used may be, for example, one or more kind selected from a calcium-based detergent and a magnesium-based detergent, and one or more kind selected from a calcium-based detergent is preferably used from the standpoint of the fuel efficiency.
  • Examples of the calcium-based detergent include calcium sulfonate, calcium phenate, and calcium salicylate.
  • calcium salicylate which well suppresses the formation of deposits, is preferred.
  • magnesium-based detergent examples include magnesium sulfonate, magnesium phenate, and magnesium salicylate.
  • magnesium salicylate which well suppresses the formation of deposits, is preferred.
  • the metal-based detergent preferably has a total base number of 150 mgKOH/g or more, more preferably from 150 to 500 mgKOH/g, further preferably from 150 to 450 mgKOH/g, and still further preferably from 180 to 400 mgKOH/g, from the standpoint of the detergency.
  • the content of the metal-based detergent (D) as converted in terms of metal atom is preferably 700 ppm by mass or more and 1,400 ppm by mass or less, more preferably 850 ppm by mass or more and 1,350 ppm by mass or less, and further preferably 1,000 ppm by mass or more and 1,250 ppm by mass or less, based on the total amount of the lubricating oil composition, from the standpoint of the enhancement of the total base number and the standpoint of the suppression of the sulfated ash content caused by the metal-based detergent (D).
  • the content of metal atom (for example, the content of metal atom based on the metal-based detergent (D)) and the content of molybdenum atom based on the molybdenum friction modifier (E)) is a value that is measured according to ASTM D4951.
  • the content of the metal-based detergent (D) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 10.0% by mass or less, more preferably 0.2% by mass or more and 5.0% by mass or less, and further preferably 0.5% by mass or more and 3.0% by mass or less, based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment preferably further contains a molybdenum friction modifier (E).
  • the molybdenum friction modifier (E) contained in the lubricating oil composition may facilitate the improvement of the friction reducing capability of the lubricating oil composition.
  • the molybdenum friction modifier (E) used may be an organic compound having a molybdenum atom, and from the standpoint of the friction reduction, a molybdenum dithiophosphate (MoDTP) and a molybdenum dithiocarbamate (MoDTC) are preferred, and a molybdenum dithiocarbamate (MoDTC) is more preferred.
  • MoDTP molybdenum dithiophosphate
  • MoDTC molybdenum dithiocarbamate
  • MoDTC molybdenum dithiocarbamate
  • MoDTC molybdenum dithiocarbamate
  • R 31 to R 34 each independently represent a hydrocarbon group having from 5 to 18 carbon atoms, and may be the same as or different from each other.
  • the number of carbon atoms of the hydrocarbon group is preferably from 5 to 16, more preferably from 8 to 14, and further preferably 12.
  • X 31 to X 34 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other.
  • the molar ratio of sulfur atom and oxygen atom (sulfur atom/oxygen atom) in X 31 to X 34 is preferably from 1/3 to 3/1, and more preferably from 1.5/2.5 to 3/1, from the standpoint of the enhancement of the solubility thereon in the base oil (A).
  • Examples of the hydrocarbon group represented by R 31 to R 34 include an alkyl group having from 5 to 18 carbon atoms, such as a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group; an alkenyl group having from 5 to 18 carbon atoms, such as an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, and a pent
  • the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom is preferably 300 ppm by mass or more and 1,300 ppm by mass or less, more preferably 350 ppm by mass or more and 1,000 ppm by mass or less, and further preferably 400 ppm by mass or more and 800 ppm by mass or less, based on the total amount of the lubricating oil composition.
  • the content thereof is 300 ppm by mass or more, the friction reducing capability of the lubricating oil composition can be improved, and in the case where the content thereof is 1,300 ppm by mass or less, the sulfated ash content can be decreased.
  • the content of the molybdenum friction modifier (E) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.2% by mass or more and 2.0% by mass or less, more preferably 0.3% by mass or more and 1.5% by mass or less, and further preferably 0.5% by mass or more and 1.0% by mass or less, based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment may contain additives, such as an ash-free detergent, an ash-free friction modifier, an anti-wear agent, an extreme pressure agent, a viscosity index improver, a metal deactivator, a pour point depressant, a rust inhibitor, and an anti-foaming agent, that do not correspond to the aforementioned components, in such a range that does not impair the effects of the present invention.
  • the additives may be used alone or as a combination of two or more kinds thereof.
  • the contents of the additives each may be appropriately controlled within a range that does not impair the effects of the present invention, and each are generally from 0.001 to 15% by mass, preferably from 0.005 to 10% by mass, and more preferably from 0.01 to 8% by mass, based on the total amount of the lubricating oil composition.
  • the total content of the additives for a lubricating oil is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less, based on the total amount of the lubricating oil composition.
  • Examples of the ash-free detergent include an alkenylsuccinimide, such as an alkenylsuccinmonoimide and an alkenylsuccinbisimide, and a boron-modified alkenylsuccinimide.
  • Examples of the ash-free friction modifier include an aliphatic amine, an aliphatic ester, an aliphatic amide, a fatty acid, an aliphatic alcohol, and an aliphatic ether, each having at least one alkyl or alkenyl group having from 6 to 30 carbon atoms in a molecule.
  • Examples of the anti-wear agent and the extreme pressure agent include a sulfur-containing compound, such as zinc dithiophosphate; a phosphorus-containing compound, such as a phosphite ester compound, a phosphate ester compound, a phosphonate ester compound, and amine salts and metal salts of these compounds; and a sulfur and phosphorus-containing anti-wear agent, such as a thiophosphite ester compound, a thiophosphate ester compound, a thiophosphonate ester compound, and amine salts and metal salts of these compounds.
  • a sulfur-containing compound such as zinc dithiophosphate
  • a phosphorus-containing compound such as a phosphite ester compound, a phosphate ester compound, a phosphonate ester compound, and amine salts and metal salts of these compounds
  • a sulfur and phosphorus-containing anti-wear agent such as a thiophosphite ester compound,
  • the viscosity index improver examples include a polymethacrylate, a dispersion type polymethacrylate, an olefin copolymer (such as an ethylene-propylene copolymer), a dispersion type olefin copolymer, and a styrene copolymer (such as a styrene-diene copolymer and a styrene-isoprene copolymer).
  • an olefin copolymer such as an ethylene-propylene copolymer
  • a dispersion type olefin copolymer such as an ethylene-propylene copolymer
  • a styrene copolymer such as a styrene-diene copolymer and a styrene-isoprene copolymer
  • Examples of the corrosion inhibitor include a benzotriazole compound, a tolyltriazole compound, an imidazole compound, and a pyrimidine compound.
  • pour point depressant examples include an ethylene-vinyl acetate copolymer, a condensate of chlorinated paraffin and naphthalene, a condensate of chlorinated paraffin and phenol, a polymethacrylate, and a polyalkylstyrene.
  • rust inhibitor examples include a petroleum sulfonate, an alkylbenzene sulfonate, dinonylnaphthalene sulfonate, an alkenylsuccinate ester, and a polyhydric alcohol ester.
  • anti-foaming agent examples include a silicone oil, a fluorosilicone oil, and a fluoroalkyl ether.
  • the lubricating oil composition of the present embodiment preferably has a ratio of the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the metal-based detergent (D) as converted in terms of metal atom [(content of monohindered amine antioxidant (C) as converted in terms of nitrogen atom)/(content of metal-based detergent (D) as converted in terms of metal atom)] of from 0.14 to 0.58, and more preferably from 0.15 to 0.30.
  • the content of the metal-based detergent (D) can be suppressed to increase the total base number, and thereby the formation of deposits can be suppressed to suppress the wear of the engine components.
  • the content of the monohindered amine antioxidant (C) can be suppressed, and thereby the friction reducing capability after the deterioration of the lubricating oil composition can be readily retained, and the monohindered amine antioxidant (C) can be prevented from becoming deposits.
  • the lubricating oil composition of the present embodiment preferably has a ratio of the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] of from 0.92 to 13.35, more preferably from 1.00 to 9.00, and further preferably from 2.00 to 9.00.
  • the ratio is 0.92 or more
  • the increase of the viscosity of the lubricating oil composition in the thermal deterioration thereof can be suppressed.
  • the ratio is 13.35 or less, the friction reducing capability after the deterioration of the lubricating oil composition can be readily retained.
  • the lubricating oil composition of the present embodiment preferably has a ratio of the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of monohindered amine antioxidant (C) as converted in terms of nitrogen)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] of from 0.15 to 1.35, more preferably from 0.20 to 0.60, and further preferably from 0.25 to 0.60.
  • the friction reducing capability based on the molybdenum friction modifier (E) can be readily retained, after the deterioration of the lubricating oil composition.
  • the ratio is 1.35 or less, a film of the molybdenum friction modifier (E) can be readily formed on the surface of the engine components.
  • the lubricating oil composition of the present embodiment has a sulfated ash content of 0.70% by mass or less.
  • the sulfated ash content of the lubricating oil composition exceeds 0.70% by mass, the amount of deposits in the deterioration of the lubricating oil composition is increased, and the wear of the engine components cannot be suppressed.
  • the sulfated ash content of the lubricating oil composition is preferably 0.68% by mass or less, more preferably 0.67% by mass or less, and further preferably 0.66% by mass or less.
  • the lower limit of the sulfated ash content of the lubricating oil composition is not particularly limited, and is preferably 0.40% by mass or more, more preferably 0.45% by mass or more, and further preferably 0.50% by mass or more, from the standpoint of the increase of the total base number.
  • the sulfated ash content is a value that is measured according to JIS K2272:1998.
  • the lubricating oil composition of the present embodiment has a total base number of 4.0 mgKOH/g or more.
  • the detergency of the lubricating oil composition becomes insufficient to facilitate the formation of deposits and to fail to suppress the wear of the engine components.
  • the total base number of the lubricating oil composition is preferably from 4.0 to 7.0 mgKOH/g, more preferably from 4.2 to 7.0 mgKOH/g, and further preferably from 4.5 to 7.0 mgKOH/g.
  • the total base number is a value that is measured according to the hydrochloric acid method of JIS K2501:2003.
  • the lubricating oil composition of the present embodiment preferably has a content of sulfur atom of from 1,000 to 13,000 ppm by mass, more preferably from 2,000 to 11,000 ppm by mass, and further preferably from 2,000 to 9,000 ppm by mass, based on the total content of the lubricating oil composition.
  • the content of sulfur atom is 1,000 ppm by mass or more, the friction reducing capability after the deterioration of the lubricating oil composition can be retained, and in the case where the content thereof is 13,000 ppm by mass or less, the increase of the viscosity in the thermal deterioration of the lubricating oil composition can be suppressed.
  • the lubricating oil composition of the present embodiment preferably has a content of nitrogen atom of from 500 to 4,000 ppm by mass, more preferably from 700 to 3,500 ppm by mass, and further preferably from 900 to 3,000 ppm by mass, based on the total content of the lubricating oil composition.
  • the detergency dispersibility can be improved, and in the case where the content thereof is 4,000 ppm by mass or less, the compatibility to a resin material, such as rubber, can be improved.
  • the lubricating oil composition of the present embodiment preferably has a kinematic viscosity at 100° C. of from 3 to 20 mm 2 /s, more preferably from 3 to 10 mm 2 /s, and further preferably from 5 to 8 mm 2 /s.
  • the lubricating oil composition of the present embodiment preferably has a viscosity index of 100 or more, more preferably 120 or more, and further preferably 130 or more.
  • the lubricating oil composition of the present embodiment can be favorably used as a lubricating oil composition for an internal combustion engine, such as a gasoline engine, a diesel engine, and a gas engine, of an automobile, such as a four-wheel vehicle and a two-wheel vehicle, an electric power generator, a watercraft, and the like.
  • the lubricating oil composition of the present embodiment can be favorably used as a lubricating oil composition for an engine equipped with a forced-induction mechanism, such as a supercharger and a turbocharger.
  • the method for producing a lubricating oil composition of the present embodiment includes preparing a lubricating oil composition containing a base oil (A), a non-metal-containing sulfur antioxidant (B), a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and the preparing step is performed to satisfy the following conditions (i) to (iv).
  • the preferred embodiments of the constitutional components and the preferred embodiments of the numerical values of the conditions (i) to (iv) are the same as the preferred embodiments of the lubricating oil composition of the present embodiment described above.
  • the sulfated ash content was measured according to JIS K2272:1998.
  • the total base number was measured according to the hydrochloric acid method of JIS K2501:2003.
  • the content of sulfur atom was measured according to ASTM D-1552.
  • the content of nitrogen atom was measured according to JIS K2609:1998.
  • the content of metal atom was measured according to ASTM D4951.
  • the kinematic viscosity was measured according to JIS K2283:2000.
  • the viscosity index was measured according to JIS K2283:2000.
  • the lubricating oil compositions of Examples and Comparative Examples were prepared according to the compositional ratios shown in Tables 1 and 2. The details of the base oils and the additives used in Examples and Comparative Examples are shown below.
  • Bishindered amine antioxidant 1 (Tinuvin 765, a trade name, produced by BASF AG, nitrogen content: 5.3% by mass, number of piperidine-derives skeletons in molecule: 2)
  • Bishindered amine antioxidant 2 (Tinuvin 770DF, a trade name, produced by BASF AG, nitrogen content: 5.6% by mass, number of piperidine-derives skeletons in molecule: 2)
  • Diarylamine antioxidant (diphenylamine, Irganox L57, a trade name, produced by BASF AG, nitrogen content: 4.6% by mass)
  • Molybdenum dithiocarbamate (Sakura-Lube 515, a trade name, produced by Adeka Corporation, molybdenum atom content: 10.0% by mass)
  • the lubricating oil composition after the deterioration treatment was subjected to a preconditioning operation under the following condition for 2 hours and then measured for the friction coefficient with the testing machine shown below.
  • Testing machine MTM (mini traction machine) tester, produced by PCS Instruments, Ltd.
  • Test piece Standard test piece (3 ⁇ 4′′ steel-steel)
  • Example 1 2 3 Composition Base oil (A) balance balance balance (% by mass) Non-metal containing sulfur antioxidant (B) B-1 0.50 1.00 2.00 B-2 — — — B-3 — — — B-4 — — — Amine antioxidant Monohindered amine antioxidant (C) 0.50 0.50 0.50 Bishindered amine antioxidant 1 — — — Bishindered amine antioxidant 2 — — — Diphenylamine — — — — Metal-based detergent (D) 1.50 1.50 1.50 Molybdenum friction modifier (E) 0.70 0.70 0.70 Additive mixture 15.00 15.00 15.00 Contents and content Sulfur atom content derived from component (B) (ppm by mass) [i] 1525 3050 6100 ratios of component Nitrogen atom content derived from amine antioxidant (ppm by mass) [ii] 215 215 Metal atom content derived from component (D) (ppm by mass) [iii] 1170 1170 1170 Moly
  • the lubricating oil compositions of Examples 1 to 6 can retain the good friction reducing capability even after the deterioration thereof.
  • the lubricating oil compositions of Examples 1 to 6 each have a total base number of 4.0 mgKOH/g or more irrespective of the small sulfated ash content of 0.70% by mass or less, and thus are expected to achieve good detergency.
  • the lubricating oil compositions of Examples 1 to 6 each have a small sulfated ash content of 0.70% by mass or less, and thus are expected to suppress the wear of the engine components due to deposits.
  • the lubricating oil composition of Examples 1 to 6 each have a total base number of 1.0 mgKOH/g or more after the deterioration thereof, and thus are expected to achieve the detergency for a prolonged period of time.
  • the lubricating oil compositions of Comparative Examples 1 to 6 cannot retain the good friction reducing capability after the deterioration thereof.
  • the lubricating oil compositions of Comparative Examples 1 and 7 each have a total base number of less than 4.0 mgKOH/g, and therefore the lubricating oil compositions are insufficient in detergency, tend to form deposits, and cannot be expected to suppress the wear of the engine components.
  • the lubricating oil composition of Comparative Example 2 has a sulfated ash content exceeding 0.70% by mass, and thus cannot be expected to suppress the wear of the engine components due to deposits.
  • the lubricating oil compositions of Comparative Examples 1 and 2 each have a total base number of less than 1.0 mgKOH/g after the deterioration thereof, and thus cannot be expected to achieve the detergency for a prolonged period of time.

Abstract

To provide a lubricating oil composition that has good detergency irrespective of the small sulfated ash content thereof, and has a good friction reducing capability even after the deterioration thereof. The lubricating oil composition contains a base oil (A), a non-metal-containing sulfur antioxidant (B), and a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition, a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, a sulfated ash content of 0.70% by mass or less, and a total base number of 4.0 mgKOH/g or more.

Description

    TECHNICAL FIELD
  • The present invention relates to a lubricating oil composition and a method for producing the same.
  • BACKGROUND ART
  • In recent years, an engine equipped with a forced-induction mechanism is being frequently used for enhancing the output power of the engine.
  • In an engine equipped with a forced-induction mechanism, a lubricating oil composition is liable to deteriorate due to the high thermal load applied to the lubricating oil composition. A deteriorated lubricating oil composition is insufficient in detergency, and therefore it is necessary to blend a metal-based detergent therewith to retain the detergency and the total base number.
  • However, a sulfated ash content formed from the metal-based detergent or the like may be a factor of deposits in the deterioration of the lubricating oil composition. The deposits thus formed may be a factor wearing the engine components.
  • A lubricating oil composition having a high fuel efficiency is being demanded from the standpoint of the environmental regulation in recent years. Accordingly, the lubricating oil composition is demanded to retain the friction reducing capability even after the deterioration thereof.
  • The techniques described in PTLs 1 and 2 have been proposed for the inhibition of deterioration of a lubricating oil composition.
  • CITATION LIST Patent Literatures
      • PTL 1: Japanese Patent No. 5,710,501
      • PTL 2: Japanese Patent No. 5,930,904
    SUMMARY OF INVENTION Technical Problem
  • PTL 1 describes a lubricating oil composition containing at least 90% by weight of a base oil and a particular antioxidant, such as a sulfurized fatty acid.
  • PTL 2 describes a lubricating oil composition containing a base oil, a particular hindered amine compound, and an organic molybdenum compound.
  • The lubricating oil composition of PTL 1 is suppressed in the deterioration of the lubricating oil composition due to oxidation. The lubricating oil composition of PTL 2 is suppressed in the deterioration of the lubricating oil composition due to NOR.
  • However, the lubricating oil compositions of PTLs 1 and 2 do not consider the retention of the friction reducing capability after the deterioration of the lubricating oil composition.
  • The present invention has been made in view of the aforementioned circumstances, and an object thereof is to provide a lubricating oil composition that has good detergency irrespective of the small sulfated ash content thereof, and has a good friction reducing capability even after the deterioration thereof, and a method for producing the same.
  • Solution to Problem
  • The present invention provides the following items [1] and [2].
      • [1] A lubricating oil composition, containing a base oil (A), a non-metal-containing sulfur antioxidant (B), and a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and having a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition, a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, a sulfated ash content of 0.70% by mass or less, and a total base number of 4.0 mgKOH/g or more.
      • [2] A method for producing a lubricating oil composition, including preparing a lubricating oil composition containing a base oil (A), a non-metal-containing sulfur antioxidant (B), and a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, the preparing step being performed to satisfy the following conditions (i) to (iv):
      • (i) the lubricating oil composition having a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition,
      • (ii) the lubricating oil composition having a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition,
      • (iii) the lubricating oil composition having a sulfated ash content of 0.70% by mass or less, and
      • (iv) the lubricating oil composition having a total base number of 4.0 mgKOH/g or more.
    Advantageous Effects of Invention
  • The lubricating oil composition of the present invention has good detergency irrespective of the small sulfated ash content thereof, and has a good friction reducing capability even after the deterioration thereof. The method for producing a lubricating oil composition of the present invention can readily produce a lubricating oil composition that exhibits the aforementioned effects.
  • DESCRIPTION OF EMBODIMENTS [Lubricating Oil Composition]
  • The lubricating oil composition of the present embodiment contains a base oil (A), a non-metal-containing sulfur antioxidant (B), and a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition, a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, a sulfated ash content of 0.70% by mass or less, and a total base number of 4.0 mgKOH/g or more.
  • <Base Oil (A)>
  • The base oil (A) may be a mineral oil or a synthetic oil, and a mixed oil of a mineral oil and a synthetic oil may also be used.
  • Examples of the mineral oil include an atmospheric residual oil obtained by distilling a crude oil, such as a paraffin mineral oil, an intermediate base mineral oil, and a naphthene mineral oil, under an atmospheric pressure; a distilled oil obtained by distilling the atmospheric residual oil under reduced pressure; a mineral oil obtained by subjecting the distilled oil to one or more of solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, and the like; and a mineral oil obtained by isomerizing wax produced by the Fischer-Tropsch process or the like (GTL wax (gas-to-liquid wax)). The mineral oil is preferably a mineral oil that is classified to Group 3 in the base oil classification by American Petroleum Institute.
  • Examples of the synthetic oil include a hydrocarbon synthetic oil and an ether synthetic oil. Examples of the hydrocarbon synthetic oil include an α-olefin oligomer, such as polybutene, polyisobutylene, a 1-octene oligomer, a 1-decene oligomer, and an ethylene-propylene copolymer, or a hydrogenated product thereof, an alkylbenzene, and an alkylnaphthalene. Examples of the ether synthetic oil include polyoxyalkylene glycol and polyphenyl ether.
  • The base oil may be a single system using any one kind of the mineral oils and the synthetic oils described above, and may be a mixed system, such as a mixture of two or more kinds of the mineral oil, a mixture of two or more kinds of the synthetic oil, and a mixture of one kind or two or more kinds of each of the mineral oil and the synthetic oil.
  • The base oil (A) preferably has a kinematic viscosity at 100° C. of from 2.0 to 20.0 mm2/s, more preferably from 2.0 to 15.0 mm2/s, further preferably from 2.0 to 7.0 mm2/s, and still further preferably from 2.0 to 5.0 mm2/s.
  • The kinematic viscosity at 100° C. of the base oil (A) that is 2.0 mm2/s or more is preferred since the evaporation loss may be small. The kinematic viscosity at 100° C. of the base oil (A) that is 20.0 mm2/s or less is preferred since the power loss due to the viscosity resistance can be suppressed to achieve improvement in fuel efficiency.
  • The base oil (A) preferably has a viscosity index of 80 or more, more preferably 100 or more, and further preferably 120 or more, from the standpoint of the suppression of the viscosity change by the temperature change, and the enhancement of the fuel efficiency.
  • In the case where the base oil (A) is a mixed oil of two or more kinds selected from a mineral oil and a synthetic oil, the mixed oil preferably has a kinematic viscosity and a viscosity index within the aforementioned ranges.
  • In the description herein, the “kinematic viscosity at 100° C.” and the “viscosity index” are values that are measured and calculated according to JIS K2283:2000.
  • The content of the base oil (A) is preferably less than 90% by mass based on the total amount (100% by mass) of the lubricating oil composition. With the content of the base oil (A) of less than 90% by mass, the amounts of the non-metal-containing sulfur antioxidant (B) and the hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule described later can be ensured to facilitate the achievement of the effects of the present invention.
  • The content of the base oil (A) is more preferably 60% by mass or more and less than 90% by mass, further preferably 70% by mass or more and 85% by mass or less, and still further preferably 75% by mass or more and 85% by mass or less, based on the total amount of the lubricating oil composition.
  • <Non-Metal-Containing Sulfur Antioxidant (B)>
  • The non-metal-containing sulfur antioxidant (B) is a compound that contains at least one sulfur atom and does not contain a metal atom. The lubricating oil composition of the present embodiment has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition.
  • In the case where the lubricating oil composition does not contain the non-metal-containing sulfur antioxidant (B), or in the case where the lubricating oil composition contains the non-metal-containing sulfur antioxidant (B), but the content thereof as converted in terms of sulfur atom is less than 800 ppm by mass based on the total amount of the lubricating oil composition, the friction reducing effect after the deterioration of the lubricating oil composition cannot be retained.
  • In the description herein, the content of sulfur atom is a value that is measured according to ASTM D-1552.
  • The prevention of the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom from becoming excessive facilitates the suppression of the viscosity increase in the thermal deterioration of the lubricating oil composition. Accordingly, from the standpoint of the retention of the friction reducing effect and the suppression of the viscosity increase after the deterioration of the lubricating oil composition, the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom is preferably 800 ppm or more and 6,500 ppm by mass or less, more preferably 1,000 ppm or more and 6,500 ppm by mass or less, and further preferably 1,500 ppm or more and 6,200 ppm by mass or less, based on the total amount of the lubricating oil composition.
  • Examples of the non-metal-containing sulfur antioxidant (B) include one or more kind selected from a thiocarbamate compound, a thiadiazole compound, a polysulfide compound, and a sulfurized fat or fatty oil. Among these, one or more kind selected from a thiocarbamate compound, a thiadiazole compound, and a polysulfide compound is preferred from the standpoint of the suppression of the viscosity increase after deterioration of the lubricating oil composition.
  • Examples of the thiocarbamate compound include compounds represented by the following general formulae (1A) and (1B).
  • Figure US20190241828A1-20190808-C00001
  • In the formula (1A), R1 to R4 each represent an alkyl group having from 1 to 30 carbon atoms or a phenyl group, in which R1 to R4 may be the same as or different from each other; and R5 represents an alkylene group having from 1 to 10 carbon atoms.
  • Figure US20190241828A1-20190808-C00002
  • In the formula (1B), R6 and R7 each represent an alkyl group having from 1 to 30 carbon atoms or a phenyl group, in which R6 and R7 may be the same as or different from each other; and R8 represents a hydrogen atom or an alkyl group having from 1 to 10 carbon atoms.
  • In the formula (1A), R1 to R4 each preferably represent an alkyl group having from 1 to 12 carbon atoms or a phenyl group, more preferably represent an alkyl group having from 2 to 8 carbon atoms or a phenyl group, and further preferably represent an alkyl group having from 3 to 5 carbon atoms. R1 to R4 are preferably the same as each other.
  • In the formula (1A), R5 preferably represents an alkylene group having 1 or 2 carbon atoms, and more preferably an alkylene group having 2 carbon atoms (i.e., an ethylene group).
  • In the formula (1B), R6 and R7 each preferably represent an alkyl group having from 1 to 12 carbon atoms or a phenyl group, more preferably represent an alkyl group having from 2 to 8 carbon atoms or a phenyl group, and further preferably represent an alkyl group having from 3 to 5 carbon atoms. R6 and R7 are preferably the same as each other.
  • In the formula (1B), R8 preferably represents an alkylene group having 1 or 2 carbon atoms, and more preferably an alkylene group having 2 carbon atoms (i.e., an ethylene group).
  • Specific examples of the thiocarbamate compound represented by the formula (1A) include methylene bis(diethylthiocarbamate), ethylene bis(diethyldithiocarbamate), methylene bis(dipropylthiocarbamate), ethylene bis(dipropyldithiocarbamate), methylene bis(dibutyldithiocarbamate), ethylene bis(dibutyldithiocarbamate), methylene bis(dipentyldithiocarbamate), ethylene bis(dipentyldithiocarbamate), methylene bis(dihexyldithiocarbamate), and ethylene bis(dihexyldithiocarbamate).
  • Specific examples of the thiocarbamate compound represented by the formula (1B) include diethylthiocarbamic acid, methylene diethylthiocarbamate, ethylene diethyldithiocarbamate, dipropylthiocarbamic acid, methylene dipropylthiocarbamate, ethylene dipropyldithiocarbamate, dibutyldithiocarbamic acid, methylene dibutyldithiocarbamate, ethylene dibutyldithiocarbamate, dipentyldithiocarbamic acid, methylene dipentyldithiocarbamate, ethylene dipentyldithiocarbamate, methylene dihexyldithiocarbamate, and ethylene dihexyldithiocarbamate.
  • Examples of the thiadiazole compound include a compound having a 1,3,4-thiadiazole or 1,2,4-thiadiazole as a skeleton in a molecule.
  • Specific examples of the thiadiazole compound include 2,5-bis(n-hexyldithio)-1,3,4-thiadiazole, 2,5-bis(n-octyldithio)-1,3,4-thiadiazole, 2,5-bis(n-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(1,1,3,3-tetramethylbutldithio)-1,3,4-thiadiazole, 2,5-bis(t-nonyl)-1,3,4-thiadiazole, 2,5-bis(t-nonylamino)-1,3,4-thiadiazole, 2,5-bis(t-nonylthio)-1,3,4-thiadiazole, 2,5-bis(t-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(dimethylhexyl)-1,3,4-thiadiazole, 2,5-bis(dimethylhexylthio)-1,3,4-thiadiazole, 2,5-bis(dimethylhexylamino)-1,3,4-thiadiazole, 2,5-bis(dimethylhexyldithio)-1,3,4-thiadiazole, 2,5-bis(octadecenyl)-1,3,4-thiadiazole, 2,5-bis(octadecenylthio)-1,3,4-thiadiazole, 2,5-bis(octadecenylamino)-1,3,4-thiadiazole, 2,5-bis(octadecenyldithio)-1,3,4-thiadiazole, 2,5-bis(methylhexadecenyl)-1,3,4-thiadiazole, 2,5-bis(methylhexadecenylthio)-1,3,4-thiadiazole, 2,5-bis(methylhexadecenylamino)-1,3,4-thiadiazole, 2,5-bis(methylhexadecenyldithio)-1,3,4-thiadiazole, 2,5-bis(2-hydroxyoctadecyl)-1,3,4-thiadiazole, 2,5-bis(2-hydroxyoctadecylthio)-1,3,4-thiadiazole, 2,5-bis(2-hydroxyoctadecylamino)-1,3,4-thiadiazole, 2,5-bis(2-hydroxyoctadecyldithio)-1,3,4-thiadiazole, 2,5-bis(n-octoxycarbonylmethyl)-1,3,4-thiadiazole, 2,5-bis(n-octoxycarbonylmethylthio)-1,3,4-thiadiazole, 2,5-bis(n-octoxycarbonylmethylamino)-1,3,4-thiadiazole, 2,5-bis(n-octoxycarbonylmethyldithio)-1,3,4-thiadiazole, 2-mercapto-5-(2-ethylhexylthio)-1,3-4-thiadiazole, 2-mercapto-5-(2-ethylhexyldithio)-1,3-4-thiadiazole, 2-mercapto-5-(t-nonylthio)-1,3-4-thiadiazole, 2-mercapto-5-(t-nonyldithio)-1,3-4-thiadiazole, 2-amino-5-(2-ethylhexylamino)-1,3-4-thiadiazole, 2-amino-5-(t-nonylamino)-1,3-4-thiadiazole, 2-(2-ethylhexyl)-1,3,4-thiadiazole, 2-(t-nonyl)-1,3,4-thiadiazole, 3,5-bis(n-hexyldithio)-1,2,4-thiadiazole, 3,5-bis(n-octyldithio)-1,2,4-thiadiazole, 3,5-bis(n-nonyldithio)-1,2,4-thiadiazole, and 3,5-bis(1,1,3,3-tetramethylbutyldithio)-1,2,4-thiadiazole.
  • Examples of the polysulfide compound include a compound represented by the following general formula (2) (i.e., a dihydrocarbyl polysulfide).

