US20180083065A1 - Magnetoresistive element and magnetic memory - Google Patents

Magnetoresistive element and magnetic memory Download PDF

Info

Publication number
US20180083065A1
US20180083065A1 US15/445,221 US201715445221A US2018083065A1 US 20180083065 A1 US20180083065 A1 US 20180083065A1 US 201715445221 A US201715445221 A US 201715445221A US 2018083065 A1 US2018083065 A1 US 2018083065A1
Authority
US
United States
Prior art keywords
layer
magnetic layer
magnetic
magnetoresistive element
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/445,221
Other languages
English (en)
Inventor
Masaki Endo
Tadaomi Daibou
Shumpei OMINE
Akiyuki MURAYAMA
Junichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Memory Corp filed Critical Toshiba Memory Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDO, MASAKI, ITO, JUNICHI, MURAYAMA, AKIYUKI, DAIBOU, TADAOMI, OMINE, SHUMPEI
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KABUSHIKI KAISHA TOSHIBA
Publication of US20180083065A1 publication Critical patent/US20180083065A1/en
Priority to US16/103,678 priority Critical patent/US10707268B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H01L27/222
    • H01L43/02
    • H01L43/08
    • H01L43/10
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • Embodiments described herein relate generally to magnetoresistive elements and magnetic memories.
  • Magneto tunnel junction (MTJ) elements are used as magnetoresistive elements of magnetic random access memories (MRAM).
  • MRAM magnetic random access memories
  • the MTJ elements include a magnetic material and an insulating material such as MgO. Therefore, processing the MTJ elements by reactive ion etching (RIE) using halogen gas, which is commonly used in the semiconductor field, is difficult. If the MTJ elements are processed by RIE, a corrosion problem may be caused due to their weak resistance to corrosion. Furthermore, since the MTJ elements include many materials that are difficult to etch, etching itself may be difficult to be performed.
  • RIE reactive ion etching
  • a milling process using Ar ions that is an inert gas may be employed to process the MTJ elements.
  • the milling process with Ar ions physically sputters atoms.
  • the sputtered atoms may adhere to side surfaces of the MTJ element to form a shunt path in a tunnel barrier layer of the MTJ element. This may degrade the magnetoresistance (MR), and in the worst case, cause a short-circuit failure in the device.
  • MR magnetoresistance
  • FIG. 1 is a cross-sectional view of a magnetoresistive element according to a first embodiment.
  • FIG. 2 is a cross-sectional view of a magnetoresistive element according to a modification of the first embodiment.
  • FIGS. 3A to 3C are cross-sectional views for explaining a method of manufacturing the magnetoresistive element according to the first embodiment.
  • FIG. 4 is a graph showing the relationship between the sheet resistance and the MR of the magnetoresistive element according to the first embodiment.
  • FIG. 5 is a cross-sectional view of a magnetoresistive element according to a second embodiment.
  • FIG. 6 is a cross-sectional view of a magnetoresistive element according to a third embodiment.
  • FIG. 7 is a cross-sectional view of a magnetoresistive element according to a fourth embodiment.
  • FIG. 8 is a cross-sectional view of a magnetoresistive element according to a fifth embodiment.
  • FIG. 9 is a cross-sectional view of a magnetoresistive element according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view of a magnetic memory according to a seventh embodiment.
  • FIG. 11 is a circuit diagram of the magnetic memory according to the seventh embodiment.
  • a magnetoresistive element includes: a first layer; a first magnetic layer; a second magnetic layer disposed between the first layer and the first magnetic layer; a nonmagnetic layer disposed between the first magnetic layer and the second magnetic layer; and an insulating layer disposed at least on side surfaces of the nonmagnetic layer, the first layer including: at least one element selected from a first group consisting of Hf, Zr, Al, Cr, and Mg; and at least one element selected from a second group consisting of Ta, W, Mo, Nb, Si, Ge, Be, Li, Sn, Sb, and P, and the insulating layer including at least one element selected from the first group.
  • FIG. 1 shows a cross section of a magnetoresistive element according to a first embodiment.
  • the magnetoresistive element 10 according to the first embodiment has a structure in which a lower electrode 11 , a base layer (first layer) 12 , a magnetic layer 14 , a nonmagnetic layer 16 , a magnetic layer 18 , and an upper electrode 20 are stacked in this order.
  • a protective layer 19 of an insulating material is disposed on side surfaces of a multilayer structure including the base layer 12 , the magnetic layer 14 , the nonmagnetic layer 16 , and the magnetic layer 18 .
  • the protective layer 19 is disposed to cover at least the side surfaces of the nonmagnetic layer 16 .
  • a side surface herein is a surface which extends along the stacking direction of the multilayer structure, and which is different from the lower surface and the upper surface that extend to cross the stacking direction of the multilayer structure.
  • One of the magnetic layer 14 and the magnetic layer 18 acts as a storage layer, and the other acts as a reference layer.
  • the magnetization direction of the storage layer is changeable, and the magnetization direction of the reference layer is fixed.
  • the magnetization direction is changeable is that the magnetization direction may be changed after a write current is caused to flow between the lower electrode 11 and the upper electrode 20 of the magnetoresistive element 10 .
  • the magnetization direction is fixed is that the magnetization direction is unchangeable after a write current is caused to flow between the lower electrode 11 and the upper electrode 20 of the magnetoresistive element 10 .
  • the magnetization direction of the storage layer and the magnetization direction of the reference layer may be parallel or perpendicular to the stacking direction of the multilayer structure.
  • both the storage layer and the reference layer have perpendicular magnetic anisotropy. If the magnetization directions are perpendicular to the stacking direction both the storage layer and the reference layer have in-plane magnetic anisotropy.
  • a write operation for writing data to the magnetoresistive element 10 according to the first embodiment having the aforementioned structure will be described.
  • the magnetic layer 14 is the storage layer and the magnetic layer 18 is the reference layer in the descriptions of the write operation.
  • the write current is caused to flow between the lower electrode 11 and the upper electrode 20 in a direction perpendicular to the film plane.
  • the magnetic layer 14 is the storage layer
  • the magnetic layer 18 is the reference layer
  • the magnetization direction of the magnetic layer 14 and the magnetization direction of the magnetic layer 18 are antiparallel (opposite) to each other
  • the write current is caused to flow from the magnetic layer 14 to the magnetic layer 18 .
  • electrons flow from the magnetic layer 18 to the magnetic layer 14 through the nonmagnetic layer 16 . Passing through the magnetic layer 18 , the electrons are spin-polarized before flowing into the magnetic layer 14 .
  • the spin-polarized electrons that have spin in the same direction as the magnetization direction of the magnetic layer 14 pass through the magnetic layer 14 , but the spin-polarized electrons that have spin in the opposite direction to the magnetization direction of the magnetic layer 14 exerts spin torque to the magnetization of the magnetic layer 14 , so that the magnetization direction of the magnetic layer 14 is changed to be in the same as the magnetization direction of the magnetic layer 18 .
  • the magnetization direction of the magnetic layer 14 is switched to be parallel to (the same as) the magnetization direction of the magnetic layer 18 .
  • the write current is caused to flow from the magnetic layer 18 to the magnetic layer 14 .
  • electrons flow from the magnetic layer 14 to the magnetic layer 18 through the nonmagnetic layer 16 . Passing through the magnetic layer 14 , the electrons are spin-polarized, and the spin-polarized electrons flow into the magnetic layer 18 .
  • the spin-polarized electrons exert spin torque to the magnetization of the magnetic layer 14 , so that the magnetization of the magnetic layer 14 is changed to be in a direction opposite to the magnetization direction of the magnetic layer 18 . Accordingly, the magnetization of the magnetic layer 14 is switched to be antiparallel to the magnetization of the magnetic layer 18 .
  • Data is read from the magnetoresistive element 10 according to the first embodiment by, for example, causing a read current to flow between the lower electrode 11 and the upper electrode 20 , and measuring the voltage between the lower electrode 11 and the upper electrode 20 .
  • the magnetic layer 14 is the storage layer and the magnetic layer 18 is the reference layer in the above explanations
  • the magnetic layer 14 may be the reference layer and the magnetic layer 18 may be the storage layer.
  • the direction of the write current is opposite to the direction in the above explanations.
  • the lower electrode 11 is preferably formed of a material having a low electric resistance and superior in diffusion resistance.
  • the lower electrode 11 is preferably formed of Cu to have a low electric resistance, and Ta to improve the diffusion resistance. Therefore, a multilayer structure in which a Cu layer is sandwiched by Ta layers is more preferable.
  • the base layer 12 is preferably formed of a material that is easy to form an oxide or nitride when adhering to at least the side surfaces of the nonmagnetic layer 16 during an etching step to define the outer shape of the multilayer structure including the base layer 12 , the magnetic layer 14 , the nonmagnetic layer 16 , and the magnetic layer 18 in a manufacturing method that will be described layer.
  • the oxide or nitride of the material of the base layer 12 preferably has an insulating property and a high breakdown voltage.
  • the base layer 12 may be an amorphous layer including at least one element selected from the first group consisting of Hf, Zr, Al, Cr, and Mg, and at least one element selected from the second group consisting of Ta, W, Mo, Nb, Si, Ge, Be, Li, Sn, Sb, and P.
  • the amorphous layer here may partially include crystal. Amorphous layers have good flatness, and a magnetic layer formed on an amorphous layer has good crystallinity.
  • the base layer 12 may also be a layer of an alloy including at least one element selected from the first group and at least one element selected from the second group.
  • the magnetic layer 14 and the magnetic layer 18 preferably have one-directional anisotropy.
  • the effective thickness of these layers is preferably from 0.1 nm to 20 nm.
  • the “effective thickness” here means a thickness obtained by subtracting the thickness of magnetic dead layer from the thickness of each layer, i.e., the thickness of only the region having magnetic order.
  • the effective thickness of these magnetic layers is required not to make these magnetic layers superparamagnetic. Therefore, the thickness is more preferably 0.4 nm or more.
  • a Heusler alloy such as Co 2 FeAl 1 ⁇ x Si x or Co 2 Mn 1 ⁇ x Fe x Si, may be used to form the magnetic layer 14 and the magnetic layer 18 .
  • the magnetic layers 14 and 18 may also be formed of at least one metal selected from Co, Fe, or Ni, and an alloy of these metals such as Co—Pt, Co—Fe—Pt, Fe—Pt, Co—Fe—Cr—Pt, Co—Cr—Pt, Co—Pd, NiMnSb, Co 2 MnGe, Co 2 MnAl, Co 2 MnSi, CoCrFeAl, MnGa, Mn 3 Ga, or Mn 3 Ge.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including a single member.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c.”
  • the storage layer may be formed of CoFeB having a thickness of 0.4 nm to 2.0 nm.
  • the reference layer may be an artificial superlattice layer obtained by stacking, for example, TbCoFe, Co, and Pt, or a crystal layer of FePt having the L1 0 ordered structure. If a CoFeB layer acting as an interfacial magnetic layer is disposed between the reference layer and the nonmagnetic layer (intermediate layer) 16 , the spin polarization of the interface between the reference layer and the nonmagnetic layer may be improved to obtain a high magnetoresistance ratio (MR ratio).
  • MR ratio magnetoresistance ratio
  • the thickness of the CoFeB layer acting as the interfacial magnetic layer is preferably 0.1 nm to 5.0 nm for example, and more preferably 0.4 nm to 3.0 nm.
  • the magnetic layers 14 and 18 may also be formed of a magnetic semiconductor such as GeMn, SiCNi, SiCMn, SiCFe, ZnMnTe, ZnCrTe, BeMnTe, ZnVO, ZnMnO, ZnCoO, GaMnAs, InMnAs, InMnAb, GaMnP, GaMnN, GaCrN, AlCrN, BiFeTe, SbVTe, PbSnMnTe, GeMnTe, CdMnGeP, ZnSiNMn, ZnGeSiNMn, BeTiFeO, CdMnTe, ZnMnS, TiCoO, SiMn, or SiGeMn.
  • a magnetic semiconductor such as GeMn
  • the magnetic characteristics and the physical characteristics such as crystallinity, mechanical characteristics, and chemical characteristics of the magnetic layers 14 and 18 may be adjusted by adding a material to these layers, such as titanium (Ti), vanadium (V), chromium (Cr), silver (Ag), copper (Cu), gold (Au), aluminum (Al), gallium (Ga), phosphorus (P), indium (In), ruthenium (Ru), osmium (Os), rhenium (Re), tantalum (Ta), boron (B), carbon (C), oxygen (O), nitrogen (N), palladium (Pd), platinum (Pt), hafnium (Hf), zirconium (Zr), iridium (Ir), tungsten (W), molybdenum (Mo), niobium (Nb), or a rare earth element.
  • a material such as titanium (Ti), vanadium (V), chromium (Cr), silver (Ag), copper (Cu), gold (Au), aluminum (A
  • the nonmagnetic layer 16 is formed of a nonmagnetic material such as a nonmagnetic metal, a nonmagnetic semiconductor, and an insulating material. If an insulating material is used to form the nonmagnetic layer 16 , the nonmagnetic layer 16 acts as a tunnel barrier layer, and the magnetoresistive element 10 becomes an MTJ element.
  • the nonmagnetic layer 16 may also be formed of MgO having a thickness of about 1 nm, for example. In this case, a high MR ratio may be obtained.
  • the protective layer 19 is formed of an insulating material including at least one of the elements included in the base layer 12 . Therefore, the protective layer 19 is formed of an insulating material including an element in the base layer 12 , such as at least one element selected from the group consisting of Hf, Zr, Al, Cr, and Mg, or at least one element selected from the group consisting of Hf, Zr, Al, Cr, and Mg included in the base layer 12 , and B.
  • the protective layer 19 has an insulating property obtained by forming an oxide or nitride of a material of the base layer 12 . Therefore, the protective layer 19 is formed of a material of the base layer 12 with oxygen (O), or nitrogen (N). The valence state of the oxide or nitride of the protective layer 19 does not matter, if the insulating property is secured.
  • the upper electrode 20 has a function of an electrode and also a mask used to pattern the magnetoresistive element 10 . Therefore, the upper electrode 20 is preferably formed of a material having a low electric resistance and good diffusion resistance and etching resistance or milling resistance. For example, a multilayer film including a Ta layer and a Ru layer is used to form the upper electrode 20 .
  • FIG. 2 shows a cross section of a magnetoresistive element according to a modification of the first embodiment.
  • the magnetoresistive element 10 A according to the modification includes a base layer (first layer) 12 corresponding to the base layer 12 of the magnetoresistive element 10 according to the first embodiment shown in FIG. 1 , which has a multilayer structure including a base layer (second layer) 12 a and a base layer (third layer) 12 b disposed on the base layer 12 a.
  • the base layer 12 a includes at least one element selected from the first group consisting of Hf, Zr, Al, Cr, and Mg
  • the base layer 12 b includes at least one element selected from the second group consisting of Ta, W, Mo, Nb, Si, Ge, Be, Li, Sn, Sb, and P.
  • the base layer 12 may have a multilayer structure in which two or more base layers 12 a and two or more base layers 12 b are alternately stacked. In this case, the base layer 12 a may include a second group element, and the base layer 12 b may include a first group element.
  • the thickness of the base layer 12 may be 15 nm or more, or 20 nm or more.
  • the base layer 12 a is preferably thicker than the base layer 12 b .
  • the thickness of the base layer 12 a may be less than 10 nm, or 5 nm or less.
  • the base layer 12 b may have a thickness of, for example, a single atom layer or more, and
  • the base layer 12 may also be a layer including at least one element selected from the first group consisting of Hf, Zr, Al, Cr, and Mg and at least one element selected from the second group consisting of Ta, W, Mo, Nb, Si, Ge, Be, Li, Sn, Sb, and P, and having a first region and a second region disposed between the first region and the magnetic layer 14 , the concentration of the element selected from the second group preferably being higher in the second region than in the first region.
  • the concentration of the element selected from the first group may be higher or lower in the first region than in the second region.
  • the second region preferably extends, for example, for several angstroms from the interface with the magnetic layer 14 .
  • the base layer 12 may also be a layer of an alloy including at least one element selected from the first group consisting of Hf, Zr, Al, Cr, and Mg, and at least one element selected from the second group consisting of Ta, W, Mo, Nb, Si, Ge, Be, Li, Sn, Sb, and P.
  • the base layer 12 has the multilayer structure including the base layer 12 a and the base layer 12 b as shown in FIG. 2 .
  • a multilayer structure in which the base layer 12 , the magnetic layer 14 , the nonmagnetic layer 16 , the magnetic layer 18 and the upper electrode 20 are stacked in this order is formed as shown in FIG. 3A .
  • the multilayer structure is patterned to define the outer shape (planar shape) of the magnetoresistive element by first ion milling using an inert gas such as Ar, Kr, or Xe gas.
  • Ar ions are used.
  • the incident angle of the ions in the first ion milling is adjusted to be oriented at an angle of about 50° with respect to the direction perpendicular to the top surface of the upper electrode 20 .
  • the first ion milling is continued until the upper portion of the base layer 12 , for example the base layer 12 b , is processed.
  • second ion milling is performed with the incident angle of Ar ions being changed to be perpendicular to the film plane as shown in FIG. 3B .
  • the base layer 12 is further milled by the second ion milling.
  • a portion of the base layer 12 for example the base layer 12 a , is milled by the Ar ions and deposited on the sidewalls of the magnetoresistive element 10 to form deposition layers 22 .
  • the direction in which the ions are ejected in the second ion milling is preferably closer to the direction perpendicular to the film plane of the top surface of the upper electrode of the magnetoresistive element 10 than the direction in which the ions are ejected in the first ion milling.
  • the deposition layers 22 deposited on the side surfaces of the magnetoresistive element 10 are oxidized or nitrided to form protective layers 19 that are insulated, as shown in FIG. 3C .
  • the deposition layers 22 are oxidized by, for example, exposure to the atmosphere.
  • the deposition layers 22 may also be fully oxidized by exposure to oxygen gas, oxygen radicals, and oxygen cluster ions in the vacuum, besides the exposure to the atmosphere.
  • the deposition layers 22 are nitrided by, for example, nitrogen radicals, nitrogen plasma, or nitrogen cluster ions.
  • the valence state of the oxide or nitride of the protective layers 19 does not matter, if the insulating property is secured.
  • the resistivity of the protective layers 19 which are formed as a result of the oxidation of the deposition layers 22 , is preferably 0.0005 ⁇ cm 2 or more.
  • the material of the deposition layers 22 deposited on the side surfaces of the nonmagnetic layer 16 is preferably the same as that of the nonmagnetic layer 16 , or a material having a high breakdown electric field when oxidized.
  • the breakdown electric field of the nonmagnetic layer 16 of MgO or MgO with B is about 5 to 12 MV/cm.
  • the deposition layers 22 are preferably formed of a material that becomes MgO or MgBO when oxidized, or a material with a breakdown electric field of 5 MV/cm or more when oxidized.
  • the deposition layers are preferably formed of an insulating material including at least one element selected from the group consisting of Hf, Zr, Al, Cr, and Mg.
  • the oxidation to insulate the deposition layers 22 needs exposure to oxygen gas, oxygen radicals, or oxygen plasma. If the oxygen concentration is too much in the oxidation of the deposition layers 22 , the magnetic layer 14 and the magnetic layer 18 are also oxidized, and the magnetic characteristics of these layers are degraded, which causes the degradation of the thermal stability. The thermal stability degradation is unfavorable. Therefore, the oxidation process to oxidize the deposition layers 22 needs to fully oxidize the deposition layers 22 without oxidizing the magnetic materials.
  • the material of the deposition layers 22 is preferably easier to be oxidized than the material of the magnetic layer 14 and the magnetic layer 18 .
  • Oxides of Hf, Zr, Al, Cr, Mg, Fe, and Co differ in the standard free energy ⁇ G (kJ/mol).
  • the standard free energy change for magnesium oxide (Mg—O), hafnium oxide (Hf—O), zirconium oxide (Zr—O), aluminum oxide (Al—O), and chromium oxide (Cr—O) has a large minus value. This means that Hf, Zr, Al, Cr, and Mg are easier to bond with oxygen than Fe or Co included in the magnetic layer 14 and the magnetic layer 18 .
  • the deposition layers 22 deposited on the side surfaces of the magnetoresistive element 10 include a material containing Hf, Zr, Al, Cr, or Mg
  • the deposition layers 22 may be fully oxidized to act as a good insulating material by oxidation such as exposure to oxygen gas that is weak enough not to oxidize the magnetic layer 14 and the magnetic layer 18 .
  • the deposition layers 22 are preferably formed of a material including Hf, Zr, Al, Cr, or Mg.
  • the deposition layers 22 may be insulated by nitriding by, for example, nitrogen radicals, nitrogen plasma, or nitrogen cluster ions.
  • the nitriding of the deposition layers 22 results in a high resistance without causing damage to the magnetic material due to oxidation.
  • the valence state of the oxide or nitride of the protective layers 19 does not matter, if the insulating property is secured.
  • the magnetoresistive element 10 includes the base layer 12 including a material containing, for example, at least one element selected from the group consisting of Hf, Zr, Al, Cr, and Mg.
  • the base layer 12 including a material containing, for example, at least one element selected from the group consisting of Hf, Zr, Al, Cr, and Mg.
  • the deposition layers 22 may be formed of a material including, in particular, Hf, Zr, Al, Cr, or Mg. These materials are easier to be oxidized than the material of the magnetic layer 14 and the magnetic layer 18 .
  • the resultant oxides have a high breakdown electric field.
  • the magnetoresistive element according to the first embodiment is capable of suppressing insulation failure.
  • FIG. 4 is a graph showing a measurement result of the relationship between the sheet resistance RA ( ⁇ m 2 ) and the MR (arbitrary unit) of a plurality of magnetoresistive elements manufactured by the process illustrated in FIGS. 3A to 3C .
  • FIG. 5 shows a cross section of a magnetoresistive element according to a second embodiment.
  • the magnetoresistive element 10 B according to the second embodiment has a structure obtained by replacing the magnetic layer 14 of the magnetoresistive element 10 according to the first embodiment shown in FIG. 1 with a magnetic layer 14 A.
  • the magnetic layer 14 A includes a magnetic layer 14 a disposed on the base layer 12 , a crystal separation layer (fourth layer) 14 b disposed on the magnetic layer 14 a , and a magnetic layer 14 c disposed on the crystal separation layer 14 b .
  • the magnetic layer 14 a and the magnetic layer 14 c are coupled by ferromagnetic coupling or antiferromagnetic coupling via the crystal separation layer 14 b.
  • the magnetic layer 14 a has high magnetic anisotropy, and includes FePt or FeNi, an artificial superlattice or L1 0 -structure alloy of FePd or MnGa, or an artificial superlattice or alloy of CoPd, CoPt, or CoNi, a CoCrPt alloy, or a MnGa alloy having the DO 22 structure.
  • the magnetic layer 14 a may also be formed of a rare earth magnetic compound such as SmCo or TbCo.
  • the magnetic layer 14 a may include at least one of a L1 0 -structure alloy containing Fe or MnGa, an artificial superlattice containing Co, CoCrPt, a DO 22 -structure MnGa alloy, or a rare earth magnetic compound.
  • the magnetic layer 14 c is formed of the same material as the magnetic layer 14 shown in FIG. 1 .
  • the crystal separation layer 14 b is disposed between the magnetic layer 14 a and the magnetic layer 14 c , and acts to separate the crystal structure of the magnetic layer 14 a and the magnetic layer 14 c .
  • the crystal separation layer 14 b includes at least one element selected from the group consisting of B, Zr, Hf, Ta, Nb, Mo, W, Ti, V, Cr, Mn, Ni, Cu, Ru, Ag, Mg, and a rare earth element.
  • the magnetoresistive element according to the second embodiment is capable of suppressing the insulation failure.
  • the magnetoresistive element 10 B according to the second embodiment has a structure obtained by replacing the magnetic layer 14 of the magnetoresistive element 10 according to the first embodiment shown in FIG. 1 with the magnetic layer 14 A, it may have a structure obtained by replacing the magnetic layer 14 of the magnetoresistive element 10 A according to the modification of the first embodiment shown in FIG. 2 with the magnetic layer 14 A.
  • FIG. 6 shows a cross section of a magnetoresistive element according to a third embodiment.
  • the magnetoresistive element 10 C according to the third embodiment has a structure obtained by disposing a layer (fifth layer) 13 between the base layer 12 and the magnetic layer 14 a in the magnetoresistive element 10 B according to the second embodiment shown in FIG. 5 .
  • the layer 13 is disposed to improve the crystallinity and the magnetic anisotropy of the magnetic layer 14 a , and may be a crystal layer including a single element selected from Hf, Zr, Al, Cr, and Mg.
  • the layer 13 may also be a crystal layer including at least one element selected from the group consisting of Ru, Pt, Pd, Mo, W, and Ti. Also in this case, the crystallinity and the magnetic anisotropy of the magnetic layer 14 a may be improved.
  • the magnetoresistive element according to the third embodiment is capable of suppressing the insulation failure.
  • the magnetoresistive element 10 C according to the third embodiment has the structure obtained by disposing the layer 13 between the base layer 12 and the magnetic layer 14 a of the magnetoresistive element 10 B according to the second embodiment shown in FIG. 5 , it may also have a structure obtained by disposing the layer 13 between the base layer 12 b and the magnetic layer 14 in the magnetoresistive element 10 A according to the modification of the first embodiment shown in FIG. 2 .
  • FIG. 7 shows a cross section of a magnetoresistive element according to a fourth embodiment.
  • the magnetoresistive element 10 D according to the fourth embodiment has a structure obtained by replacing the layer 13 of the magnetoresistive element 10 C according to the third embodiment shown in FIG. 6 with a layer (fifth layer) 13 a.
  • the layer 13 a improves the crystallinity and the magnetic anisotropy of the magnetic layer 14 a , and includes a nitride of at least one element selected from the group consisting of Hf, Zr, Al, Cr, Ti, Sc, and Mg.
  • the magnetoresistive element according to the fourth embodiment is capable of suppressing the insulation failure, like the magnetoresistive element according to the third embodiment. Since the layer 13 a is formed of a nitride, the element diffusion between the magnetic layer 14 a and the layer 12 is suppressed. This improves the heat resistance. Therefore, the magnetoresistive element according to the fourth embodiment may be easily produced by existing semiconductor processes, and has an advantage that a steeper interface may be obtained.
  • the magnetoresistive element 10 D according to the fourth embodiment has the structure obtained by disposing the layer 13 a instead of the layer 13 of the magnetoresistive element 10 C according to the third embodiment shown in FIG. 6 , it may also have a structure obtained by disposing a layer 13 a between the base layer 12 b and the magnetic layer 14 in the magnetoresistive element 10 A according to the modification of the first embodiment shown in FIG. 2 .
  • FIG. 8 shows a cross section of a magnetoresistive element according to a fifth embodiment.
  • the magnetoresistive element 10 E according to the fifth embodiment has a structure obtained by replacing the magnetic layer 14 of the magnetoresistive element 10 according to the first embodiment shown in FIG. 1 with a magnetic layer 14 B, and the base layer 12 with the layer 13 of the magnetoresistive element 10 C according to the third embodiment.
  • the material of the magnetic layer 14 B is obtained by adding at least one element selected from the group consisting of Hf, Zr, Al, Cr, and Mg to the material of the magnetic layer 14 .
  • the magnetoresistive element according to the fifth embodiment is capable of suppressing the insulation failure, like the magnetoresistive element according to the first embodiment.
  • FIG. 9 shows a cross section of a magnetoresistive element according to a sixth embodiment.
  • the magnetoresistive element 10 F according to the sixth embodiment has a structure obtained by replacing the magnetic layer 14 B of the magnetoresistive element 10 E according to the fifth embodiment shown in FIG. 8 with a magnetic layer 14 C.
  • the magnetic layer 14 C has a multilayer structure in which a magnetic layer 14 a 1 , a nonmagnetic layer 14 b , and a magnetic layer 14 c 1 are stacked in this order.
  • the material of the magnetic layers 14 a 1 and 14 c 1 are obtained by adding at least one element selected from the group consisting of Hf, Zr, Al, Cr, and Mg to the material of the magnetic layers 14 a and 14 c according to the second embodiment shown in FIG. 5 .
  • the nonmagnetic layer 14 b is the same as the nonmagnetic layer 14 b according to the second embodiment shown in FIG. 5 .
  • the nonmagnetic layer 14 b includes at least one element selected from the group consisting of B, Zr, Hf, Ta, Nb, Mo, W, Ti, V, Cr, Mn, Ni, Cu, Ru, Ag, Mg, and a rare earth element.
  • the magnetoresistive element according to the sixth embodiment is also capable of suppressing the insulation failure, like the magnetoresistive element according to the fifth embodiment.
  • nitride and the “oxide” herein may be a mixture of nitride or oxide with B, N, O, or C, and therefore may be “nitrogen-containing material,” and “oxygen-containing material.”
  • MRAM magnetic memory
  • the MRAM according to the seventh embodiment includes a plurality of memory cells.
  • FIG. 10 shows a cross section of a main portion of one of the memory cells of the MRAM according to the seventh embodiment.
  • the memory cell includes a magnetoresistive element according to any of the first to sixth embodiments and their modifications as a storage element.
  • the storage element is the magnetoresistive element 10 according to the first embodiment.
  • the top surface of the magnetoresistive element 10 is connected to a bit line 32 via the upper electrode 20 .
  • the lower surface of the magnetoresistive element 10 is connected to a drain region 37 a of source and drain regions near the surface of a semiconductor substrate 36 via the lower electrode 11 , an extraction electrode 34 , and a plug 35 .
  • the drain region 37 a , a source region 37 b , a gate insulating film 38 on the substrate 36 , and a gate electrode 39 on the gate insulating film 38 form a selection transistor Tr.
  • the selection transistor Tr and the magnetoresistive element 10 are included in one memory cell of the MRAM.
  • the source region 37 b is connected to another bit line 42 via a plug 41 .
  • the extraction electrode 34 may be eliminated, and the plug 35 may be disposed below the lower electrode 11 and directly connected to the lower electrode 11 .
  • the bit lines 32 and 42 , the lower electrode 11 , the upper electrode 20 , the extraction electrode 34 , and the plugs 35 and 41 are formed of such a material as W, Al, AlCu, or Cu.
  • FIG. 11 illustrates a circuit diagram showing a main portion of the MRAM according to the seventh embodiment.
  • the memory cells 53 each including the magnetoresistive element 10 and the selection transistor Tr are arranged in rows and columns. First terminals of the memory cells 53 in the same column are connected to the same bit line 32 , and second terminals are connected to the same bit line 42 . Gate electrodes (word line) 39 of the selection transistors Tr of the memory cells 53 in the same row are mutually connected, and further connected to a row decoder 51 .
  • the bit line 32 is connected to a current source/sink circuit 55 via a switch circuit 54 such as a transistor.
  • the bit line 42 is connected to a current source/sink circuit 57 via a switch circuit 56 such as a transistor.
  • the current source/sink circuits 55 and 57 supply or draw a write current to or from the connected bit lines 32 and 42 .
  • the bit line 42 is also connected to a readout circuit 52 .
  • the readout circuit 52 may be connected to the bit line 32 .
  • the readout circuit 52 includes a read current circuit and a sense amplifier.
  • the switch circuits 54 and 56 and the selection transistor Tr connected to a target memory cell, to which data is to be written, are turned on to form a current path that passes the target memory cell.
  • One of the current source/sink circuits 55 and 57 acts as a current source, and the other acts as a current sink depending on the contents of the data to be written. As a result, a write current is caused to flow in a direction that is determined by the data to be written.
  • a spin transfer torque write operation may be performed with a current having a pulse width of several nanoseconds to several microseconds.
  • a read current that is low enough not to cause magnetization switching is supplied by the readout circuit 52 to a target magnetoresistive element 10 selected in the same manner as the write operation.
  • the readout circuit 52 determines the resistance state of the magnetoresistive element 10 by comparing, with a reference value, a current value or voltage value relating to the resistance value determined in accordance with the state of the magnetization of the magnetoresistive element 10 .
  • the current pulse width is preferably narrower in a read operation than in a write operation. This reduces erroneous writing caused by the read current flowing in a read operation. This is based on the fact that a write current with a narrower pulse width has a greater absolute value.
  • the magnetic memory according to the seventh embodiment includes magnetoresistive elements capable of suppressing the insulation failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)
US15/445,221 2016-09-20 2017-02-28 Magnetoresistive element and magnetic memory Abandoned US20180083065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/103,678 US10707268B2 (en) 2016-09-20 2018-08-14 Magnetoresistive element and magnetic memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016183305A JP6679455B2 (ja) 2016-09-20 2016-09-20 磁気抵抗素子及び磁気メモリ
JP2016-183305 2016-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/103,678 Division US10707268B2 (en) 2016-09-20 2018-08-14 Magnetoresistive element and magnetic memory

Publications (1)

Publication Number Publication Date
US20180083065A1 true US20180083065A1 (en) 2018-03-22

Family

ID=61621278

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/445,221 Abandoned US20180083065A1 (en) 2016-09-20 2017-02-28 Magnetoresistive element and magnetic memory
US16/103,678 Active US10707268B2 (en) 2016-09-20 2018-08-14 Magnetoresistive element and magnetic memory

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/103,678 Active US10707268B2 (en) 2016-09-20 2018-08-14 Magnetoresistive element and magnetic memory

Country Status (4)

Country Link
US (2) US20180083065A1 (ja)
JP (1) JP6679455B2 (ja)
CN (1) CN107845725B (ja)
TW (1) TWI680596B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573805B2 (en) 2017-09-21 2020-02-25 Toshiba Memory Corporation Magnetic memory device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043201A (ja) * 2018-09-10 2020-03-19 キオクシア株式会社 磁気記憶装置及びその製造方法
KR102604743B1 (ko) * 2018-12-11 2023-11-22 삼성전자주식회사 자기 메모리 장치
JP2021044359A (ja) * 2019-09-10 2021-03-18 キオクシア株式会社 磁気記憶装置
WO2021124517A1 (ja) * 2019-12-19 2021-06-24 Tdk株式会社 磁気抵抗効果素子および強磁性層の結晶化方法
JP2022049499A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 磁気記憶装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127045A (en) * 1998-05-13 2000-10-03 International Business Machines Corporation Magnetic tunnel junction device with optimized ferromagnetic layer
JP3954615B2 (ja) * 2002-04-24 2007-08-08 松下電器産業株式会社 磁気抵抗素子
JP4738395B2 (ja) * 2007-09-25 2011-08-03 株式会社東芝 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP4649457B2 (ja) 2007-09-26 2011-03-09 株式会社東芝 磁気抵抗素子及び磁気メモリ
US8743593B2 (en) * 2008-12-10 2014-06-03 Hitachi, Ltd. Magnetoresistance effect element and magnetic memory cell and magnetic random access memory using same
JP5491757B2 (ja) * 2009-03-27 2014-05-14 株式会社東芝 磁気抵抗素子および磁気メモリ
US8817426B2 (en) 2011-10-17 2014-08-26 HGST Netherlands B.V. Magnetic sensor having CoFeBTa in pinned and free layer structures
JP5895610B2 (ja) 2012-03-07 2016-03-30 富士通株式会社 磁気抵抗メモリおよび磁気抵抗メモリの製造方法
JP2013201343A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 半導体記憶装置およびその製造方法
JP5514256B2 (ja) 2012-05-18 2014-06-04 株式会社東芝 磁気記憶素子及びその製造方法
JP5680045B2 (ja) * 2012-11-14 2015-03-04 株式会社東芝 磁気抵抗素子及び磁気メモリ
KR20150102302A (ko) * 2014-02-28 2015-09-07 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US10490741B2 (en) 2013-06-05 2019-11-26 SK Hynix Inc. Electronic device and method for fabricating the same
KR20160073782A (ko) * 2014-12-17 2016-06-27 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US9281468B2 (en) 2013-06-17 2016-03-08 Imec Magnetic memory element
US20150069554A1 (en) 2013-09-06 2015-03-12 Masahiko Nakayama Magnetic memory and method of manufacturing the same
JP6135018B2 (ja) * 2014-03-13 2017-05-31 株式会社東芝 磁気抵抗素子および磁気メモリ
JP6320812B2 (ja) * 2014-03-19 2018-05-09 株式会社東芝 圧力センサの製造方法、成膜装置及び熱処理装置
US9184375B1 (en) 2014-07-03 2015-11-10 Samsung Electronics Co., Ltd. Magnetic junctions using asymmetric free layers and suitable for use in spin transfer torque memories
JP6054479B2 (ja) 2015-06-30 2016-12-27 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置、磁気メモリ、磁界センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573805B2 (en) 2017-09-21 2020-02-25 Toshiba Memory Corporation Magnetic memory device

Also Published As

Publication number Publication date
CN107845725B (zh) 2020-08-21
TWI680596B (zh) 2019-12-21
US20180374894A1 (en) 2018-12-27
JP2018049880A (ja) 2018-03-29
US10707268B2 (en) 2020-07-07
JP6679455B2 (ja) 2020-04-15
CN107845725A (zh) 2018-03-27
TW201814929A (zh) 2018-04-16

Similar Documents

Publication Publication Date Title
US9985201B2 (en) Magnetic memory based on spin hall effect
US10707268B2 (en) Magnetoresistive element and magnetic memory
US8878318B2 (en) Structure and method for a MRAM device with an oxygen absorbing cap layer
US11730064B2 (en) Magnetic memory device
US9252357B2 (en) Magnetoresistive element
US11017821B2 (en) Magnetic recording array and magnetic recording device
US10340311B2 (en) Magnetoresistive effect element with magnetic layers and magnetic memory
US10340442B2 (en) Magnetoresistive element and magnetic memory
CN107681046B (zh) 磁存储器件
KR102514506B1 (ko) 자기 메모리 장치 및 그 제조 방법
US10396275B2 (en) Magnetic memory device
US20180268887A1 (en) Magnetoresistive element and magnetic memory
JP2013012681A (ja) 磁気抵抗効果素子及びその製造方法
US20220115439A1 (en) Magnetic memory devices and methods of formation
US10923169B2 (en) Magnetic recording array and magnetic recording device
CN114665008A (zh) 存储器装置
KR20190052492A (ko) 자기 메모리 장치
US20170069683A1 (en) Magnetoresistive memory device and manufacturing method of the same
KR102665796B1 (ko) 가변 저항 메모리 소자 및 그 제조 방법
CN110943158B (zh) 制造半导体装置的方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ENDO, MASAKI;DAIBOU, TADAOMI;OMINE, SHUMPEI;AND OTHERS;SIGNING DATES FROM 20170228 TO 20170309;REEL/FRAME:041598/0522

AS Assignment

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:043052/0218

Effective date: 20170614

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION