JP2014152301A - Lubricant composition for direct-injection turbo mechanism-loaded engine - Google Patents
Lubricant composition for direct-injection turbo mechanism-loaded engine Download PDFInfo
- Publication number
- JP2014152301A JP2014152301A JP2013025413A JP2013025413A JP2014152301A JP 2014152301 A JP2014152301 A JP 2014152301A JP 2013025413 A JP2013025413 A JP 2013025413A JP 2013025413 A JP2013025413 A JP 2013025413A JP 2014152301 A JP2014152301 A JP 2014152301A
- Authority
- JP
- Japan
- Prior art keywords
- lubricating oil
- mass
- component
- oil composition
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lubricants (AREA)
Abstract
Description
本発明は、潤滑油組成物、特に直噴ターボ機構搭載エンジンに好適に使用される潤滑油組成物に関する。 The present invention relates to a lubricating oil composition, and more particularly to a lubricating oil composition suitably used for an engine equipped with a direct injection turbo mechanism.
従来、ガソリンエンジン、ディーゼルエンジン、各種産業用内燃機関等の潤滑用エンジン油に関しては、特許文献1におけるように、エンジンの摩擦損失低減効果を長期にわたって発現させるべく、また、特許文献2におけるように、排出ガス浄化能力、燃費特性、運転性能を最高レベルまでバランス良く引き出すべく、さらに、特許文献3におけるように、すす混入時の摩耗を抑制するとともに、長寿命化の実現と、排ガス後処理装置への影響を緩和すべくエンジン油の配合組成に着目した研究がなされてきた。
ところで、近年、車両の燃費性能向上を目的として直噴ターボ機構搭載エンジンの開発、市場展開が進められている。本機構では、従来の自然吸気エンジン(NA)と比べ、排気量当たりの出力を高くできる利点がある。更に、従来のターボ機構搭載エンジンと比較し、低側領域からターボ(過給)を活用することから、市街地走行等のエンジン低速領域での高出力化が可能である。以上のような背景から、直噴ターボ機構搭載エンジンでは、従来機構のエンジンと比べ同一出力時のエンジンの小型化(車両の軽量化)が可能となり、車両の燃費性能向上に大きく寄与することが可能であった。
Conventionally, as for engine oil for lubrication of gasoline engines, diesel engines, various industrial internal combustion engines, etc., as in Patent Document 1, in order to express the effect of reducing engine friction loss over a long period of time, as in Patent Document 2 In order to bring out the exhaust gas purification capacity, fuel efficiency characteristics, and driving performance in a well-balanced manner, and further, as in Patent Document 3, it suppresses wear when soot is mixed, achieves a long life, and exhaust gas aftertreatment device Research has been conducted focusing on the composition of engine oils in order to mitigate the impact on the oil.
By the way, in recent years, an engine equipped with a direct injection turbo mechanism has been developed and marketed for the purpose of improving the fuel efficiency of a vehicle. This mechanism has an advantage that the output per displacement can be increased as compared with a conventional naturally aspirated engine (NA). Furthermore, compared to conventional turbomachinery-equipped engines, turbo (supercharging) is utilized from the low-side region, so that high output can be achieved in engine low-speed regions such as urban driving. From the background described above, an engine equipped with a direct-injection turbomechanism can reduce the size of the engine at the same output (lightening the vehicle) compared to the engine of the conventional mechanism, which can greatly contribute to improving the fuel efficiency of the vehicle. It was possible.
前述の理由により、直噴ターボ機構搭載エンジンについては、その有効性が認められている一方で、低速運転時の低速プレイグニッション(Low Speed Pre-Ignition、以下「LSPI」と称する)と呼ばれる現象が問題となっている。この現象は、低速運転状態において、設定された点火時期よりも早く着火してしまう現象で、その着火を起因としエンジンシリンダー内で異常燃焼(異常爆発)が起こることがある。
このように、LSPI現象に対しては早急な対策が必要であるが、その発生にエンジン油組成物の配合組成がいかに影響するかについては未だ不明であった。そのため、エンジン油組成とLSPI現象の発生との関係に着目する知見はなかった。
すなわち、本発明の課題は、直噴ターボ機構搭載エンジンにおいて、低燃費と高い運動性能とを実現するとともに、LSPI現象を抑制することができる直噴ターボ機構搭載エンジン用潤滑油組成物を提供することにある。
For the above-mentioned reasons, while the effectiveness of the direct-injection turbo mechanism-equipped engine has been recognized, a phenomenon called low-speed pre-ignition (hereinafter referred to as “LSPI”) during low-speed operation has occurred. It is a problem. This phenomenon is a phenomenon in which ignition is performed earlier than a set ignition timing in a low-speed operation state, and abnormal combustion (abnormal explosion) may occur in the engine cylinder due to the ignition.
As described above, urgent measures are required for the LSPI phenomenon, but it has not yet been known how the composition of the engine oil composition affects the occurrence of the LSPI phenomenon. Therefore, there has been no knowledge focusing on the relationship between the engine oil composition and the occurrence of the LSPI phenomenon.
That is, an object of the present invention is to provide a lubricating oil composition for a direct-injection turbo mechanism-equipped engine capable of realizing low fuel consumption and high motion performance and suppressing the LSPI phenomenon in an engine equipped with a direct-injection turbo mechanism. There is.
本発明は、
[1]基油に、(A)スルフォネート、サリチレート、及びフェネートの各々のCa塩、Mg塩及びNa塩から選ばれる少なくとも1種の金属系清浄剤を潤滑油組成物全量基準で金属量として100質量ppm以上2000質量ppm以下と、(B)ジチオリン酸亜鉛を潤滑油組成物全量基準でP量として500質量ppm以上2000質量ppm以下とを配合してなり、前記(A)成分に対する(B)成分の質量比[(B)成分中のP量/(A)成分中の金属量]が0.45以上である直噴ターボ機構搭載エンジン用潤滑油組成物、
[2]硫酸灰分が、潤滑油組成物全量基準で0.8質量%以下である前記[1]記載の直噴ターボ機構搭載エンジン用潤滑油組成物、
The present invention
[1] At least one metal-based detergent selected from the Ca salt, Mg salt, and Na salt of (A) sulfonate, salicylate, and phenate is added to the base oil as a metal amount based on the total amount of the lubricating oil composition. (B) with respect to said (A) component which mix | blends 500 mass ppm or more and 2000 mass ppm or less as (P) quantity (B) zinc dithiophosphate as P quantity on the basis of lubricating oil composition whole quantity. Lubricating oil composition for direct-injection turbomachinery-equipped engine having a mass ratio of components [P content in component (B) / metal content in component (A)] of 0.45 or more,
[2] The lubricating oil composition for engines equipped with a direct injection turbo mechanism according to [1], wherein the sulfated ash content is 0.8% by mass or less based on the total amount of the lubricating oil composition;
[3][(B)成分中のP量/(A)成分中の金属量]が0.5以上である前記[1]または[2]に記載の直噴ターボ機構搭載エンジン用潤滑油組成物、
[4][(B)成分中のP量/(A)成分中の金属量]が0.6以上である前記[1]〜[3]のいずれかに記載の直噴ターボ機構搭載エンジン用潤滑油、
[5]さらに、粘度指数向上剤、酸化防止剤、及び摩擦調整剤から選ばれる少なくとも1種が配合される前記[1]〜[4]のいずれかに記載の直噴ターボ機構搭載エンジン用潤滑油組成物、
に関する。
[3] The lubricating oil composition for an engine equipped with a direct injection turbo mechanism according to the above [1] or [2], wherein [P content in component (B) / metal content in component (A)] is 0.5 or more. object,
[4] For an engine equipped with a direct injection turbo mechanism according to any one of [1] to [3], wherein [P content in component (B) / metal content in component (A)] is 0.6 or more. Lubricant,
[5] Further, at least one selected from a viscosity index improver, an antioxidant, and a friction modifier is blended, and the lubricating for an engine equipped with a direct injection turbo mechanism according to any one of the above [1] to [4] Oil composition,
About.
直噴ターボ機構搭載エンジンにおいて、低燃費と高い運動性能とを実現するとともに、本発明の特定の配合組成を有する潤滑油組成物を用いることで、従来汎用されている内燃機関用エンジン油に比べ、大幅にLSPI現象を抑制することが可能となる。 In an engine equipped with a direct injection turbo mechanism, it achieves low fuel consumption and high motion performance, and by using a lubricating oil composition having a specific composition of the present invention, compared to conventionally used engine oil for internal combustion engines. It is possible to greatly suppress the LSPI phenomenon.
以下、本発明をさらに詳細に説明する。
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物(以下、単に「潤滑油組成物」と称する場合がある)は、基油に、(A)スルフォネート、サリチレート、及びフェネートの各々のCa塩、Mg塩及びNa塩から選ばれる少なくとも1種の金属系清浄剤を潤滑油組成物全量基準で金属量として100質量ppm以上2000質量ppm以下と、(B)ジチオリン酸亜鉛を潤滑油組成物全量基準でP量として500質量ppm以上2000質量ppm以下とを配合してなり、前記(A)成分に対する(B)成分の質量比[(B)成分中のP量/(A)成分中の金属量]が0.45以上であることを特徴とする。
Hereinafter, the present invention will be described in more detail.
The lubricating oil composition for an engine equipped with a direct injection turbo mechanism of the present invention (hereinafter sometimes simply referred to as “lubricating oil composition”) includes (A) a sulfonate, a salicylate, and a phenate Ca salt. 100 mass ppm or more and 2000 mass ppm or less of the metal amount based on the total amount of the lubricating oil composition, and (B) zinc dithiophosphate is the total amount of the lubricating oil composition. The amount of P is 500 to 2000 ppm by mass as a reference, and the mass ratio of component (B) to component (A) [P amount in component (B) / metal in component (A) Amount] is 0.45 or more.
(基油)
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物の基油については、特に制限はなく、従来、内燃機関用潤滑油の基油として使用されている鉱油や合成油の中から任意のものを適宜選択して使用することができる。
鉱油としては、例えばパラフィン基系原油、中間基系原油あるいはナフテン基系原油を常圧蒸留するか、あるいは常圧蒸留の残渣油を減圧蒸留して得られる留出油、またはこれを常法にしたがって精製することによって得られる精製油、例えば、溶剤精製油、水添精製油、脱蝋処理油、白土処理油などを挙げることができる。
(Base oil)
The base oil of the lubricating oil composition for engines equipped with a direct injection turbo mechanism of the present invention is not particularly limited, and any mineral oil or synthetic oil conventionally used as a base oil for internal combustion engine lubricating oils can be used. Can be appropriately selected and used.
As mineral oil, for example, a distillate obtained by subjecting paraffin-based crude oil, intermediate-based crude oil or naphthenic-based crude oil to atmospheric distillation, or distilling the residual oil of atmospheric distillation under reduced pressure, or using this as a conventional method Therefore, refined oils obtained by refining, for example, solvent refined oil, hydrogenated refined oil, dewaxed oil, and clay-treated oil can be exemplified.
また、合成油としては、例えば、炭素数8〜14のα−オレフィンオリゴマーであるポリ−α−オレフィン、ポリブテン、各種のエステル(例えば、ポリオールエステル、二塩基酸エステル、リン酸エステルなど)、各種のエーテル(例えば、ポリフェニルエーテルなど)、ポリグリコール、アルキルベンゼン、アルキルナフタレンなどが挙げられる。
本発明においては、基油として上記鉱油、合成油をそれぞれ一種用いてもよく、二種以上組み合わせて用いてもよい。また、鉱油と合成油を混合して使用してもよい。
Moreover, as synthetic oil, for example, poly-α-olefin which is an α-olefin oligomer having 8 to 14 carbon atoms, polybutene, various esters (for example, polyol ester, dibasic acid ester, phosphoric acid ester, etc.), various types (For example, polyphenyl ether), polyglycol, alkylbenzene, alkylnaphthalene and the like.
In the present invention, as the base oil, the mineral oil and synthetic oil may be used singly or in combination of two or more. Further, a mixture of mineral oil and synthetic oil may be used.
基油の粘度については、特に制限はなく、潤滑油組成物の用途に応じて適宜決定しうるが、通常100℃の動粘度が2mm2/s以上30mm2/s以下、好ましくは2mm2/s以上15mm2/s以下、より好ましくは2mm2/s以上12mm2/s以下である。100℃における動粘度が2mm2/s以上であると蒸発損失が少なく、一方、30mm2/s以下であると、粘性抵抗による動力損失があまり大きくないので、燃費改善効果が得られる。
また、基油としては、粘度指数が通常60以上、好ましくは80以上、より好ましくは100以上である。粘度指数が60以上の基油は、温度の変化による粘度変化が小さいため好ましい。
The viscosity of the base oil is not particularly limited and may be appropriately determined according to the use of the lubricating oil composition. Usually, the kinematic viscosity at 100 ° C. is 2 mm 2 / s to 30 mm 2 / s, preferably 2 mm 2 / s. s to 15 mm 2 / s, more preferably 2 mm 2 / s to 12 mm 2 / s. When the kinematic viscosity at 100 ° C. is 2 mm 2 / s or more, the evaporation loss is small. On the other hand, when the kinematic viscosity is 30 mm 2 / s or less, the power loss due to the viscous resistance is not so large, and the fuel efficiency improvement effect is obtained.
Moreover, as a base oil, a viscosity index is 60 or more normally, Preferably it is 80 or more, More preferably, it is 100 or more. A base oil having a viscosity index of 60 or more is preferable because a change in viscosity due to a change in temperature is small.
((A)金属系清浄剤)
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物における(A)成分の金属系清浄剤は、スルフォネート、サリチレート、及びフェネートの各々のCa塩、Mg塩及びNa塩から選ばれる少なくとも1種であり、具体的には各々スルフォネートのCa塩、Mg塩又はNa塩;サリチレートのCa塩、Mg塩又はNa塩;及びフェネートのCa塩、Mg塩又はNa塩の全ての中から選ばれる少なくとも1種である。
上記金属系清浄剤は、1種で使用してもよいが、2種以上組み合わせて使用することもできる。
((A) Metal-based detergent)
The metallic detergent of component (A) in the lubricating oil composition for an engine equipped with a direct injection turbo mechanism of the present invention is at least one selected from Ca salt, Mg salt and Na salt of sulfonate, salicylate and phenate. In particular, at least one selected from all of Ca salt, Mg salt or Na salt of sulfonate; Ca salt, Mg salt or Na salt of salicylate; and Ca salt, Mg salt or Na salt of phenate It is.
Although the said metal type detergent may be used by 1 type, it can also be used in combination of 2 or more type.
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物においては、(A)成分の金属系清浄剤として、LSPI現象を顕著に抑制する観点から、スルフォネート、サリチレートまたはフェネートのCa塩が好ましく用いられる。 In the lubricating oil composition for an engine equipped with a direct injection turbo mechanism of the present invention, a sulfonate, salicylate or phenate Ca salt is preferably used as the metal detergent of the component (A) from the viewpoint of significantly suppressing the LSPI phenomenon. .
本発明において使用し得る金属系清浄剤としては、ピストン清浄性、及び酸中和性能の観点から、その過塩素酸法塩基価が50mgKOH/g以上の過塩基性を有するものが好ましい。
上記観点から、この金属系清浄剤の塩基価は、より好ましくは100mgKOH/g以上、さらに好ましくは150mgKOH/g以上500mgKOH/g以下である。なお、ここでいう塩基価とは、JIS K2501「石油製品及び潤滑油−中和価試験法」の7.に準拠して測定される過塩素酸法による塩基価を意味する。
このような金属系清浄剤としては、炭素数1〜50のアルキル基を有するものが好ましい。
As the metal-based detergent that can be used in the present invention, those having a perchloric acid method base number of 50 mgKOH / g or more are preferable from the viewpoint of piston cleanliness and acid neutralization performance.
From the above viewpoint, the base number of the metal detergent is more preferably 100 mgKOH / g or more, and further preferably 150 mgKOH / g or more and 500 mgKOH / g or less. The base number referred to here is 7. JIS K2501 “Petroleum products and lubricating oils-Neutralization number test method”. Means the base number measured by the perchloric acid method according to the above.
As such a metal-type detergent, what has a C1-C50 alkyl group is preferable.
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物においては、(A)成分の金属系清浄剤の配合量は、(A)成分中のCa、Mg、Naの金属量として、潤滑油組成物全量基準で100質量ppm以上2000質量ppm以下である。金属系清浄剤の配合量が金属量で2000質量ppmを超えると、直噴ターボ機構搭載エンジンにおけるLSPI現象を抑制する効果が不十分であり、一方、配合量が金属量で100質量ppm未満であれば、酸化安定性や高温清浄性、あるいは酸中和性等を確保することができず好ましくない。上記観点から、(A)成分の金属系清浄剤の配合量は、金属量として潤滑油組成物基準で好ましくは500質量ppm以上1800質量ppm以下、より好ましくは1000質量ppm以上1700質量ppm以下、さらに好ましくは1000質量ppm以上1600質量ppm以下である。 In the lubricating oil composition for engines equipped with a direct injection turbo mechanism according to the present invention, the blending amount of the metallic detergent (A) is the lubricating oil composition as the amount of metal of Ca, Mg, Na in the component (A). It is 100 mass ppm or more and 2000 mass ppm or less on the basis of the total amount of matter. If the amount of the metal detergent exceeds 2000 mass ppm in terms of the amount of metal, the effect of suppressing the LSPI phenomenon in an engine equipped with a direct injection turbo mechanism is insufficient, while the amount of metal is less than 100 ppm by mass in terms of the amount of metal. If it exists, oxidation stability, high temperature cleanliness, acid neutralization property, etc. cannot be ensured, which is not preferable. From the above viewpoint, the compounding amount of the metal detergent of the component (A) is preferably 500 mass ppm or more and 1800 mass ppm or less, more preferably 1000 mass ppm or more and 1700 mass ppm or less as a metal amount based on the lubricating oil composition. More preferably, it is 1000 mass ppm or more and 1600 mass ppm or less.
((B)ジチオリン酸亜鉛)
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物は、(B)成分として、ジチオリン酸亜鉛を、(B)成分中のP量として潤滑油組成物全量基準で500質量ppm以上2000質量ppm以下配合してなる。
ジチオリン酸亜鉛(ZnDTP)としては、例えば下記一般式(I)
((B) Zinc dithiophosphate)
The lubricating oil composition for an engine equipped with a direct injection turbo mechanism according to the present invention has zinc dithiophosphate as the component (B) and 500 ppm by mass or more and 2000 ppm by mass based on the total amount of the lubricating oil composition as the amount of P in the component (B). It is blended below.
As zinc dithiophosphate (ZnDTP), for example, the following general formula (I)
(式中、R1及びR2は、それぞれ独立に炭素数3〜22の第1級もしくは第2級のアルキル基又は炭素数3〜18のアルキル基で置換されたアルキルアリール基を示す。)
で表される構造のものを挙げることができる。
ここで、炭素数3〜22の第1級もしくは第2級のアルキル基としては、第1級もしくは第2級のプロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基などが挙げられる。また、炭素数3〜18のアルキル基で置換されたアルキルアリール基としては、例えばプロピルフェニル基、ペンチルフェニル基、オクチルフェニル基、ノニルフェニル基、ドデシルフェニル基などが挙げられる。
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物においては、(B)成分として、上記ジチオリン酸亜鉛を単独で用いてもよく、2種以上組み合わせて用いてもよいが、特に第2級のアルキル基のジアルキルジチオリン酸亜鉛を主成分とするものが耐摩耗性を高める点から好ましい。
(In the formula, R 1 and R 2 each independently represent a primary or secondary alkyl group having 3 to 22 carbon atoms or an alkylaryl group substituted with an alkyl group having 3 to 18 carbon atoms.)
The structure represented by these can be mentioned.
Here, as the primary or secondary alkyl group having 3 to 22 carbon atoms, primary or secondary propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl Group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group and the like. Examples of the alkylaryl group substituted with an alkyl group having 3 to 18 carbon atoms include a propylphenyl group, a pentylphenyl group, an octylphenyl group, a nonylphenyl group, and a dodecylphenyl group.
In the lubricating oil composition for an engine equipped with a direct injection turbo mechanism according to the present invention, as the component (B), the above zinc dithiophosphate may be used alone or in combination of two or more. Those having zinc dialkyldithiophosphate having the alkyl group as a main component are preferred from the viewpoint of enhancing the wear resistance.
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物においては、前記(B)成分のジチオリン酸亜鉛(ZnDTP)の配合量は、(B)成分中のP量として潤滑油組成物全量基準で500質量ppm以上2000質量ppm以下である。P量が500質量ppm以上であれば良好な耐摩耗性が発揮されると共に、低燃費性能が発現しやすくなり、また、直噴ターボ機構搭載エンジンにおけるLSPI現象を抑制することができる。一方、P量が2000質量ppm以下であれば、自動車後処理装置である三元触媒への被毒影響を小さくすることができる。上記観点から、(B)成分のジチオリン酸亜鉛(ZnDTP)の好ましい配合量は、P量として潤滑油組成物基準で500質量ppm以上1500質量ppm以下であり、より好ましくは500質量ppm以上1000質量ppm以下であり、さらに好ましくは500質量ppm以上950質量ppm以下である。 In the lubricating oil composition for engines equipped with a direct injection turbo mechanism of the present invention, the blending amount of zinc dithiophosphate (ZnDTP) as the component (B) is based on the total amount of the lubricating oil composition as the P amount in the component (B). It is 500 mass ppm or more and 2000 mass ppm or less. If the amount of P is 500 ppm by mass or more, good wear resistance is exhibited, low fuel consumption performance is easily exhibited, and the LSPI phenomenon in an engine equipped with a direct injection turbo mechanism can be suppressed. On the other hand, if the amount of P is 2000 ppm by mass or less, the poisoning effect on the three-way catalyst which is an automobile aftertreatment device can be reduced. From the above viewpoint, the preferable blending amount of the component (B) zinc dithiophosphate (ZnDTP) is 500 mass ppm or more and 1500 mass ppm or less, more preferably 500 mass ppm or more and 1000 mass ppm as the P amount based on the lubricating oil composition. It is ppm or less, More preferably, it is 500 mass ppm or more and 950 mass ppm or less.
((A)成分に対する(B)成分の質量比[(B)成分中のP量/(A)成分中の金属量])
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物においては、前記(A)成分と(B)成分の質量比[(B)成分中のP量/(A)成分中の金属量]が0.45以上である。この値が0.45以上であれば、直噴ターボ機構搭載エンジンにおけるLSPI現象を十分に抑制することができる。上記観点から、(A)成分に対する(B)成分の質量比[(B)成分中のP量/(A)成分中の金属量]は0.5以上であることが好ましく、0.55以上であることがより好ましい。なお、(B)成分の劣化由来の酸性成分の中和性能確保の観点から上記質量比の上限は1.0程度とすることが好ましい。
(Mass ratio of component (B) to component (A) [P content in component (B) / metal content in component (A)])
In the lubricating oil composition for an engine equipped with a direct injection turbo mechanism according to the present invention, the mass ratio of the component (A) to the component (B) [the amount of P in the component (B) / the amount of metal in the component (A)] 0.45 or more. If this value is 0.45 or more, the LSPI phenomenon in the engine equipped with a direct injection turbo mechanism can be sufficiently suppressed. From the above viewpoint, the mass ratio of the component (B) to the component (A) [P content in the component (B) / metal content in the component (A)] is preferably 0.5 or more, and 0.55 or more. It is more preferable that In addition, it is preferable that the upper limit of the said mass ratio shall be about 1.0 from a viewpoint of ensuring the neutralization performance of the acidic component derived from deterioration of (B) component.
(その他の添加剤)
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物には、さらに、粘度指数向上剤、酸化防止剤、及び摩擦調整剤から選ばれる少なくとも1種を配合することが好ましい。
粘度指数向上剤としては、例えば、ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体(例えば、エチレン−プロピレン共重合体など)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン−ジエン共重合体、スチレン−イソプレン共重合体など)等が挙げられる。
これら粘度指数向上剤の配合量は、配合効果の点から、潤滑油組成物基準で、通常0.5質量%以上15質量%以下程度であり、好ましくは1質量%以上10質量%以下である。
(Other additives)
The lubricating oil composition for an engine equipped with a direct injection turbo mechanism of the present invention preferably further contains at least one selected from a viscosity index improver, an antioxidant, and a friction modifier.
As the viscosity index improver, for example, polymethacrylate, dispersed polymethacrylate, olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, Styrene-diene copolymer, styrene-isoprene copolymer, etc.).
The blending amount of these viscosity index improvers is usually about 0.5% by mass to 15% by mass and preferably 1% by mass to 10% by mass on the basis of the lubricating oil composition from the viewpoint of the blending effect. .
また、酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、モリブデン系酸化防止剤等を好適に使用することができる。
フェノール系酸化防止剤としては、従来内燃機関用潤滑油の酸化防止剤として使用されている公知のフェノール系酸化防止剤の中から、任意のものを適宜選択して用いることができる。具体的には、例えば、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,4,6−トリ−tert−ブチルフェノール、2,6−ジ−tert−ブチル−4−ヒドロキシメチルフェノール、2,6−ジ−tert−ブチルフェノール、2,4−ジメチル−6−tert−ブチルフェノール、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、2,6−ジ−tert−アミル−4−メチルフェノール、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4’−イソプロピリデンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−ノニルフェノール)、2,2’−イソブチリデンビス(4,6−ジメチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,4−ジメチル−6−tert−ブチルフェノール、4,4’−チオビス(2−メチル−6−tert−ブチルフェノール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3−メチル−4−ヒドロキシ−5−tert−ブチルベンジル)スルフィド、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、2,2’−チオ−ジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、トリデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、オクチル−3−(3−メチル−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネート等を好ましい例として挙げることができる。
Moreover, as antioxidant, a phenolic antioxidant, an amine antioxidant, a molybdenum antioxidant, etc. can be used conveniently.
As the phenolic antioxidant, any one of known phenolic antioxidants conventionally used as an antioxidant for lubricating oil for internal combustion engines can be appropriately selected and used. Specifically, for example, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,4,6-tri-tert-butylphenol, 2 , 6-Di-tert-butyl-4-hydroxymethylphenol, 2,6-di-tert-butylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butyl-4- ( N, N-dimethylaminomethyl) phenol, 2,6-di-tert-amyl-4-methylphenol, 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis ( 2,6-di-tert-butylphenol), 4,4′-bis (2-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl) -6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 4,4'-isopropyl Redenebis (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-nonylphenol), 2,2′-isobutylidenebis (4,6-dimethylphenol), 2, 2'-methylenebis (4-methyl-6-cyclohexylphenol), 2,4-dimethyl-6-tert-butylphenol, 4,4'-thiobis (2-methyl-6-tert-butylphenol), 4,4'- Thiobis (3-methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol) ), Bis (3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide, bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 2,2′-thio-diethylene Bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tridecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octadecyl-3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionate, octyl-3- (3-methyl 5-tert-butyl-4-hydroxyphenyl) propionate and the like can be mentioned as preferred examples of.
また、アミン系酸化防止剤としては、従来内燃機関用潤滑油の酸化防止剤として使用されている公知のアミン系酸化防止剤の中から、任意のものを適宜選択して用いることができる。このアミン系酸化防止剤としては、例えばジフェニルアミン系のもの、具体的にはジフェニルアミンやモノオクチルジフェニルアミン、モノノニルジフェニルアミン、4,4’−ジブチルジフェニルアミン、4,4’−ジヘキシルジフェニルアミン、4,4’−ジオクチルジフェニルアミン、4,4’−ジノニルジフェニルアミン、テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミンなどの炭素数3〜20のアルキル基を有するアルキル化ジフェニルアミンなど;及びナフチルアミン系のもの、具体的にはα−ナフチルアミン、フェニル−α−ナフチルアミン、さらにはブチルフェニル−α−ナフチルアミン、ヘキシルフェニル−α−ナフチルアミン、オクチルフェニル−α−ナフチルアミン、ノニルフェニル−α−ナフチルアミンなどの炭素数3〜20のアルキル置換フェニル−α−ナフチルアミン;等が挙げられる。これらの中で、ジフェニルアミン系が、効果の点から好ましく、特に炭素数3〜20のアルキル基を有するアルキル化ジフェニルアミン、とりわけ4,4’−ジ(C3〜C20アルキル)ジフェニルアミンが好適である。 As the amine-based antioxidant, any one of known amine-based antioxidants conventionally used as an antioxidant for lubricating oil for internal combustion engines can be appropriately selected and used. Examples of the amine-based antioxidant include diphenylamine-based compounds, specifically diphenylamine, monooctyldiphenylamine, monononyldiphenylamine, 4,4′-dibutyldiphenylamine, 4,4′-dihexyldiphenylamine, 4,4′- Alkylated diphenylamines having an alkyl group of 3 to 20 carbon atoms such as dioctyldiphenylamine, 4,4′-dinonyldiphenylamine, tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyldiphenylamine, and the like; Specifically, α-naphthylamine, phenyl-α-naphthylamine, butylphenyl-α-naphthylamine, hexylphenyl-α-naphthylamine, octyl Phenyl -α- naphthylamine, alkylated phenyl -α- naphthylamine having 3 to 20 carbon atoms such as nonylphenyl -α- naphthylamine; and the like. Among these, a diphenylamine system is preferable from the viewpoint of effect, and an alkylated diphenylamine having an alkyl group having 3 to 20 carbon atoms, particularly 4,4′-di (C3 to C20 alkyl) diphenylamine is preferable.
モリブデン系酸化防止剤としては、モリブデン・アミン錯体が好ましいものとして挙げられ、該モリブデン・アミン錯体としては、6価のモリブデン化合物、具体的には三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるもの、例えば特開2003−252887号公報に記載の製造方法で得られる化合物を用いることができる。
前記6価のモリブデン化合物とアミン化合物との反応比は、アミン化合物1モルに対し、モリブデン化合物のMo原子のモル比が、0.7〜5であることが好ましく、0.8〜4であることがより好ましく、1〜2.5であることがさらに好ましい。反応方法については特に制限はなく、従来公知の方法、例えば特開2003−252887号公報に記載されている方法を採用することができる。
また本発明においては、モリブデン系酸化防止剤として、上記モリブデン・アミン錯体以外に、特公平3−22438号公報、特開2004−2866号公報などに記載されているコハク酸イミドの硫黄含有モリブデン錯体を用いることもできる。
The molybdenum-based antioxidant is preferably a molybdenum-amine complex, and the molybdenum-amine complex includes a hexavalent molybdenum compound, specifically, molybdenum trioxide and / or molybdic acid and an amine compound. What is made to react, for example, the compound obtained by the manufacturing method of Unexamined-Japanese-Patent No. 2003-252887 can be used.
The reaction ratio between the hexavalent molybdenum compound and the amine compound is preferably such that the molar ratio of Mo atoms of the molybdenum compound is 0.7 to 5 with respect to 1 mol of the amine compound, and is 0.8 to 4. More preferably, it is more preferably 1 to 2.5. There is no restriction | limiting in particular about the reaction method, A conventionally well-known method, for example, the method described in Unexamined-Japanese-Patent No. 2003-252887 is employable.
Further, in the present invention, as a molybdenum-based antioxidant, in addition to the above-mentioned molybdenum-amine complex, a sulfur-containing molybdenum complex of succinimide described in JP-B-3-22438, JP-A-2004-2866, etc. Can also be used.
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物においては、前記した酸化防止剤を1種用いてもよく、2種以上を組み合わせて用いてもよい。
酸化防止剤の配合量は、効果及び経済性のバランスなどの点から、潤滑油組成物全量基準で、好ましくは0.05質量%以上7質量%以下、より好ましくは0.05質量%以上5質量%以下の範囲で選定される。
In the lubricating oil composition for an engine equipped with a direct injection turbo mechanism of the present invention, one kind of the above-mentioned antioxidant may be used, or two or more kinds may be used in combination.
The blending amount of the antioxidant is preferably 0.05% by mass or more and 7% by mass or less, more preferably 0.05% by mass or more and 5% by mass or more based on the total amount of the lubricating oil composition, from the viewpoint of balance between effect and economy. It is selected in the range of mass% or less.
摩擦調整剤としては、内燃機関用潤滑油の摩擦調整剤として通常用いられる任意の化合物がいずれも使用可能であり、例えば、炭素数6〜30のアルキル基またはアルケニル基、特に炭素数6〜30の直鎖アルキル基または直鎖アルケニル基を分子中に少なくとも1個有する、脂肪族アミン、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル等の無灰摩擦調整剤;ジチオカルバミン酸モリブデン(MoDTC)、ジチオリン酸モリブデン(MoDTPともいう) 及びモリブデン酸のアミン塩から選ばれる少なくとも一種モリブデン系摩擦調整剤;等が挙げられ、その配合量は、潤滑油組成物全量基準で、通常0.01質量%以上3質量%以下、好ましくは0.1質量%以上2.0質量%以下の範囲である。 As the friction modifier, any compound usually used as a friction modifier for lubricating oil for internal combustion engines can be used. For example, an alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly 6 to 30 carbon atoms. Ashless friction modifiers such as aliphatic amines, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic ethers, etc., having at least one linear alkyl group or linear alkenyl group in the molecule; molybdenum dithiocarbamate ( MoDTC), molybdenum dithiophosphate (also referred to as MoDTP), and an amine salt of molybdic acid; and the like. The blending amount is usually 0.01 based on the total amount of the lubricating oil composition. It is in the range of not less than 3% by mass and not more than 3% by mass, preferably not less than 0.1% by mass and not more than 2.0% by mass.
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物には、本発明の目的を損なわない範囲で、必要に応じ、さらに他の添加剤を配合することができる。
他の添加剤としては、例えば前記(A)成分以外の金属系清浄剤;イオウ系(スルフィド類、スルフォキシド類、スルフォン類、チオホスフィネート類など)、ハロゲン系(塩素化炭化水素など)、有機金属系等の極圧剤;硼素含有無灰分散剤又は硼素含有無灰分散剤と硼素未含有無灰分散剤との組合わせ等の無灰分散剤;さらには石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、及び多価アルコールエステル等の防錆剤;腐食防止剤;硫黄含有摩耗防止剤、リン含有摩耗防止剤、硫黄及びリン含有摩耗防止剤等の耐摩耗剤;シリコーン、フルオロシリコール、及びフルオロアルキルエーテル等の消泡剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、及びポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等の界面活性剤;ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、及びイミダゾール系化合物等の金属不活性化剤;エチレン−酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等の流動点降下剤;などを挙げることができる。
上記他の添加剤は、本発明の目的を損なわない範囲内の量で適宜潤滑油組成物に配合することができる。
The lubricating oil composition for an engine equipped with a direct injection turbo mechanism according to the present invention can be blended with other additives as necessary within a range not impairing the object of the present invention.
Other additives include, for example, metallic detergents other than the component (A); sulfur-based (sulfides, sulfoxides, sulfones, thiophosphinates, etc.), halogen-based (chlorinated hydrocarbons, etc.), organic Extreme pressure agents such as metals; ashless dispersants such as boron-containing ashless dispersants or combinations of boron-containing ashless dispersants and boron-free ashless dispersants; petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalene sulfonates, alkenyls Rust preventives such as succinic acid esters and polyhydric alcohol esters; corrosion inhibitors; antiwear agents such as sulfur containing antiwear agents, phosphorus containing antiwear agents, sulfur and phosphorus containing antiwear agents; silicones, fluorosilicol, And defoaming agents such as fluoroalkyl ethers; polyoxyethylene alkyl ethers, polyoxyethylene alcohols Surfactant such as polyalkylene glycol nonionic surfactant such as ruphenyl ether and polyoxyethylene alkyl naphthyl ether; metal deactivation such as benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds Agents; ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, pour point depressant such as polymethacrylate, polyalkylstyrene, and the like.
The above other additives can be appropriately blended in the lubricating oil composition in an amount within the range not impairing the object of the present invention.
(硫酸灰分)
本発明の直噴ターボ機構搭載エンジン用潤滑油組成物においては、その硫酸灰分が潤滑油組成物全量基準で0.8質量%以下であることが好ましい。
硫酸灰分が0.8質量%以下であれば、直噴ターボ機構搭載エンジンにおけるLSPI現象を抑制することができ、また、自動車後処理装置であるDPF(ディーゼルパティキュレートフィルター)の閉塞を緩和することができる。この観点から、より好ましい硫酸灰分は0.7質量%以下であり、さらに好ましくは0.6質量%以下である。
なお、この硫酸灰分とは、JIS K 2272の5.「硫酸灰分試験方法」に規定される方法により測定される値であり、試料を燃やして生じた炭化残留物に硫酸を加えて加熱し、恒量にした灰分をいい、通常潤滑油組成物中の金属系添加剤の大略の量を知るために用いられる。
(Sulfate ash)
In the lubricating oil composition for an engine equipped with a direct injection turbo mechanism of the present invention, the sulfated ash content is preferably 0.8% by mass or less based on the total amount of the lubricating oil composition.
If the sulfated ash content is 0.8% by mass or less, the LSPI phenomenon in an engine equipped with a direct injection turbo mechanism can be suppressed, and the blockage of a DPF (diesel particulate filter) that is an automobile aftertreatment device can be reduced. Can do. In this respect, the more preferred sulfated ash content is 0.7% by mass or less, and further preferably 0.6% by mass or less.
The sulfated ash content is defined in JIS K 2272 5. This is a value measured by the method specified in “Testing method for sulfated ash”. It refers to the ash content that is heated by adding sulfuric acid to the carbonized residue generated by burning the sample. Used to know the approximate amount of metallic additive.
本発明においては、上述の配合組成を有する本発明の潤滑油組成物を直噴ターボ機構搭載エンジン用の潤滑油として用いる。それにより、燃費に優れる直噴エンジンにターボ機構を装着し、低燃費と高い運動性能とを両立した直噴ターボ機構搭載エンジンにおいて、LSPI現象を大幅に抑制することが可能となった。 In the present invention, the lubricating oil composition of the present invention having the above-described blending composition is used as a lubricating oil for an engine equipped with a direct injection turbo mechanism. As a result, a turbo mechanism is mounted on a direct-injection engine with excellent fuel efficiency, and the LSPI phenomenon can be significantly suppressed in an engine equipped with a direct-injection turbo mechanism that achieves both low fuel consumption and high performance.
次に、実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。
以下の実施例等において、潤滑油組成物の性状の測定、性能評価は、下記のように行った。
[潤滑油組成物の性状]
潤滑油組成物の各性状は、以下の方法で測定した。
(1)動粘度(100℃):JIS K 2283に準拠
(2)硫酸灰分:JIS K2272に準拠
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by these examples.
In the following examples and the like, the properties of the lubricating oil composition were measured and the performance was evaluated as follows.
[Properties of lubricating oil composition]
Each property of the lubricating oil composition was measured by the following method.
(1) Kinematic viscosity (100 ° C.): compliant with JIS K 2283 (2) Sulfuric acid ash: compliant with JIS K 2272
[評価項目・評価方法]
・LSPI性能
ターボ(過給)機構を備えた試作エンジンを用い、最もLSPI発生の頻度が高くなる条件にて、一定時間運転した際のLSPI発生頻度を測定した。
[Evaluation items and methods]
-LSPI performance Using a prototype engine equipped with a turbo (supercharging) mechanism, the frequency of LSPI when operating for a certain period of time was measured under conditions where the frequency of LSPI generation was highest.
<実施例1〜5及び比較例1>
表1に示す基油に同表に示す各種添加剤を配合して潤滑油組成物を調製した後、得られた潤滑油組成物の各々について、前記の通りLSPI性能を評価した。同表の比較例1に示す潤滑油組成物を用いた際のLSPI発生頻度を基準とし、各潤滑油組成物を用いた際のLSPI発生頻度を相対値として示す。
<Examples 1 to 5 and Comparative Example 1>
After preparing the lubricating oil composition by blending various additives shown in the same table with the base oil shown in Table 1, the LSPI performance was evaluated for each of the obtained lubricating oil compositions as described above. Based on the LSPI occurrence frequency when using the lubricating oil composition shown in Comparative Example 1 of the same table, the LSPI occurrence frequency when using each lubricating oil composition is shown as a relative value.
なお、使用した基油及び各添加剤は以下の通りである。
(1)基油:100N鉱油(100℃動粘度:4mm2/s、粘度指数:130、APIベースオイルカテゴリー:Gr.III)及び合成油(100℃動粘度:6mm2/s、ポリ−α−オレフィン(PAO))
In addition, the used base oil and each additive are as follows.
(1) Base oil: 100N mineral oil (100 ° C. kinematic viscosity: 4 mm 2 / s, viscosity index: 130, API base oil category: Gr. III) and synthetic oil (100 ° C. kinematic viscosity: 6 mm 2 / s, poly-α- Olefin (PAO))
(2)耐摩耗剤:ジチオリン酸亜鉛(Zn含有量:9.0質量%、リン含有量:8.2質量%、硫黄含有量:17.1質量%)
(3)粘度指数向上剤:ポリメタアクリレート(重量平均分子量:300,000)、配合量は、潤滑油組成物の100℃動粘度が8.2mm2/sとなる量とした。
(4)金属系清浄剤:Caスルフォネート、及びCaフェネート
(5)無灰分散剤:高分子アルキルコハク酸イミド、及びB変性アルキルコハク酸イミド
(6)酸化防止剤:ジフェニルアミン、アルキルフェノール、モリブデン系酸化防止剤
(7)摩擦調整剤:モリブデンジチオカーバメイト(Mo含有量:1.0質量%)、エステル系摩擦調整剤
(8)その他の添加剤
・金属不活性化剤:銅不活性化剤
・消泡剤:シリコーン系消泡剤
(2) Antiwear agent: zinc dithiophosphate (Zn content: 9.0 mass%, phosphorus content: 8.2 mass%, sulfur content: 17.1 mass%)
(3) Viscosity index improver: polymethacrylate (weight average molecular weight: 300,000), and the blending amount was such that the 100 ° C. kinematic viscosity of the lubricating oil composition was 8.2 mm 2 / s.
(4) Metal detergent: Ca sulfonate and Ca phenate (5) Ashless dispersant: Polymer alkyl succinimide and B-modified alkyl succinimide (6) Antioxidant: Diphenylamine, alkylphenol, molybdenum antioxidant Agent (7) Friction modifier: Molybdenum dithiocarbamate (Mo content: 1.0 mass%), ester friction modifier (8) Other additives ・ Metal deactivator: Copper deactivator ・ Defoaming Agent: Silicone antifoaming agent
実施例1〜5では、それぞれCa量が0.11〜0.17質量%の範囲、かつP/Ca質量比が0.53〜0.82の範囲であり、LSPI発生頻度は、比較例1対比60%以下と発生頻度が低かった。
一方、比較例1では、Ca量が0.22質量%、P/Ca質量比が0.41であり、LSPI発生頻度は、実施例1〜5対比で高かった。
In Examples 1 to 5, the Ca amount is in the range of 0.11 to 0.17% by mass, and the P / Ca mass ratio is in the range of 0.53 to 0.82, and the LSPI occurrence frequency is Comparative Example 1. The frequency of occurrence was low at 60% or less.
On the other hand, in Comparative Example 1, the Ca amount was 0.22% by mass and the P / Ca mass ratio was 0.41, and the LSPI occurrence frequency was higher than in Examples 1-5.
本発明の潤滑油組成物は、LSPI現象を大幅に抑制することが可能となることから、低燃費と高い運動性能とを実現できる直噴ターボ機構搭載エンジン用の潤滑油組成物として好適に使用することができる。 Since the lubricating oil composition of the present invention can greatly suppress the LSPI phenomenon, it can be suitably used as a lubricating oil composition for a direct injection turbo mechanism-equipped engine capable of realizing low fuel consumption and high motion performance. can do.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013025413A JP2014152301A (en) | 2013-02-13 | 2013-02-13 | Lubricant composition for direct-injection turbo mechanism-loaded engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013025413A JP2014152301A (en) | 2013-02-13 | 2013-02-13 | Lubricant composition for direct-injection turbo mechanism-loaded engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014152301A true JP2014152301A (en) | 2014-08-25 |
Family
ID=51574491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013025413A Pending JP2014152301A (en) | 2013-02-13 | 2013-02-13 | Lubricant composition for direct-injection turbo mechanism-loaded engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014152301A (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015042341A1 (en) * | 2013-09-19 | 2015-03-26 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2015042337A1 (en) * | 2013-09-19 | 2015-03-26 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2015042340A1 (en) * | 2013-09-19 | 2015-03-26 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2015114920A1 (en) * | 2014-01-31 | 2015-08-06 | 東燃ゼネラル石油株式会社 | Lubricating oil composition |
JP2015183152A (en) * | 2014-03-26 | 2015-10-22 | Jx日鉱日石エネルギー株式会社 | Lubricant composition |
JP2015209847A (en) * | 2014-04-29 | 2015-11-24 | インフィニューム インターナショナル リミテッド | Lubricating oil compositions |
WO2016043333A1 (en) * | 2014-09-19 | 2016-03-24 | 出光興産株式会社 | Lubricating oil composition and method for manufacturing said lubricating oil composition |
WO2016114401A1 (en) * | 2015-01-15 | 2016-07-21 | 出光興産株式会社 | Lubricating oil composition |
WO2016148708A1 (en) * | 2015-03-18 | 2016-09-22 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2016152995A1 (en) * | 2015-03-24 | 2016-09-29 | 出光興産株式会社 | Lubricant composition for gasoline engines and method for producing same |
WO2016154167A1 (en) * | 2015-03-25 | 2016-09-29 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
JP2016196667A (en) * | 2014-01-31 | 2016-11-24 | 東燃ゼネラル石油株式会社 | Lubricating oil composition |
WO2017011689A1 (en) * | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
WO2017011691A1 (en) * | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
CN106566596A (en) * | 2015-10-08 | 2017-04-19 | 英菲诺姆国际有限公司 | Lubricating oil composition |
JP2017514984A (en) * | 2014-05-09 | 2017-06-08 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | How to prevent or reduce slow play ignition |
JP2017514983A (en) * | 2014-05-09 | 2017-06-08 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | How to prevent or reduce slow play ignition |
JP2017110147A (en) * | 2015-12-18 | 2017-06-22 | 出光興産株式会社 | Lubricant composition for turbo mechanism mounting engine |
CN107001978A (en) * | 2014-12-02 | 2017-08-01 | 国际壳牌研究有限公司 | The method for reducing low speed early combustion |
WO2017164384A1 (en) * | 2016-03-24 | 2017-09-28 | 出光興産株式会社 | Lubricating oil composition for engine equipped with supercharging mechanism, method for suppressing low-speed pre-ignition in engine equipped with supercharging mechanism using lubricating oil composition, and method for manufacturing lubricating oil composition |
CN107922874A (en) * | 2015-07-16 | 2018-04-17 | 雅富顿化学公司 | Lubricant containing magnesium and its purposes for improving low speed advanced ignition |
WO2018105496A1 (en) * | 2016-12-05 | 2018-06-14 | 出光興産株式会社 | Lubricant oil composition and method for manufacturing same |
WO2018136470A2 (en) | 2017-01-20 | 2018-07-26 | Chevron Oronite Company Llc | Lubricating oil compositions and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines |
WO2018136136A1 (en) * | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
CN108456583A (en) * | 2017-02-22 | 2018-08-28 | 英菲诺姆国际有限公司 | Improvement in lubricating composition and improvement related with lubricating composition |
KR20180100491A (en) * | 2017-03-01 | 2018-09-11 | 인피늄 인터내셔날 리미티드 | Improvements in and relating to lubricating compositions |
CN109689845A (en) * | 2016-10-18 | 2019-04-26 | Jxtg能源株式会社 | The lubricating method of internal combustion engine |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
US10323205B2 (en) | 2016-05-05 | 2019-06-18 | Afton Chemical Corporation | Lubricant compositions for reducing timing chain stretch |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10443011B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
US10443558B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
US10519394B2 (en) | 2014-05-09 | 2019-12-31 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness |
US10669505B2 (en) | 2015-03-18 | 2020-06-02 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
JP2021046472A (en) * | 2019-09-17 | 2021-03-25 | 出光興産株式会社 | Lubricant composition |
CN112912480A (en) * | 2018-11-09 | 2021-06-04 | 出光兴产株式会社 | Lubricating oil composition for internal combustion engine, method for producing same, and method for suppressing pre-ignition |
US11155764B2 (en) | 2016-05-05 | 2021-10-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
DE112016005592B4 (en) | 2015-12-07 | 2022-07-21 | Jxtg Nippon Oil & Energy Corporation | LUBRICATION OIL COMPOSITION FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR SUPPRESSING LSPI OF AN INTERNAL COMBUSTION ENGINE |
-
2013
- 2013-02-13 JP JP2013025413A patent/JP2014152301A/en active Pending
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016531995A (en) * | 2013-09-19 | 2016-10-13 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant composition for direct injection engines |
WO2015042337A1 (en) * | 2013-09-19 | 2015-03-26 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2015042340A1 (en) * | 2013-09-19 | 2015-03-26 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
US11034910B2 (en) | 2013-09-19 | 2021-06-15 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
US10494584B2 (en) | 2013-09-19 | 2019-12-03 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2015042341A1 (en) * | 2013-09-19 | 2015-03-26 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
JP2016534216A (en) * | 2013-09-19 | 2016-11-04 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant composition for direct injection engines |
WO2015114920A1 (en) * | 2014-01-31 | 2015-08-06 | 東燃ゼネラル石油株式会社 | Lubricating oil composition |
US10947475B2 (en) | 2014-01-31 | 2021-03-16 | Exxonmobil Research And Engineering Company | Lubricating oil composition |
JP2016196667A (en) * | 2014-01-31 | 2016-11-24 | 東燃ゼネラル石油株式会社 | Lubricating oil composition |
JP2015183152A (en) * | 2014-03-26 | 2015-10-22 | Jx日鉱日石エネルギー株式会社 | Lubricant composition |
JP2015209847A (en) * | 2014-04-29 | 2015-11-24 | インフィニューム インターナショナル リミテッド | Lubricating oil compositions |
EP2940110B1 (en) | 2014-04-29 | 2018-12-12 | Infineum International Limited | Low speed pre-ignition |
EP3415589B1 (en) | 2014-04-29 | 2020-08-12 | Infineum International Limited | Lubricating oil compositions |
US11034912B2 (en) | 2014-04-29 | 2021-06-15 | Infineum International Limited | Lubricating oil compositions |
US10519394B2 (en) | 2014-05-09 | 2019-12-31 | Exxonmobil Research And Engineering Company | Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness |
JP2017514984A (en) * | 2014-05-09 | 2017-06-08 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | How to prevent or reduce slow play ignition |
JP2017514983A (en) * | 2014-05-09 | 2017-06-08 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | How to prevent or reduce slow play ignition |
US10584302B2 (en) | 2014-09-19 | 2020-03-10 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition and method for manufacturing said lubricating oil composition |
WO2016043333A1 (en) * | 2014-09-19 | 2016-03-24 | 出光興産株式会社 | Lubricating oil composition and method for manufacturing said lubricating oil composition |
JPWO2016043333A1 (en) * | 2014-09-19 | 2017-06-29 | 出光興産株式会社 | Lubricating oil composition and method for producing the lubricating oil composition |
CN107001978B (en) * | 2014-12-02 | 2022-07-19 | 国际壳牌研究有限公司 | Method for reducing low speed pre-ignition |
CN107001978A (en) * | 2014-12-02 | 2017-08-01 | 国际壳牌研究有限公司 | The method for reducing low speed early combustion |
JPWO2016114401A1 (en) * | 2015-01-15 | 2017-10-19 | 出光興産株式会社 | Lubricating oil composition |
WO2016114401A1 (en) * | 2015-01-15 | 2016-07-21 | 出光興産株式会社 | Lubricating oil composition |
JP2018512485A (en) * | 2015-03-18 | 2018-05-17 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant composition for direct injection engines |
US10669505B2 (en) | 2015-03-18 | 2020-06-02 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
KR20170128563A (en) * | 2015-03-18 | 2017-11-22 | 더루브리졸코오퍼레이션 | Lubricant composition for direct powder engine |
CN107636131A (en) * | 2015-03-18 | 2018-01-26 | 路博润公司 | Lubricant compositions for direct injection ic engine |
WO2016148708A1 (en) * | 2015-03-18 | 2016-09-22 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
KR102366772B1 (en) * | 2015-03-18 | 2022-02-22 | 더루브리졸코오퍼레이션 | Lubricant composition for direct injection engine |
KR20170129686A (en) * | 2015-03-24 | 2017-11-27 | 이데미쓰 고산 가부시키가이샤 | Lubricant composition for gasoline engine |
KR102609788B1 (en) | 2015-03-24 | 2023-12-04 | 이데미쓰 고산 가부시키가이샤 | Lubricating oil composition for gasoline engines and method for producing the same |
CN109913293A (en) * | 2015-03-24 | 2019-06-21 | 出光兴产株式会社 | Lubricating oil composition for gasoline engine and method for producing same |
JPWO2016152995A1 (en) * | 2015-03-24 | 2017-04-27 | 出光興産株式会社 | Lubricating oil composition for gasoline engine and method for producing the same |
EP3505607A1 (en) * | 2015-03-24 | 2019-07-03 | Idemitsu Kosan Co., Ltd. | Lubricant composition for gasoline engine and method for producing same |
EP3275978A4 (en) * | 2015-03-24 | 2019-01-16 | Idemitsu Kosan Co.,Ltd. | Lubricant composition for gasoline engines and method for producing same |
US10781395B2 (en) | 2015-03-24 | 2020-09-22 | Idemitsu Kosan Co., Ltd. | Lubricant composition for gasoline engine and method for producing same |
WO2016152995A1 (en) * | 2015-03-24 | 2016-09-29 | 出光興産株式会社 | Lubricant composition for gasoline engines and method for producing same |
EP4194530A1 (en) * | 2015-03-25 | 2023-06-14 | The Lubrizol Corporation | Use of lubricant compositions for direct injection engines |
JP2018509513A (en) * | 2015-03-25 | 2018-04-05 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant composition for direct injection engines |
KR102689405B1 (en) * | 2015-03-25 | 2024-07-26 | 더루브리졸코오퍼레이션 | Lubricant composition for direct injection engines |
AU2016235352B2 (en) * | 2015-03-25 | 2020-05-07 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
WO2016154167A1 (en) * | 2015-03-25 | 2016-09-29 | The Lubrizol Corporation | Lubricant compositions for direct injection engines |
US11214756B2 (en) | 2015-03-25 | 2022-01-04 | The Lubrizol Corporation | Lubricant compositions for direct injection engine |
CN107735485A (en) * | 2015-03-25 | 2018-02-23 | 路博润公司 | Lubricant compositions for direct injection ic engine |
US11608478B2 (en) | 2015-03-25 | 2023-03-21 | The Lubrizol Corporation | Lubricant compositions for direct injection engine |
KR20170129928A (en) * | 2015-03-25 | 2017-11-27 | 더루브리졸코오퍼레이션 | Lubricant composition for direct powder engine |
US10800992B2 (en) | 2015-03-25 | 2020-10-13 | The Lubrizol Corporation | Lubricant compositions for direct injection engine |
CN107922874B (en) * | 2015-07-16 | 2021-02-26 | 雅富顿化学公司 | Magnesium-containing lubricant and use thereof for improving low-speed pre-ignition |
CN107820514B (en) * | 2015-07-16 | 2021-06-01 | 雅富顿化学公司 | Lubricant containing titanium and/or tungsten and use thereof for improving low speed pre-ignition |
WO2017011689A1 (en) * | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
WO2017011691A1 (en) * | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
CN107922875A (en) * | 2015-07-16 | 2018-04-17 | 雅富顿化学公司 | Lubricant with zinc dialkyl dithiophosphate and its purposes in boosting internal combustion engine |
KR20180048598A (en) * | 2015-07-16 | 2018-05-10 | 에프톤 케미칼 코포레이션 | Lubricants with magnesium and their use for low speed early-ignition improvement |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
KR102271650B1 (en) * | 2015-07-16 | 2021-06-30 | 에프톤 케미칼 코포레이션 | Lubricants with magnesium and their use for improving low speed pre-ignition |
KR20180048601A (en) * | 2015-07-16 | 2018-05-10 | 에프톤 케미칼 코포레이션 | Lubricants with zinc dialkyldithiophosphates and their use in power internal combustion engines |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
CN107922874A (en) * | 2015-07-16 | 2018-04-17 | 雅富顿化学公司 | Lubricant containing magnesium and its purposes for improving low speed advanced ignition |
RU2719479C2 (en) * | 2015-07-16 | 2020-04-17 | Эфтон Кемикал Корпорейшн | Lubricants with titanium and/or tungsten and their use for reduction of premature ignition of mixture at low rpm |
JP2018520243A (en) * | 2015-07-16 | 2018-07-26 | アフトン・ケミカル・コーポレーションAfton Chemical Corporation | Titanium and / or tungsten containing lubricants and their use to improve low-speed early ignition |
US10550349B2 (en) | 2015-07-16 | 2020-02-04 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
KR102078948B1 (en) * | 2015-07-16 | 2020-02-19 | 에프톤 케미칼 코포레이션 | Lubricants with zinc dialkyl dithiophosphates and their use in boosted internal combustion engines |
CN107820514A (en) * | 2015-07-16 | 2018-03-20 | 雅富顿化学公司 | Containing titanium and/or the lubricant of tungsten and its be used to improving the purposes that low speed early fires |
CN106566596B (en) * | 2015-10-08 | 2021-04-09 | 英菲诺姆国际有限公司 | Lubricating oil composition |
CN106566596A (en) * | 2015-10-08 | 2017-04-19 | 英菲诺姆国际有限公司 | Lubricating oil composition |
DE112016005592B4 (en) | 2015-12-07 | 2022-07-21 | Jxtg Nippon Oil & Energy Corporation | LUBRICATION OIL COMPOSITION FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR SUPPRESSING LSPI OF AN INTERNAL COMBUSTION ENGINE |
DE112016005592B9 (en) | 2015-12-07 | 2022-09-15 | Jxtg Nippon Oil & Energy Corporation | LUBRICATION OIL COMPOSITION FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR SUPPRESSING LSPI OF AN INTERNAL COMBUSTION ENGINE |
JP2017110147A (en) * | 2015-12-18 | 2017-06-22 | 出光興産株式会社 | Lubricant composition for turbo mechanism mounting engine |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017164384A1 (en) * | 2016-03-24 | 2017-09-28 | 出光興産株式会社 | Lubricating oil composition for engine equipped with supercharging mechanism, method for suppressing low-speed pre-ignition in engine equipped with supercharging mechanism using lubricating oil composition, and method for manufacturing lubricating oil composition |
JPWO2017164384A1 (en) * | 2016-03-24 | 2019-01-31 | 出光興産株式会社 | Lubricating oil composition for engine equipped with supercharging mechanism, method for suppressing low-speed and early ignition in supercharging mechanism-equipped engine using the lubricating oil composition, and method for producing the lubricating oil composition |
US10865360B2 (en) | 2016-03-24 | 2020-12-15 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition for engine equipped with supercharging mechanism, method for suppressing low-speed pre-ignition in engine equipped with supercharging mechanism using lubricating oil composition, and method for manufacturing lubricating oil composition |
US11155764B2 (en) | 2016-05-05 | 2021-10-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10323205B2 (en) | 2016-05-05 | 2019-06-18 | Afton Chemical Corporation | Lubricant compositions for reducing timing chain stretch |
US11111453B2 (en) | 2016-10-18 | 2021-09-07 | Eneos Corporation | Method for lubricating internal combustion engine |
CN109689845A (en) * | 2016-10-18 | 2019-04-26 | Jxtg能源株式会社 | The lubricating method of internal combustion engine |
KR20190065243A (en) | 2016-10-18 | 2019-06-11 | 제이엑스티지 에네루기 가부시키가이샤 | Lubrication method of internal combustion engine |
WO2018105496A1 (en) * | 2016-12-05 | 2018-06-14 | 出光興産株式会社 | Lubricant oil composition and method for manufacturing same |
US10443558B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
US10370615B2 (en) | 2017-01-18 | 2019-08-06 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136136A1 (en) * | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
US10443011B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
JP2020503422A (en) * | 2017-01-18 | 2020-01-30 | アフトン・ケミカル・コーポレーションAfton Chemical Corporation | Lubricants, including detergents containing calcium and magnesium, and their use for improving low speed preignition and corrosion resistance |
JP2020503423A (en) * | 2017-01-18 | 2020-01-30 | アフトン・ケミカル・コーポレーションAfton Chemical Corporation | Lubricants, including calcium-containing cleaning agents, and their use for improving low speed preignition |
EP4029925A1 (en) | 2017-01-20 | 2022-07-20 | Chevron Oronite Company LLC | Lubricating oil compositions and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines |
WO2018136470A2 (en) | 2017-01-20 | 2018-07-26 | Chevron Oronite Company Llc | Lubricating oil compositions and method for preventing or reducing low speed pre-ignition in direct injected spark-ignited engines |
JP2018141145A (en) * | 2017-02-22 | 2018-09-13 | インフィニューム インターナショナル リミテッド | Lubricating oil composition and improvement in the same |
JP7011488B2 (en) | 2017-02-22 | 2022-02-10 | インフィニューム インターナショナル リミテッド | Lubricating oil composition and related improvements |
CN108456583A (en) * | 2017-02-22 | 2018-08-28 | 英菲诺姆国际有限公司 | Improvement in lubricating composition and improvement related with lubricating composition |
KR20180100491A (en) * | 2017-03-01 | 2018-09-11 | 인피늄 인터내셔날 리미티드 | Improvements in and relating to lubricating compositions |
KR102649417B1 (en) | 2017-03-01 | 2024-03-21 | 인피늄 인터내셔날 리미티드 | Improvements in and relating to lubricating compositions |
CN112912480B (en) * | 2018-11-09 | 2022-12-16 | 出光兴产株式会社 | Lubricating oil composition for internal combustion engine, method for producing same, and method for suppressing pre-ignition |
CN112912480A (en) * | 2018-11-09 | 2021-06-04 | 出光兴产株式会社 | Lubricating oil composition for internal combustion engine, method for producing same, and method for suppressing pre-ignition |
WO2021054285A1 (en) * | 2019-09-17 | 2021-03-25 | 出光興産株式会社 | Lubricating oil composition |
JP7429509B2 (en) | 2019-09-17 | 2024-02-08 | 出光興産株式会社 | lubricating oil composition |
JP2021046472A (en) * | 2019-09-17 | 2021-03-25 | 出光興産株式会社 | Lubricant composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014152301A (en) | Lubricant composition for direct-injection turbo mechanism-loaded engine | |
KR102609788B1 (en) | Lubricating oil composition for gasoline engines and method for producing the same | |
JP5175462B2 (en) | Lubricating oil composition for internal combustion engines | |
KR102603891B1 (en) | Lubricating oil composition for gasoline engines and method for producing the same | |
JP6302458B2 (en) | Lubricating oil composition | |
JP5226507B2 (en) | Lubricating oil composition for internal combustion engines | |
JP4936692B2 (en) | Lubricating composition | |
JP5330716B2 (en) | Lubricating oil composition | |
US10450528B2 (en) | Lubricant composition | |
JP2008189904A5 (en) | ||
JPH09111275A (en) | Diesel engine oil composition | |
RU2469076C2 (en) | Lubing composition for internal combustion engine | |
JP2006176672A (en) | Lubricant composition for internal combustion engine | |
JP5377925B2 (en) | Lubricating oil composition for internal combustion engines | |
WO2020095943A1 (en) | Lubricant composition | |
JPWO2008133327A1 (en) | Lubricating oil composition | |
WO2009101933A1 (en) | Lubricant composition | |
JP6846295B2 (en) | Lubricating oil composition for gas engines, and methods for improving fuel consumption or reducing abnormal combustion | |
JP2019089938A (en) | Lubricant composition | |
WO2019189121A1 (en) | Lubricating oil composition and use method therefor | |
JP5714529B2 (en) | Lubricating oil composition for internal combustion engines | |
JP2018168344A (en) | Lubricating oil composition for internal combustion engine | |
JP2015025079A (en) | Lubricant composition | |
WO2022250018A1 (en) | Lubricant composition for internal combustion engine | |
JP2008248139A (en) | Lubricating oil composition |