  • R21—Sx—R22  (2)
  • In the formula (2), R21 and R22 each independently represent a hydrocarbon group selected from an alkyl group having from 3 to 20 carbon atoms, an aryl group having from 6 to 20 carbon atoms, an alkylaryl group having from 7 to 20 carbon atoms, an arylalkyl group having from 7 to 20 carbon atoms, and an alkenyl group having from 3 to 20 carbon atoms, which may be the same as or different from each other; and x represents an integer of from 2 to 10. The alkyl group and the alkenyl group in R21 and R22 each may be linear or branched.
  • In the formula (2), R21 and R22 each preferably have from 6 to 18 carbon atoms, and x is preferably from 2 to 8, and more preferably from 3 to 7.
  • Specific examples of the dihydrocarbyl polysulfide include a dialkyl polysulfide, an olefin polysulfide, and a dibenzyl polysulfide.
  • Examples of the olefin polysulfide include a compound obtained by reacting an olefin having from 3 to 20 carbon atoms or a dimer to tetramer thereof with a sulfurizing agent, such as sulfur and a sulfur halide. Preferred examples of the olefin include propylene, isobutene, and diisobutene. Examples of the olefin polysulfide include a compound represented by the general formula (2), wherein one of R21 and R22 represents an alkenyl group, and the other thereof represents an alkenyl group or an alkyl group.
  • The sulfurized fat or fatty oil mean sulfurized product of animal or vegetable oil, and examples thereof include a sulfurized lard, a sulfurized canola oil, sulfurized castor oil, and sulfurized soybean oil. The sulfurized fat or fatty oil encompass a disulfurized fatty acid, such as sulfurized oleic acid, and a sulfurized ester, such as sulfurized methyl oleate.
  • The content of the non-metal-containing sulfur antioxidant (B) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 3.0% by mass or less, more preferably 0.3% by mass or more and 2.0% by mass or less, and further preferably 0.3% by mass or more and 1.5% by mass or less, based on the total amount of the lubricating oil composition.
  • <Hindered Amine Antioxidant (C) Having One Piperidine-Derived Skeleton in Molecule>
  • The lubricating oil composition of the present embodiment contains the hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule.
  • Examples of the piperidine-derived skeleton include a 2,2,6,6-tetramethylpiperidine skeleton, a 2,2,6,6-tetramethylpiperidine-N-oxyl skeleton, a 2,2,6,6-tetramethylpiperidine-N-alkyl skeleton, and a 2,2,6,6-tetramethylpiperidine-N-acyl skeleton.
  • In the following description, the “hindered amine antioxidant having one piperidine-derived skeleton in a molecule” may be referred to as a “monohindered amine antioxidant”.
  • The lubricating oil composition of the present embodiment has a content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
  • In the case where the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom is less than 100 ppm by mass based on the total amount of the lubricating oil composition, the amount of a metal-based detergent necessary for increasing the total base number is increased, and thus the amount of deposits caused by the sulfated ash content due to the deterioration of the lubricating oil is increased to fail to suppress the wear of the engine components. In the case where the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom exceeds 400 ppm by mass based on the total amount of the lubricating oil composition, the friction reducing capability after the deterioration of the lubricating oil composition cannot be retained. In particular, in the case where the lubricating oil composition contains a molybdenum friction modifier (E) described later, the excessive amount of the monohindered amine antioxidant (C) largely impairs the friction reducing capability based on the molybdenum friction modifier (E).
  • In the case where a hindered amine antioxidant having two piperidine-derived skeletons in a molecule (which may be hereinafter referred to as a “bishindered amine antioxidant”) and/or a hindered amine antioxidant having three or more piperidine-derived skeletons in a molecule is contained in an amount of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition, the amount of a metal-based detergent necessary for increasing the total base number can be decreased, but the friction reducing capability after the deterioration of the lubricating oil composition cannot be retained.
  • Consequently, for suppressing the wear of the engine components due to deposits caused by the sulfated ash content, and simultaneously retaining the friction reducing capability after the deterioration of the lubricating oil composition, it is necessary that the monohindered amine antioxidant (C) is used as the hindered amine antioxidant, and the content of the monohindered amine antioxidant is 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
  • The content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom is preferably 200 ppm by mass or more and 400 ppm by mass or less, more preferably 200 ppm by mass or more and 300 ppm by mass or less, and further preferably 200 ppm by mass or more and 250 ppm by mass or less, based on the total amount of the lubricating oil composition.
  • In the description herein, the content of nitrogen atom is a value that is measured according to JIS K2609:1998.
  • Specific examples of the monohindered amine antioxidant (C) include 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, 2,2,6,6-tetramethylpiperidinyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, and 2,2,6,6-tetramethylpiperidin-4-yl dodecanoate.
  • The content of the monohindered amine antioxidant (C) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 1.0% by mass or less, more preferably 0.2% by mass or more and 0.9% by mass or less, and further preferably 0.4% by mass or more and 0.7% by mass or less, based on the total amount of the lubricating oil composition.
  • The lubricating oil composition of the present embodiment preferably does not substantially contain an amine antioxidant other than the monohindered amine antioxidant from the standpoint of the enhancement of the initial total base number and the standpoint of the retention of the friction reducing capability after the deterioration of the lubricating oil composition. In particular, the lubricating oil composition of the present embodiment preferably does not substantially contain a hindered amine antioxidant other than the monohindered amine antioxidant and/or a diarylamine antioxidant.
  • The expression “not substantially contain” herein means that the content of an amine antioxidant other than the monohindered amine antioxidant is less than 0.1% by mass, and preferably less than 0.01% by mass, based on the total amount of the lubricating oil composition.
  • <Metal-Based Detergent (D)>
  • The lubricating oil composition of the present embodiment preferably further contains a metal-based detergent (D). The metal-based detergent (D) contained in the lubricating oil composition may suppress the formation of deposits inside the engine, and may suppress the wear of the engine components.
  • The metal-based detergent (D) used may be, for example, one or more kind selected from a calcium-based detergent and a magnesium-based detergent, and one or more kind selected from a calcium-based detergent is preferably used from the standpoint of the fuel efficiency.
  • Examples of the calcium-based detergent include calcium sulfonate, calcium phenate, and calcium salicylate. Among these, calcium salicylate, which well suppresses the formation of deposits, is preferred.
  • Examples of the magnesium-based detergent include magnesium sulfonate, magnesium phenate, and magnesium salicylate. Among these, magnesium salicylate, which well suppresses the formation of deposits, is preferred.
  • The metal-based detergent preferably has a total base number of 150 mgKOH/g or more, more preferably from 150 to 500 mgKOH/g, further preferably from 150 to 450 mgKOH/g, and still further preferably from 180 to 400 mgKOH/g, from the standpoint of the detergency.
  • The content of the metal-based detergent (D) as converted in terms of metal atom is preferably 700 ppm by mass or more and 1,400 ppm by mass or less, more preferably 850 ppm by mass or more and 1,350 ppm by mass or less, and further preferably 1,000 ppm by mass or more and 1,250 ppm by mass or less, based on the total amount of the lubricating oil composition, from the standpoint of the enhancement of the total base number and the standpoint of the suppression of the sulfated ash content caused by the metal-based detergent (D).
  • In the description herein, the content of metal atom (for example, the content of metal atom based on the metal-based detergent (D)) and the content of molybdenum atom based on the molybdenum friction modifier (E)) is a value that is measured according to ASTM D4951.
  • The content of the metal-based detergent (D) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.1% by mass or more and 10.0% by mass or less, more preferably 0.2% by mass or more and 5.0% by mass or less, and further preferably 0.5% by mass or more and 3.0% by mass or less, based on the total amount of the lubricating oil composition.
  • <Molybdenum Friction Modifier (E)>
  • The lubricating oil composition of the present embodiment preferably further contains a molybdenum friction modifier (E). The molybdenum friction modifier (E) contained in the lubricating oil composition may facilitate the improvement of the friction reducing capability of the lubricating oil composition.
  • The molybdenum friction modifier (E) used may be an organic compound having a molybdenum atom, and from the standpoint of the friction reduction, a molybdenum dithiophosphate (MoDTP) and a molybdenum dithiocarbamate (MoDTC) are preferred, and a molybdenum dithiocarbamate (MoDTC) is more preferred.
  • Examples of the molybdenum dithiocarbamate (MoDTC) include a compound represented by the following general formula (3).
  • Figure US20190241828A1-20190808-C00003
  • In the formula (3), R31 to R34 each independently represent a hydrocarbon group having from 5 to 18 carbon atoms, and may be the same as or different from each other. The number of carbon atoms of the hydrocarbon group is preferably from 5 to 16, more preferably from 8 to 14, and further preferably 12.
  • X31 to X34 each independently represent an oxygen atom or a sulfur atom, and may be the same as or different from each other. The molar ratio of sulfur atom and oxygen atom (sulfur atom/oxygen atom) in X31 to X34 is preferably from 1/3 to 3/1, and more preferably from 1.5/2.5 to 3/1, from the standpoint of the enhancement of the solubility thereon in the base oil (A).
  • Examples of the hydrocarbon group represented by R31 to R34 include an alkyl group having from 5 to 18 carbon atoms, such as a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group; an alkenyl group having from 5 to 18 carbon atoms, such as an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, and a pentadecenyl group; a cycloalkyl group having from 5 to 18 carbon atoms, such as a cyclohexyl group, a dimethylcyclohexyl group, an ethylcyclohexyl group, a methylcyclohexylmethyl group, a cyclohexylethyl group, a propylcyclohexyl group, a butylcyclohexyl group, and a heptylcyclohexyl group; an aryl group having from 6 to 18 carbon atoms, such as a phenyl group, a naphthyl group, an anthracenyl group, a biphenyl group, and a terphenyl group; an alkylaryl group, such as a tolyl group, a dimethylphenyl group, a butylphenyl group, a nonylphenyl group, a methylbenzyl group, and a dimethylnaphthyl group; and an arylalkyl group having from 7 to 18 carbon atoms, such as a phenylmethyl group, a phenylethyl group, and a diphenylmethyl group.
  • The content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom is preferably 300 ppm by mass or more and 1,300 ppm by mass or less, more preferably 350 ppm by mass or more and 1,000 ppm by mass or less, and further preferably 400 ppm by mass or more and 800 ppm by mass or less, based on the total amount of the lubricating oil composition. In the case where the content thereof is 300 ppm by mass or more, the friction reducing capability of the lubricating oil composition can be improved, and in the case where the content thereof is 1,300 ppm by mass or less, the sulfated ash content can be decreased.
  • The content of the molybdenum friction modifier (E) is not particularly limited within a range that does not impair the effects of the present invention, and in general, is preferably 0.2% by mass or more and 2.0% by mass or less, more preferably 0.3% by mass or more and 1.5% by mass or less, and further preferably 0.5% by mass or more and 1.0% by mass or less, based on the total amount of the lubricating oil composition.
  • <Additives>
  • The lubricating oil composition of the present embodiment may contain additives, such as an ash-free detergent, an ash-free friction modifier, an anti-wear agent, an extreme pressure agent, a viscosity index improver, a metal deactivator, a pour point depressant, a rust inhibitor, and an anti-foaming agent, that do not correspond to the aforementioned components, in such a range that does not impair the effects of the present invention. The additives may be used alone or as a combination of two or more kinds thereof.
  • The contents of the additives each may be appropriately controlled within a range that does not impair the effects of the present invention, and each are generally from 0.001 to 15% by mass, preferably from 0.005 to 10% by mass, and more preferably from 0.01 to 8% by mass, based on the total amount of the lubricating oil composition.
  • The total content of the additives for a lubricating oil is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less, based on the total amount of the lubricating oil composition.
  • Examples of the ash-free detergent include an alkenylsuccinimide, such as an alkenylsuccinmonoimide and an alkenylsuccinbisimide, and a boron-modified alkenylsuccinimide.
  • Examples of the ash-free friction modifier include an aliphatic amine, an aliphatic ester, an aliphatic amide, a fatty acid, an aliphatic alcohol, and an aliphatic ether, each having at least one alkyl or alkenyl group having from 6 to 30 carbon atoms in a molecule.
  • Examples of the anti-wear agent and the extreme pressure agent include a sulfur-containing compound, such as zinc dithiophosphate; a phosphorus-containing compound, such as a phosphite ester compound, a phosphate ester compound, a phosphonate ester compound, and amine salts and metal salts of these compounds; and a sulfur and phosphorus-containing anti-wear agent, such as a thiophosphite ester compound, a thiophosphate ester compound, a thiophosphonate ester compound, and amine salts and metal salts of these compounds.
  • Examples of the viscosity index improver include a polymethacrylate, a dispersion type polymethacrylate, an olefin copolymer (such as an ethylene-propylene copolymer), a dispersion type olefin copolymer, and a styrene copolymer (such as a styrene-diene copolymer and a styrene-isoprene copolymer).
  • Examples of the corrosion inhibitor include a benzotriazole compound, a tolyltriazole compound, an imidazole compound, and a pyrimidine compound.
  • Examples of the pour point depressant include an ethylene-vinyl acetate copolymer, a condensate of chlorinated paraffin and naphthalene, a condensate of chlorinated paraffin and phenol, a polymethacrylate, and a polyalkylstyrene.
  • Examples of the rust inhibitor include a petroleum sulfonate, an alkylbenzene sulfonate, dinonylnaphthalene sulfonate, an alkenylsuccinate ester, and a polyhydric alcohol ester.
  • Examples of the anti-foaming agent include a silicone oil, a fluorosilicone oil, and a fluoroalkyl ether.
  • <Ratios of Components in Lubricating Oil Composition>
  • The lubricating oil composition of the present embodiment preferably has a ratio of the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the metal-based detergent (D) as converted in terms of metal atom [(content of monohindered amine antioxidant (C) as converted in terms of nitrogen atom)/(content of metal-based detergent (D) as converted in terms of metal atom)] of from 0.14 to 0.58, and more preferably from 0.15 to 0.30.
  • In the case where the ratio is 0.14 or more, the content of the metal-based detergent (D) can be suppressed to increase the total base number, and thereby the formation of deposits can be suppressed to suppress the wear of the engine components. In the case where the ratio is 0.58 or less, the content of the monohindered amine antioxidant (C) can be suppressed, and thereby the friction reducing capability after the deterioration of the lubricating oil composition can be readily retained, and the monohindered amine antioxidant (C) can be prevented from becoming deposits.
  • The lubricating oil composition of the present embodiment preferably has a ratio of the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] of from 0.92 to 13.35, more preferably from 1.00 to 9.00, and further preferably from 2.00 to 9.00.
  • In the case where the ratio is 0.92 or more, the increase of the viscosity of the lubricating oil composition in the thermal deterioration thereof can be suppressed. In the case where the ratio is 13.35 or less, the friction reducing capability after the deterioration of the lubricating oil composition can be readily retained.
  • The lubricating oil composition of the present embodiment preferably has a ratio of the content of the monohindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of monohindered amine antioxidant (C) as converted in terms of nitrogen)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] of from 0.15 to 1.35, more preferably from 0.20 to 0.60, and further preferably from 0.25 to 0.60.
  • In the case where the ratio is 0.15 or more, the friction reducing capability based on the molybdenum friction modifier (E) can be readily retained, after the deterioration of the lubricating oil composition. In the case where the ratio is 1.35 or less, a film of the molybdenum friction modifier (E) can be readily formed on the surface of the engine components.
  • <Sulfated Ash Content of Lubricating Oil Composition>
  • The lubricating oil composition of the present embodiment has a sulfated ash content of 0.70% by mass or less.
  • In the case where the sulfated ash content of the lubricating oil composition exceeds 0.70% by mass, the amount of deposits in the deterioration of the lubricating oil composition is increased, and the wear of the engine components cannot be suppressed.
  • The sulfated ash content of the lubricating oil composition is preferably 0.68% by mass or less, more preferably 0.67% by mass or less, and further preferably 0.66% by mass or less.
  • The lower limit of the sulfated ash content of the lubricating oil composition is not particularly limited, and is preferably 0.40% by mass or more, more preferably 0.45% by mass or more, and further preferably 0.50% by mass or more, from the standpoint of the increase of the total base number.
  • In the present embodiment, the sulfated ash content is a value that is measured according to JIS K2272:1998.
  • <Total Base Number of Lubricating Oil Composition>
  • The lubricating oil composition of the present embodiment has a total base number of 4.0 mgKOH/g or more.
  • In the case where the total base number of the lubricating oil composition is less than 4.0 mgKOH/g, the detergency of the lubricating oil composition becomes insufficient to facilitate the formation of deposits and to fail to suppress the wear of the engine components.
  • In the case where the total base number of the lubricating oil composition is too large, there may be a possibility of occurrence of the adverse effects in the case where the content of the monohindered amine antioxidant (C) is too large and the adverse effects in the case where the content of the metal-based detergent (D) is too large.
  • From these standpoints, the total base number of the lubricating oil composition is preferably from 4.0 to 7.0 mgKOH/g, more preferably from 4.2 to 7.0 mgKOH/g, and further preferably from 4.5 to 7.0 mgKOH/g.
  • In the present embodiment, the total base number is a value that is measured according to the hydrochloric acid method of JIS K2501:2003.
  • <Other Properties of Lubricating Oil Composition>
  • The lubricating oil composition of the present embodiment preferably has a content of sulfur atom of from 1,000 to 13,000 ppm by mass, more preferably from 2,000 to 11,000 ppm by mass, and further preferably from 2,000 to 9,000 ppm by mass, based on the total content of the lubricating oil composition.
  • In the case where the content of sulfur atom is 1,000 ppm by mass or more, the friction reducing capability after the deterioration of the lubricating oil composition can be retained, and in the case where the content thereof is 13,000 ppm by mass or less, the increase of the viscosity in the thermal deterioration of the lubricating oil composition can be suppressed.
  • The lubricating oil composition of the present embodiment preferably has a content of nitrogen atom of from 500 to 4,000 ppm by mass, more preferably from 700 to 3,500 ppm by mass, and further preferably from 900 to 3,000 ppm by mass, based on the total content of the lubricating oil composition.
  • In the case where the content of nitrogen atom is 500 ppm by mass or more, the detergency dispersibility can be improved, and in the case where the content thereof is 4,000 ppm by mass or less, the compatibility to a resin material, such as rubber, can be improved.
  • The lubricating oil composition of the present embodiment preferably has a kinematic viscosity at 100° C. of from 3 to 20 mm2/s, more preferably from 3 to 10 mm2/s, and further preferably from 5 to 8 mm2/s.
  • The lubricating oil composition of the present embodiment preferably has a viscosity index of 100 or more, more preferably 120 or more, and further preferably 130 or more.
  • <Application of Lubricating Oil Composition>
  • The lubricating oil composition of the present embodiment can be favorably used as a lubricating oil composition for an internal combustion engine, such as a gasoline engine, a diesel engine, and a gas engine, of an automobile, such as a four-wheel vehicle and a two-wheel vehicle, an electric power generator, a watercraft, and the like. In particular, the lubricating oil composition of the present embodiment can be favorably used as a lubricating oil composition for an engine equipped with a forced-induction mechanism, such as a supercharger and a turbocharger.
  • [Method for Producing Lubricating Oil Composition]
  • The method for producing a lubricating oil composition of the present embodiment includes preparing a lubricating oil composition containing a base oil (A), a non-metal-containing sulfur antioxidant (B), a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, and the preparing step is performed to satisfy the following conditions (i) to (iv).
      • (i) The lubricating oil composition has a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition.
      • (ii) The lubricating oil composition has a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
      • (iii) The lubricating oil composition has a sulfated ash content of 0.70% by mass or less.
      • (iv) The lubricating oil composition has a total base number of 4.0 mgKOH/g or more.
  • In the method for producing a lubricating oil composition of the present embodiment, the preferred embodiments of the constitutional components and the preferred embodiments of the numerical values of the conditions (i) to (iv) are the same as the preferred embodiments of the lubricating oil composition of the present embodiment described above.
  • EXAMPLES
  • The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the examples.
  • 1. Measurement
  • The properties of the components constituting the lubricating oil compositions of Examples and Comparative Examples and the properties of the lubricating oil compositions of Examples and Comparative Examples were measured according to the following methods.
  • <Sulfated Ash Content>
  • The sulfated ash content was measured according to JIS K2272:1998.
  • <Total Base Number>
  • The total base number was measured according to the hydrochloric acid method of JIS K2501:2003.
  • <Content of Sulfur Atom>
  • The content of sulfur atom was measured according to ASTM D-1552.
  • <Content of Nitrogen Atom>
  • The content of nitrogen atom was measured according to JIS K2609:1998.
  • <Content of Metal Atom>
  • The content of metal atom was measured according to ASTM D4951.
  • <Kinematic Viscosity at 100° C.>
  • The kinematic viscosity was measured according to JIS K2283:2000.
  • <Viscosity Index>
  • The viscosity index was measured according to JIS K2283:2000.
  • 2. Preparation of Lubricating Oil Composition
  • The lubricating oil compositions of Examples and Comparative Examples were prepared according to the compositional ratios shown in Tables 1 and 2. The details of the base oils and the additives used in Examples and Comparative Examples are shown below.
  • <Base Oil (A)>
  • Mineral oil of 100 N, sulfur content: 10 ppm or less, kinematic viscosity at 100° C.: 4.2 mm2/s, viscosity index: 126
  • <Non-Metal-Containing Sulfur Antioxidant>
  • B-1: Thiocarbamate compound corresponding to general formula (1A) (Vanlube 7723, produced by R.T. Vanderbilt Company, Inc., sulfur content: 30.5% by mass, nitrogen content: 6.9% by mass)
  • B-2: Thiadiazole compound (HiTEC 4313, produced by Afton Chemical Corporation, sulfur content: 36.0% by mass, nitrogen content: 5.7% by mass)
  • B-3: Polysulfide compound (Dailube GS-120, a trade name, produced by DIC Corporation, sulfur content: 11.4% by mass)
  • B-4: Sulfurized fat or fatty oil (Dailube GS-440L, a trade name, produced by DIC Corporation, sulfur content: 39.7% by mass)
  • <Amine Antioxidant>
  • Monohindered amine antioxidant (XPDL590, a trade name, produced by BASF AG, nitrogen content: 4.3% by mass)
  • Bishindered amine antioxidant 1 (Tinuvin 765, a trade name, produced by BASF AG, nitrogen content: 5.3% by mass, number of piperidine-derives skeletons in molecule: 2)
  • Bishindered amine antioxidant 2 (Tinuvin 770DF, a trade name, produced by BASF AG, nitrogen content: 5.6% by mass, number of piperidine-derives skeletons in molecule: 2)
  • Diarylamine antioxidant (diphenylamine, Irganox L57, a trade name, produced by BASF AG, nitrogen content: 4.6% by mass)
  • <Metal-Based Detergent (D)>
  • Calcium salicylate (total base number: 225 mgKOH/g, calcium atom content: 7.8% by mass)
  • <Molybdenum Friction Modifier (E)>
  • Molybdenum dithiocarbamate (Sakura-Lube 515, a trade name, produced by Adeka Corporation, molybdenum atom content: 10.0% by mass)
  • <Additive Mixture>
  • Additive mixture containing a viscosity index improver, a pour point depressant, polybutenylsuccinimide, boron-modified polybutenylsuccinimide, zinc dialkyldithiophosphate, a rust inhibitor, a corrosion inhibitor, and a anti-foaming agent
  • 3. Evaluation
  • The lubricating oil compositions of Examples and Comparative Examples were measured for the friction coefficient after a deterioration treatment. The results are shown in Tables 1 and 2.
  • <Friction Coefficient after Deterioration Treatment>
  • To 100 g of each of the lubricating oil compositions of Examples and Comparative Examples immediately after the production, 0.5% by mass of 4-ethylnitrobenzene as a deterioration accelerator was added. Furthermore, the lubricating oil composition was subjected to a deterioration treatment by blowing a gas having a NOx concentration of 2,000 ppm by volume therein for 48 hours at an oil temperature of 160° C. The deterioration treatment corresponds to the deterioration occurring by driving an automobile for approximately 10,000 km.
  • The lubricating oil composition after the deterioration treatment was subjected to a preconditioning operation under the following condition for 2 hours and then measured for the friction coefficient with the testing machine shown below.
  • Testing machine: MTM (mini traction machine) tester, produced by PCS Instruments, Ltd.
  • Test piece: Standard test piece (¾″ steel-steel)
  • Condition for preconditioning operation and measurement of friction coefficient: oil temperature: 80° C., load: 30 N, velocity: 100 mm/s, specific sliding ratio (SSR): 50%, oil amount: 35 mL
  • TABLE 1
    Example
    1 2 3
    Composition Base oil (A) balance balance balance
    (% by mass) Non-metal containing sulfur antioxidant (B) B-1 0.50 1.00 2.00
    B-2
    B-3
    B-4
    Amine antioxidant Monohindered amine antioxidant (C) 0.50 0.50 0.50
    Bishindered amine antioxidant 1
    Bishindered amine antioxidant 2
    Diphenylamine
    Metal-based detergent (D) 1.50 1.50 1.50
    Molybdenum friction modifier (E) 0.70 0.70 0.70
    Additive mixture 15.00 15.00 15.00
    Contents and content Sulfur atom content derived from component (B) (ppm by mass) [i] 1525 3050 6100
    ratios of component Nitrogen atom content derived from amine antioxidant (ppm by mass) [ii] 215 215 215
    Metal atom content derived from component (D) (ppm by mass) [iii] 1170 1170 1170
    Molybdenum atom content derived from component (E) (ppm by mass) [iv] 700 700 700
    [ii]/[iii] 0.18 0.18 0.18
    [i]/[iv] 2.18 4.36 8.71
    [ii]/[iv] 0.31 0.31 0.31
    Contents of atoms Calcium atom content (ppm by mass) 1240 1280 1280
    based on total
    amount of Sulfur atom content (ppm by mass) 3500 5200 8000
    composition Nitrogen atom content (ppm by mass) 1400 1800 2400
    Properties Total base number (mgKOH/g) 4.69 4.65 4.65
    Sulfated ash content (% by mass) 0.63 0.65 0.65
    Evaluation Friction coefficient after deterioration 0.0798 0.0589 0.041
    Total base number after deterioration (mgKOH/g) 1.28 1.48 1.52
    Example
    4 5 6
    Composition Base oil (A) balance balance balance
    (% by mass) Non-metal containing sulfur antioxidant (B) B-1
    B-2 0.42
    B-3 1.34
    B-4 0.38
    Amine antioxidant Monohindered amine antioxidant (C) 0.50 0.50 0.50
    Bishindered amine antioxidant 1
    Bishindered amine antioxidant 2
    Diphenylamine
    Metal-based detergent (D) 1.50 1.50 1.50
    Molybdenum friction modifier (E) 0.70 0.70 0.70
    Additive mixture 15.00 15.00 15.00
    Contents and content Sulfur atom content derived from component (B) (ppm by mass) [i] 1512 1528 1509
    ratios of component Nitrogen atom content derived from amine antioxidant (ppm by mass) [ii] 215 215 215
    Metal atom content derived from component (D) (ppm by mass) [iii] 1170 1170 1170
    Molybdenum atom content derived from component (E) (ppm by mass) [iv] 700 700 700
    [ii]/[iii] 0.18 0.18 0.18
    [i]/[iv] 2.16 2.18 2.16
    [ii]/[iv] 0.31 0.31 0.31
    Contents of atoms Calcium atom content (ppm by mass) 1280 1280 1280
    based on total
    amount of Sulfur atom content (ppm by mass) 3500 3600 3500
    composition Nitrogen atom content (ppm by mass) 1400 1100 1100
    Properties Total base number (mgKOH/g) 4.92 4.70 4.71
    Sulfated ash content (% by mass) 0.65 0.65 0.65
    Evaluation Friction coefficient after deterioration 0.0812 0.0805 0.0686
    Total base number after deterioration (mgKOH/g) 1.28 1.05 1.03
  • TABLE 2
    Comparative Example
    1 2 3 4
    Composition Base oil (A) balance balance balance balance
    (% by mass) Non-metal containing B-1 0.25 0.50
    sulfur antioxidant (B) B-2
    B-3
    B-4
    Amine antioxidant Monohindered amine antioxidant 0.50 1.00
    (C)
    Bishindered amine antioxidant 1
    Bishindered amine antioxidant 2
    Diphenylamine
    Metal-based detergent (D) 1.50 2.00 1.50 1.50
    Molybdenum friction modifier (E) 0.70 0.70 0.70 0.70
    Additive mixture 15.00 15.00 15.00 15.00
    Contents and content Sulfur atom content derived from component (B) (ppm by 763 1525
    ratios of component mass) [i]
    Nitrogen atom content derived from amine antioxidant (ppm 215 430
    by mass) [ii]
    Metal atom content derived from component (D) (ppm by 1170 1560 1170 1170
    mass) [iii]
    Molybdenum atom content derived from component (E) (ppm 700 700 700 700
    by mass) [iv]
    [ii]/[iii] 0.18 0.37
    [i]/[iv] 1.09 2.18
    [ii]/[iv] 0.31 0.61
    Contents of atoms Calcium atom content (ppm by mass) 1260 1700 1260 1240
    based on total
    amount of Sulfur atom content (ppm by mass) 2200 2200 2800 3600
    composition Nitrogen atom content (ppm by mass) 900 900 1300 1600
    Properties Total base number (mgKOH/g) 3.90 4.96 4.71 5.48
    Sulfated ash content (% by mass) 0.64 0.78 0.64 0.63
    Evaluation Friction coefficient after deterioration 0.1041 0.1058 0.1203 0.1050
    Total base number after deterioration (mgKOH/g) 0.25 0.90 1.21 2.09
    Comparative Example
    5 6 7
    Composition Base oil (A) balance balance balance
    (% by mass) Non-metal containing sulfur B-1 0.50 0.50 0.50
    antioxidant (B) B-2
    B-3
    B-4
    Amine antioxidant Monohindered amine antioxidant
    (C)
    Bishindered amine antioxidant 1 0.41
    Bishindered amine antioxidant 2 0.39
    Diphenylamine 0.47
    Metal-based detergent (D) 1.50 1.50 1.50
    Molybdenum friction modifier (E) 0.70 0.70 0.70
    Additive mixture 15.00 15.00 15.00
    Contents and content Sulfur atom content derived from component (B) (ppm 1525 1525 1525
    ratios of component by mass) [i]
    Nitrogen atom content derived from amine antioxidant (ppm 217 217 217
    by mass) [ii]
    Metal atom content derived from component (D) (ppm by 1170 1170 1170
    mass) [iii]
    Molybdenum atom content derived from component (E) (ppm 700 700 700
    by mass) [iv]
    [ii]/[iii] 0.19 0.19 0.19
    [i]/[iv] 2.18 2.18 2.18
    [ii]/[iv] 0.31 0.31 0.31
    Contents of atoms Calcium atom content (ppm by mass) 1280 1270 1270
    based on total
    amount of Sulfur atom content (ppm by mass) 3500 3400 3400
    composition Nitrogen atom content (ppm by mass) 1400 1500 1400
    Properties Total base number (mgKOH/g) 4.72 4.79 3.84
    Sulfated ash content (% by mass) 0.65 0.65 0.65
    Evaluation Friction coefficient after deterioration 0.1149 0.1148 0.0628
    Total base number after deterioration (mgKOH/g) 1.44 1.46 1.13
  • It can be confirmed from Tables 1 and 2 that the lubricating oil compositions of Examples 1 to 6 can retain the good friction reducing capability even after the deterioration thereof. The lubricating oil compositions of Examples 1 to 6 each have a total base number of 4.0 mgKOH/g or more irrespective of the small sulfated ash content of 0.70% by mass or less, and thus are expected to achieve good detergency. The lubricating oil compositions of Examples 1 to 6 each have a small sulfated ash content of 0.70% by mass or less, and thus are expected to suppress the wear of the engine components due to deposits. The lubricating oil composition of Examples 1 to 6 each have a total base number of 1.0 mgKOH/g or more after the deterioration thereof, and thus are expected to achieve the detergency for a prolonged period of time.
  • On the other hand, it can be confirmed that the lubricating oil compositions of Comparative Examples 1 to 6 cannot retain the good friction reducing capability after the deterioration thereof. The lubricating oil compositions of Comparative Examples 1 and 7 each have a total base number of less than 4.0 mgKOH/g, and therefore the lubricating oil compositions are insufficient in detergency, tend to form deposits, and cannot be expected to suppress the wear of the engine components. The lubricating oil composition of Comparative Example 2 has a sulfated ash content exceeding 0.70% by mass, and thus cannot be expected to suppress the wear of the engine components due to deposits. The lubricating oil compositions of Comparative Examples 1 and 2 each have a total base number of less than 1.0 mgKOH/g after the deterioration thereof, and thus cannot be expected to achieve the detergency for a prolonged period of time.

Claims (12)

1. A lubricating oil composition, comprising:
(A) a base oil (A);
(B) a non-metal-containing sulfur antioxidant (B); and
(C) a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule,
wherein:
a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition;
a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition;
a sulfated ash content of 0.70% by mass or less; and
a total base number of 4.0 mgKOH/g or more.
2. The lubricating oil composition according to claim 1, wherein the non-metal-containing sulfur antioxidant (B) is at least one selected from the group consisting of a thiocarbamate compound, a thiadiazole compound, a polysulfide compound, and a sulfurized fat or fatty oil.
3. The lubricating oil composition according to claim 1, wherein the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom is 1,200 ppm by mass or more and 6,500 ppm by mass or less based on the total amount of the lubricating oil composition.
4. The lubricating oil composition according to claim 1, wherein the content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom is 200 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition.
5. The lubricating oil composition according to claim 1, further comprising:
(D) a metal-based detergent (D),
wherein a content of the metal-based detergent (D) as converted in terms of metal atom of 700 ppm by mass or more and 1,400 ppm by mass or less based on the total amount of the lubricating oil composition.
6. The lubricating oil composition according to claim 5, wherein the ratio of the content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the metal-based detergent (D) as converted in terms of metal atom [(content of hindered amine antioxidant (C) as converted in terms of nitrogen atom)/(content of metal-based detergent (D) as converted in terms of metal atom)] is from 0.14 to 0.58.
7. The lubricating oil composition according to claim 1, further comprising:
(E) a molybdenum friction modifier (E),
wherein a content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom of 300 ppm by mass or more and 1,300 ppm by mass or less based on the total amount of the lubricating oil composition.
8. The lubricating oil composition according to claim 7, wherein the ratio of the content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] is from 0.92 to 13.35.
9. The lubricating oil composition according to claim 7, wherein the ratio of the content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom and the content of the molybdenum friction modifier (E) as converted in terms of molybdenum atom [(content of hindered amine antioxidant (C) as converted in terms of nitrogen)/(content of molybdenum friction modifier (E) as converted in terms of molybdenum atom)] is from 0.15 to 1.35.
10. The lubricating oil composition according to claim 1, wherein the content of the base oil (A) is less than 90% by mass based on the total amount of the lubricating oil composition.
11. A lubricating oil composition for an engine equipped with a forced-induction mechanism, the composition comprising the lubricating oil composition of claim 1.
12. A method for producing a lubricating oil composition, the method comprising preparing a lubricating oil composition containing a base oil (A), a non-metal-containing sulfur antioxidant (B), a hindered amine antioxidant (C) having one piperidine-derived skeleton in a molecule, the preparing step being performed to satisfy the following conditions (i) to (iv):
(i) the lubricating oil composition having a content of the non-metal-containing sulfur antioxidant (B) as converted in terms of sulfur atom of 800 ppm by mass or more based on the total amount of the lubricating oil composition,
(ii) the lubricating oil composition having a content of the hindered amine antioxidant (C) as converted in terms of nitrogen atom of 100 ppm by mass or more and 400 ppm by mass or less based on the total amount of the lubricating oil composition,
(iii) the lubricating oil composition having a sulfated ash content of 0.70% by mass or less, and
(iv) the lubricating oil composition having a total base number of 4.0 mgKOH/g or more.
US16/318,441 2016-12-05 2017-11-30 Lubricant oil composition and method for manufacturing same Abandoned US20190241828A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016235848A JP6863557B2 (en) 2016-12-05 2016-12-05 Lubricating oil composition and its manufacturing method
JP2016-235848 2016-12-05
PCT/JP2017/043138 WO2018105496A1 (en) 2016-12-05 2017-11-30 Lubricant oil composition and method for manufacturing same

Publications (1)

Publication Number Publication Date
US20190241828A1 true US20190241828A1 (en) 2019-08-08

Family

ID=62491171

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/318,441 Abandoned US20190241828A1 (en) 2016-12-05 2017-11-30 Lubricant oil composition and method for manufacturing same

Country Status (5)

Country Link
US (1) US20190241828A1 (en)
JP (1) JP6863557B2 (en)
CN (1) CN109477025A (en)
DE (1) DE112017006150T5 (en)
WO (1) WO2018105496A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293044A (en) * 2021-05-26 2021-08-24 长沙望城石油化工有限公司 Long-acting wear-resistant friction reducer composition, lubricating grease and processing oil
EP3950896A4 (en) * 2019-03-29 2022-12-28 Idemitsu Kosan Co., Ltd. Lubricating oil composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180267A (en) * 2019-04-26 2020-11-05 出光興産株式会社 Lubricant composition for driving system device, production method thereof, lubrication method of driving system device, and driving system device
JP6891359B1 (en) * 2019-07-26 2021-06-18 株式会社Adeka Lubricating oil additive and lubricating oil composition containing it
JP7399468B2 (en) * 2020-01-24 2023-12-18 国立大学法人東海国立大学機構 organic friction modifier
JP6993524B1 (en) 2021-03-12 2022-02-21 シェルルブリカンツジャパン株式会社 Lubricating oil composition
WO2023162819A1 (en) * 2022-02-28 2023-08-31 出光興産株式会社 Lubricating oil composition for two-wheeled motor vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150087568A1 (en) * 2009-02-02 2015-03-26 Vanderbilt Chemicals, Llc Ashless lubricant composition
US20150106090A1 (en) * 2013-10-14 2015-04-16 Samsung Electronics Co., Ltd. Display apparatus and method of performing voice control
US20160326453A1 (en) * 2014-01-10 2016-11-10 The Lubrizol Corporation Method of lubricating an internal combustion engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710501A (en) 1980-06-20 1982-01-20 Mitsubishi Electric Corp Supporting device
JPS5930904A (en) 1982-08-10 1984-02-18 呉羽化学工業株式会社 Opening and closing of pedal of artificial flower
US6326336B1 (en) * 1998-10-16 2001-12-04 Ethyl Corporation Turbine oils with excellent high temperature oxidative stability
GB0326808D0 (en) * 2003-11-18 2003-12-24 Infineum Int Ltd Lubricating oil composition
CA2549517C (en) * 2005-06-01 2014-01-21 Infineum International Limited Lubricating oil composition comprising non-hydrogenated polymer
BRPI0714961B1 (en) * 2006-07-31 2016-11-22 Ciba Holding Inc lubricant composition
RU2493243C2 (en) * 2009-02-02 2013-09-20 Ар.Ти. ВАНДЕРБИЛТ КОМПАНИ, ИНК. Ash-free lubricating composition
US8841243B2 (en) * 2010-03-31 2014-09-23 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
CA2829492A1 (en) * 2011-03-10 2012-09-13 Yanshi Zhang Lubricating composition containing a thiocarbamate compound
CN103509057B (en) * 2012-06-21 2016-12-21 中国石油天然气股份有限公司 A kind of oil-soluble molybdenum dialkyldithiocarbamacompositions addictive preparation method
WO2014017182A1 (en) * 2012-07-27 2014-01-30 Jx日鉱日石エネルギー株式会社 Lubricant oil composition, and method for lubricating sliding material while preventing elution of copper and lead
JP5930906B2 (en) * 2012-07-27 2016-06-08 Jxエネルギー株式会社 Lubrication method for sliding materials with suppressed elution of copper and lead
US9145530B2 (en) * 2012-12-10 2015-09-29 Infineum International Limited Lubricating oil compositions containing sterically hindered amines as ashless TBN sources
JP2014152301A (en) * 2013-02-13 2014-08-25 Idemitsu Kosan Co Ltd Lubricant composition for direct-injection turbo mechanism-loaded engine
ES2907046T3 (en) * 2013-05-03 2022-04-21 Uponor Innovation Ab polyolefin tubing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150087568A1 (en) * 2009-02-02 2015-03-26 Vanderbilt Chemicals, Llc Ashless lubricant composition
US20150106090A1 (en) * 2013-10-14 2015-04-16 Samsung Electronics Co., Ltd. Display apparatus and method of performing voice control
US20160326453A1 (en) * 2014-01-10 2016-11-10 The Lubrizol Corporation Method of lubricating an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950896A4 (en) * 2019-03-29 2022-12-28 Idemitsu Kosan Co., Ltd. Lubricating oil composition
CN113293044A (en) * 2021-05-26 2021-08-24 长沙望城石油化工有限公司 Long-acting wear-resistant friction reducer composition, lubricating grease and processing oil

Also Published As

Publication number Publication date
JP2018090714A (en) 2018-06-14
JP6863557B2 (en) 2021-04-21
CN109477025A (en) 2019-03-15
WO2018105496A1 (en) 2018-06-14
DE112017006150T5 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US20190241828A1 (en) Lubricant oil composition and method for manufacturing same
EP3101095B1 (en) Lubricating oil composition
EP2412790B1 (en) Gear oil composition
US9410106B2 (en) Lubricating oil composition
CN103502403B (en) Molybdenum dialkyldithiocarbamate compositions and lubricating compositions containing the same
JP6896384B2 (en) Lubricating oil composition
JP6235549B2 (en) Lubricating oil composition
US11421175B2 (en) Gear oil composition for automobile, and lubrication method
US8802604B2 (en) Lubricating oil composition in contact with silver-containing material
US20210189284A1 (en) Lubricating oil composition
JP2015500385A (en) Lubricant composition for transmission
JP2018016762A (en) Lubricating oil composition
CN103748199A (en) Lubricant composition having improved antiwear properties
JP6134852B2 (en) Lubricating oil composition
JP2019123818A (en) Lubricant composition
CN112912480B (en) Lubricating oil composition for internal combustion engine, method for producing same, and method for suppressing pre-ignition
WO2020085153A1 (en) Lubricating oil composition, mechanical device equipped with lubricating oil composition, and method for producing lubricating oil composition
JP5241122B2 (en) Lubricating oil composition in contact with silver-containing material
JP2020026488A (en) Lubricant composition
JPH10287895A (en) Lubricating oil composition
JP2021143309A (en) Lubricant composition
JP2022048706A (en) Lubricant composition
JP2017125214A (en) Lubricant composition
JP2006152313A (en) Lubricant oil composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: IDEMITSU KOSAN CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKI, HIROSHI;KUSUMOTO, TATSUYA;REEL/FRAME:048045/0777

Effective date: 20190107

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION