WO2022250018A1 - Lubricant composition for internal combustion engine - Google Patents

Lubricant composition for internal combustion engine Download PDF

Info

Publication number
WO2022250018A1
WO2022250018A1 PCT/JP2022/021115 JP2022021115W WO2022250018A1 WO 2022250018 A1 WO2022250018 A1 WO 2022250018A1 JP 2022021115 W JP2022021115 W JP 2022021115W WO 2022250018 A1 WO2022250018 A1 WO 2022250018A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
lubricating oil
oil composition
internal combustion
Prior art date
Application number
PCT/JP2022/021115
Other languages
French (fr)
Japanese (ja)
Inventor
朱 村本
秀雄 常岡
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Priority to CN202280031216.7A priority Critical patent/CN117242160A/en
Publication of WO2022250018A1 publication Critical patent/WO2022250018A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/48Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/54Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil composition for internal combustion engines.
  • the present invention relates in particular to internal combustion engine lubricating oil compositions for passenger cars.
  • LSPI Low Speed Pre-Ignition
  • non-patent Reference 1 The occurrence of LSPI is believed to be affected by calcium-based detergents in lubricating oil for internal combustion engines. For this reason, in order to maintain the detergency and neutralization of internal combustion engine lubricating oil, some of the metallic detergents have been replaced with magnesium detergents to develop lubricating oils for internal combustion engines (patent References 1 and 2).
  • the present inventors have diligently studied a lubricating oil composition for internal combustion engines that has both fuel-saving performance and an LSPI reduction effect. As a result of studies, the present inventors have found that by combining a specific HTHS viscosity at 150°C in lubricating oil for internal combustion engines and magnesium salicylate as a metallic detergent, both the effect of reducing LSPI and the further improvement of fuel efficiency can be achieved. I found what I can do. That is, the present inventors have found that the above problems can be solved by adopting the following configuration, and have completed the invention.
  • the present invention has been made based on such findings, and is as follows.
  • a lubricating base oil having a kinematic viscosity at 100° C. of 2.5 mm 2 /s or more and 4.0 mm 2 /s or less, which contains one or more mineral base oils
  • B based on the total amount of the composition
  • a lubricating oil composition for an internal combustion engine containing 0.1% by mass or more and 10% by mass or less of magnesium salicylate,
  • the lubricating oil composition for an internal combustion engine which has an HTHS viscosity of 1.6 mPa ⁇ s or more and 2.5 mPa ⁇ s or less at 150°C.
  • the content of magnesium salicylate is 0.1% by mass or more and 3.0% by mass or less based on the total amount of the composition; and (C) the content of the viscosity index improver is 0.00% based on the total amount of the composition.
  • the lubricating oil composition for internal combustion engines according to ⁇ 1> which is 1% by mass or more and 10% by mass or less.
  • ⁇ 4> The lubricating oil composition for internal combustion engines according to any one of ⁇ 1> to ⁇ 3>, wherein the magnesium salicylate has a base number of 350 mgKOH/g or less.
  • ⁇ 5> The lubricating oil composition for an internal combustion engine according to any one of ⁇ 1> to ⁇ 4>, which has an HTHS viscosity at 150°C of 1.6 mPa ⁇ s or more and 2.0 mPa ⁇ s or less.
  • ⁇ 6> The lubricating oil composition for internal combustion engines according to any one of ⁇ 1> to ⁇ 5>, wherein the LSPI frequency index calculated by the following formula (6) is 0 or less.
  • the lubricating oil composition for internal combustion engines of the present invention it is possible to provide a lubricating oil composition for internal combustion engines that has both good fuel economy performance and an LSPI reduction effect.
  • Lubricating base oil In the lubricating oil composition of the present invention, a mineral base oil can be used as the lubricating base oil.
  • the mineral base oil used in the lubricating oil composition of the present invention includes distillate oil obtained by atmospheric distillation of crude oil. Alternatively, a lubricating oil fraction obtained by further refining the distillate obtained by vacuum distillation of this distillate by various refining processes can also be used. As the refining process, hydrorefining, solvent extraction, solvent dewaxing, hydrodewaxing, sulfuric acid washing, clay treatment, and the like can be appropriately combined. A lubricating base oil that can be used in the present invention can be obtained by combining these refining processes in an appropriate order. Mixtures of refined oils with different properties obtained by subjecting different crude oils or distillates to different combinations of refining processes can also be used.
  • API Group III base oils are mineral base oils having a sulfur content of 0.03 wt.% or less, a saturates content of 90 wt.% or more, and a viscosity index of 120 or more. Multiple types of Group III base oils may be used, or only one type may be used.
  • the lubricating oil composition of the present invention may contain only a mineral base oil as the lubricating base oil, or may contain other lubricating base oils.
  • the content of the mineral base oil is based on the lubricating base oil, for example, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass Above, it can be 90% by mass or more, 95% by mass or more, or 99% by mass or more.
  • synthetic base oils can be used as other lubricating base oils. Synthetic base oils include, for example, polyolefins such as poly- ⁇ -olefins, polyesters, polyalkylene glycols, alkylbenzenes, alkylnaphthalenes, and GTL base oils.
  • the kinematic viscosity at 100° C. of the lubricating base oil contained in the lubricating oil composition of the present invention is 2.5 mm 2 /s or more and 4.0 mm 2 /s or less.
  • the kinematic viscosity at 100° C. of the lubricating base oil of the present invention is preferably 3.0 mm 2 /s or higher, more preferably 3.2 mm 2 /s or higher, still more preferably 3.4 mm 2 /s or higher.
  • the upper limit is preferably 3.9 mm 2 /s or less, more preferably 3.8 mm 2 /s or less, and even more preferably 3.6 mm 2 /s or less.
  • a specific range is 2.5 mm 2 /s or more and 4.0 mm 2 /s or less, preferably 3.0 mm 2 /s or more and 3.9 mm 2 /s or less, more preferably 3.2 mm 2 /s or more. 0.8 mm 2 /s or less, more preferably 3.4 mm 2 /s or more and 3.6 mm 2 /s or less.
  • the kinematic viscosity at 100° C. of the lubricating base oil is 4.0 mm 2 /s or less, sufficient fuel saving performance can be obtained.
  • kinematic viscosity at 100° C. means the kinematic viscosity in a state in which all the lubricating base oils are mixed, that is, the kinematic viscosity of the base oil as a whole. That is, it does not mean the kinematic viscosity of a specific lubricating base oil when a plurality of base oils are included.
  • kinematic viscosity at 100°C means kinematic viscosity at 100°C measured according to ASTM D-445.
  • the content of the lubricating base oil is based on the total amount of the lubricating oil composition, for example, 50% by mass or more and 95% by mass or less, preferably 60% by mass or more and 95% by mass or less, more preferably is 70% by mass or more and 95% by mass or less, more preferably 80% by mass or more and 95% by mass or less, and most preferably 85% by mass or more and 95% by mass or less.
  • magnesium salicylate is used as the metallic detergent.
  • other metallic detergents may be included, but preferably only magnesium salicylate is included.
  • magnesium salicylate examples include compounds represented by the following formula (1).
  • the magnesium salicylate may be carbonate overbased or borate overbased.
  • the content of magnesium salicylate contained in the lubricating oil composition of the present invention is 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.5% by mass or more, based on the total amount of the lubricating oil composition. More preferably, it is 1% by mass or more.
  • the upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less. Specific ranges are 0.1% by mass to 10% by mass and 0.1% by mass to 3.0% by mass.
  • It is preferably 0.2% by mass or more and 8% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and still more preferably 1% by mass or more and 4% by mass or less.
  • content of magnesium salicylate is 0.1% by mass or more, effective fuel saving performance and cleaning effect are obtained, and when the content of magnesium salicylate is 10% by mass or less, fuel saving performance and LSPI are reduced. effects are compatible.
  • the amount of magnesium derived from magnesium salicylate contained in the lubricating oil composition of the present invention is preferably 500 ppm by mass or more, more preferably 1000 ppm by mass or more, based on the total amount of the lubricating oil composition.
  • the upper limit is preferably 2000 mass ppm or less, more preferably 1600 mass ppm or less.
  • a specific range is preferably 500 mass ppm or more and 2000 mass ppm or less, more preferably 1000 mass ppm or more and 1600 mass ppm or less.
  • the base value of the magnesium salicylate contained in the lubricating oil composition of the present invention is preferably 140 mgKOH/g or more, more preferably 180 mgKOH/g or more, and still more preferably 200 mgKOH/g or more, from the viewpoint of further improving fuel economy.
  • the upper limit is preferably 500 mgKOH/g or less, more preferably 400 mgKOH/g or less, still more preferably 350 mgKOH/g or less.
  • a specific range is preferably 140 mgKOH/g or more and 500 mgKOH/g or less, more preferably 180 mgKOH/g or more and 400 mgKOH/g or less, and still more preferably 200 mgKOH/g or more and 350 mgKOH/g or less.
  • the base number is a value measured according to JIS K 2501 5.2.3. The lower the base number, the less the inhibitory effect of MgCO 3 , so the fuel economy can be further improved.
  • the lubricating oil composition of the present invention contains metal-based detergents other than magnesium salicylate, such as phenate-based detergents, sulfonate-based detergents, and salicylate-based detergents other than magnesium salicylate, within a range that does not impair the effects of the present invention. can, but preferably contains only magnesium salicylate.
  • the present inventors used magnesium salicylate as a detergent and further adjusted the HTHS viscosity at 150 ° C. to 1.6 mPa s or more and 2.5 mPa s or less, so that both the effect of reducing LSPI and the fuel saving performance can be achieved. It has now been found that it is possible to prepare a lubricating oil composition for internal combustion engines. Such a lubricating oil composition for an internal combustion engine could not be obtained by using a metallic detergent containing magnesium other than magnesium salicylate. This is surprising (Examples and Comparative Examples to be described later).
  • the lubricating oil composition of the present invention preferably contains a viscosity index improver.
  • a viscosity index improver those commonly used in the field of lubricating oil compositions for internal combustion engines can be used. Specifically, polymethacrylates, olefin copolymers, polybutene, polyisobutene, polyisobutylene, polystyrene, ethylene-propylene copolymers, styrene-diene copolymers and hydrogenated products thereof can be used. Polymethacrylate is preferred.
  • the weight average molecular weight of the viscosity index improver contained in the lubricating oil composition of the present invention is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more.
  • the upper limit is preferably 800,000 or less, more preferably 500,000 or less, even more preferably 400,000 or less.
  • a specific range is preferably 10,000 or more and 800,000 or less, more preferably 50,000 or more and 500,000 or less, and still more preferably 100,000 or more and 400,000 or less.
  • the weight average molecular weight of a high molecular weight polymer means a value (molecular weight obtained by polystyrene conversion) determined by gel permeation chromatography (GPC).
  • the content of the viscosity index improver contained in the lubricating oil composition of the present invention is appropriately adjusted so that the HTHS viscosity of the lubricating oil composition at 150° C. is 1.6 mPa s or more and 2.5 mPa s or less. is preferred.
  • the lubricating oil composition of the present invention contains a viscosity index improver, the content thereof is 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.2% by mass or more, based on the total amount of the lubricating oil composition. It is 5% by mass or more, more preferably 1% by mass or more.
  • the upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less.
  • a specific range is 0.1% by mass or more and 10% by mass or less, preferably 0.2% by mass or more and 8% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and still more preferably 1% by mass. % or more and 3 mass % or less.
  • the lubricating oil composition of the present invention preferably further contains (D) a molybdenum-based friction modifier as a friction modifier.
  • a molybdenum-based friction modifier as a friction modifier.
  • MoDTC molybdenum dithiocarbamate
  • MoDTC for example, a compound represented by the following formula (2) can be used.
  • R 2 to R 5 may be the same or different, and are alkyl groups having 2 to 24 carbon atoms or (alkyl)aryl groups having 6 to 24 carbon atoms, preferably 4 to 4 carbon atoms. 13 alkyl groups or (alkyl)aryl groups having 10 to 15 carbon atoms.
  • the alkyl group may be a primary alkyl group, secondary alkyl group or tertiary alkyl group, and may be linear or branched.
  • “(alkyl)aryl group” means "aryl group or alkylaryl group". In the alkylaryl group, the substitution position of the alkyl group on the aromatic ring is arbitrary.
  • X 1 to X 4 are each independently a sulfur atom or an oxygen atom, and at least one of X 1 to X 4 is a sulfur atom.
  • Molybdenum-based friction modifiers other than MoDTC include, for example, molybdenum dithiophosphate, molybdenum oxide, molybdic acid, molybdates such as ammonium salts, molybdenum disulfide, molybdenum sulfide, molybdenum sulfide, organic molybdenum compounds containing sulfur, and the like. can be mentioned.
  • the lubricating oil composition of the present invention contains a molybdenum-based friction modifier
  • its content is 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0, based on the total amount of the lubricating oil composition. 0.2% by mass or more, more preferably 0.5% by mass or more.
  • the upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less.
  • a specific range is 0.01% by mass to 10% by mass, preferably 0.1% by mass to 8% by mass, more preferably 0.5% by mass to 5% by mass, and still more preferably 0.5% by mass to 8% by mass. It is 5 mass % or more and 2 mass % or less.
  • the amount of molybdenum derived from the molybdenum-based friction modifier contained in the lubricating oil composition of the present invention is preferably 100 ppm by mass or more, more preferably 500 ppm by mass or more, based on the total amount of the lubricating oil composition.
  • the upper limit is preferably 2000 mass ppm or less, more preferably 1000 mass ppm or less.
  • a specific range is preferably 100 mass ppm or more and 2000 mass ppm or less, more preferably 500 mass ppm or more and 1000 mass ppm or less.
  • the lubricating oil composition of the present invention may further contain antiwear agents, antioxidants or dispersants.
  • zinc dialkyldithiophosphate As an antiwear agent, it is preferable to add zinc dialkyldithiophosphate (ZnDTP).
  • ZnDTP zinc dialkyldithiophosphate
  • Examples of zinc dialkyldithiophosphates include compounds represented by the following general formula (3).
  • R 6 to R 9 in the general formula (3) each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 24 carbon atoms, and at least one of R 6 to R 9 One is a linear or branched alkyl group having 1 to 24 carbon atoms.
  • the alkyl group can be primary, secondary or tertiary.
  • one of these zinc dialkyldithiophosphates may be used alone, or two or more thereof may be used in combination.
  • the zinc dialkyldithiophosphate is preferably a zinc dithiophosphate having a primary alkyl group (primary ZnDTP) or a zinc dithiophosphate having a secondary alkyl group (secondary ZnDTP).
  • a material containing zinc dithiophosphate as a main component is preferable because it enhances wear resistance.
  • the lubricating oil composition of the present invention contains zinc dialkyldithiophosphate
  • its content is 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the lubricating oil composition. It is 2% by mass or more, more preferably 0.5% by mass or more.
  • the upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less.
  • a specific range is 0.01% by mass to 10% by mass, preferably 0.1% by mass to 8% by mass, more preferably 0.5% by mass to 5% by mass, and still more preferably 0.5% by mass to 8% by mass. It is 5 mass % or more and 2 mass % or less.
  • the amount of phosphorus derived from zinc dialkyldithiophosphate contained in the lubricating oil composition of the present invention is preferably 100 ppm by mass or more, more preferably 500 ppm by mass or more, based on the total amount of the composition.
  • the upper limit is preferably 2000 mass ppm or less, more preferably 1000 mass ppm or less.
  • a specific range is preferably 100 mass ppm or more and 2000 mass ppm or less, more preferably 500 mass ppm or more and 1000 mass ppm or less.
  • antioxidants such as phenol antioxidants and amine antioxidants can be used.
  • examples include aminic antioxidants such as alkylated diphenylamine, phenyl- ⁇ -naphthylamine, alkylated- ⁇ -naphthylamine, 2,6-di-t-butyl-4-methylphenol, 4,4′-methylenebis( 2,6-di-t-butylphenol) and other phenolic antioxidants.
  • the lubricating oil composition contains an antioxidant, its content is usually 5.0% by mass or less, preferably 3.0% by mass or less, and preferably 0, based on the total amount of the lubricating oil composition. .1% by mass or more, more preferably 0.5% by mass or more.
  • Dispersants include ashless dispersants such as succinimide or benzylamine.
  • ashless dispersants such as succinimide or benzylamine.
  • its content is usually 5.0% by mass or less, preferably 0.1% by mass or more, based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present invention can contain other additives commonly used in lubricating oils depending on the purpose in order to further improve its performance.
  • additives may include additives such as antiwear or extreme pressure agents, pour point depressants, corrosion inhibitors, rust inhibitors, metal deactivators, antifoam agents, and the like.
  • the HTHS viscosity at 150° C. of the lubricating oil composition of the present invention is 1.6 mPa ⁇ s or more and 2.5 mPa ⁇ s or less.
  • the HTHS viscosity at 150°C is 2.5 mPa ⁇ s or less, good fuel economy performance can be obtained. If it is less than 1.6 mPa ⁇ s, lubricity may be insufficient.
  • the HTHS viscosity at 150°C of the lubricating oil composition of the present invention is 1.6 mPa s or more and 2.5 mPa s or less, preferably 1.6 mPa s or more and 2.4 mPa s or less, more preferably 1.6 mPa s. s or more and 2.3 mPa s or less, more preferably 1.6 mPa s or more and 2.2 mPa s or less, still more preferably 1.6 mPa s or more and 2.1 mPa s or less, most preferably 1.6 mPa s or more It is 2.0 mPa ⁇ s or less.
  • the HTHS viscosity at 150°C indicates the high-temperature high-shear viscosity at 150°C specified in ASTM D4683.
  • the viscosity index of the lubricating oil composition of the present invention is preferably 120 or more and 220 or less, more preferably 140 or more and 200 or less.
  • the viscosity index of the lubricating oil composition is 140 or more, the fuel economy performance can be further improved while maintaining a low HTHS viscosity at 150°C.
  • the viscosity index of the lubricating oil composition exceeds 220, the evaporability may deteriorate.
  • the viscosity index means a viscosity index measured according to JIS K 2283-1993.
  • the kinematic viscosity at 40° C. of the lubricating oil composition of the present invention is preferably 10 mm 2 /s or more, more preferably 14 mm 2 /s or more, still more preferably 16 mm 2 /s or more, most preferably 18 mm 2 /s or more.
  • the upper limit is preferably 30 mm 2 /s or less, more preferably 28 mm 2 /s or less, even more preferably 25 mm 2 /s or less, most preferably 22 mm 2 /s or less.
  • a specific range is preferably 10 mm 2 /s or more and 30 mm 2 /s or less, more preferably 14 mm 2 /s or more and 28 mm 2 /s or less, still more preferably 16 mm 2 /s or more and 25 mm 2 /s or less, most preferably is 18 mm 2 /s or more and 22 mm 2 /s or less.
  • the kinematic viscosity at 40° C. of the lubricating oil composition is 30 mm 2 /s or less, sufficient fuel saving performance can be obtained.
  • kinematic viscosity at 40°C means kinematic viscosity at 40°C measured according to ASTM D-445.
  • the kinematic viscosity at 100° C. of the lubricating oil composition of the present invention is preferably 3 mm 2 /s or more, more preferably 4 mm 2 /s or more.
  • the upper limit is preferably 7 mm 2 /s or less, more preferably 5 mm 2 /s or less.
  • a specific range is preferably 3 mm 2 /s or more and 7 mm 2 /s or less, more preferably 4 mm 2 /s or more and 5 mm 2 /s or less.
  • the density ( ⁇ 15) at 15°C of the lubricating oil composition of the present invention is preferably 0.860 or less, more preferably 0.850 or less.
  • the density at 15°C means the density measured at 15°C according to JIS K 2249-1995.
  • the frequency of occurrence of LSPI can be reduced.
  • the LSPI occurrence frequency means the frequency of occurrence of abnormal combustion when the engine is running at low speeds.
  • the frequency of occurrence of LSPI when a lubricating oil composition is used for lubrication of an internal combustion engine has a positive correlation with the Ca content of the lubricating oil composition. It has been reported to have a negative correlation with P content and Mo content. More specifically, it is reported that the LSPI frequency index can be estimated by the following regression equation (6) based on the content of each element in the lubricating oil composition.
  • the LSPI frequency index (calculated value) according to the formula (6) of the lubricating oil composition of the present invention is preferably 0 or less, more preferably 0.1 or less, more preferably 0.2 or less, It is more preferably 0.3 or less, more preferably 0.4 or less, still more preferably 0.5 or less, and most preferably 0.6 or less.
  • the NOACK evaporation amount at 250° C. is preferably 30% by mass or less, more preferably 20% by mass or less, and 15% by mass or less. Especially preferred. If the NOACK evaporation amount of the lubricating base oil component exceeds 30% by mass, the evaporation loss of the lubricating oil is large, which causes an increase in viscosity and the like, which is not preferable.
  • the NOACK evaporation amount is the evaporation amount of lubricating oil measured according to ASTM D5800.
  • the lower limit of the NOACK evaporation amount of the lubricating oil composition at 250° C. is not particularly limited, but is usually 5% by mass or more.
  • Lubricating oil compositions for testing were prepared by blending base oils and additives at the blending ratios shown in Tables 1 and 2 for each example and each comparative example. The following evaluations were performed on the obtained lubricating oil composition for test. Evaluation results are shown in Tables 1 and 2.
  • Base oil/base oil 1 Group III base oil (mineral oil) kinematic viscosity 3.3 mm 2 /s (100°C), viscosity index 112 ⁇ Base oil 2: Group III base oil (mineral oil) kinematic viscosity 4.3 mm 2 /s (100°C), viscosity index 123
  • Lubricating base oils were prepared by mixing base oils at the mass ratios shown in Tables 1 and 2. In the table, the numerical value of the base oil represents the mass ratio based on the total amount of the base oil.
  • Anti-wear agent 1 zinc dialkyldithiophosphate (zinc content 9.3% by mass, phosphorus content 9.3% by mass, sulfur content 17.6% by mass, secondary ZnDTP) - Dispersant 1: Polyimide succinate (nitrogen content 1.75% by mass) ⁇ Antioxidant 1: amine antioxidant ⁇ Antioxidant 2: phenolic antioxidant
  • each test lubricating oil composition is shown in Tables 1 and 2 below.
  • the density at 15° C. of each test lubricating oil composition of Examples 1 to 4 and Comparative Examples 1 to 7 is 0.850 or less.
  • Examples 1 to 4 in which magnesium salicylate was used as a metallic detergent and the HTHS viscosity at 150°C was adjusted to 1.7, had improved fuel economy performance compared to Comparative Example 1, and the LSPI frequency calculated value was also lower. .
  • Comparative Example 1 in which calcium salicylate was used as the metallic detergent, gave a higher calculated LSPI frequency.
  • Comparative Example 2 in which the HTHS viscosity at 150° C. was adjusted to 2.6, was inferior to Comparative Example 1 in fuel saving performance.
  • Comparative Example 3 in which calcium salicylate was used as a metallic detergent and the HTHS viscosity at 150° C. was adjusted to 2.6, showed worse fuel economy performance and higher calculated LSPI frequency than Comparative Example 1.
  • Comparative Example 4 in which magnesium sulfonate was used as the metallic detergent, had poor fuel economy performance. Comparative Example 5, in which calcium salicylate was used as the metallic detergent and the amount of the molybdenum friction modifier was reduced, showed a higher calculated LSPI frequency. Comparative Example 5, in which calcium sulfonate was used as the metallic detergent, exhibited poor fuel economy performance and a high calculated LSPI frequency. Comparative Example 6, in which calcium sulfonate was used as a metallic detergent and the HTHS viscosity at 150° C. was adjusted to 1.6, showed poor fuel economy performance and a high calculated LSPI frequency.
  • the lubricating oil composition for an internal combustion engine of the present invention it is possible to provide a lubricating oil composition for an internal combustion engine that has both good fuel economy performance and an effect of reducing LSPI.

Abstract

Provided is a lubricant composition for an internal combustion engine, comprising: (A) a lubricant base oil which contains one or more mineral-oil-based base oils and which has a kinematic viscosity of 2.5-4.0 mm2/s at 100°C; and (B) magnesium salicylate the content of which is 0.1-10 mass% based on the total amount of the composition, wherein the HTHS viscosity is 1.6-2.5 mPa·s at 150°C.<sp /> This lubricant composition for an internal combustion engine exhibits both good fuel saving performance and an LSPI-reducing effect.

Description

内燃機関用潤滑油組成物Lubricating oil composition for internal combustion engine
 本発明は、内燃機関用潤滑油組成物に関する。本発明は、詳細には、乗用車用の内燃機関用潤滑油組成物に関する。 The present invention relates to a lubricating oil composition for internal combustion engines. The present invention relates in particular to internal combustion engine lubricating oil compositions for passenger cars.
 近年、自動車用内燃機関には、小型高出力化、省燃費化、排ガス規制対応など、様々な要求がなされている。特に、自動車用内燃機関の燃費向上を目的として、エンジンのダウンサイジングターボ化が進んでいる。 In recent years, there have been various demands for internal combustion engines for automobiles, such as smaller size, higher output, fuel efficiency, and compliance with exhaust gas regulations. In particular, for the purpose of improving the fuel efficiency of internal combustion engines for automobiles, downsizing turbo engines are in progress.
 ダウンサイジングターボエンジンでは、通常のエンジンよりも高圧縮比となり、エンジンの低回転時における異常燃焼(LSPI:LowSpeed Pre-Ignition(低速プレイグニッション))発生頻度の上昇が課題となっている(非特許文献1)。LSPIが発生するのは、内燃機関用潤滑油中のカルシウム系清浄剤が影響すると考えられている。このため、内燃機関用潤滑油の清浄性および中和性を維持するために、金属系清浄剤のうちの一部をマグネシウム系清浄剤に置き換えた内燃機関用潤滑油も開発されている(特許文献1および2)。 Downsizing turbo engines have a higher compression ratio than normal engines, and the problem is the increase in the frequency of abnormal combustion (LSPI: Low Speed Pre-Ignition) at low engine speeds (non-patent Reference 1). The occurrence of LSPI is believed to be affected by calcium-based detergents in lubricating oil for internal combustion engines. For this reason, in order to maintain the detergency and neutralization of internal combustion engine lubricating oil, some of the metallic detergents have been replaced with magnesium detergents to develop lubricating oils for internal combustion engines (patent References 1 and 2).
特開第2017-105886号公報Japanese Patent Application Laid-Open No. 2017-105886 特開第2016-196667号公報Japanese Unexamined Patent Publication No. 2016-196667
 一方で、金属系清浄剤のうちマグネシウム系清浄剤が増加した場合にも燃費のさらなる向上が求められている。特許文献1および2に記載の内燃機関用潤滑油では、良好な省燃費性能およびLSPIの低減効果が得られない場合があった。 On the other hand, even if magnesium-based detergents among metal-based detergents increase, there is a demand for further improvement in fuel efficiency. With the lubricating oils for internal combustion engines described in Patent Documents 1 and 2, there were cases where good fuel economy performance and LSPI reduction effects could not be obtained.
 本発明者らは、省燃費性能およびLSPIの低減効果を兼ね備えた内燃機関用潤滑油組成物について、鋭意検討した。本発明者らは、検討の結果、内燃機関用潤滑油における150℃における特定のHTHS粘度と、金属系清浄剤としてマグネシウムサリシレートとを組み合わせることで、LSPIの低減効果と燃費性能のさらなる向上を両立できることを見出した。すなわち、本発明者らは、以下の構成を採用することによって、前記課題を解決できることを見出し、発明を完成するに至った。 The present inventors have diligently studied a lubricating oil composition for internal combustion engines that has both fuel-saving performance and an LSPI reduction effect. As a result of studies, the present inventors have found that by combining a specific HTHS viscosity at 150°C in lubricating oil for internal combustion engines and magnesium salicylate as a metallic detergent, both the effect of reducing LSPI and the further improvement of fuel efficiency can be achieved. I found what I can do. That is, the present inventors have found that the above problems can be solved by adopting the following configuration, and have completed the invention.
 本発明は、かかる知見に基づきなされたもので、次の通りのものである。
<1>
 (A)1種以上の鉱油系基油を含む、100℃における動粘度が2.5mm/s以上4.0mm/s以下である潤滑油基油、および(B)組成物全量基準で0.1質量%以上10質量%以下のマグネシウムサリシレートを含む、内燃機関用潤滑油組成物であって、
 150℃におけるHTHS粘度が、1.6mPa・s以上2.5mPa・s以下である、前記内燃機関用潤滑油組成物。
<2>
 (B)マグネシウムサリシレートの含有量が、組成物全量基準で0.1質量%以上3.0質量%以下であり、そして(C)粘度指数向上剤の含有量が、組成物全量基準で0.1質量%以上10質量%以下である、<1>に記載の内燃機関用潤滑油組成物。
<3>
 摩擦調整剤として、(D)モリブデン系摩擦調整剤を組成物全量基準で0.01質量%以上10質量%以下さらに含む、<1>または<2>に記載の内燃機関用潤滑油組成物。
<4>
 前記マグネシウムサリシレートの塩基価が、350mgKOH/g以下である、<1>~<3>のいずれかに記載の内燃機関用潤滑油組成物。
<5>
 150℃におけるHTHS粘度が、1.6mPa・s以上2.0mPa・s以下である、<1>~<4>のいずれかに記載の内燃機関用潤滑油組成物。
<6>
 以下の式(6)で計算するLSPI頻度指標が、0以下である、<1>~<5>のいずれかに記載の内燃機関用潤滑油組成物。
式(6):LSPI頻度指標=6.59×Ca-26.6×P-5.12×Mo+1.69
(式(6)中、Caは組成物中のカルシウム含有量(質量%)を表し、Pは組成物中のリン含有量(質量%)を表し、Moは組成物中のモリブデン含有量(質量%)を表す。)。
The present invention has been made based on such findings, and is as follows.
<1>
(A) a lubricating base oil having a kinematic viscosity at 100° C. of 2.5 mm 2 /s or more and 4.0 mm 2 /s or less, which contains one or more mineral base oils, and (B) based on the total amount of the composition A lubricating oil composition for an internal combustion engine containing 0.1% by mass or more and 10% by mass or less of magnesium salicylate,
The lubricating oil composition for an internal combustion engine, which has an HTHS viscosity of 1.6 mPa·s or more and 2.5 mPa·s or less at 150°C.
<2>
(B) the content of magnesium salicylate is 0.1% by mass or more and 3.0% by mass or less based on the total amount of the composition; and (C) the content of the viscosity index improver is 0.00% based on the total amount of the composition. The lubricating oil composition for internal combustion engines according to <1>, which is 1% by mass or more and 10% by mass or less.
<3>
The lubricating oil composition for an internal combustion engine according to <1> or <2>, further comprising (D) a molybdenum-based friction modifier as a friction modifier in an amount of 0.01% by mass or more and 10% by mass or less based on the total amount of the composition.
<4>
The lubricating oil composition for internal combustion engines according to any one of <1> to <3>, wherein the magnesium salicylate has a base number of 350 mgKOH/g or less.
<5>
The lubricating oil composition for an internal combustion engine according to any one of <1> to <4>, which has an HTHS viscosity at 150°C of 1.6 mPa·s or more and 2.0 mPa·s or less.
<6>
The lubricating oil composition for internal combustion engines according to any one of <1> to <5>, wherein the LSPI frequency index calculated by the following formula (6) is 0 or less.
Equation (6): LSPI frequency index = 6.59 x Ca-26.6 x P-5.12 x Mo + 1.69
(In formula (6), Ca represents the calcium content (mass%) in the composition, P represents the phosphorus content (mass%) in the composition, and Mo represents the molybdenum content (mass%) in the composition. %).).
 本発明の内燃機関用潤滑油組成物によれば、良好な省燃費性能およびLSPIの低減効果を兼ね備えた内燃機関用潤滑油組成物を提供することができる。 According to the lubricating oil composition for internal combustion engines of the present invention, it is possible to provide a lubricating oil composition for internal combustion engines that has both good fuel economy performance and an LSPI reduction effect.
〔A〕潤滑油基油
 本発明の潤滑油組成物においては、潤滑油基油として、鉱油系基油を用いることができる。
[A] Lubricating base oil In the lubricating oil composition of the present invention, a mineral base oil can be used as the lubricating base oil.
 本発明の潤滑油組成物に用いられる鉱油系基油としては、原油を常圧蒸留して得られる留出油が挙げられる。または、この留出油をさらに減圧蒸留して得られる留出油を、各種の精製プロセスで精製した潤滑油留分も使用することができる。精製プロセスとしては、水素化精製、溶剤抽出、溶剤脱ろう、水素化脱ろう、硫酸洗浄、白土処理などを、適宜組み合わせることができる。これらの精製プロセスを適宜の順序で組み合わせて処理することにより、本発明で使用できる潤滑油基油を得ることができる。異なる原油あるいは留出油を異なる精製プロセスの組合せに供することにより得られた、性状の異なる複数の精製油の混合物も使用可能である。 The mineral base oil used in the lubricating oil composition of the present invention includes distillate oil obtained by atmospheric distillation of crude oil. Alternatively, a lubricating oil fraction obtained by further refining the distillate obtained by vacuum distillation of this distillate by various refining processes can also be used. As the refining process, hydrorefining, solvent extraction, solvent dewaxing, hydrodewaxing, sulfuric acid washing, clay treatment, and the like can be appropriately combined. A lubricating base oil that can be used in the present invention can be obtained by combining these refining processes in an appropriate order. Mixtures of refined oils with different properties obtained by subjecting different crude oils or distillates to different combinations of refining processes can also be used.
 本発明の潤滑油組成物に用いられる鉱油系基油としては、API分類におけるグループIII基油に属するものを用いることが好ましい。APIグループIII基油は、硫黄分が0.03質量%以下、飽和分が90質量%以上、且つ粘度指数が120以上の鉱油系基油である。複数の種類のグループIII基油を用いてもよく、一種のみを用いてもよい。 As the mineral base oil used in the lubricating oil composition of the present invention, it is preferable to use one belonging to Group III base oil in the API classification. API Group III base oils are mineral base oils having a sulfur content of 0.03 wt.% or less, a saturates content of 90 wt.% or more, and a viscosity index of 120 or more. Multiple types of Group III base oils may be used, or only one type may be used.
 本発明の潤滑油組成物においては、潤滑油基油として鉱油系基油のみを含むこともでき、その他の潤滑油基油を含むこともできる。具体的には、本発明の潤滑油組成物において、鉱油系基油の含有量は、潤滑油基油基準で、例えば、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、または99質量%以上であることができる。
 その他の潤滑油基油としては、例えば合成系基油を用いることができる。合成系基油としては、例えば、ポリ-α-オレフィンなどのポリオレフィン、ポリエステル、ポリアルキレングリコール、アルキルベンゼン、アルキルナフタレン、およびGTL基油などが挙げられる。
The lubricating oil composition of the present invention may contain only a mineral base oil as the lubricating base oil, or may contain other lubricating base oils. Specifically, in the lubricating oil composition of the present invention, the content of the mineral base oil is based on the lubricating base oil, for example, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass Above, it can be 90% by mass or more, 95% by mass or more, or 99% by mass or more.
As other lubricating base oils, for example, synthetic base oils can be used. Synthetic base oils include, for example, polyolefins such as poly-α-olefins, polyesters, polyalkylene glycols, alkylbenzenes, alkylnaphthalenes, and GTL base oils.
 本発明の潤滑油組成物に含まれる潤滑油基油の100℃における動粘度は、2.5mm/s以上4.0mm/s以下である。本発明の潤滑油基油の100℃における動粘度は、好ましくは3.0mm/s以上、より好ましくは3.2mm/s以上、さらに好ましくは3.4mm/s以上である。また、上限は、好ましくは3.9mm/s以下、より好ましくは3.8mm/s以下、さらに好ましくは3.6mm/s以下である。具体的な範囲としては、2.5mm/s以上4.0mm/s以下、好ましくは3.0mm/s以上3.9mm/s以下、より好ましくは3.2mm/s以上3.8mm/s以下、さらに好ましくは3.4mm/s以上3.6mm/s以下である。潤滑油基油の100℃における動粘度が4.0mm/s以下であることにより、十分な省燃費性能を得ることができる。また、潤滑油基油の100℃における動粘度が2.5mm/s以上であることにより、潤滑箇所での油膜形成を確保でき、潤滑油組成物の蒸発損失も小さくすることができる。
 前記の100℃における動粘度は、全ての潤滑油基油を混合した状態での動粘度、すなわち、基油全体としての動粘度を意味する。すなわち、複数の基油が含まれる場合の、特定の1つの潤滑油基油の動粘度を意味するものではない。
 なお、本明細書において「100℃における動粘度」とは、ASTM D-445に準拠して測定された100℃での動粘度を意味する。
The kinematic viscosity at 100° C. of the lubricating base oil contained in the lubricating oil composition of the present invention is 2.5 mm 2 /s or more and 4.0 mm 2 /s or less. The kinematic viscosity at 100° C. of the lubricating base oil of the present invention is preferably 3.0 mm 2 /s or higher, more preferably 3.2 mm 2 /s or higher, still more preferably 3.4 mm 2 /s or higher. Also, the upper limit is preferably 3.9 mm 2 /s or less, more preferably 3.8 mm 2 /s or less, and even more preferably 3.6 mm 2 /s or less. A specific range is 2.5 mm 2 /s or more and 4.0 mm 2 /s or less, preferably 3.0 mm 2 /s or more and 3.9 mm 2 /s or less, more preferably 3.2 mm 2 /s or more. 0.8 mm 2 /s or less, more preferably 3.4 mm 2 /s or more and 3.6 mm 2 /s or less. When the kinematic viscosity at 100° C. of the lubricating base oil is 4.0 mm 2 /s or less, sufficient fuel saving performance can be obtained. In addition, since the kinematic viscosity at 100° C. of the lubricating base oil is 2.5 mm 2 /s or more, it is possible to ensure the formation of an oil film at the lubricating points and to reduce the evaporation loss of the lubricating oil composition.
The above kinematic viscosity at 100° C. means the kinematic viscosity in a state in which all the lubricating base oils are mixed, that is, the kinematic viscosity of the base oil as a whole. That is, it does not mean the kinematic viscosity of a specific lubricating base oil when a plurality of base oils are included.
As used herein, "kinematic viscosity at 100°C" means kinematic viscosity at 100°C measured according to ASTM D-445.
 本発明の潤滑油組成物において、潤滑油基油の含有量は、潤滑油組成物全量基準で、例えば、50質量%以上95質量%以下、好ましくは60質量%以上95質量%以下、より好ましくは70質量%以上95質量%以下、さらに好ましくは80質量%以上95質量%以下、最も好ましくは85質量%以上95質量%以下である。 In the lubricating oil composition of the present invention, the content of the lubricating base oil is based on the total amount of the lubricating oil composition, for example, 50% by mass or more and 95% by mass or less, preferably 60% by mass or more and 95% by mass or less, more preferably is 70% by mass or more and 95% by mass or less, more preferably 80% by mass or more and 95% by mass or less, and most preferably 85% by mass or more and 95% by mass or less.
〔B〕マグネシウムサリシレート
 本発明の潤滑油組成物では、金属系清浄剤として、マグネシウムサリシレートを用いる。マグネシウムサリシレートに加えて、他の金属系清浄剤を含むことができるが、マグネシウムサリシレートのみを含むことが好ましい。
[B] Magnesium Salicylate In the lubricating oil composition of the present invention, magnesium salicylate is used as the metallic detergent. In addition to magnesium salicylate, other metallic detergents may be included, but preferably only magnesium salicylate is included.
 マグネシウムサリシレートとしては、以下の式(1)で表される化合物を例示できる。 Examples of magnesium salicylate include compounds represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記式(1)中、Rはそれぞれ独立に炭素数14~30のアルキル基またはアルケニル基を表し、nは1または2を表す。Mgはマグネシウムを表す。nとしては1が好ましい。なおn=2であるとき、Rは異なる基の組み合わせであってもよい。
 マグネシウムサリシレートは、炭酸塩で過塩基化されていてもよく、ホウ酸塩で過塩基化されていてもよい。
In formula (1), each R 1 independently represents an alkyl group or alkenyl group having 14 to 30 carbon atoms, and n represents 1 or 2; Mg represents magnesium. 1 is preferable as n. When n=2, R 1 may be a combination of different groups.
The magnesium salicylate may be carbonate overbased or borate overbased.
 本発明の潤滑油組成物に含まれるマグネシウムサリシレートの含有量は、潤滑油組成物全量基準で0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。上限は、10質量%以下、好ましくは8質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。具体的な範囲としては、0.1質量%以上10質量%以下、0.1質量%以上3.0質量%以下が例示される。好ましくは0.2質量%以上8質量%以下、より好ましくは0.5質量%以上5質量%以下、さらに好ましくは1質量%以上4質量%以下である。マグネシウムサリシレートの含有量が0.1質量%以上であることにより有効な省燃費性能と清浄効果が得られ、またマグネシウムサリシレートの含有量が10質量%以下であることにより省燃費性能およびLSPIの低減効果が両立できる。 The content of magnesium salicylate contained in the lubricating oil composition of the present invention is 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.5% by mass or more, based on the total amount of the lubricating oil composition. More preferably, it is 1% by mass or more. The upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less. Specific ranges are 0.1% by mass to 10% by mass and 0.1% by mass to 3.0% by mass. It is preferably 0.2% by mass or more and 8% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and still more preferably 1% by mass or more and 4% by mass or less. When the content of magnesium salicylate is 0.1% by mass or more, effective fuel saving performance and cleaning effect are obtained, and when the content of magnesium salicylate is 10% by mass or less, fuel saving performance and LSPI are reduced. effects are compatible.
 本発明の潤滑油組成物に含まれるマグネシウムサリシレート由来のマグネシウムの量は、潤滑油組成物全量基準で、好ましくは500質量ppm以上、より好ましくは1000質量ppm以上である。上限は、好ましくは2000質量ppm以下、より好ましくは1600質量ppm以下である。具体的な範囲としては、好ましくは500質量ppm以上2000質量ppm以下、より好ましくは1000質量ppm以上1600質量ppm以下である。マグネシウムの含有量を前記範囲内にすることにより、LSPIの発生を抑えながら、エンジン内部の清浄性を高く保つことができる。 The amount of magnesium derived from magnesium salicylate contained in the lubricating oil composition of the present invention is preferably 500 ppm by mass or more, more preferably 1000 ppm by mass or more, based on the total amount of the lubricating oil composition. The upper limit is preferably 2000 mass ppm or less, more preferably 1600 mass ppm or less. A specific range is preferably 500 mass ppm or more and 2000 mass ppm or less, more preferably 1000 mass ppm or more and 1600 mass ppm or less. By setting the content of magnesium within the above range, it is possible to keep the inside of the engine highly clean while suppressing the generation of LSPI.
(塩基価)
 本発明の潤滑油組成物に含まれるマグネシウムサリシレートの塩基価は、省燃費性のさらなる向上の観点から、好ましくは140mgKOH/g以上、より好ましくは180mgKOH/g以上、さらに好ましくは200mgKOH/g以上である。上限は、好ましくは500mgKOH/g以下、より好ましくは400mgKOH/g以下、さらに好ましくは350mgKOH/g以下である。具体的な範囲としては、好ましくは140mgKOH/g以上500mgKOH/g以下、より好ましくは180mgKOH/g以上400mgKOH/g以下、さらに好ましくは200mgKOH/g以上350mgKOH/g以下である。なお、前記塩基価は、JIS K 2501 5.2.3により測定される値である。
 塩基価が低い方が、MgCOによる阻害効果が少ないので、省燃費性を更に向上することができる。
(Base number)
The base value of the magnesium salicylate contained in the lubricating oil composition of the present invention is preferably 140 mgKOH/g or more, more preferably 180 mgKOH/g or more, and still more preferably 200 mgKOH/g or more, from the viewpoint of further improving fuel economy. be. The upper limit is preferably 500 mgKOH/g or less, more preferably 400 mgKOH/g or less, still more preferably 350 mgKOH/g or less. A specific range is preferably 140 mgKOH/g or more and 500 mgKOH/g or less, more preferably 180 mgKOH/g or more and 400 mgKOH/g or less, and still more preferably 200 mgKOH/g or more and 350 mgKOH/g or less. The base number is a value measured according to JIS K 2501 5.2.3.
The lower the base number, the less the inhibitory effect of MgCO 3 , so the fuel economy can be further improved.
 本発明の潤滑油組成物は、本発明の効果を損なわない範囲内において、マグネシウムサリシレート以外の金属系清浄剤、例えばフェネート系清浄剤、スルホネート系清浄剤、マグネシウムサリシレート以外のサリシレート系清浄剤を含むことができるが、マグネシウムサリシレートのみを含むことが好ましい。 The lubricating oil composition of the present invention contains metal-based detergents other than magnesium salicylate, such as phenate-based detergents, sulfonate-based detergents, and salicylate-based detergents other than magnesium salicylate, within a range that does not impair the effects of the present invention. can, but preferably contains only magnesium salicylate.
 本発明者らは、マグネシウムサリシレートを清浄剤として用い、さらに、150℃におけるHTHS粘度を1.6mPa・s以上2.5mPa・s以下に調整することにより、LSPIの低減効果および省燃費性能を兼ね備えた内燃機関用潤滑油組成物を調製することが可能であることを見出した。マグネシウムサリシレート以外のマグネシウムを含む金属系清浄剤を用いても、このような内燃機関用潤滑油組成物は得られなかった。これは驚くべきことである(後述の実施例および比較例)。 The present inventors used magnesium salicylate as a detergent and further adjusted the HTHS viscosity at 150 ° C. to 1.6 mPa s or more and 2.5 mPa s or less, so that both the effect of reducing LSPI and the fuel saving performance can be achieved. It has now been found that it is possible to prepare a lubricating oil composition for internal combustion engines. Such a lubricating oil composition for an internal combustion engine could not be obtained by using a metallic detergent containing magnesium other than magnesium salicylate. This is surprising (Examples and Comparative Examples to be described later).
〔C〕粘度指数向上剤
 本発明の潤滑油組成物は、粘度指数向上剤を含むことが好ましい。粘度指数向上剤としては、内燃機関用潤滑油組成物の分野で一般に使用されているものを使用することができる。具体的には、ポリメタクリレート、オレフィンコポリマー、ポリブテン、ポリイソブテン、ポリイソブチレン、ポリスチレン、エチレン-プロピレン共重合体、およびスチレン-ジエン共重合体およびその水素化物等が使用できる。ポリメタクリレートが好ましい。
[C] Viscosity Index Improver The lubricating oil composition of the present invention preferably contains a viscosity index improver. As the viscosity index improver, those commonly used in the field of lubricating oil compositions for internal combustion engines can be used. Specifically, polymethacrylates, olefin copolymers, polybutene, polyisobutene, polyisobutylene, polystyrene, ethylene-propylene copolymers, styrene-diene copolymers and hydrogenated products thereof can be used. Polymethacrylate is preferred.
 本発明の潤滑油組成物に含まれる粘度指数向上剤の重量平均分子量は、好ましくは10,000以上、より好ましくは50,000以上、さらに好ましくは100,000以上である。上限は、好ましくは800,000以下、より好ましくは500,000以下、さらに好ましくは400,000以下である。具体的な範囲としては、好ましくは10,000以上800,000以下、より好ましくは50,000以上500,000以下、さらに好ましくは100,000以上400,000以下である。
 高分子ポリマーの重量平均分子量は、それぞれゲルパーミエーションクロマトグラフィー(GPC)で求められる値(ポリスチレン換算により得られた分子量)を意味する。
The weight average molecular weight of the viscosity index improver contained in the lubricating oil composition of the present invention is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more. The upper limit is preferably 800,000 or less, more preferably 500,000 or less, even more preferably 400,000 or less. A specific range is preferably 10,000 or more and 800,000 or less, more preferably 50,000 or more and 500,000 or less, and still more preferably 100,000 or more and 400,000 or less.
The weight average molecular weight of a high molecular weight polymer means a value (molecular weight obtained by polystyrene conversion) determined by gel permeation chromatography (GPC).
 本発明の潤滑油組成物に含まれる粘度指数向上剤の含有量は、潤滑油組成物の150℃におけるHTHS粘度が、1.6mPa・s以上2.5mPa・s以下となるように適宜調整することが好ましい。本発明の潤滑油組成物に粘度指数向上剤が含まれる場合、その含有量は、潤滑油組成物全量基準で0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。上限は、10質量%以下、好ましくは8質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。具体的な範囲としては、0.1質量%以上10質量%以下、好ましくは0.2質量%以上8質量%以下、より好ましくは0.5質量%以上5質量%以下、さらに好ましくは1質量%以上3質量%以下である。 The content of the viscosity index improver contained in the lubricating oil composition of the present invention is appropriately adjusted so that the HTHS viscosity of the lubricating oil composition at 150° C. is 1.6 mPa s or more and 2.5 mPa s or less. is preferred. When the lubricating oil composition of the present invention contains a viscosity index improver, the content thereof is 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.2% by mass or more, based on the total amount of the lubricating oil composition. It is 5% by mass or more, more preferably 1% by mass or more. The upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less. A specific range is 0.1% by mass or more and 10% by mass or less, preferably 0.2% by mass or more and 8% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and still more preferably 1% by mass. % or more and 3 mass % or less.
〔D〕モリブデン系摩擦調整剤
 本発明の潤滑油組成物は、(D)モリブデン系摩擦調整剤を摩擦調整剤としてさらに含むことが好ましい。成分(D)としては、モリブデンジチオカーバメート(以下、単にMoDTCと称することがある。)が好ましい。
[D] Molybdenum-Based Friction Modifier The lubricating oil composition of the present invention preferably further contains (D) a molybdenum-based friction modifier as a friction modifier. As component (D), molybdenum dithiocarbamate (hereinafter sometimes simply referred to as MoDTC) is preferred.
 MoDTCとしては、例えば次の式(2)で表される化合物を用いることができる。 As MoDTC, for example, a compound represented by the following formula (2) can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記式(2)中、R~Rは、それぞれ同一でも異なっていてもよく、炭素数2~24のアルキル基または炭素数6~24の(アルキル)アリール基、好ましくは炭素数4~13のアルキル基または炭素数10~15の(アルキル)アリール基である。アルキル基は第1級アルキル基、第2級アルキル基、第3級アルキル基のいずれでもよく、また直鎖でも分枝状でもよい。なお「(アルキル)アリール基」は「アリール基もしくはアルキルアリール基」を意味する。アルキルアリール基において、芳香環におけるアルキル基の置換位置は任意である。X~Xはそれぞれ独立に硫黄原子または酸素原子であり、X~Xのうち少なくとも1つは硫黄原子である。 In the above formula (2), R 2 to R 5 may be the same or different, and are alkyl groups having 2 to 24 carbon atoms or (alkyl)aryl groups having 6 to 24 carbon atoms, preferably 4 to 4 carbon atoms. 13 alkyl groups or (alkyl)aryl groups having 10 to 15 carbon atoms. The alkyl group may be a primary alkyl group, secondary alkyl group or tertiary alkyl group, and may be linear or branched. In addition, "(alkyl)aryl group" means "aryl group or alkylaryl group". In the alkylaryl group, the substitution position of the alkyl group on the aromatic ring is arbitrary. X 1 to X 4 are each independently a sulfur atom or an oxygen atom, and at least one of X 1 to X 4 is a sulfur atom.
 MoDTC以外のモリブデン系摩擦調整剤としては、例えば、モリブデンジチオホスフェート、酸化モリブデン、モリブデン酸、アンモニウム塩等のモリブデン酸塩、二硫化モリブデン、硫化モリブデン、硫化モリブデン酸、硫黄を含有する有機モリブデン化合物等を挙げることができる。 Molybdenum-based friction modifiers other than MoDTC include, for example, molybdenum dithiophosphate, molybdenum oxide, molybdic acid, molybdates such as ammonium salts, molybdenum disulfide, molybdenum sulfide, molybdenum sulfide, organic molybdenum compounds containing sulfur, and the like. can be mentioned.
 本発明の潤滑油組成物にモリブデン系摩擦調整剤が含まれる場合、その含有量は、潤滑油組成物全量基準で0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.5質量%以上である。上限は、10質量%以下、好ましくは8質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。具体的な範囲としては、0.01質量%以上10質量%以下、好ましくは0.1質量%以上8質量%以下、より好ましくは0.5質量%以上5質量%以下、さらに好ましくは0.5質量%以上2質量%以下である。 When the lubricating oil composition of the present invention contains a molybdenum-based friction modifier, its content is 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0, based on the total amount of the lubricating oil composition. 0.2% by mass or more, more preferably 0.5% by mass or more. The upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less. A specific range is 0.01% by mass to 10% by mass, preferably 0.1% by mass to 8% by mass, more preferably 0.5% by mass to 5% by mass, and still more preferably 0.5% by mass to 8% by mass. It is 5 mass % or more and 2 mass % or less.
 本発明の潤滑油組成物に含まれるモリブデン系摩擦調整剤由来のモリブデンの量は、潤滑油組成物全量基準で、好ましくは100質量ppm以上、より好ましくは500質量ppm以上である。上限は、好ましくは2000質量ppm以下、より好ましくは1000質量ppm以下である。具体的な範囲としては、好ましくは100質量ppm以上2000質量ppm以下、より好ましくは500質量ppm以上1000質量ppm以下である。モリブデン含有量が前記下限値以上であることにより、省燃費性能、およびLSPI抑制能をさらに高めることができる。またモリブデン含有量が前記上限値以下であることにより、潤滑油組成物の貯蔵安定性を高めることができる。 The amount of molybdenum derived from the molybdenum-based friction modifier contained in the lubricating oil composition of the present invention is preferably 100 ppm by mass or more, more preferably 500 ppm by mass or more, based on the total amount of the lubricating oil composition. The upper limit is preferably 2000 mass ppm or less, more preferably 1000 mass ppm or less. A specific range is preferably 100 mass ppm or more and 2000 mass ppm or less, more preferably 500 mass ppm or more and 1000 mass ppm or less. When the molybdenum content is equal to or higher than the lower limit, the fuel economy performance and the LSPI suppression ability can be further enhanced. Moreover, when the molybdenum content is equal to or less than the above upper limit value, the storage stability of the lubricating oil composition can be enhanced.
 (その他の添加剤)
 本発明の潤滑油組成物は、さらに、摩耗防止剤、酸化防止剤または分散剤を含むことができる。
(Other additives)
The lubricating oil composition of the present invention may further contain antiwear agents, antioxidants or dispersants.
 摩耗防止剤としては、ジアルキルジチオリン酸亜鉛(ZnDTP)を添加することが好ましい。例えば、ジアルキルジチオリン酸亜鉛としては、次の一般式(3)に示す化合物を挙げることができる。 As an antiwear agent, it is preferable to add zinc dialkyldithiophosphate (ZnDTP). Examples of zinc dialkyldithiophosphates include compounds represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(3)中のR~Rは、それぞれ独立に、水素原子または炭素数1~24の直鎖状もしくは分枝状のアルキル基であり、R~Rのうち少なくとも1つは、炭素数1~24の直鎖状または分枝状のアルキル基である。このアルキル基は、第1級でも、第2級でも、第3級であってもよい。
 本発明の潤滑油組成物においては、これらのジアルキルジチオリン酸亜鉛は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。ジアルキルジチオリン酸亜鉛としては、第1級アルキル基を有するジチオリン酸亜鉛(プライマリーZnDTP)または第2級アルキル基を含有するジチオリン酸亜鉛(セカンダリーZnDTP)が好ましく、特には、第2級のアルキル基のジチオリン酸亜鉛を主成分とするものが、耐摩耗性を高めるため好ましい。
R 6 to R 9 in the general formula (3) each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 24 carbon atoms, and at least one of R 6 to R 9 One is a linear or branched alkyl group having 1 to 24 carbon atoms. The alkyl group can be primary, secondary or tertiary.
In the lubricating oil composition of the present invention, one of these zinc dialkyldithiophosphates may be used alone, or two or more thereof may be used in combination. The zinc dialkyldithiophosphate is preferably a zinc dithiophosphate having a primary alkyl group (primary ZnDTP) or a zinc dithiophosphate having a secondary alkyl group (secondary ZnDTP). A material containing zinc dithiophosphate as a main component is preferable because it enhances wear resistance.
 本発明の潤滑油組成物にジアルキルジチオリン酸亜鉛が含まれる場合、その含有量は、潤滑油組成物全量基準で0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.5質量%以上である。上限は、10質量%以下、好ましくは8質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。具体的な範囲としては、0.01質量%以上10質量%以下、好ましくは0.1質量%以上8質量%以下、より好ましくは0.5質量%以上5質量%以下、さらに好ましくは0.5質量%以上2質量%以下である。 When the lubricating oil composition of the present invention contains zinc dialkyldithiophosphate, its content is 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the lubricating oil composition. It is 2% by mass or more, more preferably 0.5% by mass or more. The upper limit is 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less. A specific range is 0.01% by mass to 10% by mass, preferably 0.1% by mass to 8% by mass, more preferably 0.5% by mass to 5% by mass, and still more preferably 0.5% by mass to 8% by mass. It is 5 mass % or more and 2 mass % or less.
 本発明の潤滑油組成物に含まれるジアルキルジチオリン酸亜鉛由来のリンの量は、組成物全量基準で、好ましくは100質量ppm以上、より好ましくは500質量ppm以上である。上限は、好ましくは2000質量ppm以下、より好ましくは1000質量ppm以下である。具体的な範囲としては、好ましくは100質量ppm以上2000質量ppm以下、より好ましくは500質量ppm以上1000質量ppm以下である。 The amount of phosphorus derived from zinc dialkyldithiophosphate contained in the lubricating oil composition of the present invention is preferably 100 ppm by mass or more, more preferably 500 ppm by mass or more, based on the total amount of the composition. The upper limit is preferably 2000 mass ppm or less, more preferably 1000 mass ppm or less. A specific range is preferably 100 mass ppm or more and 2000 mass ppm or less, more preferably 500 mass ppm or more and 1000 mass ppm or less.
 酸化防止剤としては、フェノール系酸化防止剤やアミン系酸化防止剤等の公知の酸化防止剤を使用可能である。例としては、アルキル化ジフェニルアミン、フェニル-α-ナフチルアミン、アルキル化-α-ナフチルアミンなどのアミン系酸化防止剤、2,6-ジ-t-ブチル-4-メチルフェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)などのフェノール系酸化防止剤などを挙げることができる。
 潤滑油組成物が酸化防止剤を含む場合、その含有量は、潤滑油組成物全量基準で、通常5.0質量%以下であり、好ましくは3.0質量%以下であり、また好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上である。
As the antioxidant, known antioxidants such as phenol antioxidants and amine antioxidants can be used. Examples include aminic antioxidants such as alkylated diphenylamine, phenyl-α-naphthylamine, alkylated-α-naphthylamine, 2,6-di-t-butyl-4-methylphenol, 4,4′-methylenebis( 2,6-di-t-butylphenol) and other phenolic antioxidants.
When the lubricating oil composition contains an antioxidant, its content is usually 5.0% by mass or less, preferably 3.0% by mass or less, and preferably 0, based on the total amount of the lubricating oil composition. .1% by mass or more, more preferably 0.5% by mass or more.
 分散剤としては、無灰分散剤、例えば、コハク酸イミドまたはベンジルアミンなどが挙げられる。
 潤滑油組成物が分散剤を含む場合、その含有量は、潤滑油組成物全量基準で、通常5.0質量%以下であり、また好ましくは0.1質量%以上である。
Dispersants include ashless dispersants such as succinimide or benzylamine.
When the lubricating oil composition contains a dispersant, its content is usually 5.0% by mass or less, preferably 0.1% by mass or more, based on the total amount of the lubricating oil composition.
 本発明の潤滑油組成物は、さらにその性能を向上するために、その目的に応じて潤滑油に一般的に使用されている他の添加剤を含むことができる。そのような添加剤としては、摩耗防止剤または極圧剤、流動点降下剤、腐食防止剤、防錆剤、金属不活性化剤、消泡剤等の添加剤を挙げることができる。 The lubricating oil composition of the present invention can contain other additives commonly used in lubricating oils depending on the purpose in order to further improve its performance. Such additives may include additives such as antiwear or extreme pressure agents, pour point depressants, corrosion inhibitors, rust inhibitors, metal deactivators, antifoam agents, and the like.
(内燃機関用潤滑油組成物)
 本発明の潤滑油組成物の150℃におけるHTHS粘度は、1.6mPa・s以上2.5mPa・s以下である。150℃におけるHTHS粘度が2.5mPa・s以下であることにより、良好な省燃費性能を得ることができる。1.6mPa・sを下回ると、潤滑性不足となる可能性がある。
 本発明の潤滑油組成物の150℃におけるHTHS粘度は、1.6mPa・s以上2.5mPa・s以下、好ましくは1.6mPa・s以上2.4mPa・s以下、より好ましくは1.6mPa・s以上2.3mPa・s以下、より好ましくは1.6mPa・s以上2.2mPa・s以下、さらに好ましくは1.6mPa・s以上2.1mPa・s以下、最も好ましくは1.6mPa・s以上2.0mPa・s以下である。
 なお、150℃におけるHTHS粘度とは、ASTM D 4683に規定される150℃での高温高せん断粘度を示す。
(Lubricating oil composition for internal combustion engine)
The HTHS viscosity at 150° C. of the lubricating oil composition of the present invention is 1.6 mPa·s or more and 2.5 mPa·s or less. When the HTHS viscosity at 150°C is 2.5 mPa·s or less, good fuel economy performance can be obtained. If it is less than 1.6 mPa·s, lubricity may be insufficient.
The HTHS viscosity at 150°C of the lubricating oil composition of the present invention is 1.6 mPa s or more and 2.5 mPa s or less, preferably 1.6 mPa s or more and 2.4 mPa s or less, more preferably 1.6 mPa s. s or more and 2.3 mPa s or less, more preferably 1.6 mPa s or more and 2.2 mPa s or less, still more preferably 1.6 mPa s or more and 2.1 mPa s or less, most preferably 1.6 mPa s or more It is 2.0 mPa·s or less.
The HTHS viscosity at 150°C indicates the high-temperature high-shear viscosity at 150°C specified in ASTM D4683.
 本発明の潤滑油組成物の粘度指数は、120以上220以下であることが好ましく、より好ましくは140以上200以下である。潤滑油組成物の粘度指数が140以上であることにより、150℃における低いHTHS粘度を維持しながら省燃費性能をさらに向上させることができる。また、潤滑油組成物の粘度指数が220を超える場合には、蒸発性が悪化するおそれがある。
 なお、本明細書において粘度指数とは、JIS K 2283-1993に準拠して測定された粘度指数を意味する。
The viscosity index of the lubricating oil composition of the present invention is preferably 120 or more and 220 or less, more preferably 140 or more and 200 or less. When the viscosity index of the lubricating oil composition is 140 or more, the fuel economy performance can be further improved while maintaining a low HTHS viscosity at 150°C. Moreover, if the viscosity index of the lubricating oil composition exceeds 220, the evaporability may deteriorate.
As used herein, the viscosity index means a viscosity index measured according to JIS K 2283-1993.
 本発明の潤滑油組成物の40℃における動粘度は、好ましくは10mm/s以上、より好ましくは14mm/s以上、さらに好ましくは16mm/s以上、最も好ましくは18mm/s以上である。上限は、好ましくは30mm/s以下、より好ましくは28mm/s以下、さらに好ましくは25mm/s以下、最も好ましくは22mm/s以下である。具体的な範囲としては、好ましくは10mm/s以上30mm/s以下、より好ましくは14mm/s以上28mm/s以下、さらに好ましくは16mm/s以上25mm/s以下、最も好ましくは18mm/s以上22mm/s以下である。潤滑油組成物の40℃における動粘度が30mm/s以下であることにより、十分な省燃費性能を得ることができる。また、潤滑油組成物の40℃における動粘度が10mm/s以上であることにより、潤滑箇所での油膜形成を確保でき、潤滑油組成物の蒸発損失も減少させることができる。
 なお、本明細書において「40℃における動粘度」とは、ASTM D-445に準拠して測定された40℃での動粘度を意味する。
The kinematic viscosity at 40° C. of the lubricating oil composition of the present invention is preferably 10 mm 2 /s or more, more preferably 14 mm 2 /s or more, still more preferably 16 mm 2 /s or more, most preferably 18 mm 2 /s or more. be. The upper limit is preferably 30 mm 2 /s or less, more preferably 28 mm 2 /s or less, even more preferably 25 mm 2 /s or less, most preferably 22 mm 2 /s or less. A specific range is preferably 10 mm 2 /s or more and 30 mm 2 /s or less, more preferably 14 mm 2 /s or more and 28 mm 2 /s or less, still more preferably 16 mm 2 /s or more and 25 mm 2 /s or less, most preferably is 18 mm 2 /s or more and 22 mm 2 /s or less. When the kinematic viscosity at 40° C. of the lubricating oil composition is 30 mm 2 /s or less, sufficient fuel saving performance can be obtained. In addition, when the kinematic viscosity of the lubricating oil composition at 40° C. is 10 mm 2 /s or more, it is possible to ensure the formation of an oil film at the lubricated portion and to reduce the evaporation loss of the lubricating oil composition.
As used herein, "kinematic viscosity at 40°C" means kinematic viscosity at 40°C measured according to ASTM D-445.
 本発明の潤滑油組成物の100℃における動粘度は、好ましくは3mm/s以上、より好ましくは4mm/s以上である。上限は、好ましくは7mm/s以下、より好ましくは5mm/s以下である。具体的な範囲としては、好ましくは3mm/s以上7mm/s以下、より好ましくは4mm/s以上5mm/s以下である。 The kinematic viscosity at 100° C. of the lubricating oil composition of the present invention is preferably 3 mm 2 /s or more, more preferably 4 mm 2 /s or more. The upper limit is preferably 7 mm 2 /s or less, more preferably 5 mm 2 /s or less. A specific range is preferably 3 mm 2 /s or more and 7 mm 2 /s or less, more preferably 4 mm 2 /s or more and 5 mm 2 /s or less.
 本発明の潤滑油組成物の15℃における密度(ρ15)は、好ましくは0.860以下、より好ましくは0.850以下である。なお、本明細書において15℃における密度とは、JIS K 2249-1995に準拠して15℃において測定された密度を意味する。 The density (ρ15) at 15°C of the lubricating oil composition of the present invention is preferably 0.860 or less, more preferably 0.850 or less. In this specification, the density at 15°C means the density measured at 15°C according to JIS K 2249-1995.
 本発明の潤滑油組成物を用いることにより、LSPI発生頻度を低減することができる。本明細書において、LSPI発生頻度とは、エンジンの低回転時における異常燃焼発生頻度を意味する。
 非特許文献1には、潤滑油組成物を内燃機関の潤滑に用いたときのLSPIの発生頻度は、該潤滑油組成物のCa含有量と正の相関を有し、該潤滑油組成物のP含有量およびMo含有量と負の相関を有することが報告されている。より具体的には、潤滑油組成物中の各元素の含有量に基づいて、LSPI頻度の指標を次の回帰式(6)で推定できることが報告されている。
式(6)
LSPI頻度指標=6.59×Ca-26.6×P-5.12×Mo+1.69
(式(6)中、Caは組成物中のカルシウム含有量(質量%)を表し、Pは組成物中のリン含有量(質量%)を表し、Moは組成物中のモリブデン含有量(質量%)を表す。)
By using the lubricating oil composition of the present invention, the frequency of occurrence of LSPI can be reduced. In this specification, the LSPI occurrence frequency means the frequency of occurrence of abnormal combustion when the engine is running at low speeds.
In Non-Patent Document 1, the frequency of occurrence of LSPI when a lubricating oil composition is used for lubrication of an internal combustion engine has a positive correlation with the Ca content of the lubricating oil composition. It has been reported to have a negative correlation with P content and Mo content. More specifically, it is reported that the LSPI frequency index can be estimated by the following regression equation (6) based on the content of each element in the lubricating oil composition.
Formula (6)
LSPI frequency index = 6.59 x Ca - 26.6 x P - 5.12 x Mo + 1.69
(In formula (6), Ca represents the calcium content (mass%) in the composition, P represents the phosphorus content (mass%) in the composition, and Mo represents the molybdenum content (mass%) in the composition. %).)
 本発明の潤滑油組成物の前記式(6)によるLSPI頻度指標(計算値)は、好ましくは0以下であり、より好ましくは0.1以下であり、より好ましくは0.2以下であり、より好ましくは0.3以下であり、より好ましくは0.4以下であり、さらに好ましくは0.5以下であり、最も好ましくは0.6以下である。 The LSPI frequency index (calculated value) according to the formula (6) of the lubricating oil composition of the present invention is preferably 0 or less, more preferably 0.1 or less, more preferably 0.2 or less, It is more preferably 0.3 or less, more preferably 0.4 or less, still more preferably 0.5 or less, and most preferably 0.6 or less.
 本発明の潤滑油組成物の蒸発損失量は、250℃におけるNOACK蒸発量は、30質量%以下であることが好ましく、20質量%以下であることがさらに好ましく、15質量%以下であることが特に好ましい。潤滑油基油成分のNOACK蒸発量が30質量%を超える場合、潤滑油の蒸発損失が大きく、粘度増加等の原因となるため好ましくない。なお本明細書においてNOACK蒸発量とは、ASTM D 5800に準拠して測定される潤滑油の蒸発量である。潤滑油組成物の250℃におけるNOACK蒸発量の下限は特に制限されるものではないが、通常5質量%以上である。 Regarding the evaporation loss of the lubricating oil composition of the present invention, the NOACK evaporation amount at 250° C. is preferably 30% by mass or less, more preferably 20% by mass or less, and 15% by mass or less. Especially preferred. If the NOACK evaporation amount of the lubricating base oil component exceeds 30% by mass, the evaporation loss of the lubricating oil is large, which causes an increase in viscosity and the like, which is not preferable. In this specification, the NOACK evaporation amount is the evaporation amount of lubricating oil measured according to ASTM D5800. The lower limit of the NOACK evaporation amount of the lubricating oil composition at 250° C. is not particularly limited, but is usually 5% by mass or more.
 実施例を用いて、以下に本発明を説明する。本発明は、以下の実施形態に限定されるものではない。なお、特に説明のない限り、%は質量%を示す。 The present invention will be described below using examples. The present invention is not limited to the following embodiments. Unless otherwise specified, % indicates % by mass.
<潤滑油の配合>
 各実施例および各比較例について表1~2に示す配合割合で、基油および添加剤を配合することによって、試験用潤滑油組成物を調製した。得られた試験用潤滑油組成物に対して、次に示す評価を行った。評価結果を表1~2に示す。
<Combination of lubricating oil>
Lubricating oil compositions for testing were prepared by blending base oils and additives at the blending ratios shown in Tables 1 and 2 for each example and each comparative example. The following evaluations were performed on the obtained lubricating oil composition for test. Evaluation results are shown in Tables 1 and 2.
(A)基油
・基油1:グループIII基油(鉱油) 動粘度3.3mm/s(100℃)、粘度指数 112
・基油2:グループIII基油(鉱油) 動粘度4.3mm/s(100℃)、粘度指数 123
 表1~2に示した質量比で基油を混合し、潤滑油基油を調製した。表中、基油の数値は基油全量基準での質量比を表している。
(A) Base oil/base oil 1: Group III base oil (mineral oil) kinematic viscosity 3.3 mm 2 /s (100°C), viscosity index 112
・Base oil 2: Group III base oil (mineral oil) kinematic viscosity 4.3 mm 2 /s (100°C), viscosity index 123
Lubricating base oils were prepared by mixing base oils at the mass ratios shown in Tables 1 and 2. In the table, the numerical value of the base oil represents the mass ratio based on the total amount of the base oil.
(2)添加剤
 表1~2に記載の通り、添加剤を添加した。添加剤の詳細は以下の通りである。添加剤の配合量は、潤滑油組成物全量基準である。
(B)金属系清浄剤
・金属系清浄剤1:カルシウムサリシレート(カルシウム含有量が8.0質量%、塩基価:225mgKOH/g)
・金属系清浄剤2:カルシウムスルホネート(カルシウム含有量が12.5質量%、塩基価:320mgKOH/g)
・金属系清浄剤3:マグネシウムサリシレート(マグネシウム含有量が7.4質量%、塩基価:342mgKOH/g)
・金属系清浄剤4:マグネシウムサリシレート(マグネシウム含有量が6.1質量%、塩基価:292mgKOH/g)
・金属系清浄剤5:マグネシウムサリシレート(マグネシウム含有量が4.3質量%、塩基価:218mgKOH/g)
・金属系清浄剤6:マグネシウムサリシレート(マグネシウム含有量が8.3質量%、塩基価:390mgKOH/g)
・金属系清浄剤7:マグネシウムスルホネート(マグネシウム含有量が9.1質量%、塩基価:405mgKOH/g)
(C)粘度指数向上剤
・粘度指数向上剤1:ポリメタクリレート(重量平均分子量380,000)
(D)摩擦調整剤
・摩擦調整剤1:モリブデンジチオカーバメート(モリブデン含有量が9.1質量%、硫黄含有量が10.8質量%)
(2) Additives Additives were added as described in Tables 1 and 2. The details of the additive are as follows. The blending amount of the additive is based on the total amount of the lubricating oil composition.
(B) Metallic detergent/metallic detergent 1: calcium salicylate (calcium content: 8.0% by mass, base number: 225 mgKOH/g)
- Metallic detergent 2: calcium sulfonate (calcium content: 12.5% by mass, base number: 320 mgKOH/g)
- Metallic detergent 3: magnesium salicylate (magnesium content is 7.4% by mass, base number: 342 mgKOH/g)
- Metallic detergent 4: magnesium salicylate (magnesium content is 6.1% by mass, base number: 292 mgKOH/g)
- Metallic detergent 5: magnesium salicylate (magnesium content is 4.3% by mass, base number: 218 mgKOH/g)
- Metallic detergent 6: magnesium salicylate (magnesium content is 8.3% by mass, base number: 390 mgKOH/g)
- Metallic detergent 7: magnesium sulfonate (magnesium content is 9.1% by mass, base number: 405 mgKOH/g)
(C) Viscosity index improver/Viscosity index improver 1: Polymethacrylate (weight average molecular weight 380,000)
(D) Friction Modifier/Friction Modifier 1: Molybdenum dithiocarbamate (molybdenum content 9.1% by mass, sulfur content 10.8% by mass)
・摩耗防止剤1:ジアルキルジチオリン酸亜鉛(亜鉛含有量が9.3質量%、リン含有量が9.3質量%、硫黄含有量が17.6質量%、セカンダリーZnDTP)
・分散剤1:コハク酸ポリイミド(窒素含有量1.75質量%)
・酸化防止剤1:アミン系酸化防止剤
・酸化防止剤2:フェノール系酸化防止剤
Anti-wear agent 1: zinc dialkyldithiophosphate (zinc content 9.3% by mass, phosphorus content 9.3% by mass, sulfur content 17.6% by mass, secondary ZnDTP)
- Dispersant 1: Polyimide succinate (nitrogen content 1.75% by mass)
・Antioxidant 1: amine antioxidant ・Antioxidant 2: phenolic antioxidant
<評価方法>
(1)省燃費性能
 各試験用潤滑油組成物について、モータリングエンジントルク試験を行った。各試験用潤滑油組成物について、当該潤滑油組成物(油温95℃)により潤滑されたDOHCエンジン(排気量2.0L)の出力軸を電動モータにより一定速度で回転させるのに必要なトルクを測定した。測定は1000rpmで行い、比較例1における測定値に対するトルクの低減率を算出した。トルクの低減率が高いほど省燃費性能に優れることを意味する。
<Evaluation method>
(1) Fuel Saving Performance A motoring engine torque test was performed on each test lubricating oil composition. For each test lubricating oil composition, the torque required to rotate the output shaft of the DOHC engine (displacement 2.0 L) lubricated with the lubricating oil composition (oil temperature 95 ° C.) at a constant speed with an electric motor was measured. The measurement was performed at 1000 rpm, and the torque reduction rate with respect to the measured value in Comparative Example 1 was calculated. It means that the higher the torque reduction rate, the better the fuel efficiency.
(2)LSPI頻度計算値
 前述の式(6)を用いて、各試験用潤滑油組成物のLSPI頻度指標を算出した。結果はLSPI頻度指標が低いほどLSPI抑制能が良いことを示す。
(2) LSPI Frequency Calculation Value The LSPI frequency index for each test lubricating oil composition was calculated using the formula (6) described above. The results indicate that the lower the LSPI frequency index, the better the ability to suppress LSPI.
 各試験用潤滑油組成物の評価結果を以下の表1~2に示す。なお、実施例1~4および比較例1~7の各試験用潤滑油組成物の15℃における密度は、いずれも0.850以下である。 The evaluation results of each test lubricating oil composition are shown in Tables 1 and 2 below. The density at 15° C. of each test lubricating oil composition of Examples 1 to 4 and Comparative Examples 1 to 7 is 0.850 or less.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 マグネシウムサリシレートを金属系清浄剤として用い、150℃におけるHTHS粘度を1.7に調整した実施例1~4は、比較例1に対して省燃費性能が改善し、LSPI頻度計算値も低くなった。
 カルシウムサリシレートを金属系清浄剤として用いた比較例1は、LSPI頻度計算値が高くなった。
 150℃におけるHTHS粘度を2.6に調整した比較例2は、比較例1に対して省燃費性能が悪化した。
 カルシウムサリシレートを金属系清浄剤として用い、150℃におけるHTHS粘度を2.6に調整した比較例3は、比較例1に対して省燃費性能が悪化し、LSPI頻度計算値が高くなった。
 マグネシウムスルホネートを金属系清浄剤として用いた比較例4は、省燃費性能が悪化した。
 カルシウムサリシレートを金属系清浄剤として用い、モリブデン系摩擦調整剤の添加量を減少させた比較例5は、LSPI頻度計算値が高くなった。
 カルシウムスルホネートを金属系清浄剤として用いた比較例5は、省燃費性能が悪化し、LSPI頻度計算値が高くなった。
 カルシウムスルホネートを金属系清浄剤として用い、150℃におけるHTHS粘度を1.6に調整した比較例6は省燃費性能が悪化し、LSPI頻度計算値が高くなった。
Examples 1 to 4, in which magnesium salicylate was used as a metallic detergent and the HTHS viscosity at 150°C was adjusted to 1.7, had improved fuel economy performance compared to Comparative Example 1, and the LSPI frequency calculated value was also lower. .
Comparative Example 1, in which calcium salicylate was used as the metallic detergent, gave a higher calculated LSPI frequency.
Comparative Example 2, in which the HTHS viscosity at 150° C. was adjusted to 2.6, was inferior to Comparative Example 1 in fuel saving performance.
Comparative Example 3, in which calcium salicylate was used as a metallic detergent and the HTHS viscosity at 150° C. was adjusted to 2.6, showed worse fuel economy performance and higher calculated LSPI frequency than Comparative Example 1.
Comparative Example 4, in which magnesium sulfonate was used as the metallic detergent, had poor fuel economy performance.
Comparative Example 5, in which calcium salicylate was used as the metallic detergent and the amount of the molybdenum friction modifier was reduced, showed a higher calculated LSPI frequency.
Comparative Example 5, in which calcium sulfonate was used as the metallic detergent, exhibited poor fuel economy performance and a high calculated LSPI frequency.
Comparative Example 6, in which calcium sulfonate was used as a metallic detergent and the HTHS viscosity at 150° C. was adjusted to 1.6, showed poor fuel economy performance and a high calculated LSPI frequency.
 本発明の内燃機関用潤滑油組成物によれば、良好な省燃費性能およびLSPIの低減効果を兼ね備えた内燃機関用潤滑油組成物を提供することができる。
 
According to the lubricating oil composition for an internal combustion engine of the present invention, it is possible to provide a lubricating oil composition for an internal combustion engine that has both good fuel economy performance and an effect of reducing LSPI.

Claims (6)

  1.  (A)1種以上の鉱油系基油を含む、100℃における動粘度が2.5mm/s以上4.0mm/s以下である潤滑油基油、および
     (B)潤滑油組成物全量基準で0.1質量%以上10質量%以下のマグネシウムサリシレートを含む、内燃機関用潤滑油組成物であって、
     150℃におけるHTHS粘度が、1.6mPa・s以上2.5mPa・s以下である、前記内燃機関用潤滑油組成物。
    (A) a lubricating base oil having a kinematic viscosity at 100° C. of 2.5 mm 2 /s or more and 4.0 mm 2 /s or less, which contains one or more mineral base oils, and (B) the total amount of the lubricating oil composition A lubricating oil composition for an internal combustion engine containing 0.1% by mass or more and 10% by mass or less of magnesium salicylate on a basis,
    The lubricating oil composition for an internal combustion engine, which has an HTHS viscosity of 1.6 mPa·s or more and 2.5 mPa·s or less at 150°C.
  2.  (B)マグネシウムサリシレートの含有量が、潤滑油組成物全量基準で0.1質量%以上3.0質量%以下であり、
     さらに(C)粘度指数向上剤を含み、
     前記(C)粘度指数向上剤の含有量が、潤滑油組成物全量基準で0.1質量%以上10質量%以下である、請求項1に記載の内燃機関用潤滑油組成物。
    (B) the content of magnesium salicylate is 0.1% by mass or more and 3.0% by mass or less based on the total amount of the lubricating oil composition;
    and (C) a viscosity index improver,
    The lubricating oil composition for an internal combustion engine according to claim 1, wherein the content of the (C) viscosity index improver is 0.1% by mass or more and 10% by mass or less based on the total amount of the lubricating oil composition.
  3.  摩擦調整剤として、(D)モリブデン系摩擦調整剤を潤滑油組成物全量基準で0.01質量%以上10質量%以下さらに含む、請求項1または2に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to claim 1 or 2, further comprising (D) a molybdenum-based friction modifier as a friction modifier in an amount of 0.01% by mass or more and 10% by mass or less based on the total amount of the lubricating oil composition.
  4.  前記マグネシウムサリシレートの塩基価が、350mgKOH/g以下である、請求項1~3のいずれかに記載の内燃機関用潤滑油組成物。 The lubricating oil composition for internal combustion engines according to any one of claims 1 to 3, wherein the magnesium salicylate has a base number of 350 mgKOH/g or less.
  5.  150℃におけるHTHS粘度が、1.6mPa・s以上2.0mPa・s以下である、請求項1~4のいずれかに記載の内燃機関用潤滑油組成物。 The lubricating oil composition for internal combustion engines according to any one of claims 1 to 4, wherein the HTHS viscosity at 150°C is 1.6 mPa·s or more and 2.0 mPa·s or less.
  6.  以下の式(6)で計算するLSPI頻度指標が、0以下である、請求項1~5のいずれかに記載の内燃機関用潤滑油組成物。
    式(6)
    LSPI頻度指標=6.59×Ca-26.6×P-5.12×Mo+1.69
    (式(6)中、Caは組成物中のカルシウム含有量(質量%)を表し、Pは組成物中のリン含有量(質量%)を表し、Moは組成物中のモリブデン含有量(質量%)を表す。)。
     
    The lubricating oil composition for internal combustion engines according to any one of claims 1 to 5, wherein the LSPI frequency index calculated by the following formula (6) is 0 or less.
    Formula (6)
    LSPI frequency index = 6.59 x Ca - 26.6 x P - 5.12 x Mo + 1.69
    (In formula (6), Ca represents the calcium content (mass%) in the composition, P represents the phosphorus content (mass%) in the composition, and Mo represents the molybdenum content (mass%) in the composition. %).).
PCT/JP2022/021115 2021-05-25 2022-05-23 Lubricant composition for internal combustion engine WO2022250018A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280031216.7A CN117242160A (en) 2021-05-25 2022-05-23 Lubricating oil composition for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021087450A JP2022180774A (en) 2021-05-25 2021-05-25 Lubricant composition for internal combustion engine
JP2021-087450 2021-05-25

Publications (1)

Publication Number Publication Date
WO2022250018A1 true WO2022250018A1 (en) 2022-12-01

Family

ID=84228824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021115 WO2022250018A1 (en) 2021-05-25 2022-05-23 Lubricant composition for internal combustion engine

Country Status (3)

Country Link
JP (1) JP2022180774A (en)
CN (1) CN117242160A (en)
WO (1) WO2022250018A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114920A1 (en) * 2014-01-31 2015-08-06 東燃ゼネラル石油株式会社 Lubricating oil composition
WO2017099140A1 (en) * 2015-12-07 2017-06-15 エクソンモービル リサーチ アンド エンジニアリング カンパニー Lubricant composition
WO2018021559A1 (en) * 2016-07-29 2018-02-01 エクソンモービル リサーチ アンド エンジニアリング カンパニー Lubricant composition
WO2018212339A1 (en) * 2017-05-19 2018-11-22 Jxtgエネルギー株式会社 Internal combustion engine lubricating oil composition
WO2019221296A1 (en) * 2018-05-18 2019-11-21 Jxtgエネルギー株式会社 Lubricating oil composition for internal combustion engines
WO2020095943A1 (en) * 2018-11-07 2020-05-14 Jxtgエネルギー株式会社 Lubricant composition
JP2020164688A (en) * 2019-03-29 2020-10-08 出光興産株式会社 Lubricant composition
US20200354644A1 (en) * 2017-11-15 2020-11-12 Lanxess Solutions Us Inc. Reduced friction lubricants comprising magnesium detergents and/or overbased magnesium detergents and molybdenum based friction modifiers
JP2021054878A (en) * 2019-09-26 2021-04-08 Eneos株式会社 Lubricant composition for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114920A1 (en) * 2014-01-31 2015-08-06 東燃ゼネラル石油株式会社 Lubricating oil composition
WO2017099140A1 (en) * 2015-12-07 2017-06-15 エクソンモービル リサーチ アンド エンジニアリング カンパニー Lubricant composition
WO2018021559A1 (en) * 2016-07-29 2018-02-01 エクソンモービル リサーチ アンド エンジニアリング カンパニー Lubricant composition
WO2018212339A1 (en) * 2017-05-19 2018-11-22 Jxtgエネルギー株式会社 Internal combustion engine lubricating oil composition
US20200354644A1 (en) * 2017-11-15 2020-11-12 Lanxess Solutions Us Inc. Reduced friction lubricants comprising magnesium detergents and/or overbased magnesium detergents and molybdenum based friction modifiers
WO2019221296A1 (en) * 2018-05-18 2019-11-21 Jxtgエネルギー株式会社 Lubricating oil composition for internal combustion engines
WO2020095943A1 (en) * 2018-11-07 2020-05-14 Jxtgエネルギー株式会社 Lubricant composition
JP2020164688A (en) * 2019-03-29 2020-10-08 出光興産株式会社 Lubricant composition
JP2021054878A (en) * 2019-09-26 2021-04-08 Eneos株式会社 Lubricant composition for internal combustion engine

Also Published As

Publication number Publication date
CN117242160A (en) 2023-12-15
JP2022180774A (en) 2022-12-07

Similar Documents

Publication Publication Date Title
JP5649675B2 (en) Lubricating oil composition for internal combustion engines
JP5260322B2 (en) Lubricating oil composition
SG193720A1 (en) Lubricating oil composition for automobile engine lubrication
WO2020095943A1 (en) Lubricant composition
JPWO2019221296A1 (en) Lubricating oil composition for internal combustion engine
JP6730123B2 (en) Lubricating oil composition
JP7093343B2 (en) Lubricating oil composition for internal combustion engine
WO2014156306A1 (en) Fuel-efficient engine oil composition
JP6846295B2 (en) Lubricating oil composition for gas engines, and methods for improving fuel consumption or reducing abnormal combustion
CA2921209A1 (en) Lubricant oil composition for internal combustion engine
JP5504137B2 (en) Engine oil composition
JP6847684B2 (en) Lubricating oil composition
JP2015021129A (en) Low viscosity lubricant composition
CN110546246A (en) Lubricating oil composition for internal combustion engine
WO2022250018A1 (en) Lubricant composition for internal combustion engine
JP5132383B2 (en) Lubricating oil composition for internal combustion engines
WO2023054469A1 (en) Lubricating oil composition for internal combustion engine
WO2022250017A1 (en) Lubricant composition for internal combustion engine
TWI836351B (en) Lubricating oil composition for internal combustion engine
JP2019206644A (en) Lubricant composition and method for producing the same
JP2020502338A (en) Ether based lubricant compositions, methods and uses
JP2023004310A (en) Lubricant composition for internal combustion engines
WO2022201845A1 (en) Lubricant composition for internal combustion engine
JP2023004316A (en) Lubricant composition for internal combustion engines
WO2023190101A1 (en) Lubricating oil composition for internal combustion engines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE