US20180024957A1 - Techniques to enable disaggregation of physical memory resources in a compute system - Google Patents

Techniques to enable disaggregation of physical memory resources in a compute system Download PDF

Info

Publication number
US20180024957A1
US20180024957A1 US15/476,891 US201715476891A US2018024957A1 US 20180024957 A1 US20180024957 A1 US 20180024957A1 US 201715476891 A US201715476891 A US 201715476891A US 2018024957 A1 US2018024957 A1 US 2018024957A1
Authority
US
United States
Prior art keywords
memory
high speed
data
via
speed serial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/476,891
Inventor
Murugasamy K. Nachimuthu
Mohan J. Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201662365969P priority Critical
Priority to US201662376859P priority
Priority to US201662427268P priority
Application filed by Intel Corp filed Critical Intel Corp
Priority to US15/476,891 priority patent/US20180024957A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAR, MOHAN J., NACHIMUTHU, MURUGASAMY K.
Publication of US20180024957A1 publication Critical patent/US20180024957A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/505Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0014Gripping heads and other end effectors having fork, comb or plate shaped means for engaging the lower surface on a object to be transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3882Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • G02B6/3893Push-pull type, e.g. snap-in, push-on
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casings, frames, circuit boards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems and boxes with surplus length
    • G02B6/4452Distribution frames
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1921Control of temperature characterised by the use of electric means characterised by the type of controller using a thermal motor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/2037Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the regulator
    • G05D23/2039Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature details of the regulator using mechanical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1405Saving, restoring, recovering or retrying at machine instruction level
    • G06F11/141Saving, restoring, recovering or retrying at machine instruction level for bus or memory accesses
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • G06F11/3414Workload generation, e.g. scripts, playback
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0862Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with prefetch
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0893Caches characterised by their organisation or structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/10Address translation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/10Address translation
    • G06F12/109Address translation for multiple virtual address spaces, e.g. segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/14Protection against unauthorised use of memory or access to memory
    • G06F12/1408Protection against unauthorised use of memory or access to memory by using cryptography
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1605Handling requests for interconnection or transfer for access to memory bus based on arbitration
    • G06F13/161Handling requests for interconnection or transfer for access to memory bus based on arbitration with latency improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • G06F13/1694Configuration of memory controller to different memory types
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4022Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/409Mechanical coupling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • G06F15/161Computing infrastructure, e.g. computer clusters, blade chassis or hardware partitioning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/80Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
    • G06F15/8053Vector processors
    • G06F15/8061Details on data memory access
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures
    • G06F16/9014Indexing; Data structures therefor; Storage structures hash tables
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0602Dedicated interfaces to storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0602Dedicated interfaces to storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • G06F3/0611Improving I/O performance in relation to response time
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0602Dedicated interfaces to storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • G06F3/0613Improving I/O performance in relation to throughput
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0602Dedicated interfaces to storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0616Improving the reliability of storage systems in relation to life time, e.g. increasing Mean Time Between Failures [MTBF]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0602Dedicated interfaces to storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0619Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0602Dedicated interfaces to storage systems specifically adapted to achieve a particular effect
    • G06F3/0625Power saving in storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0631Configuration or reconfiguration of storage systems by allocating resources to storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/064Management of blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/0647Migration mechanisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/065Replication mechanisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0653Monitoring storage devices or systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0658Controller construction arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0662Virtualisation aspects
    • G06F3/0664Virtualisation aspects at device level, e.g. emulation of a storage device or system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0628Dedicated interfaces to storage systems making use of a particular technique
    • G06F3/0662Virtualisation aspects
    • G06F3/0665Virtualisation aspects at area level, e.g. provisioning of virtual or logical volumes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0668Dedicated interfaces to storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0668Dedicated interfaces to storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0668Dedicated interfaces to storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0668Dedicated interfaces to storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0668Dedicated interfaces to storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0688Non-volatile semiconductor memory arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from or digital output to record carriers, e.g. RAID, emulated record carriers, networked record carriers
    • G06F3/0601Dedicated interfaces to storage systems
    • G06F3/0668Dedicated interfaces to storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0689Disk arrays, e.g. RAID, JBOD
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
    • G06F9/3887Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by a single instruction, e.g. SIMD
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • G06F9/5016Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5044Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5072Grid computing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5077Logical partitioning of resources; Management or configuration of virtualized resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/544Buffers; Shared memory; Pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
    • G06Q10/063Operations research or analysis
    • G06Q10/0631Resource planning, allocation or scheduling for a business operation
    • G06Q10/06314Calendaring for a resource
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0009Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a DRAM cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3084Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3084Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method
    • H03M7/3086Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method employing a sliding window, e.g. LZ77
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/40Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/40Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
    • H03M7/4031Fixed length to variable length coding
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/40Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
    • H03M7/4031Fixed length to variable length coding
    • H03M7/4037Prefix coding
    • H03M7/4043Adaptive prefix coding
    • H03M7/4056Coding table selection
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/40Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
    • H03M7/4031Fixed length to variable length coding
    • H03M7/4037Prefix coding
    • H03M7/4081Static prefix coding
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/60General implementation details not specific to a particular type of compression
    • H03M7/6005Decoder aspects
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/60General implementation details not specific to a particular type of compression
    • H03M7/6017Methods or arrangements to increase the throughput
    • H03M7/6023Parallelization
    • H04B10/2504
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/2803Home automation networks
    • H04L12/2807Exchanging configuration information on appliance services in a home automation network
    • H04L12/2809Exchanging configuration information on appliance services in a home automation network indicating that an appliance service is present in a home automation network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L29/00Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00
    • H04L29/12Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 characterised by the data terminal
    • H04L29/12009Arrangements for addressing and naming in data networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/02Arrangements for maintenance or administration or management of packet switching networks involving integration or standardization
    • H04L41/024Arrangements for maintenance or administration or management of packet switching networks involving integration or standardization using relational databases for representation of network management data, e.g. managing via structured query language [SQL]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/04Architectural aspects of network management arrangements
    • H04L41/046Aspects of network management agents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/08Configuration management of network or network elements
    • H04L41/0803Configuration setting of network or network elements
    • H04L41/0813Changing of configuration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/08Configuration management of network or network elements
    • H04L41/0803Configuration setting of network or network elements
    • H04L41/0813Changing of configuration
    • H04L41/082Changing of configuration due to updating or upgrading of network functionality, e.g. firmware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/08Configuration management of network or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities, e.g. bandwidth on demand
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/14Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
    • H04L41/145Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/14Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
    • H04L41/147Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning for prediction of network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • H04L43/0805Availability
    • H04L43/0817Availability functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • H04L43/0876Network utilization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • H04L43/0876Network utilization
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/16Arrangements for monitoring or testing packet switching networks using threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/52Multiprotocol routers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/24Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/38Adapting coding or compression rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/70Admission control or resource allocation
    • H04L47/76Reallocation of resources, renegotiation of resources, e.g. in-call
    • H04L47/765Reallocation of resources, renegotiation of resources, e.g. in-call triggered by the end-points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/70Admission control or resource allocation
    • H04L47/78Resource allocation architecture
    • H04L47/782Hierarchical allocation of resource, e.g. involving a hierarchy of local and centralized entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/70Admission control or resource allocation
    • H04L47/80Actions related to the nature of the flow or the user
    • H04L47/805QOS or priority aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/70Admission control or resource allocation
    • H04L47/82Miscellaneous aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/70Admission control or resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/823Prediction of resource usage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding through a switch fabric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Application specific switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Application specific switches
    • H04L49/356Storage area network switches
    • H04L49/357Fibre channel switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/45Provisions for supporting expansion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/55Error prevention, detection or correction
    • H04L49/555Error detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/02Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/1008Server selection in load balancing based on parameters of servers, e.g. available memory or workload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/1012Server selection in load balancing based on compliance of requirements or conditions with available server resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1004Server selection in load balancing
    • H04L67/1014Server selection in load balancing based on the content of a request
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1029Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing using data related to the state of servers by a load balancer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • H04L67/1034Reaction to server failures by a load balancer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1097Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for distributed storage of data in a network, e.g. network file system [NFS], transport mechanisms for storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/12Network-specific arrangements or communication protocols supporting networked applications adapted for proprietary or special purpose networking environments, e.g. medical networks, sensor networks, networks in a car or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/16Service discovery or service management, e.g. service location protocol [SLP] or Web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/30Network-specific arrangements or communication protocols supporting networked applications involving profiles
    • H04L67/306User profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/34Network-specific arrangements or communication protocols supporting networked applications involving the movement of software or configuration parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/04Protocols for data compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
    • H04L69/322Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer, i.e. layer seven
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communication the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0643Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/14Cryptographic mechanisms or cryptographic arrangements for secret or secure communication using a plurality of keys or algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements for establishing connections among stations for the purpose of transferring information via these connections
    • H04Q1/02Constructional details
    • H04Q1/04Frames or mounting racks for selector switches; Accessories therefor, e.g. frame cover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements for establishing connections among stations for the purpose of transferring information via these connections
    • H04Q1/02Constructional details
    • H04Q1/09Frames or mounting racks not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0486Replacement and removal of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0204Mounting supporting structure on the outside of casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1417Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
    • H05K7/1418Card guides, e.g. grooves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1421Drawers for printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1438Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
    • H05K7/1439Back panel mother boards
    • H05K7/1442Back panel mother boards with a radial structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1438Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
    • H05K7/1447External wirings; Wiring ducts; Laying cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1461Slidable card holders; Card stiffeners; Control or display means therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1487Blade assembly, e.g. cases and inner arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1488Cabinets therefore, e.g. chassis, racks
    • H05K7/1489Cabinets therefore, e.g. chassis, racks characterized by the mounting of blades therein, e.g. brackets, rails, trays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1488Cabinets therefore, e.g. chassis, racks
    • H05K7/1491Cabinets therefore, e.g. chassis, racks having cable management arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1488Cabinets therefore, e.g. chassis, racks
    • H05K7/1492Cabinets therefore, e.g. chassis, racks having electrical distribution arrangements, e.g. power supply or data communications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1498Resource management, Optimisation arrangements, e.g. configuration, identification, tracking, physical location
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20736Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/48Indexing scheme relating to G06F9/48
    • G06F2209/483Multiproc
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5019Workload prediction
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5022Workload threshold
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1008Correctness of operation, e.g. memory ordering
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1016Performance improvement
    • G06F2212/1024Latency reduction
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1041Resource optimization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1041Resource optimization
    • G06F2212/1044Space efficiency improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/15Use in a specific computing environment
    • G06F2212/152Virtualized environment, e.g. logically partitioned system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/20Employing a main memory using a specific memory technology
    • G06F2212/202Non-volatile memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/40Specific encoding of data in memory or cache
    • G06F2212/401Compressed data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/40Specific encoding of data in memory or cache
    • G06F2212/402Encrypted data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7207Details relating to flash memory management management of metadata or control data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading, distribution or shipping; Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement, balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Product repair or maintenance administration
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2200/00Transmission systems for measured values, control or similar signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/12Arrangements for maintenance or administration or management of packet switching networks network topology discovery or management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/50Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
    • H04L41/5019Ensuring SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/06Report generation
    • H04L43/065Report generation for device related reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0041Optical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13523Indexing scheme relating to selecting arrangements in general and for multiplex systems bandwidth management, e.g. capacity management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13527Indexing scheme relating to selecting arrangements in general and for multiplex systems protocols - X.25, TCAP etc.
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10159Memory
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10189Non-printed connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/14Interconnection, or transfer of information or other signals between, memories, peripherals or central processing units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/15Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply acting upon peripherals
    • Y02D10/151Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply acting upon peripherals the peripheral being a bus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/54Management of operational aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot

Abstract

Various embodiments are generally directed to an apparatus, method and other techniques enable disaggregation of physical memory resources from physical compute resources. For example, embodiments may include a memory interface coupled with the memory controller and a memory module. The memory interface may receive data in parallel via a bus, and convert the received parallel data to send to a memory module of a memory expander sled in serial via a high speed serial link, and receive data in serial via the high speed serial link from the memory module of the memory expander sled, and convert the received serial data to send in parallel to the memory controller via the bus.

Description

    RELATED CASES
  • This application claims priority to U.S. Provisional Patent Application No. 62/365,969, filed Jul. 22, 2016, U.S. Provisional Patent Application No. 62/376,859, filed Aug. 18, 2016, and U.S. Provisional Patent Application No. 62/427,268, filed Nov. 29, 2016, each of which are hereby incorporated by reference in their entirety.
  • TECHNICAL FIELD
  • Embodiments described herein generally include determining and communicating metric for physical resources in a data center environment.
  • BACKGROUND
  • A computing data center may include one or more computing systems including a plurality of compute nodes or sleds that may include various compute structures and may be physically located on multiple racks. These sleds may include a number of physical resources and provide processing and storage capabilities.
  • From time-to-time these physical resources may need to be replaced and updated due to failures and newer equipment. Typically, processing resources and memory resources on a sled are replaced at the same time because it is difficult to disaggregate the memory resources from processing resources. This significantly increases the total cost of maintaining the data center since the cost of memory resources occupies a large percentage of the total cost of a sled. Thus, embodiments are directed to solving these others problem.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.
  • FIG. 1 illustrates an example of a data center.
  • FIG. 2 illustrates an example of a rack.
  • FIG. 3 illustrates an example of a data center.
  • FIG. 4 illustrates an example of a data center.
  • FIG. 5 illustrates an example of a switching infrastructure.
  • FIG. 6 illustrates an example of a data center.
  • FIG. 7 illustrates an example of a sled.
  • FIG. 8 illustrates an example of a data center.
  • FIG. 9 illustrates an example of a data center.
  • FIG. 10 illustrates an example of a sled.
  • FIG. 11 illustrates an example of a data center.
  • FIG. 12 illustrates an example of a compute system.
  • FIG. 13 illustrates an example of a compute system.
  • FIG. 14 illustrates an example of a compute system.
  • FIG. 15 illustrates an example of logic flow diagrams.
  • FIG. 16 illustrates an example of logic flow diagrams.
  • FIG. 17 illustrates an example of a logic flow diagram.
  • DETAILED DESCRIPTION
  • Various embodiments may be generally directed to enabling disaggregation of physical compute resources from physical memory resources. As previously discussed, physical compute resources, such as processors, and physical memory resources are typically replaced at the same time because of their integration on the same sled or node. Thus, embodiments are directed to disaggregation solutions to decouple physical compute resources and physical memory resources such that when physical compute resources are replaced, the physical memory resources may be reused. Some of the solutions discussed herein may include physical memory resources incorporated on a memory expander sled coupled with the physical compute resources on a different sled via a high speed link. The memory expander sled may come in various form factors, such as the dual in-line memory module (DIMM) form factor or a solid state drive (SSD) form factor to reduce the overall size and footprint of the memory expander sled.
  • In one example, the physical memory resources may be implemented in a memory expander sled in a SSD form factor, as previously mentioned. In this example, the SSD form factor may enable a reduction in pin count, but maintain high speed serial links between the physical memory resources and the physical compute resources.
  • In another example, the physical memory resources may be in a memory expander sled having DIMM form factor and coupled with the physical compute resources via a pig tail connector. The pig tail connector may couple with the physical compute resources via a high serial speed link and include circuitry to convert parallel data to serial data to send data to the physical memory resources. The expander sled may also include circuitry to convert serial data back to parallel data at the physical memory resources for communication with the memory modules. During read operations, the expander sled including the circuitry may convert data read from memory devices from parallel data to serial data to communicate to the physical compute resources via the high serial speed link and pig tail connector. The pig tail connector may receive the data and convert it from serial data back to parallel data to communicate to the physical compute resources. The parallel data may be data communicated in parallel via a bus or link and the serial data may be data communicated in serial via a bus or link.
  • In a third example, the physical memory resources may be incorporated in a memory expander sled, and asled including the physical compute resources may be coupled with the memory expander sled via a high speed serial link. In this example, the sled having the physical compute resources may have one or more memory controllers and serialization/deserialization (SerDes) circuitry to convert parallel data to serial data for communication with the physical memory resources in the memory expander sled. In some instances, the memory controllers may be integrated memory controllers with the processor or part of a different chipset of the sled with the physical compute resources. Further, the memory expander sled may also include SerDes circuitry to convert the serial data to parallel data for communication with the memory modules.
  • In a fourth example, the physical memory resources of a memory expander sled may be shared between a number of physical compute resources and may be in a single or individual sleds. The memory expander sled the physical compute resources sled(s) may be coupled via a high speed serial link and each may include circuitry to convert data between parallel data and serial data. Further, the memory expander sled may include a circuit switch to enable the sharing of the physical memory resources with the physical compute resources. These and other details will become more apparent in the following description.
  • Reference is now made to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding thereof. It may be evident, however, that the novel embodiments can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate a description thereof. The intention is to cover all modifications, equivalents, and alternatives consistent with the claimed subject matter.
  • FIG. 1 illustrates a conceptual overview of a data center 100 that may generally be representative of a data center or other type of computing network in/for which one or more techniques described herein may be implemented according to various embodiments. As shown in FIG. 1, data center 100 may generally contain a plurality of racks, each of which may house computing equipment comprising a respective set of physical resources. In the particular non-limiting example depicted in FIG. 1, data center 100 contains four racks 102A to 102D, which house computing equipment comprising respective sets of physical resources (PCRs) 105A to 105D. According to this example, a collective set of physical resources 106 of data center 100 includes the various sets of physical resources 105A to 105D that are distributed among racks 102A to 102D. Physical resources 106 may include resources of multiple types, such as—for example—processors, co-processors, accelerators, field-programmable gate arrays (FPGAs), memory, and storage. The embodiments are not limited to these examples.
  • The illustrative data center 100 differs from typical data centers in many ways. For example, in the illustrative embodiment, the circuit boards (“sleds”) on which components such as CPUs, memory, and other components are placed are designed for increased thermal performance. In particular, in the illustrative embodiment, the sleds are shallower than typical printed circuit boards (PCBs). In other words, the sleds are shorter from the front to the back, where cooling fans are located. This decreases the length of the path that air must to travel across the components on the PCB. Further, the components on the sled are spaced further apart than in typical PCBs, and the components are arranged to reduce or eliminate shadowing (i.e., one component in the air flow path of another component). In the illustrative embodiment, processing components such as the processors are located on a top side of a sled while memory modules are located on a bottom side of the sled. As a result of the enhanced airflow provided by this design, the components may operate at higher frequencies and power levels than in typical systems, thereby increasing performance. Furthermore, the sleds are configured to blindly mate with power and data communication cables in each rack 102A, 102B, 102C, 102D, enhancing their ability to be quickly removed, upgraded, reinstalled, and/or replaced. Similarly, individual components located on the sleds, such as processors, accelerators, memory, and data storage drives, are configured to be easily upgraded due to their increased spacing from each other. In the illustrative embodiment, the components additionally include hardware attestation features to prove their authenticity.
  • Furthermore, in the illustrative embodiment, the data center 100 utilizes a single network architecture (“fabric”) that supports multiple other network architectures which may be in accordance to standards, such as Institute of Electrical and Electronics Engineers (IEEE) 802.3-2015 standard (Ethernet) or any predecessors, revisions, or variants thereof, and other architectures, such as Intel® Omni-Path®. The sleds, in the illustrative embodiment, are coupled to switches via optical fibers, which provide higher bandwidth and lower latency than typical twisted pair cabling (e.g., Category 5, Category 5e, Category 6, etc.). Due to the high bandwidth, low latency interconnections and network architecture, the data center 100 may, in use, pool resources, such as memory, accelerators (e.g., graphics accelerators, FPGAs, ASICs, etc.), and data storage drives that are physically disaggregated, and provide them to compute resources (e.g., processors) on an as needed basis, enabling the compute resources to access the pooled resources as if they were local. The illustrative data center 100 additionally receives usage information for the various resources, predicts resource usage for different types of workloads based on past resource usage, and dynamically reallocates the resources based on this information.
  • The racks 102A, 102B, 102C, 102D of the data center 100 may include physical design features that facilitate the automation of a variety of types of maintenance tasks. For example, data center 100 may be implemented using racks that are designed to be robotically-accessed, and to accept and house robotically-manipulable resource sleds. Furthermore, in the illustrative embodiment, the racks 102A, 102B, 102C, 102D include integrated power sources that receive a greater voltage than is typical for power sources. The increased voltage enables the power sources to provide additional power to the components on each sled, enabling the components to operate at higher than typical frequencies. FIG. 2 illustrates an exemplary logical configuration of a rack 202 of the data center 100. As shown in FIG. 2, rack 202 may generally house a plurality of sleds, each of which may comprise a respective set of physical resources. In the particular non-limiting example depicted in FIG. 2, rack 202 houses sleds 204-1 to 204-4 comprising respective sets of physical resources 205-1 to 205-4, each of which constitutes a portion of the collective set of physical resources 206 comprised in rack 202. With respect to FIG. 1, if rack 202 is representative of—for example—rack 102A, then physical resources 206 may correspond to the physical resources 105A comprised in rack 102A. In the context of this example, physical resources 105A may thus be made up of the respective sets of physical resources, including physical storage resources 205-1, physical accelerator resources 205-2, physical memory resources 204-3, and physical compute resources 205-5 comprised in the sleds 204-1 to 204-4 of rack 202. The embodiments are not limited to this example. Each sled may contain a pool of each of the various types of physical resources (e.g., compute, memory, accelerator, storage). By having robotically accessible and robotically manipulable sleds comprising disaggregated resources, each type of resource can be upgraded independently of each other and at their own optimized refresh rate.
  • FIG. 3 illustrates an example of a data center 300 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. In the particular non-limiting example depicted in FIG. 3, data center 300 comprises racks 302-1 to 302-32. In various embodiments, the racks of data center 300 may be arranged in such fashion as to define and/or accommodate various access pathways. For example, as shown in FIG. 3, the racks of data center 300 may be arranged in such fashion as to define and/or accommodate access pathways 311A, 311B, 311C, and 311D. In some embodiments, the presence of such access pathways may generally enable automated maintenance equipment, such as robotic maintenance equipment, to physically access the computing equipment housed in the various racks of data center 300 and perform automated maintenance tasks (e.g., replace a failed sled, upgrade a sled). In various embodiments, the dimensions of access pathways 311A, 311B, 311C, and 311D, the dimensions of racks 302-1 to 302-32, and/or one or more other aspects of the physical layout of data center 300 may be selected to facilitate such automated operations. The embodiments are not limited in this context.
  • FIG. 4 illustrates an example of a data center 400 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. As shown in FIG. 4, data center 400 may feature an optical fabric 412. Optical fabric 412 may generally comprise a combination of optical signaling media (such as optical cabling) and optical switching infrastructure via which any particular sled in data center 400 can send signals to (and receive signals from) each of the other sleds in data center 400. The signaling connectivity that optical fabric 412 provides to any given sled may include connectivity both to other sleds in a same rack and sleds in other racks. In the particular non-limiting example depicted in FIG. 4, data center 400 includes four racks 402A to 402D. Racks 402A to 402D house respective pairs of sleds 404A-1 and 404A-2, 404B-1 and 404B-2, 404C-1 and 404C-2, and 404D-1 and 404D-2. Thus, in this example, data center 400 comprises a total of eight sleds. Via optical fabric 412, each such sled may possess signaling connectivity with each of the seven other sleds in data center 400. For example, via optical fabric 412, sled 404A-1 in rack 402A may possess signaling connectivity with sled 404A-2 in rack 402A, as well as the six other sleds 404B-1, 404B-2, 404C-1, 404C-2, 404D-1, and 404D-2 that are distributed among the other racks 402B, 402C, and 402D of data center 400. The embodiments are not limited to this example.
  • FIG. 5 illustrates an overview of a connectivity scheme 500 that may generally be representative of link-layer connectivity that may be established in some embodiments among the various sleds of a data center, such as any of example data centers 100, 300, and 400 of FIGS. 1, 3, and 4. Connectivity scheme 500 may be implemented using an optical fabric that features a dual-mode optical switching infrastructure 514. Dual-mode optical switching infrastructure 514 may generally comprise a switching infrastructure that is capable of receiving communications according to multiple link-layer protocols via a same unified set of optical signaling media, and properly switching such communications. In various embodiments, dual-mode optical switching infrastructure 514 may be implemented using one or more dual-mode optical switches 515. In various embodiments, dual-mode optical switches 515 may generally comprise high-radix switches. In some embodiments, dual-mode optical switches 515 may comprise multi-ply switches, such as four-ply switches. In various embodiments, dual-mode optical switches 515 may feature integrated silicon photonics that enable them to switch communications with significantly reduced latency in comparison to conventional switching devices. In some embodiments, dual-mode optical switches 515 may constitute leaf switches 530 in a leaf-spine architecture additionally including one or more dual-mode optical spine switches 520. Spine switches may include switches that can handle Layer 3 (L3) with high port density, which allows for scalability. In some instances, a spine switch is directly connected to a network control system with a virtual Layer 2 switch on top of the leaf-spine system.
  • In various embodiments, dual-mode optical switches may be capable of receiving both Ethernet protocol communications carrying Internet Protocol (IP packets) and communications according to a second, high-performance computing (HPC) link-layer protocol (e.g., Intel® Omni-Path Architecture®, Infiniband®) via optical signaling media of an optical fabric. As reflected in FIG. 5, with respect to any particular repair of sleds 504A and 504B possessing optical signaling connectivity to the optical fabric, connectivity scheme 500 may thus provide support for link-layer connectivity via both Ethernet links and HPC links. Thus, both Ethernet and HPC communications can be supported by a single high-bandwidth, low-latency switch fabric. The embodiments are not limited to this example.
  • FIG. 6 illustrates a general overview of a rack architecture 600 that may be representative of an architecture of any particular one of the racks depicted in FIGS. 1 to 4 according to some embodiments. As reflected in FIG. 6, rack architecture 600 may generally feature a plurality of sled spaces into which sleds may be inserted, each of which may be robotically-accessible via a rack access region 601. In the particular non-limiting example depicted in FIG. 6, rack architecture 600 features five sled spaces 603-1 to 603-5. Sled spaces 603-1 to 603-5 feature respective multi-purpose connector modules (MPCMs) 616-1 to 616-5. In some instances, when a sled is inserted into any given one of sled spaces 603-1 to 603-5, the corresponding MPCM may couple with a counterpart MPCM of the inserted sled. This coupling may provide the inserted sled with connectivity to both signaling infrastructure and power infrastructure of the rack in which it is housed.
  • Included among the types of sleds to be accommodated by rack architecture 600 may be one or more types of sleds that feature expansion capabilities. FIG. 7 illustrates an example of a sled 704 that may be representative of a sled of such a type. As shown in FIG. 7, sled 704 may comprise a set of physical resources 705, as well as an MPCM 716 designed to couple with a counterpart MPCM when sled 704 is inserted into a sled space such as any of sled spaces 603-1 to 603-5 of FIG. 6. Sled 704 may also feature an expansion connector 717. Expansion connector 717 may generally comprise a socket, slot, or other type of connection element that is capable of accepting one or more types of expansion modules, such as an expansion sled 718. By coupling with a counterpart connector on expansion sled 718, expansion connector 717 may provide physical resources 705 with access to supplemental computing resources 705B residing on expansion sled 718. The embodiments are not limited in this context.
  • FIG. 8 illustrates an example of a rack architecture 800 that may be representative of a rack architecture that may be implemented in order to provide support for sleds featuring expansion capabilities, such as sled 704 of FIG. 7. In the particular non-limiting example depicted in FIG. 8, rack architecture 800 includes seven sled spaces 803-1 to 803-7, which feature respective MPCMs 816-1 to 816-7. Sled spaces 803-1 to 803-7 include respective primary regions 803-1A to 803-7A and respective expansion regions 803-1B to 803-7B. With respect to each such sled space, when the corresponding MPCM is coupled with a counterpart MPCM of an inserted sled, the primary region may generally constitute a region of the sled space that physically accommodates the inserted sled. The expansion region may generally constitute a region of the sled space that can physically accommodate an expansion module, such as expansion sled 718 of FIG. 7, in the event that the inserted sled is configured with such a module.
  • FIG. 9 illustrates an example of a rack 902 that may be representative of a rack implemented according to rack architecture 800 of FIG. 8 according to some embodiments. In the particular non-limiting example depicted in FIG. 9, rack 902 features seven sled spaces 903-1 to 903-7, which include respective primary regions 903-1A to 903-7A and respective expansion regions 903-1B to 903-7B. In various embodiments, temperature control in rack 902 may be implemented using an air cooling system. For example, as reflected in FIG. 9, rack 902 may feature a plurality of fans 919 that are generally arranged to provide air cooling within the various sled spaces 903-1 to 903-7. In some embodiments, the height of the sled space is greater than the conventional “1U” server height. In such embodiments, fans 919 may generally comprise relatively slow, large diameter cooling fans as compared to fans used in conventional rack configurations. Running larger diameter cooling fans at lower speeds may increase fan lifetime relative to smaller diameter cooling fans running at higher speeds while still providing the same amount of cooling. The sleds are physically shallower than conventional rack dimensions. Further, components are arranged on each sled to reduce thermal shadowing (i.e., not arranged serially in the direction of air flow). As a result, the wider, shallower sleds allow for an increase in device performance because the devices can be operated at a higher thermal envelope (e.g., 250 W) due to improved cooling (i.e., no thermal shadowing, more space between devices, more room for larger heat sinks, etc.).
  • MPCMs 916-1 to 916-7 may be configured to provide inserted sleds with access to power sourced by respective power modules 920-1 to 920-7, each of which may draw power from an external power source 921. In various embodiments, external power source 921 may deliver alternating current (AC) power to rack 902, and power modules 920-1 to 920-7 may be configured to convert such AC power to direct current (DC) power to be sourced to inserted sleds. In some embodiments, for example, power modules 920-1 to 920-7 may be configured to convert 277-volt AC power into 12-volt DC power for provision to inserted sleds via respective MPCMs 916-1 to 916-7. The embodiments are not limited to this example.
  • MPCMs 916-1 to 916-7 may also be arranged to provide inserted sleds with optical signaling connectivity to a dual-mode optical switching infrastructure 914, which may be the same as—or similar to—dual-mode optical switching infrastructure 514 of FIG. 5. In various embodiments, optical connectors contained in MPCMs 916-1 to 916-7 may be designed to couple with counterpart optical connectors contained in MPCMs of inserted sleds to provide such sleds with optical signaling connectivity to dual-mode optical switching infrastructure 914 via respective lengths of optical cabling 922-1 to 922-7. In some embodiments, each such length of optical cabling may extend from its corresponding MPCM to an optical interconnect loom 923 that is external to the sled spaces of rack 902. In various embodiments, optical interconnect loom 923 may be arranged to pass through a support post or other type of load-bearing element of rack 902. The embodiments are not limited in this context. Because inserted sleds connect to an optical switching infrastructure via MPCMs, the resources typically spent in manually configuring the rack cabling to accommodate a newly inserted sled can be saved.
  • FIG. 10 illustrates an example of a sled 1004 that may be representative of a sled designed for use in conjunction with rack 902 of FIG. 9 according to some embodiments. Sled 1004 may feature an MPCM 1016 that comprises an optical connector 1016A and a power connector 1016B, and that is designed to couple with a counterpart MPCM of a sled space in conjunction with insertion of MPCM 1016 into that sled space. Coupling MPCM 1016 with such a counterpart MPCM may cause power connector 1016 to couple with a power connector comprised in the counterpart MPCM. This may generally enable physical resources 1005 of sled 1004 to source power from an external source, via power connector 1016 and power transmission media 1024 that conductively couples power connector 1016 to physical resources 1005.
  • Sled 1004 may also include dual-mode optical network interface circuitry 1026. Dual-mode optical network interface circuitry 1026 may generally comprise circuitry that is capable of communicating over optical signaling media according to each of multiple link-layer protocols supported by dual-mode optical switching infrastructure 914 of FIG. 9. In some embodiments, dual-mode optical network interface circuitry 1026 may be capable both of Ethernet protocol communications and of communications according to a second, high-performance protocol. In various embodiments, dual-mode optical network interface circuitry 1026 may include one or more optical transceiver modules 1027, each of which may be capable of transmitting and receiving optical signals over each of one or more optical channels. The embodiments are not limited in this context.
  • Coupling MPCM 1016 with a counterpart MPCM of a sled space in a given rack may cause optical connector 1016A to couple with an optical connector comprised in the counterpart MPCM. This may generally establish optical connectivity between optical cabling of the sled and dual-mode optical network interface circuitry 1026, via each of a set of optical channels 1025. Dual-mode optical network interface circuitry 1026 may communicate with the physical resources 1005 of sled 1004 via electrical signaling media 1028. In addition to the dimensions of the sleds and arrangement of components on the sleds to provide improved cooling and enable operation at a relatively higher thermal envelope (e.g., 250 W), as described above with reference to FIG. 9, in some embodiments, a sled may include one or more additional features to facilitate air cooling, such as a heatpipe and/or heat sinks arranged to dissipate heat generated by physical resources 1005. It is worthy of note that although the example sled 1004 depicted in FIG. 10 does not feature an expansion connector, any given sled that features the design elements of sled 1004 may also feature an expansion connector according to some embodiments. The embodiments are not limited in this context.
  • FIG. 11 illustrates an example of a data center 1100 that may generally be representative of one in/for which one or more techniques described herein may be implemented according to various embodiments. As reflected in FIG. 11, a physical infrastructure management framework 1150A may be implemented to facilitate management of a physical infrastructure 1100A of data center 1100. In various embodiments, one function of physical infrastructure management framework 1150A may be to manage automated maintenance functions within data center 1100, such as the use of robotic maintenance equipment to service computing equipment within physical infrastructure 1100A. In some embodiments, physical infrastructure 1100A may feature an advanced telemetry system that performs telemetry reporting that is sufficiently robust to support remote automated management of physical infrastructure 1100A. In various embodiments, telemetry information provided by such an advanced telemetry system may support features such as failure prediction/prevention capabilities and capacity planning capabilities. In some embodiments, physical infrastructure management framework 1150A may also be configured to manage authentication of physical infrastructure components using hardware attestation techniques. For example, robots may verify the authenticity of components before installation by analyzing information collected from a radio frequency identification (RFID) tag associated with each component to be installed. The embodiments are not limited in this context.
  • As shown in FIG. 11, the physical infrastructure 1100A of data center 1100 may comprise an optical fabric 1112, which may include a dual-mode optical switching infrastructure 1114. Optical fabric 1112 and dual-mode optical switching infrastructure 1114 may be the same as—or similar to—optical fabric 412 of FIG. 4 and dual-mode optical switching infrastructure 514 of FIG. 5, respectively, and may provide high-bandwidth, low-latency, multi-protocol connectivity among sleds of data center 1100. As discussed above, with reference to FIG. 1, in various embodiments, the availability of such connectivity may make it feasible to disaggregate and dynamically pool resources such as accelerators, memory, and storage. In some embodiments, for example, one or more pooled accelerator sleds 1130 may be included among the physical infrastructure 1100A of data center 1100, each of which may comprise a pool of accelerator resources—such as co-processors and/or field-programmable gate arrays (FPGAs), for example—that is available globally accessible to other sleds via optical fabric 1112 and dual-mode optical switching infrastructure 1114.
  • In another example, in various embodiments, one or more pooled storage sleds 1132 may be included among the physical infrastructure 1100A of data center 1100, each of which may comprise a pool of storage resources that is available globally accessible to other sleds via optical fabric 1112 and dual-mode optical switching infrastructure 1114. In some embodiments, such pooled storage sleds 1132 may comprise pools of storage devices such as solid-state drives (SSDs), hard disk drives (HDD), hard drive, disk drive, fixed disk drives, and so forth. In various embodiments, one or more high-performance processing sleds 1134 may be included among the physical infrastructure 1100A of data center 1100. In some embodiments, high-performance processing sleds 1134 may comprise pools of high-performance processors, as well as cooling features that enhance air cooling to yield a higher thermal envelope of up to 250 Watts (W) or more. In various embodiments, any given high-performance processing sled 1134 may feature an expansion connector 1117 that can accept a memory expansion sled, such that the next level (second level or third level) memory that is locally available to that high-performance processing sled 1134 is disaggregated from the processors and memory comprised on that sled. In some embodiments, such a high-performance processing sled 1134 may be configured with the next level memory using an expansion sled that comprises low-latency SSD. The optical infrastructure allows for compute resources on one sled to utilize remote accelerator/FPGA, memory, and/or storage resources that are disaggregated on a sled located on the same rack or any other rack in the data center. The remote resources can be located one switch jump away or two-switch jumps away, e.g. remote resources connected through a single or two switches, in the spine-leaf network architecture described above with reference to FIG. 5. The embodiments are not limited in this context.
  • In various embodiments, one or more layers of abstraction may be applied to the physical resources of physical infrastructure 1100A in order to define a virtual infrastructure, such as a software-defined infrastructure 1100B. In some embodiments, virtual computing resources 1136 of software-defined infrastructure 1100B may be allocated to support the provision of cloud services 1140. In various embodiments, particular sets of virtual computing resources 1136 may be grouped for provision to cloud services 1140 in the form of software defined infrastructure (SDI) services 1138. Examples of cloud services 1140 may include—without limitation—software as a service (SaaS) services 1142, platform as a service (PaaS) services 1144, and infrastructure as a service (IaaS) services 1146.
  • In some embodiments, management of software-defined infrastructure 1100B may be conducted using a virtual infrastructure management framework 1150B. In various embodiments, virtual infrastructure management framework 1150B may be designed to implement workload fingerprinting techniques and machine-learning techniques in conjunction with managing allocation of virtual computing resources 1136 and/or SDI services 1138 to cloud services 1140. In some embodiments, virtual infrastructure management framework 1150B may use/consult telemetry data in conjunction with performing such resource allocation. In various embodiments, an application/service management framework 1150C may be implemented to provide quality of service (QoS) management capabilities for cloud services 1140. The embodiments are not limited in this context.
  • FIG. 12 illustrates an example of a compute system 1200 that includes a sled 1204 coupled with physical memory resources 1205-3, which may be incorporated in a memory expander sled 1218. In embodiments, the sled 1204 includes a connector 1217 to couple with a connector 1219 of the memory expander sled 1218. The sled 1204 is capable of communicating data via a high speed serial link 1251 with the memory expander sled 1218 and the physical memory resources 1205-3. The memory expander sled 1218 and physical memory resources 1205-3 may be utilized to store and access data for the physical compute resources 1205-4 of the sled 1204, for example. Having a memory expander sled 1218 with physical memory resources 1205-3 coupled with the physical compute resources 1205-4 may also enable disaggregation of the physical compute resources 1205-4 from the physical memory resources 1205-3. Thus, the physical compute resources 1205-4 or the physical memory resources 1205-3 may be replaced without affecting the remaining physical resource (memory or compute) in the compute system 1200.
  • In embodiments, the sled 1204 may be the same as other sleds discussed herein, such as sled 1004 illustrated in FIG. 10, and include similar components. For example, the sled 1204 includes physical compute resources 1205-4, which may further include one or more cores 1207-1 through 1207-a, where a may be any positive integer. The physical compute resource 1205-4 also includes a memory controller 1236 and a memory interface 1234 that may couple with the connector 1217 via a high speed serial link 1251, which may be an electrical or optical interconnect or bus and capable of communicating data in serial.
  • In embodiments, the physical compute resource 1205-4 may be implemented as a microprocessor, a processor, a central processing unit, a multi-core processor, a mobile device processor, a single core processor, a system-on-chip (SoC) device, and so forth. The physical compute resource 1205-4 may be integrated on a single die or multiple dies in a single chip package. Moreover, each of the cores 1207 of the physical compute resources 1205-4 may be independent processing units capable of reading and executing program instructions. The instructions are ordinary instructions that can be executed at the same time or in parallel. In embodiments, the physical compute resource 1205-4 may be coupled with other components of the sled 1204 via one or more interconnects or links.
  • The physical compute resource 1205-4 also includes a memory controller 1236, which may be an integrated memory controller on the same die as the cores 1207. In other instances, the memory controller 1236 may be integrated into a different die on a different chipset and couple with the cores 1207 by a bus or link, for example. The memory controller 1236 may receive read requests and memory address(es) to read data from memory, e.g. the physical memory resources 1205-3. Data may be read from the physical memory resources 1205-3 of the memory expander sled 1218. The memory controller 1236 may provide the data to the cores 1207 once it is read from memory, for example. Further, the memory controller 1236 may also receive write requests, memory address(es) and associated data to write to the physical memory resources 1205-3 of the memory expander sled 1218.
  • In some embodiments, the physical memory resources 1205-3 including the memory modules 1211 may include one or more byte addressable write-in-place non-volatile memory devices. The memory devices may also include future generation non-volatile devices, such as a three dimensional crosspoint memory device, or other byte addressable write-in-place nonvolatile memory devices. In one embodiment, the memory devices may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thiristor based memory device, or a combination of any of the above, or other memory. The memory devices may refer to the die itself and/or to a packaged memory product. In some embodiments, the memory modules 1211 may include other types of memory devices, such as dynamic RAM (DRAM), static RAM (SRAM), double data rate DRAM (DDR DRAM), synchronous DRAM (SDRAM), DDR SDRAM, and so forth. Some embodiments may include a combination of different memory types, embodiments are not limited in this manner.
  • In some embodiments, the memory module 1211 may be a dual in-line memory module (DIMM) having one or more memory devices capable of plugging into a DIMM slot of a PCB of the memory expander sled 1218. The module 1211 may have a DIMM form factor in accordance with one or more standards, such as Joint Electronic Device Engineering Council (JEDEC) defined technical standard JESD248 (“DDR NVDIMM-N Design Standard”), JEDEC Module 4.20.27 (“288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM Load Reduced DIMM Design Specification”), JESD79-4A (“DDR4 SDRAM Standard”), JEDEC Module 4.20.28 (“288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM Registered DIMM Design Specification”), and so forth. Embodiments are not limited in this manner. In some instances, the memory module 1211 may be integrated circuit memory devices incorporated directly on a PCB of the memory expander sled 1218.
  • In embodiments, the memory controller 1236 may be coupled with a memory interface 1234 via a parallel link 1253, wherein the memory interface 1234 is capable of interfacing with the physical memory resources 1205-3 of the memory expander sled 1218 via a high speed serial link 1251. The parallel link 1253 may be a high-speed parallel link or bus to communicate data in parallel and coupled with the memory interface 1234 and the high speed serial link 1251 may be a link to communicate data in serial. The memory interface 1234 may also include circuitry to communicate data between the memory controller 1234 and the memory module(s) 1211. For example, the memory interface 1234 may include an optical transceiver to communicate data via an optical high speed serial link. In another example, the memory interface 1234 may include an electrical transceiver to communicate via electrical high speed serial links.
  • The memory interface 1234 may also include circuitry, such as serializer/deserializer (SerDes) circuitry, to convert parallel data to serial data, and vice versa. More specifically, the memory interface 1234 can convert parallel data communicated from one or more cores 1207 to serial data for communication to the memory module(s) 1211 via the high speed serial links 1251. Similarly, the memory interface 1234 may convert serial data received from the memory module(s) 1211 to parallel data for communication to the one or more cores 1207 via the high speed parallel links 1253. Embodiments are not limited to this example, and in some instances, the SerDes circuitry may be incorporated into the connector 1217 instead of the memory interface 1234.
  • In some embodiments, the memory interface 1234 may include circuitry to compress and decompress data communicated via the high speed serial link 1251. For example, a compression mechanism may be used to generate a fabric packet including the compressed data to communicate serial via the high speed serial links 1251. The compression mechanism may utilize a compression algorithm, such as a Byte Pattern Repeat compression mechanism, a Word (2 bytes) Pattern Repeat compression mechanism, a Dword (4 bytes) Pattern Repeat compression mechanism, and a Qword (8 bytes) Pattern Repeat. In some instances, other compression mechanisms may be utilized, such as compression logic or an algorithm to perform lossless data compression on the data. In one example, a run-length encoding (RLE) algorithm may be used on the data such that a repeating pattern and the length of the repeating pattern are indicated in the compressed data. Other examples of compression algorithms that may be used include Lempel-Ziv 1978, Lempel-Ziv Fast (LZF), DEFLATE, bzip2, Lempel-Ziv-Markov chain algorithm, Lempel-Ziv-Oberhumer, and so forth.
  • In some embodiments, the memory interface 1234 may communicate information and data including packets using a transaction protocol. The transaction protocol may enable transaction-based data transfers using the high speed interconnect 1251. For example, the high speed interconnect may support a Quick-Path Interconnect transaction protocol that may employ packet-based transfers using a multi-layer protocol architecture. Among its features is support for coherent transactions (e.g., memory coherency). In embodiments, to increase memory transaction bandwidth, a Fully Buffered DIMM (or FB-DIMM) architecture is employed, which introduces an advanced memory buffer (AMB) between the memory controller 1236 and a memory module 1211. Unlike the parallel bus architecture of traditional DRAMs, the high speed serial link 1251 enables an increase in the width of the memory without increasing the pin count of the memory controller 1236 beyond a feasible level. In another example, the high speed serial link 1251 may be a scalable memory interconnect (SMI) link and include Scalable Memory Buffers (SMB).
  • The memory interface 1234 may be coupled to the connector 1217 via a high speed serial link 1251. In some embodiments, the connector 1217 may be a low pin count high-speed slot connector capable of receiving and coupling with the connector 1219 of the memory expander sled 1218. In one example, the connector 1217 may be a serial attachment (SATA) connector, a micro SATA (mSATA) connector, a SATA2 connector a SATA3 connector, a SATA4 connector, a universal serial bus (USB) connector, a USB3 connector, a SATAe connector, a Thunderbolt 3 connector, a connector in accordance with JEDEC defined technical standard, such as the MO-297 standard, and the MO-300 standard. Other examples, may include a Next Generation Form Factor (NGFF) connector or an M.2 connector. In some embodiments, the connector 1217 may provide an optical connection, e.g. an optical fiber connector. Embodiments are not limited to these examples and other high speed serial connectors may be utilized for the connectors 1217 and 1219.
  • In some instances, the form factor of the memory expander sled 1218 may determine which connector type is utilized for connectors 1217 and 1219. For example, the memory expander sled 1218 may be in a solid state drive (SSD) form factor and the memory module(s) 1211 may include one or more byte addressable write-in-place non-volatile memory devices, or any other memory device, as previously discussed. In some instances, the memory expander sled 1218 may not incorporate memory modules, but may have integrated circuit memory devices incorporated directly on a printed circuit board (PCB) of the memory expander sled 1218. Embodiments are not limited in this manner.
  • The SSD form factor may be in accordance with the JEDEC MO-297-A (May 2009) standard or any predecessors, revisions, or variants thereof. Other examples include SSD form factors in accordance with a Next Generation Form Factor (NGFF) or an M.2 form factor. The connectors 1217 and 1219 may be one of the SATA connectors, e.g. SATA2, SATA3, SATA4, etc., or other high speed serial connectors for connecting with a SSD form factor. In this example, the SSD form factor enables the sled 1204 having the physical compute resource 1205-4 to be changed without changing the memory expander sled 1218 and memory modules 1211 or allowing them to be reused with other physical compute resources 1205-4.
  • In another example, the memory expander sled 1218 may have a DIMM form factor and the memory module 1211 may be integrated circuit memory devices incorporated on the PCB of the memory expander sled 1218. The connector 1217 of the sled 1204 may be a pig tail type connector capable of coupling with connector 1219 of the memory expander sled 1218 via a high speed serial link 1251. The DIMM form factor of the memory expander sled 1218 may be in accordance with one or more standards, such as JEDEC defined technical standard JESD248 (“DDR NVDIMM-N Design Standard”), JEDEC Module 4.20.27 (“288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM Load Reduced DIMM Design Specification”), JESD79-4A (“DDR4 SDRAM Standard”), JEDEC Module 4.20.28 (“288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM Registered DIMM Design Specification”), and so forth. Embodiments are not limited in this manner. In this example, the connector 1217, configured as a pig tail, may be added as DIMM connector to the PCB of the sled 1204. The connector 1217 may couple with a high speed serial link, which may be low pin count cable or wire that is part of the pig tail having an opposing end that may couple with a DIMM connector (connector 1219) of the memory expander sled 1218. In this example, the connectors 1217 and 1219 may include SerDes circuitry to convert data from parallel to serial, and vice versa, for communication via the low pin count wire between the memory expander sled 1218 and the sled 1204. Note that FIG. 12 only includes a single sled 1204 coupled with a single memory expander sled 1218. However, embodiments are not limited in manner. In some instances, the sled 1204 may include a number of connectors 1217, each configured as a pig tail and coupled with a corresponding memory expander sled 1218, for example.
  • On the memory expander sled 1218, the connector 1219 may be coupled with a physical memory resource 1205-3, including a memory interface 1209 via a high speed serial link 1251 or a high speed parallel link (not shown) for instances when the SerDes circuitry is incorporated in the connector 1219 itself. Data may be passed or communicated to the memory interface 1209, which may include at least one of an optical transceiver and electrical transceiver to communicate data between the memory module(s) 1211 and the memory controller 1236 of the sled 1204. In some instances, the memory interface 1209 may also include SerDes circuitry to convert parallel data to serial data. Thus, data communicated from the connector 1219 to the memory interface 1209 in a serial data format and the memory interface 1209 may convert the data back to parallel data for the memory module(s) 1211. Similarly, parallel data communicated from the memory module(s) 1211 may be serialized by the memory interface 1209 for communication to the sled 1204. The memory interface 1209 may also include circuitry to perform compression and decompression and communicate data via a transactional protocol, as previously discussed.
  • In embodiments, the memory interface 1209 may receive the read requests from memory interface 1234, which may include one or more address(es) to read data from the memory modules 1211. The data may be read from the memory modules 1211 and the memory interface 1209 may provide the data over the high speed serial link 1251, as discussed. Similarly, the memory interface 1209 may also receive write requests from memory interface 1234, which may include one or more address(es) and data that may be written into memory modules 1211. The data may be written into the memory modules 1211 based on the one or more address(es).
  • FIG. 13 illustrates an example of a compute system 1300 that may generally be representative of a sled 1304 coupled with an add-in component, such as a memory expander sled 1318 having physical memory resources 1305-3. In embodiments, the compute system 1300 may be similar to compute system 1200 of FIG. 12. Further and in some embodiments, sled 1304 may be the same as other sleds discussed herein, such as sled 1004 illustrated in FIG. 10 and sled 1204 of FIG. 12, and include similar components. For example, the sled 1304 includes physical compute resources 1305-4, which may further include one or more cores 1307-1 through 1307-a, where a may be any positive integer. The physical compute resource 1305-4 also includes a number of memory controllers 1336-1 through 1336-4 and a number of memory interfaces 1334-1 through 1334-4 that may couple with a connector 1317 via a high speed serial link 1351. The illustrated example of FIG. 13 only shows four memory controllers 1336-1 through 1336-4 and four memory interfaces 1334-1 through 1334-4. However, embodiments are not limited in this manner and embodiments may include more or fewer memory controllers 1336 and memory interfaces 1334.
  • In embodiments, the physical compute resource 1305-4 may be implemented via a processor, computer processing unit, multi-core processor, and so forth as similarly discussed with respect physical compute resources 1205-4 of FIG. 12. The physical compute resource 1305-4 may be integrated on a single die or multiple dies in a single chip package, for example. In FIG. 13 the physical compute resource 1305-4 includes four memory controllers 1336-1 through 1336-4, each of which may be an integrated memory controller on the same die as the cores 1307. In other instances, the memory controllers 1336-1 through 1336-4 may be integrated into a different die on a different chipset and couple with the cores 1307 by a bus, for example.
  • Each of the memory controllers 1336-1 through 1336-4 may process read and write requests. Further, each of the memory controllers 1336-1 through 1336-4 may provide a memory channel in a multi-channel memory architecture. Each of the memory channels may enable communication between the memory controllers 1336-1 through 1336-4 and one or more of the memory modules 1311-1 through 1311-8. In some instances, the throughput may be 50 GigaTransfers/second (GT/s)/Channel. The illustrated embodiment includes four channels; however, embodiments are not limited in this manner and embodiments may include more or fewer channels.
  • In embodiments, each of the memory controllers 1336-1 through 1336-4 may be coupled with a corresponding memory interface 1334-1 through 1334-4 via parallel links 1353. The parallel links 1353 may be high-speed parallel links or a bus coupled with the memory interfaces 1334-1 through 1334-4. In embodiments, each of the memory interface 1334-1 through 1334-4 may include circuitry, e.g. an optical and/or electrical transceiver, to communicate data between the corresponding memory controllers 1336-1 through 1336-4 and the memory modules 1311-1 through 1311-8. Each of the memory interfaces 1334-1 through 1334-4 may also include circuitry, such as SerDes circuitry, to convert parallel data to serial data, and vice versa. Thus, data communicated from one or more cores 1307 may be converted from parallel data to serial data for communication to the memory modules 1311-1 through 1311-8 by the memory interfaces 1334-1 through 1334-4. Similarly, the memory interfaces 1334-1 through 1334-4 may convert serial data received from the memory modules 1311-1 through 1311-8 to parallel data for communication to the one or more cores 1307. Embodiments are not limited in this manner and some instances, the SerDes circuitry may be implemented as part of the connector 1317. In this example, memory interfaces 1334 may be coupled with the connector 1317 via parallel links and the connector 1317 may convert the data. However, if each of the memory interfaces 1334-1 through 1334-4 includes SerDes circuitry, they may also circuitry to send and receive data via at least one of optical serial links and electrical serial links, perform compression and decompression of the data, and use a transactional protocol.
  • In embodiments, the memory interfaces 1334-1 through 1334-4 may be coupled with a connector 1317 via a high speed serial link 1351 or a parallel link depending on whether the parallel to serial (or vice versa) conversation occurs in the memory interface 1334 or the connector 1317. In embodiments, the connector 1317 may couple with connector 1319 of the memory expander sled 1318 via the high speed serial links 1351. Each high speed serial link 1351 may provide a memory channel for the multi-channel memory architecture. In embodiments, the connectors 1317 and 1319 may provide at least one of an optical high-speed serial connection and electrical high-speed serial connection via the high speed serial link 1351.
  • Moreover, the connector 1319 of the memory expander sled 1818 may communicate data with the sled 1304 via the high speed serial links 1351, as discussed. In some instances, the connector 1319 also includes SerDes circuitry to convert data from parallel data to serial data to communicate to the memory modules 1311, and vice versa to communicate data to the sled 1304. The connector 1319 may be coupled with the physical memory resource 1305-3, and in particular, memory interfaces 1309-1 through 1309-4. Although FIG. 13 illustrates four memory interfaces 1309-1 through 1309-4, embodiments are not limited in this manner and may include more or fewer interfaces.
  • Each of the memory interfaces 1309-1 through 1309-4 may be coupled with the connector 1319 via a parallel link if the connector 1319 includes the SerDes circuitry or a high speed serial link 1351 if the memory interfaces 1309 include the SerDes circuitry. In embodiments, each of the memory interfaces 1309-1 through 1309-4 may also include circuitry, e.g. an electrical or optical transceiver, to send and receive data via optical serial links and electrical serial links. Each of the memory interfaces 1309-1 through 1309-4 may be capable of receiving and sending data between the memory module(s) 1311-1 through 1311-8 of the memory expander sled 1318 and the sled 1304. In instances, the data may be communicated via high-speed parallel links 1353 with the memory modules 1311-1 through 1311-8.
  • In embodiments, the physical memory resources 1305-3 may include a number of memory modules 1311-1 through 1311-8, each of which include one or more byte addressable write-in-place non-volatile memory devices. The memory devices may also include future generation non-volatile devices, such as a three dimensional crosspoint memory device, or other byte addressable write-in-place nonvolatile memory devices. In one embodiment, the memory devices may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thiristor based memory device, or a combination of any of the above, or other memory. The memory devices may refer to the die itself and/or to a packaged memory product. In some embodiments, the memory modules 1211 may include other types of memory devices, such as dynamic RAM (DRAM), static RAM (SRAM), double data rate DRAM (DDR DRAM), synchronous DRAM (SDRAM), DDR SDRAM, and so forth. Some embodiments may include a combination of different memory types, embodiments are not limited in this manner. In some embodiments, the memory module 1311 may be a dual in-line memory module (DIMM) having one or more memory devices capable of plugging into a DIMM slot of a PCB of the memory expander sled 1318. The memory module 1311 may have a DIMM form factor in accordance with one or more standards, such as Joint Electronic Device Engineering Council (JEDEC) defined technical standard JESD248 (“DDR NVDIMM-N Design Standard”), JEDEC Module 4.20.27 (“288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM Load Reduced DIMM Design Specification”), JESD79-4A (“DDR4 SDRAM Standard”), JEDEC Module 4.20.28 (“288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM Registered DIMM Design Specification”), and so forth. Embodiments are not limited in this manner.
  • In embodiments, the memory expander sled 1318 coupled with the sled 1304 via the connectors 1317 and 1319 and the high speed serial links 1351 may enable disaggregation of the physical compute resources 1305-4 from the physical memory resources 1305-3. Thus, the physical compute resources 1305-4 or the physical memory resources 1305-3 may be replaced without affecting the remaining physical resource (memory or compute) in the compute system 1300.
  • FIG. 14 illustrates an example of a compute system 1400 that may generally include a sled 1404 coupled with an add-in component, such as a memory expander sled 1418 having physical memory resources 1405-3. In some instances, the sled 1404 may be a processor cartridge as part of a rack-scale system. In embodiment compute system 1400 may be similar to compute systems 1200 and 1300 of FIGS. 12 and 13. The sled 1404 may include a number of physical compute resources 1405-4-1 through 1405-4-x, where x may be any positive integer. Further and in some embodiments, the sled 1404 may be the same as other sleds discussed herein, such as sleds 1004, 1204, and 1304 illustrated in FIGS. 10, 12 and 13, and include similar components. In some instances, each of the physicals compute resources 1405-4 may be incorporated into their own sled 1404. Embodiments are not limited in this manner.
  • In instances, each of the physical compute resources 1405-4 may include one or more cores (not shown), one or more memory controllers 1436, and one or more memory interfaces 1434. These components may be similar or the same as the liked named components as previously discussed in FIGS. 12 and 13. For example, each of the physical resources 1405-4 may include memory controllers 1436 to process read and write requests for memory, and communicate with memory interfaces 1434 via high-speed parallel links (not shown). Further, the memory interfaces 1434 may include circuitry to communicate the data and convert the parallel data to serial data for communication via the high-speed serial links 1451. In some instances, the memory interfaces 1434 may include SerDes circuitry to convert parallel data to serial data and vice versa, for example. The serial data may be communicated via the high-speed serial links 1451, which may be optical high-speed serial links or electrical high-speed serial links capable of communicating data at 50 GigaTransfers/second (GT/s). In some instances, the high speed serial links 1451 may be capable of communicating data at 50 GT/s for each memory channel in a multi-channel memory architecture.
  • In embodiments, the memory interfaces 1434 may be coupled to a connector 1417 via high speed serial links 1451. Although not shown, in some instances the memory interfaces 1434 may be coupled to connector 1417 via parallel links, and the connector 1417 may include SerDes circuitry to convert data between parallel and serial formats. Further, the connector 1417 may couple with connector 1419 of the memory expander sled 1418 via high speed serial links 1451 to electrically and/or optically link the two sleds 1404 and 1418 together. In some instances, each high speed serial link 1451 linking the two sleds 1404 and 1418 may provide a memory channel for a multi-channel memory architecture. Similar to connector 1417, the connector 1419 of the memory expander sled 1418 may also include SerDes circuitry to convert data from parallel data to serial data and vice versa. However, embodiments are not limited in this manner and some instances; memory interfaces 1409 may include the SerDes circuitry to convert serial data to parallel data and vice versa. The memory interfaces 1434 may also include circuitry to perform compression/decompression of the data and communicate via a transactional protocol.
  • The connector 1419 may be coupled with a circuit switch 1414, such as an electrical circuit switch (flit or FED) or an optical circuit switch. The circuit switch 1414 may enable the physical compute resources 1405 to share memory, such as the memory modules 1411 of physical memory resource 1405-3. In some instances, the circuit switch 1414 may be incorporated in or be part of the connector 1419. The circuit switch 1414 may couple one or more memory modules 1411 with a physical compute resource 1405-4 for utilization by the physical compute resources 1405-4 to process data and workloads.
  • In some instances, the circuit switch 1414 may include circuitry to determine workloads for the physical compute resource 1405-4 and a required amount of memory to process those workloads. The circuit switch 1414 may dynamically assign memory modules 1411 (and channels) for use by a physical compute resource 1405-4 during run-time to process a workload, for example. Once a workload is complete or processed, the circuit switch 1414 may configure or reallocate memory modules 1411 to process another workload. The reallocation and configuration of which memory modules 1411 are used by which physical compute resource 1405-4 may occur continuously, and in real-time, while the compute system 1400 is processing workloads.
  • The circuit switch 1414 may also be configurable based on information received by a controller. For example, a baseboard management controller (not shown) of a sled 1404 may communicate information and control the circuit switch 1414. The information may indicate a circuit switch configuration or information of workloads, which may be used by the circuit switch 1414 to make the determination of configuration. The circuit switch 1414 may receive information from other controllers of the compute system 1400, such as pod management controller and a rack management controller. In some instances, the circuit switch 1414 may be configured or reconfigured at a time of a boot or reboot. For example, if one or more of the physical compute resources 1405-4 are rebooted or booted, the circuit switch 1414 may configure itself to allocate memory modules 1411 accordingly, e.g. to process workloads based on a requirement of the physical compute resources 1405. Embodiments are not limited in this manner.
  • The physical memory resource 1405-3 may include any number of memory modules 1411-c, where c may be any positive integer. Moreover, the memory modules 1411 may be shared with the physical compute resources 1405-4 via the circuit switch 1414; and therefore, may be considered a pool of memory modules 1411. each of which include one or more byte addressable write-in-place non-volatile memory devices. The memory devices may also include future generation non-volatile devices, such as a three dimensional crosspoint memory device, or other byte addressable write-in-place nonvolatile memory devices. In one embodiment, the memory devices may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thiristor based memory device, or a combination of any of the above, or other memory. The memory devices may refer to the die itself and/or to a packaged memory product. In some embodiments, the memory modules 1211 may include other types of memory devices, such as dynamic RAM (DRAM), static RAM (SRAM), double data rate DRAM (DDR DRAM), synchronous DRAM (SDRAM), DDR SDRAM, and so forth. Some embodiments may include a combination of different memory types, embodiments are not limited in this manner.
  • In embodiments, the memory modules 1411 may be in memory expander sled 1418 in an SSD form factor and may use any SATA connector, as previously discussed. For example, The SSD form factor may be in accordance with the JEDEC MO-297-A (May 2009) standard or any predecessors, revisions, or variants thereof. Other examples include SSD form factors in accordance with a Next Generation Form Factor (NGFF) or an M.2 form factor. The connectors 1417 and 1419 may be one of the SATA connectors, e.g. SATA2, SATA3, SATA4, etc., or other high speed serial connectors for connecting with a SSD form factor. Embodiments are not limited to these examples, and other SSD form factors may be utilized and be consistent with embodiments discussed herein.
  • In embodiments, the memory expander sled 1418 coupled with the sled 1404 via the connectors 1417 and 1419 and the high speed serial links 1451 may enable disaggregation of the physical compute resources 1405-4 from the physical memory resources 1405-3. Thus, the physical compute resources 1405-4 or the physical memory resources 1405-3 may be replaced without affecting the remaining physical resource (memory or compute) in the compute system 1400.
  • FIG. 15 illustrates an embodiment of logic flow 1500 and logic flow 1550. The logic flows 1500 and 1550 may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flows 1500 and 1550 may illustrate operations performed by a memory interface of a sled having physical compute resources, However, embodiments are not limited in this, and one or more operations may be performed by other components or systems discussed herein, such as a connector.
  • With respect to logic flow 1500, embodiments include receiving data via a high speed parallel link from a core of physical compute resource at block 1502. In some instances, the data may be data a core requests to store or write to memory. The data may be communicated to a memory interface via a memory controller and may also be communicated with address information for use by the memory to store the data.
  • At block 1504, the logic flow 1500 may include converting the data received via the high speed parallel link for communication via a high speed serial link. For example, the memory interface may serialize the data, via SerDes circuitry, to communicate the data via a single/differential link. In embodiments, the SerDes circuitry may convert the data for communication via a high speed serial link using any number of techniques, including but not limited to, a parallel clock SerDes technique, an Embedded clock SerDes technique, a 8b/10b SerDes technique, and a bit interleaved SerDes technique. To convert the data for serial communication, the SerDes circuitry may receive a parallel clock input, a set of data input lines (parallel link), and input data latches. The SerDes circuitry may utilize a phase-locked looped to multiply the incoming parallel clock up to a serial frequency for the high speed serial link.
  • At block 1506, the logic flow 1500 may include sending the data via the high speed serial link to one or more memory modules. In some instances, the one or more memory modules may be incorporated on a memory expander sled to enable easy disaggregation of the memory modules and the cores.
  • With respect to logic flow 1550, embodiments include receiving data via a high speed serial link from a memory of a memory expander sled at block 1522. In some instances, the data may be data a core requests to be read from the memory and may be received based on a read request. The data may be communicated to the memory interface via a memory interface of a memory expander sled. In some instances, data may be received from a circuit switch coupled with the memory interface of the memory expander sled.
  • At block 1554, the logic flow 1550 may include converting the data received via high speed serial link for communication via a high speed parallel link. For example, the memory interface may deserialize the data, via SerDes circuitry, to communicate the data via a parallel link. In embodiments, the SerDes circuitry may convert the data for communication via a high speed parallel link using any number of techniques, including but not limited to, the parallel clock SerDes technique, the Embedded clock SerDes technique, the 8b/10b SerDes technique, and the bit interleaved SerDes technique. To convert the data for parallel, the SerDes circuitry may utilize a receive clock output to clock down to a parallel data rate for communication of the data via the parallel link. The data may be communicated via a set of output lines using output data latches to the cores. based on the parallel rate, for example. In some instances, a buffer (two registers) may be used to clock down the data from the high serial link to the parallel link rate. At block 1556, the logic flow 1500 may include sending the data via the high speed parallel link to a core.
  • FIG. 16 illustrates an embodiment of logic flow 1600 and logic flow 1650. The logic flows 1600 and 1650 may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flows 1600 and 1650 may illustrate operations performed by a memory interface of a memory expander sled having physical memory resources, However, embodiments are not limited in this, and one or more operations may be performed by other components or systems discussed herein, such as a connector.
  • With respect to logic flow 1600, embodiments include receiving data via a high speed parallel link from a memory module of physical memory resource at block 1602. In some instances, the data may be data a core requested to read from the memory module.
  • At block 1604, the logic flow 1600 may include converting the data received via the high speed parallel link for communication via a high speed serial link. For example, the memory interface may serialize the data, via SerDes circuitry, to communicate the data via a single/differential link. In embodiments, the SerDes circuitry may convert the data for communication via a high speed serial link using any number of techniques, including but not limited to, a parallel clock SerDes technique, an Embedded clock SerDes technique, a 8b/10b SerDes technique, and a bit interleaved SerDes technique. To convert the data for serial communication, the SerDes circuitry may receive a parallel clock input, a set of data input lines (parallel link), and input data latches. The SerDes circuitry may utilize a phase-locked looped to multiply the incoming parallel clock up to a serial frequency for the high speed serial link. At block 1606, the logic flow 1600 may include sending the data via the high speed serial link to physical compute resources include the core requesting the data.
  • With respect to logic flow 1650, embodiments include receiving data via a high speed serial link from a physical compute resources at block 1652. In some instances, the data may be data a core requests to be read from the memory to be stored in the memory. The data may be communicated to the memory interface via a memory interface of a sled having the physical compute resources. In some instances, data may be received from a circuit switch coupled with the memory interface of the memory expander sled.
  • At block 1654, the logic flow 1650 may include converting the data received via high speed serial link for communication via a high speed parallel link. For example, the memory interface may deserialize the data, via SerDes circuitry, to communicate the data via a parallel link. In embodiments, the SerDes circuitry may convert the data for communication via a high speed parallel link using any number of techniques, including but not limited to, the parallel clock SerDes technique, the Embedded clock SerDes technique, the 8b/10b SerDes technique, and the bit interleaved SerDes technique. To convert the data for parallel, the SerDes circuitry may utilize a receive clock output to clock down to a parallel data rate for communication of the data via the parallel link. The data may be communicated via a set of output lines using output data latches to the memory based on the parallel rate, for example. In some instances, a buffer (two registers) may be used to clock down the data from the high serial link to the parallel link rate. At block 1656, the logic flow 1600 may include sending the data via the high speed parallel link to memory or memory module.
  • FIG. 17 illustrates an embodiment of a logic flow 1700 that may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flows 1700 and 1750 may illustrate operations performed by a circuit switch. However, embodiments are not limited in this, and one or more operations may be performed by other components or systems discussed herein.
  • The logic flow 1700, at block 1702, includes receiving configuration information to configure usage of memory, such as one or more memory modules. In some instances, the configuration information may be received from a controller, such as baseboard management controller of a sled, a rack management controller of a rack, and a pod management controller of a pod. The configuration information may include information associating workloads and cores processing the workloads with particular memory modules. In some embodiments, the configuration information may include an indication of workload requirements and the circuit switch may determine which memory modules may support the workload. For example, the determination may be based on a storage size, a bandwidth, a transfer rate, error correction, and so forth for the memory module.
  • At block 1704, the logic flow 1700 may include determining a configuration of memory. Further and a block 1706, the logic flow may include setting the configuration for the memory. The configuration may include setting the circuit switch to direct read/write requests based on data, associated workloads, and received addresses. For example, the circuit switch may direct a read request to a particular memory and memory module based on an address associated with the read request.
  • At decision block 1708, the logic flow 1700 may include determine whether update configuration information is received. If so, the logic flow 1700 may include perform operations as previous discussed in blocks 1704 and 1706. If not, the logic flow 1700 may include waiting a period of time at block 1710 and then making the determination again at decision block 1708.
  • The detailed disclosure now turns to providing examples that pertain to further embodiments. Examples one through twenty-five (1-25) provided below are intended to be exemplary and non-limiting.
  • In a first example, a system, a device, an apparatus, and so forth may include a memory controller, and a memory interface coupled with the memory controller, the memory interface to receive data in parallel via a bus, and convert the received parallel data to send to a memory module of a memory expander sled in serial via a high speed serial link, and receive data in serial via the high speed serial link from the memory module of the memory expander sled, and convert the received serial data to send in parallel to the memory controller via the bus.
  • In a second example and in furtherance of the first example, a system, a device, an apparatus, and so forth may include the memory interface wherein the memory module is a dual in-line memory module or a integrated circuit.
  • In a third example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the memory interface comprising an optical transceiver and the high speed serial link comprising an optical high speed serial link coupled with the memory module.
  • In a fourth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the memory interface comprising an electrical transceiver and the high speed serial link comprising an electrical high speed serial link coupled with the memory module.
  • In a fifth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the high speed serial link providing a memory channel for communication of data between the memory controller and the memory module.
  • In a sixth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include a plurality of memory controllers including the memory controller, and a plurality of memory interfaces including the memory interface, each of the plurality of memory interfaces to couple to one of the plurality of memory controllers via buses, each of the plurality of memory interfaces to couple with at least one of a plurality of memory modules including the memory module via at least one of a plurality of high speed serial links including the high speed serial link.
  • In a seventh example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include each of the high speed serial links to provide one of a plurality of memory channels between one of the memory controllers and one of the memory modules.
  • In an eighth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include a processing unit comprising the plurality of memory controllers and the plurality of memory interfaces.
  • In a ninth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the memory interface to couple with one of a plurality memory modules including the memory module via a circuit switch coupled with the high speed serial link.
  • In a tenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the memory interface comprising serializer/deserializer (SERDES) circuitry to convert data from parallel to serial and serial to parallel.
  • In an eleventh example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the memory interface comprising a pig tail connector comprising circuitry to convert data from the parallel to serial and serial to parallel.
  • In a twelfth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include a memory module, and a memory interface coupled with the memory module. The memory interface to receive data in parallel via a bus, and convert the received parallel data to send to to a memory module of a memory expander sled in serial via a high speed serial link, and receive data in serial via the high speed serial link from the memory module of the memory expander sled, and convert the received serial data to send in parallel to the memory controller via the bus.
  • In a thirteenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the memory interface comprising an optical transceiver and the high speed serial link comprising an optical high speed serial link coupled with the memory controller.
  • In a fourteenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the memory interface comprising an electrical transceiver and the high speed serial link comprising an electrical high speed serial link coupled with the memory controller.
  • In a fifteenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include the high speed serial link providing a memory channel for communication of data between the memory controller and the memory module.
  • In a sixteenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include a plurality of memory modules including the memory module, and a plurality of memory interfaces including the memory interface, each of the plurality of memory interfaces to couple at least one of the plurality of memory modules with one of a plurality of memory controllers including the memory controller via one of a plurality of high speed serial links including the high speed serial link.
  • In a seventeenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include each of the high speed serial links to provide one of a plurality of memory channels between one of the memory controllers and one of the memory modules.
  • In an eighteenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth may include a memory expander sled comprising the plurality of memory modules and the plurality of memory interfaces.
  • In a nineteenth example and in furtherance of any of the previous examples, a system, a device, an apparatus, and so forth the memory interface to couple the memory module with the memory controller via a circuit switch coupled with the high speed serial link.
  • In a twentieth example and in furtherance of any of the previous examples, a method may include the memory interface comprising serializer/deserializer (SERDES) circuitry to convert data received in parallel to send in serial to a memory controller, and convert data received in serial from the memory controller to parallel to send to the memory module.
  • In a twenty-first example and in furtherance of any of the previous examples, a memory expander sled comprising the memory module in a low pin count high speed memory slot, wherein the memory module is byte accessible.
  • In a twenty-second example and in furtherance of any of the previous examples, a method may include receiving data in parallel via a bus, and convert the received parallel data to send to a memory module of a memory expander sled in serial via a high speed serial link, and receiving data in serial via the high speed serial link from the memory module of the memory expander sled, and convert the received serial data to send in parallel to the memory controller via the bus.
  • In a twenty-third example and in furtherance of any of the previous examples, a method may include receiving the data from a core in parallel via a high speed parallel link.
  • In a twenty-fourth example and in furtherance of any of the previous examples, a method may sending the data in serial to the memory module of the memory expander sled via the high speed serial link.
  • In a twenty-fifth example and in furtherance of any of the previous examples, a method may include wherein the high speed serial link comprising an optical high speed serial link coupling a memory interface with the memory module, the memory interface comprising an optical transceiver to send the data to the memory module; or the high speed serial link comprising an electrical high speed serial link coupling a memory interface with the memory module, the memory interface comprising an electrical transceiver to send the data to the memory module.
  • Some embodiments may be described using the expression “one embodiment” or “an embodiment” along with their derivatives. These terms mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment. Further, some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not necessarily intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • It is emphasized that the Abstract of the Disclosure is provided to allow a reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the preceding Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are at this moment incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” “third,” and so forth, are used merely as labels and are not intended to impose numerical requirements on their objects.
  • What has been described above includes examples of the disclosed architecture. It is, of course, not possible to describe every conceivable combination of components and methodologies, but one of ordinary skill in the art may recognize that many further combinations and permutations are possible. Accordingly, the novel architecture is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims.

Claims (25)

What is claimed is:
1. An apparatus, comprising:
a memory controller; and
a memory interface coupled with the memory controller and a memory module, the memory interface to:
receive data in parallel via a bus, and convert the received parallel data to send to a memory module of a memory expander sled in serial via a high speed serial link; and
receive data in serial via the high speed serial link from the memory module of the memory expander sled, and convert the received serial data to send in parallel to the memory controller via the bus.
2. The apparatus of claim 1, wherein the memory module is a dual in-line memory module or a integrated circuit.
3. The apparatus of claim 1, the memory interface comprising an optical transceiver and the high speed serial link comprising an optical high speed serial link coupled with the memory module.
4. The apparatus of claim 1, the memory interface comprising an electrical transceiver and the high speed serial link comprising an electrical high speed serial link coupled with the memory module.
5. The apparatus of claim 1, the high speed serial link providing a memory channel for communication of data between the memory controller and the memory module.
6. The apparatus of claim 1, comprising:
a plurality of memory controllers including the memory controller; and
a plurality of memory interfaces including the memory interface, each of the plurality of memory interfaces to couple to one of the plurality of memory controllers via buses, each of the plurality of memory interfaces to couple with at least one of a plurality of memory modules including the memory module via at least one of a plurality of high speed serial links including the high speed serial link.
7. The apparatus of claim 6, each of the high speed serial links to provide one of a plurality of memory channels between one of the memory controllers and one of the memory modules.
8. The apparatus of claim 6, comprising:
a processing unit comprising the plurality of memory controllers and the plurality of memory interfaces.
9. The apparatus of claim 1, the memory interface to couple with one of a plurality memory modules including the memory module via a circuit switch coupled with the high speed serial link.
10. The apparatus of claim 1, the memory interface comprising serializer/deserializer (SERDES) circuitry to convert data from parallel to serial and serial to parallel.
11. The apparatus of claim 1, the memory interface comprising a pig tail connector comprising circuitry to convert data from the parallel to serial and serial to parallel.
12. An apparatus, comprising:
a memory module; and
a memory interface coupled with the memory module, the memory interface to:
receive data in parallel via a bus, and convert the received parallel data to send to to a memory module of a memory expander sled in serial via a high speed serial link; and
receive data in serial via the high speed serial link from the memory module of the memory expander sled, and convert the received serial data to send in parallel to a memory controller via the bus.
13. The apparatus of claim 12, the memory interface comprising an optical transceiver and the high speed serial link comprising an optical high speed serial link coupled with the memory controller.
14. The apparatus of claim 12, the memory interface comprising an electrical transceiver and the high speed serial link comprising an electrical high speed serial link coupled with the memory controller.
15. The apparatus of claim 12, the high speed serial link providing a memory channel for communication of data between the memory controller and the memory module.
16. The apparatus of claim 12, comprising:
a plurality of memory modules including the memory module; and
a plurality of memory interfaces including the memory interface, each of the plurality of memory interfaces to couple at least one of the plurality of memory modules with one of a plurality of memory controllers including the memory controller via one of a plurality of high speed serial links including the high speed serial link.
17. The apparatus of claim 16, each of the high speed serial links to provide one of a plurality of memory channels between one of the memory controllers and one of the memory modules.
18. The apparatus of claim 16, comprising:
a memory expander sled comprising the plurality of memory modules and the plurality of memory interfaces.
19. The apparatus of claim 12, the memory interface to couple the memory module with the memory controller via a circuit switch coupled with the high speed serial link.
20. The apparatus of claim 12, the memory interface comprising serializer/deserializer (SERDES) circuitry to convert data received in parallel to send in serial to a memory controller, and convert data received in serial from the memory controller to parallel to send to the memory module.
21. The apparatus of claim 12, comprising:
a memory expander sled comprising the memory module in a low pin count high speed memory slot, wherein the memory module is byte accessible.
22. A computer-implemented method, comprising:
receiving data in parallel via a bus, and convert the received parallel data to send to a memory module of a memory expander sled in serial via a high speed serial link; and
receiving data in serial via the high speed serial link from the memory module of the memory expander sled, and convert the received serial data to send in parallel to a memory controller via the bus.
23. The computer-implemented method of claim 22, comprising receiving the data from a core in parallel via a high speed parallel link.
24. The computer-implemented method of claim 22, comprising sending the data in serial to the memory module of the memory expander sled via the high speed serial link.
25. The computer-implemented method of claim 22, the high speed serial link comprising an optical high speed serial link coupling a memory interface with the memory module, the memory interface comprising an optical transceiver to send the data to the memory module; or the high speed serial link comprising an electrical high speed serial link coupling a memory interface with the memory module, the memory interface comprising an electrical transceiver to send the data to the memory module.
US15/476,891 2016-07-22 2017-03-31 Techniques to enable disaggregation of physical memory resources in a compute system Abandoned US20180024957A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US201662365969P true 2016-07-22 2016-07-22
US201662376859P true 2016-08-18 2016-08-18
US201662427268P true 2016-11-29 2016-11-29
US15/476,891 US20180024957A1 (en) 2016-07-22 2017-03-31 Techniques to enable disaggregation of physical memory resources in a compute system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/476,891 US20180024957A1 (en) 2016-07-22 2017-03-31 Techniques to enable disaggregation of physical memory resources in a compute system

Publications (1)

Publication Number Publication Date
US20180024957A1 true US20180024957A1 (en) 2018-01-25

Family

ID=60804962

Family Applications (68)

Application Number Title Priority Date Filing Date
US15/394,338 Active US10334334B2 (en) 2016-07-22 2016-12-29 Storage sled and techniques for a data center
US15/394,321 Active US10091904B2 (en) 2016-07-22 2016-12-29 Storage sled for data center
US15/394,392 Active US10034407B2 (en) 2016-07-22 2016-12-29 Storage sled for a data center
US15/394,281 Active 2037-01-01 US10390114B2 (en) 2016-07-22 2016-12-29 Memory sharing for physical accelerator resources in a data center
US15/395,572 Pending US20180027059A1 (en) 2016-07-22 2016-12-30 Technologies for distributing data to improve data throughput rates
US15/395,550 Active 2037-07-30 US10411729B2 (en) 2016-07-22 2016-12-30 Technologies for allocating ephemeral data storage among managed nodes
US15/395,679 Abandoned US20180024740A1 (en) 2016-07-22 2016-12-30 Technologies for variable-extent storage over network fabrics
US15/395,765 Abandoned US20180024764A1 (en) 2016-07-22 2016-12-30 Technologies for accelerating data writes
US15/396,284 Active 2037-03-18 US10313769B2 (en) 2016-07-22 2016-12-30 Technologies for performing partially synchronized writes
US15/395,988 Pending US20180024864A1 (en) 2016-07-22 2016-12-30 Memory Module for a Data Center Compute Sled
US15/396,014 Pending US20180026835A1 (en) 2016-07-22 2016-12-30 Techniques to control system updates and configuration changes via the cloud
US15/396,039 Pending US20180024838A1 (en) 2016-07-22 2016-12-30 Techniques to detect non-enumerable devices via a firmware interface table
US15/396,187 Active US10349152B2 (en) 2016-07-22 2016-12-30 Robotically serviceable computing rack and sleds
US15/396,173 Pending US20180027063A1 (en) 2016-07-22 2016-12-30 Techniques to determine and process metric data for physical resources
US15/395,273 Active 2037-01-04 US10461774B2 (en) 2016-07-22 2016-12-30 Technologies for assigning workloads based on resource utilization phases
US15/395,443 Pending US20180027055A1 (en) 2016-07-22 2016-12-30 Technologies for Assigning Workloads to Balance Multiple Resource Allocation Objectives
US15/395,174 Pending US20180027066A1 (en) 2016-07-22 2016-12-30 Technologies for managing the efficiency of workload execution
US15/395,203 Active US10045098B2 (en) 2016-07-22 2016-12-30 Technologies for switching network traffic in a data center
US15/396,151 Pending US20180024757A1 (en) 2016-07-22 2016-12-30 Accelerator Resource Allocation and Pooling
US15/395,183 Pending US20180026905A1 (en) 2016-07-22 2016-12-30 Technologies for dynamic remote resource allocation
US15/396,028 Active 2037-10-14 US10542333B2 (en) 2016-07-22 2016-12-30 Technologies for a low-latency interface to data storage
US15/395,192 Pending US20180027058A1 (en) 2016-07-22 2016-12-30 Technologies for Efficiently Identifying Managed Nodes Available for Workload Assignments
US15/395,482 Pending US20180026906A1 (en) 2016-07-22 2016-12-30 Technologies for Predictively Managing Heat Generation in a Datacenter
US15/395,566 Pending US20180026910A1 (en) 2016-07-22 2016-12-30 Technologies for Managing Resource Allocation With a Hierarchical Model
US15/396,017 Abandoned US20180024752A1 (en) 2016-07-22 2016-12-30 Technologies for low-latency compression
US15/395,084 Pending US20180027057A1 (en) 2016-07-22 2016-12-30 Technologies for Performing Orchestration With Online Analytics of Telemetry Data
US15/395,702 Active US9929747B2 (en) 2016-07-22 2016-12-30 Technologies for high-performance single-stream LZ77 compression
US15/395,179 Active 2038-03-28 US10567855B2 (en) 2016-07-22 2016-12-30 Technologies for allocating resources within a self-managed node
US15/395,692 Abandoned US20180024775A1 (en) 2016-07-22 2016-12-30 Technologies for storage block virtualization for non-volatile memory over fabrics
US15/396,041 Pending US20180024306A1 (en) 2016-07-22 2016-12-30 Technologies for blind mating for sled-rack connections
US15/395,494 Active 2037-02-07 US10616668B2 (en) 2016-07-22 2016-12-30 Technologies for managing resource allocation with phase residency data
US15/396,035 Active US10070207B2 (en) 2016-07-22 2016-12-30 Technologies for optical communication in rack clusters
US15/396,063 Pending US20180024756A1 (en) 2016-07-22 2016-12-30 Technologies for enhanced memory wear leveling
US15/396,338 Active 2037-01-31 US10368148B2 (en) 2016-07-22 2016-12-30 Configurable computing resource physical location determination
US15/395,995 Pending US20180026851A1 (en) 2016-07-22 2016-12-30 Technologies for data center multi-zone cabling
US16/311,231 Pending US20190196824A1 (en) 2016-07-22 2016-12-31 Technologies for adaptive processing of multiple buffers
US15/396,647 Active US9936613B2 (en) 2016-07-22 2016-12-31 Technologies for rack architecture
US15/396,501 Pending US20180024960A1 (en) 2016-07-22 2016-12-31 Techniques to support multiple interconnect protocols for a common set of interconnect connectors
US15/396,653 Active US10356495B2 (en) 2016-07-22 2016-12-31 Technologies for cooling rack mounted sleds
US15/396,473 Pending US20180026908A1 (en) 2016-07-22 2016-12-31 Techniques to configure physical compute resources for workloads via circuit switching
US15/396,652 Active US10348327B2 (en) 2016-07-22 2016-12-31 Technologies for providing power to a rack
US15/396,646 Active US10085358B2 (en) 2016-07-22 2016-12-31 Technologies for sled architecture
US15/407,330 Pending US20180027060A1 (en) 2016-07-22 2017-01-17 Technologies for determining and storing workload characteristics
US15/407,329 Pending US20180024861A1 (en) 2016-07-22 2017-01-17 Technologies for managing allocation of accelerator resources
US15/423,467 Pending US20180027682A1 (en) 2016-07-22 2017-02-02 Thermally Efficient Compute Resource Apparatuses and Methods
US15/425,916 Active 2037-03-05 US10397670B2 (en) 2016-07-22 2017-02-06 Techniques to process packets in a dual-mode switching environment
US15/473,748 Active US9954552B2 (en) 2016-07-22 2017-03-30 Technologies for performing low-latency decompression with tree caching
US15/473,778 Active US9859918B1 (en) 2016-07-22 2017-03-30 Technologies for performing speculative decompression
US15/476,939 Pending US20180024932A1 (en) 2016-07-22 2017-03-31 Techniques for memory access prefetching using workload data
US15/476,915 Active US10616669B2 (en) 2016-07-22 2017-03-31 Dynamic memory for compute resources in a data center
US15/476,891 Abandoned US20180024957A1 (en) 2016-07-22 2017-03-31 Techniques to enable disaggregation of physical memory resources in a compute system
US15/476,896 Pending US20180024958A1 (en) 2016-07-22 2017-03-31 Techniques to provide a multi-level memory architecture via interconnects
US15/476,910 Pending US20180027679A1 (en) 2016-07-22 2017-03-31 Disaggregated Physical Memory Resources in a Data Center
US15/639,602 Active US9973207B2 (en) 2016-07-22 2017-06-30 Technologies for heuristic huffman code generation
US15/638,855 Pending US20180027062A1 (en) 2016-07-22 2017-06-30 Technologies for dynamically managing resources in disaggregated accelerators
US15/638,842 Active US10116327B2 (en) 2016-07-22 2017-06-30 Technologies for efficiently compressing data with multiple hash tables
US15/639,289 Active US10033404B2 (en) 2016-07-22 2017-06-30 Technologies for efficiently compressing data with run detection
US15/639,037 Active 2038-04-11 US10448126B2 (en) 2016-07-22 2017-06-30 Technologies for dynamic allocation of tiers of disaggregated memory resources
US15/654,615 Pending US20180025299A1 (en) 2016-07-22 2017-07-19 Automated data center maintenance
US15/656,798 Active 2037-12-25 US10489156B2 (en) 2016-07-22 2017-07-21 Techniques to verify and authenticate resources in a data center computer environment
US15/656,830 Pending US20180026918A1 (en) 2016-07-22 2017-07-21 Out-of-band management techniques for networking fabrics
US15/854,261 Active US10263637B2 (en) 2016-07-22 2017-12-26 Technologies for performing speculative decompression
US16/055,602 Pending US20190014396A1 (en) 2016-07-22 2018-08-06 Technologies for switching network traffic in a data center
US16/120,419 Active US10474460B2 (en) 2016-07-22 2018-09-03 Technologies for optical communication in rack clusters
US16/506,457 Pending US20190387291A1 (en) 2016-07-22 2019-07-09 Robotically serviceable computing rack and sleds
US16/513,371 Pending US20190342643A1 (en) 2016-07-22 2019-07-16 Technologies For Switching Network Traffic In A Data Center
US16/513,345 Pending US20190342642A1 (en) 2016-07-22 2019-07-16 Technologies For Switching Network Traffic In A Data Center
US16/656,009 Pending US20200053438A1 (en) 2016-07-22 2019-10-17 Techniques to verify and authenticate resources in a data center computer environment

Family Applications Before (50)

Application Number Title Priority Date Filing Date
US15/394,338 Active US10334334B2 (en) 2016-07-22 2016-12-29 Storage sled and techniques for a data center
US15/394,321 Active US10091904B2 (en) 2016-07-22 2016-12-29 Storage sled for data center
US15/394,392 Active US10034407B2 (en) 2016-07-22 2016-12-29 Storage sled for a data center
US15/394,281 Active 2037-01-01 US10390114B2 (en) 2016-07-22 2016-12-29 Memory sharing for physical accelerator resources in a data center
US15/395,572 Pending US20180027059A1 (en) 2016-07-22 2016-12-30 Technologies for distributing data to improve data throughput rates
US15/395,550 Active 2037-07-30 US10411729B2 (en) 2016-07-22 2016-12-30 Technologies for allocating ephemeral data storage among managed nodes
US15/395,679 Abandoned US20180024740A1 (en) 2016-07-22 2016-12-30 Technologies for variable-extent storage over network fabrics
US15/395,765 Abandoned US20180024764A1 (en) 2016-07-22 2016-12-30 Technologies for accelerating data writes
US15/396,284 Active 2037-03-18 US10313769B2 (en) 2016-07-22 2016-12-30 Technologies for performing partially synchronized writes
US15/395,988 Pending US20180024864A1 (en) 2016-07-22 2016-12-30 Memory Module for a Data Center Compute Sled
US15/396,014 Pending US20180026835A1 (en) 2016-07-22 2016-12-30 Techniques to control system updates and configuration changes via the cloud
US15/396,039 Pending US20180024838A1 (en) 2016-07-22 2016-12-30 Techniques to detect non-enumerable devices via a firmware interface table
US15/396,187 Active US10349152B2 (en) 2016-07-22 2016-12-30 Robotically serviceable computing rack and sleds
US15/396,173 Pending US20180027063A1 (en) 2016-07-22 2016-12-30 Techniques to determine and process metric data for physical resources
US15/395,273 Active 2037-01-04 US10461774B2 (en) 2016-07-22 2016-12-30 Technologies for assigning workloads based on resource utilization phases
US15/395,443 Pending US20180027055A1 (en) 2016-07-22 2016-12-30 Technologies for Assigning Workloads to Balance Multiple Resource Allocation Objectives
US15/395,174 Pending US20180027066A1 (en) 2016-07-22 2016-12-30 Technologies for managing the efficiency of workload execution
US15/395,203 Active US10045098B2 (en) 2016-07-22 2016-12-30 Technologies for switching network traffic in a data center
US15/396,151 Pending US20180024757A1 (en) 2016-07-22 2016-12-30 Accelerator Resource Allocation and Pooling
US15/395,183 Pending US20180026905A1 (en) 2016-07-22 2016-12-30 Technologies for dynamic remote resource allocation
US15/396,028 Active 2037-10-14 US10542333B2 (en) 2016-07-22 2016-12-30 Technologies for a low-latency interface to data storage
US15/395,192 Pending US20180027058A1 (en) 2016-07-22 2016-12-30 Technologies for Efficiently Identifying Managed Nodes Available for Workload Assignments
US15/395,482 Pending US20180026906A1 (en) 2016-07-22 2016-12-30 Technologies for Predictively Managing Heat Generation in a Datacenter
US15/395,566 Pending US20180026910A1 (en) 2016-07-22 2016-12-30 Technologies for Managing Resource Allocation With a Hierarchical Model
US15/396,017 Abandoned US20180024752A1 (en) 2016-07-22 2016-12-30 Technologies for low-latency compression
US15/395,084 Pending US20180027057A1 (en) 2016-07-22 2016-12-30 Technologies for Performing Orchestration With Online Analytics of Telemetry Data
US15/395,702 Active US9929747B2 (en) 2016-07-22 2016-12-30 Technologies for high-performance single-stream LZ77 compression
US15/395,179 Active 2038-03-28 US10567855B2 (en) 2016-07-22 2016-12-30 Technologies for allocating resources within a self-managed node
US15/395,692 Abandoned US20180024775A1 (en) 2016-07-22 2016-12-30 Technologies for storage block virtualization for non-volatile memory over fabrics
US15/396,041 Pending US20180024306A1 (en) 2016-07-22 2016-12-30 Technologies for blind mating for sled-rack connections
US15/395,494 Active 2037-02-07 US10616668B2 (en) 2016-07-22 2016-12-30 Technologies for managing resource allocation with phase residency data
US15/396,035 Active US10070207B2 (en) 2016-07-22 2016-12-30 Technologies for optical communication in rack clusters
US15/396,063 Pending US20180024756A1 (en) 2016-07-22 2016-12-30 Technologies for enhanced memory wear leveling
US15/396,338 Active 2037-01-31 US10368148B2 (en) 2016-07-22 2016-12-30 Configurable computing resource physical location determination
US15/395,995 Pending US20180026851A1 (en) 2016-07-22 2016-12-30 Technologies for data center multi-zone cabling
US16/311,231 Pending US20190196824A1 (en) 2016-07-22 2016-12-31 Technologies for adaptive processing of multiple buffers
US15/396,647 Active US9936613B2 (en) 2016-07-22 2016-12-31 Technologies for rack architecture
US15/396,501 Pending US20180024960A1 (en) 2016-07-22 2016-12-31 Techniques to support multiple interconnect protocols for a common set of interconnect connectors
US15/396,653 Active US10356495B2 (en) 2016-07-22 2016-12-31 Technologies for cooling rack mounted sleds
US15/396,473 Pending US20180026908A1 (en) 2016-07-22 2016-12-31 Techniques to configure physical compute resources for workloads via circuit switching
US15/396,652 Active US10348327B2 (en) 2016-07-22 2016-12-31 Technologies for providing power to a rack
US15/396,646 Active US10085358B2 (en) 2016-07-22 2016-12-31 Technologies for sled architecture
US15/407,330 Pending US20180027060A1 (en) 2016-07-22 2017-01-17 Technologies for determining and storing workload characteristics
US15/407,329 Pending US20180024861A1 (en) 2016-07-22 2017-01-17 Technologies for managing allocation of accelerator resources
US15/423,467 Pending US20180027682A1 (en) 2016-07-22 2017-02-02 Thermally Efficient Compute Resource Apparatuses and Methods
US15/425,916 Active 2037-03-05 US10397670B2 (en) 2016-07-22 2017-02-06 Techniques to process packets in a dual-mode switching environment
US15/473,748 Active US9954552B2 (en) 2016-07-22 2017-03-30 Technologies for performing low-latency decompression with tree caching
US15/473,778 Active US9859918B1 (en) 2016-07-22 2017-03-30 Technologies for performing speculative decompression
US15/476,939 Pending US20180024932A1 (en) 2016-07-22 2017-03-31 Techniques for memory access prefetching using workload data
US15/476,915 Active US10616669B2 (en) 2016-07-22 2017-03-31 Dynamic memory for compute resources in a data center

Family Applications After (17)

Application Number Title Priority Date Filing Date
US15/476,896 Pending US20180024958A1 (en) 2016-07-22 2017-03-31 Techniques to provide a multi-level memory architecture via interconnects
US15/476,910 Pending US20180027679A1 (en) 2016-07-22 2017-03-31 Disaggregated Physical Memory Resources in a Data Center
US15/639,602 Active US9973207B2 (en) 2016-07-22 2017-06-30 Technologies for heuristic huffman code generation
US15/638,855 Pending US20180027062A1 (en) 2016-07-22 2017-06-30 Technologies for dynamically managing resources in disaggregated accelerators
US15/638,842 Active US10116327B2 (en) 2016-07-22 2017-06-30 Technologies for efficiently compressing data with multiple hash tables
US15/639,289 Active US10033404B2 (en) 2016-07-22 2017-06-30 Technologies for efficiently compressing data with run detection
US15/639,037 Active 2038-04-11 US10448126B2 (en) 2016-07-22 2017-06-30 Technologies for dynamic allocation of tiers of disaggregated memory resources
US15/654,615 Pending US20180025299A1 (en) 2016-07-22 2017-07-19 Automated data center maintenance
US15/656,798 Active 2037-12-25 US10489156B2 (en) 2016-07-22 2017-07-21 Techniques to verify and authenticate resources in a data center computer environment
US15/656,830 Pending US20180026918A1 (en) 2016-07-22 2017-07-21 Out-of-band management techniques for networking fabrics
US15/854,261 Active US10263637B2 (en) 2016-07-22 2017-12-26 Technologies for performing speculative decompression
US16/055,602 Pending US20190014396A1 (en) 2016-07-22 2018-08-06 Technologies for switching network traffic in a data center
US16/120,419 Active US10474460B2 (en) 2016-07-22 2018-09-03 Technologies for optical communication in rack clusters
US16/506,457 Pending US20190387291A1 (en) 2016-07-22 2019-07-09 Robotically serviceable computing rack and sleds
US16/513,371 Pending US20190342643A1 (en) 2016-07-22 2019-07-16 Technologies For Switching Network Traffic In A Data Center
US16/513,345 Pending US20190342642A1 (en) 2016-07-22 2019-07-16 Technologies For Switching Network Traffic In A Data Center
US16/656,009 Pending US20200053438A1 (en) 2016-07-22 2019-10-17 Techniques to verify and authenticate resources in a data center computer environment

Country Status (6)

Country Link
US (68) US10334334B2 (en)
EP (11) EP3488338A4 (en)
CN (27) CN109416630A (en)
DE (18) DE112017003708T5 (en)
TW (2) TW201804282A (en)
WO (45) WO2018014515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190114232A1 (en) * 2017-10-17 2019-04-18 Christopher Squires Local and offloaded snapshots for volatile memory

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870317B (en) * 2012-12-10 2017-07-21 中兴通讯股份有限公司 Method for scheduling task and system in cloud computing
US9882984B2 (en) 2013-08-02 2018-01-30 International Business Machines Corporation Cache migration management in a virtualized distributed computing system
JP6512055B2 (en) * 2015-09-30 2019-05-15 富士通株式会社 Analysis program, analyzer and analysis method
US10306344B2 (en) * 2016-07-04 2019-05-28 Huawei Technologies Co., Ltd. Method and system for distributed control of large photonic switched networks
US10334334B2 (en) * 2016-07-22 2019-06-25 Intel Corporation Storage sled and techniques for a data center
US10635563B2 (en) 2016-08-04 2020-04-28 Oracle International Corporation Unsupervised method for baselining and anomaly detection in time-series data for enterprise systems
US10469383B2 (en) * 2016-11-10 2019-11-05 International Business Machines Corporation Storing data in association with a key within a hash table and retrieving the data from the hash table using the key
US20180136985A1 (en) * 2016-11-17 2018-05-17 International Business Machines Corporation Asset placement management in a shared pool of configurable computing resources
US10171309B1 (en) * 2016-12-23 2019-01-01 EMC IP Holding Company LLC Topology service
US10387305B2 (en) * 2016-12-23 2019-08-20 Intel Corporation Techniques for compression memory coloring
US10628233B2 (en) * 2016-12-30 2020-04-21 Samsung Electronics Co., Ltd. Rack-level scheduling for reducing the long tail latency using high performance SSDS
US10534598B2 (en) * 2017-01-04 2020-01-14 International Business Machines Corporation Rolling upgrades in disaggregated systems
US20180204159A1 (en) * 2017-01-19 2018-07-19 Bank Of America Corporation Resource and experience factor value generation system
JP2018120490A (en) * 2017-01-26 2018-08-02 キヤノン株式会社 Memory access system, control method thereof, program, and image forming apparatus
US10298649B2 (en) * 2017-02-15 2019-05-21 Microsoft Technology Licensing, Llc Guaranteeing stream exclusivity in a multi-tenant environment
US20180241707A1 (en) * 2017-02-17 2018-08-23 Whatsapp Inc. Methods and systems for processing an ephemeral content message
US10254961B2 (en) * 2017-02-21 2019-04-09 International Business Machines Corporation Dynamic load based memory tag management
US10628279B2 (en) * 2017-02-28 2020-04-21 International Business Machines Corporation Memory management in multi-processor environments based on memory efficiency
US10474499B2 (en) * 2017-03-01 2019-11-12 The Toronto-Dominion Bank Resource allocation based on resource distribution data from child node
US20180287956A1 (en) * 2017-03-30 2018-10-04 Home Box Office, Inc. Predictive scaling of computing resources
US10459517B2 (en) * 2017-03-31 2019-10-29 Qualcomm Incorporated System and methods for scheduling software tasks based on central processing unit power characteristics
US10171377B2 (en) * 2017-04-18 2019-01-01 International Business Machines Corporation Orchestrating computing resources between different computing environments
US10445143B2 (en) * 2017-06-14 2019-10-15 Vmware, Inc. Device replacement for hyper-converged infrastructure computing environments
US10506028B2 (en) * 2017-06-14 2019-12-10 American Megatrends International, Llc Techniques of preserving service request payloads
US10382274B2 (en) * 2017-06-26 2019-08-13 Cisco Technology, Inc. System and method for wide area zero-configuration network auto configuration
US10409756B2 (en) * 2017-07-07 2019-09-10 Facebook, Inc. Multi-node server platform with modularly replaceable cards
US10572307B2 (en) * 2017-07-26 2020-02-25 Bank Of America Corportion System and method of training machine learning algorithm to satisfactorily allocate resources for task execution
US20190033945A1 (en) * 2017-07-30 2019-01-31 Nautilus Data Technologies, Inc. Data center total resource utilization efficiency (true) system and method
US10334330B2 (en) * 2017-08-03 2019-06-25 Facebook, Inc. Scalable switch
US10621005B2 (en) * 2017-08-31 2020-04-14 Oracle International Corporation Systems and methods for providing zero down time and scalability in orchestration cloud services
US10496507B2 (en) * 2017-09-21 2019-12-03 American Megatrends International, Llc Dynamic personality configurations for pooled system management engine
US10601907B2 (en) * 2017-09-22 2020-03-24 Artiste QB Net Inc. System and method for platform to securely distribute compute workload to web capable devices
US10188013B1 (en) * 2017-10-09 2019-01-22 Facebook, Inc. Apparatus, system, and method for deploying data center modules
US10620999B2 (en) * 2017-11-08 2020-04-14 Western Digital Technologies, Inc Task scheduling through an operating system agnostic system abstraction layer from a top of the rack switch in a hyper converged infrastructure
US10469921B2 (en) * 2017-11-10 2019-11-05 Juniper Networks, Inc. Data center packet optical transport failure protection
US20190155512A1 (en) * 2017-11-17 2019-05-23 International Business Machines Corporation Policy-based optimization of cloud resources on tiered storage operations
US10620959B2 (en) * 2017-12-01 2020-04-14 International Business Machines Corporation Optimized multi-processor instruction scheduler
US10572250B2 (en) 2017-12-20 2020-02-25 International Business Machines Corporation Dynamic accelerator generation and deployment
US20190235185A1 (en) * 2018-01-31 2019-08-01 Hewlett Packard Enterprise Development Lp Cable router
US10572242B1 (en) * 2018-02-09 2020-02-25 American Megatrends International, Llc Firmware update using rest over IPMI interface
US10489142B1 (en) 2018-02-09 2019-11-26 American Megatrends International, Llc Secure firmware integrity monitoring using rest over IPMI interface
US10628176B1 (en) 2018-02-09 2020-04-21 American Megatrends International, Llc Firmware configuration using REST over IPMI interface
CN110244901A (en) * 2018-03-07 2019-09-17 杭州海康威视系统技术有限公司 Method for allocating tasks and device, distributed memory system
US10333548B1 (en) 2018-04-09 2019-06-25 International Business Machines Corporation Efficient software closing of hardware-generated encoding context
US10599553B2 (en) 2018-04-27 2020-03-24 International Business Machines Corporation Managing cloud-based hardware accelerators
US10606785B2 (en) * 2018-05-04 2020-03-31 Intel Corporation Flex bus protocol negotiation and enabling sequence
US10601903B2 (en) 2018-05-17 2020-03-24 International Business Machines Corporation Optimizing dynamical resource allocations based on locality of resources in disaggregated data centers
US10305511B1 (en) * 2018-05-25 2019-05-28 Xilinx, Inc. Run length compression and decompression using an alternative value for single occurrences of a run value
US10489341B1 (en) 2018-06-25 2019-11-26 Quanta Computer Inc. Flexible interconnect port connection
US20200004591A1 (en) * 2018-06-27 2020-01-02 Accenture Global Solutions Limited Self-managed intelligent elastic cloud stack
US10521395B1 (en) 2018-07-05 2019-12-31 Mythic, Inc. Systems and methods for implementing an intelligence processing computing architecture
US10491302B1 (en) * 2018-08-06 2019-11-26 Hewlett Packard Enterprise Development Lp Rack-level photonic solution
US10623101B1 (en) 2018-08-07 2020-04-14 Hewlett Packard Enterprise Development Lp Hyperscale photonics connectivity solution
TWI682320B (en) * 2018-08-17 2020-01-11 緯穎科技服務股份有限公司 Control method for data storage system, data storage module, and computer program product
US10624237B2 (en) 2018-09-19 2020-04-14 TMGCore, LLC Liquid immersion cooling vessel and components thereof
US10617032B1 (en) 2018-09-19 2020-04-07 TMGCore, LLC Robot for a liquid immersion cooling system
WO2020061305A1 (en) * 2018-09-19 2020-03-26 TMGCore, LLC Liquid immersion cooling platform
US10637733B2 (en) 2018-09-25 2020-04-28 International Business Machines Corporation Dynamic grouping and repurposing of general purpose links in disaggregated datacenters

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080028127A1 (en) * 2006-07-27 2008-01-31 Ware Frederick A Cross-threaded memory system
US20110206381A1 (en) * 2010-02-25 2011-08-25 Samsung Electronics Co., Ltd. Optical serializing/deserializing apparatus and method and method of manufacturing same
US20120033978A1 (en) * 2009-04-29 2012-02-09 Terrel Morris Optical memory expansion
US20150006806A1 (en) * 2013-06-26 2015-01-01 Electronics And Telecommunications Research Institute Double data rate synchronous dynamic random access memory module and configuring method thereof
US20150103481A1 (en) * 2012-02-16 2015-04-16 Inphi Corporation Hybrid memory blade
US20150181746A1 (en) * 2013-12-20 2015-06-25 Rambus Inc. Circuit board assembly configuration
US20150186267A1 (en) * 2013-12-27 2015-07-02 Qualcomm Incorporated Method and apparatus for dram spatial coalescing within a single channel
US20160308774A1 (en) * 2015-04-17 2016-10-20 International Business Machines Corporation Storage area network workload balancing
US20170269666A1 (en) * 2016-03-18 2017-09-21 Apple Inc. Smart Dynamic Voltage and Frequency Scaling of Electronic Components
US20170286285A1 (en) * 2016-03-31 2017-10-05 Dell Products L.P. Storage class memory (scm) memory mode cache system
US20170293447A1 (en) * 2016-04-07 2017-10-12 International Business Machines Corporation Multi-tenant memory service for memory pool architectures
US20180007127A1 (en) * 2016-06-30 2018-01-04 International Business Machines Corporation Managing software licenses in a disaggregated environment
US20180019953A1 (en) * 2016-07-14 2018-01-18 Cisco Technology, Inc. Interconnect method for implementing scale-up servers

Family Cites Families (529)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442476A (en) * 1981-08-17 1984-04-10 Westinghouse Electric Corp. Versatile printed circuit board termination rack
US4656559A (en) * 1984-05-10 1987-04-07 Ultima Electronics Ltd. Holder and heat sink for electronic components
US4695872A (en) * 1986-08-01 1987-09-22 Texas Instruments Incorporated High density micropackage for IC chips
JPH0336614A (en) * 1989-07-03 1991-02-18 Mitsumi Electric Co Ltd Circuit module
US5051745A (en) * 1990-08-21 1991-09-24 Pkware, Inc. String searcher, and compressor using same
GB2256735B (en) * 1991-06-12 1995-06-21 Intel Corp Non-volatile disk cache
US5277615A (en) * 1992-09-24 1994-01-11 Compaq Computer Corporation Apparatus for removably supporting a plurality of hot plug-connected hard disk drives
US5347428A (en) * 1992-12-03 1994-09-13 Irvine Sensors Corporation Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip
US5303121A (en) * 1992-12-28 1994-04-12 Ncr Corporation Multi-chip module board
US5535399A (en) * 1993-09-30 1996-07-09 Quantum Corporation Solid state disk drive unit having on-board backup non-volatile memory
US5579204A (en) * 1994-08-05 1996-11-26 Emc Corporation Disk carrier assembly
JPH08119371A (en) * 1994-10-25 1996-05-14 Matsushita Electric Ind Co Ltd Magazine rack for printed circuit board
JPH08148870A (en) * 1994-11-16 1996-06-07 Hitachi Ltd Hat radiation structure of electronic equipment
US5784291A (en) * 1994-12-22 1998-07-21 Texas Instruments, Incorporated CPU, memory controller, bus bridge integrated circuits, layout structures, system and methods
GB2297398B (en) * 1995-01-17 1999-11-24 Advanced Risc Mach Ltd Accessing cache memories
JP3426385B2 (en) * 1995-03-09 2003-07-14 富士通株式会社 Disk controller
US9124383B1 (en) 2010-09-23 2015-09-01 Ciena Corporation High capacity fiber-optic integrated transmission and switching systems
US5799200A (en) * 1995-09-28 1998-08-25 Emc Corporation Power failure responsive apparatus and method having a shadow dram, a flash ROM, an auxiliary battery, and a controller
US5652697A (en) * 1995-11-13 1997-07-29 Ast Research, Inc. Computer system backplane having ground tabs for interconnecting the backplane ground to the computer system chassis
US5757295A (en) * 1995-12-28 1998-05-26 Philips Electronics North America Corporation Variable length decoder with enhanced throughput due to parallel processing of contiguous code words of identical type
US6952705B2 (en) * 1997-03-25 2005-10-04 Mci, Inc. Method, system and program product that utilize a hierarchical conceptual framework to model an environment containing a collection of items
US20020152060A1 (en) * 1998-08-31 2002-10-17 Tseng Ping-Sheng Inter-chip communication system
US6003115A (en) * 1997-07-29 1999-12-14 Quarterdeck Corporation Method and apparatus for predictive loading of a cache
US6043765A (en) * 1997-09-26 2000-03-28 Silicon Engineering, Inc. Method and apparatus for performing a parallel speculative Huffman decoding using both partial and full decoders
US6047363A (en) * 1997-10-14 2000-04-04 Advanced Micro Devices, Inc. Prefetching data using profile of cache misses from earlier code executions
US6175902B1 (en) * 1997-12-18 2001-01-16 Advanced Micro Devices, Inc. Method and apparatus for maintaining a time order by physical ordering in a memory
US6367018B1 (en) 1998-02-05 2002-04-02 3Com Corporation Method for detecting dedicated link between an end station and a network device
US6226628B1 (en) * 1998-06-24 2001-05-01 Microsoft Corporation Cross-file pattern-matching compression
AU4848599A (en) 1998-07-08 2000-02-01 Broadcom Corporation Network switching architecture with fast filtering processor
US6424034B1 (en) * 1998-08-31 2002-07-23 Micron Technology, Inc. High performance packaging for microprocessors and DRAM chips which minimizes timing skews
JP2000269671A (en) * 1999-03-19 2000-09-29 Toshiba Corp Electronic apparatus
US6565163B2 (en) 1999-04-12 2003-05-20 Inclose Design, Inc. Rack for memory storage devices
US6748457B2 (en) * 2000-02-03 2004-06-08 Realtime Data, Llc Data storewidth accelerator
US6220456B1 (en) * 2000-04-19 2001-04-24 Dell Products, L.P. Method and apparatus for supporting a computer chassis
US6305848B1 (en) * 2000-06-19 2001-10-23 Corona Optical Systems, Inc. High density optoelectronic transceiver module
US6981070B1 (en) * 2000-07-12 2005-12-27 Shun Hang Luk Network storage device having solid-state non-volatile memory
US6325636B1 (en) * 2000-07-20 2001-12-04 Rlx Technologies, Inc. Passive midplane for coupling web server processing cards with a network interface(s)
JP4299958B2 (en) * 2000-07-31 2009-07-22 富士通テレコムネットワークス株式会社 Communication device and plug-in unit
WO2002027664A1 (en) * 2000-09-28 2002-04-04 Roke Manor Research Limited Improved huffman data compression method
US7958199B2 (en) * 2001-11-02 2011-06-07 Oracle America, Inc. Switching systems and methods for storage management in digital networks
US7082549B2 (en) * 2000-11-17 2006-07-25 Bitfone Corporation Method for fault tolerant updating of an electronic device
US20020069317A1 (en) * 2000-12-01 2002-06-06 Chow Yan Chiew E-RAID system and method of operating the same
IES20010015A2 (en) * 2001-01-09 2002-04-17 Menlo Park Res Teoranta Content management and distribution system
US6738779B1 (en) * 2001-02-21 2004-05-18 Telecom Italia S.P.A. Apparatus for and method of multiple parallel string searching
US6813571B2 (en) * 2001-02-23 2004-11-02 Power Measurement, Ltd. Apparatus and method for seamlessly upgrading the firmware of an intelligent electronic device
US6871150B2 (en) * 2001-02-23 2005-03-22 Power Measurement Ltd. Expandable intelligent electronic device
US6745138B2 (en) * 2001-02-23 2004-06-01 Power Measurement, Ltd. Intelligent electronic device with assured data storage on powerdown
US20030091267A1 (en) * 2001-02-28 2003-05-15 Alvarez Mario F. Node management architecture with customized line card handlers for a modular optical network, and methods and apparatus therefor
US6721195B2 (en) * 2001-07-12 2004-04-13 Micron Technology, Inc. Reversed memory module socket and motherboard incorporating same
US7065599B2 (en) * 2001-08-10 2006-06-20 Sun Microsystems, Inc. Multiprocessor systems
US6606322B2 (en) * 2001-08-17 2003-08-12 Mcdata Corporation Route lookup caching for a fiber channel switch
US20030046339A1 (en) * 2001-09-05 2003-03-06 Ip Johnny Chong Ching System and method for determining location and status of computer system server
US6938133B2 (en) * 2001-09-28 2005-08-30 Hewlett-Packard Development Company, L.P. Memory latency and bandwidth optimizations
TWI237759B (en) * 2001-10-04 2005-08-11 Via Tech Inc Method for data accessing in a computer and the computer thereof
US6833995B1 (en) * 2001-11-21 2004-12-21 3Pardata, Inc. Enclosure having a divider wall for removable electronic devices
JP3810681B2 (en) * 2001-12-20 2006-08-16 シャープ株式会社 Thin film transistor substrate and liquid crystal display device
US7266823B2 (en) * 2002-02-21 2007-09-04 International Business Machines Corporation Apparatus and method of dynamically repartitioning a computer system in response to partition workloads
US20130016682A1 (en) * 2002-05-21 2013-01-17 Russell Jesse E Advanced multi-network client device that utilizes multiple digital radio processors for implementing frequency channel aggregation within different spectrum bands
KR100913512B1 (en) * 2002-05-31 2009-08-21 베라리 시스템즈, 인코포레이티드 A cooling arrangement for cooling computer components
US6909611B2 (en) * 2002-05-31 2005-06-21 Verari System, Inc. Rack mountable computer component and method of making same
US8837161B2 (en) * 2002-07-16 2014-09-16 Nvidia Corporation Multi-configuration processor-memory substrate device
US7363546B2 (en) * 2002-07-31 2008-04-22 Sun Microsystems, Inc. Latent fault detector
US6895476B2 (en) * 2002-10-03 2005-05-17 Hewlett-Packard Development Company, L.P. Retry-based late race resolution mechanism for a computer system
US6963959B2 (en) * 2002-10-31 2005-11-08 International Business Machines Corporation Storage system and method for reorganizing data to improve prefetch effectiveness and reduce seek distance
JP2006511965A (en) 2002-12-19 2006-04-06 マトリックス セミコンダクター インコーポレイテッド Improved method for fabricating high density non-volatile memory
GB2398651A (en) * 2003-02-21 2004-08-25 Picochip Designs Ltd Automatical task allocation in a processor array
US7034387B2 (en) * 2003-04-04 2006-04-25 Chippac, Inc. Semiconductor multipackage module including processor and memory package assemblies
US7298973B2 (en) * 2003-04-16 2007-11-20 Intel Corporation Architecture, method and system of multiple high-speed servers to network in WDM based photonic burst-switched networks
US7076605B1 (en) * 2003-04-25 2006-07-11 Network Appliance, Inc. Method and apparatus for writing data to a storage device
US20050005018A1 (en) * 2003-05-02 2005-01-06 Anindya Datta Method and apparatus for performing application virtualization
KR100585095B1 (en) * 2003-06-26 2006-05-30 삼성전자주식회사 Method and apparatus for protecting data in data transmission system
JP2005018510A (en) * 2003-06-27 2005-01-20 Hitachi Ltd Data center system and its control method
US8838772B2 (en) * 2003-08-29 2014-09-16 Ineoquest Technologies, Inc. System and method for analyzing the performance of multiple transportation streams of streaming media in packet-based networks
US20050036742A1 (en) * 2003-08-29 2005-02-17 Dean David L. Molded fiber optic ferrule with integrally formed geometry features
US7107403B2 (en) 2003-09-30 2006-09-12 International Business Machines Corporation System and method for dynamically allocating cache space among different workload classes that can have different quality of service (QoS) requirements where the system and method may maintain a history of recently evicted pages for each class and may determine a future cache size for the class based on the history and the QoS requirements
AU2004280976A1 (en) * 2003-10-08 2005-04-21 Unisys Corporation Computer system para-virtualization using a hypervisor that is implemented in a partition of the host system
US20050132089A1 (en) * 2003-12-12 2005-06-16 Octigabay Systems Corporation Directly connected low latency network and interface
US7302593B2 (en) * 2003-12-18 2007-11-27 Intel Corporation Method for remotely querying a blade server's physical location within a rack of blade servers
US7409538B2 (en) * 2003-12-18 2008-08-05 International Business Machines Corporation Update in-use flash memory without external interfaces
US6919826B1 (en) * 2003-12-19 2005-07-19 Sun Microsystems, Inc. Systems and methods for efficient and compact encoding
JP2005190297A (en) 2003-12-26 2005-07-14 Toshiba Corp Server, information processor and casing
DE102004004796B4 (en) * 2004-01-30 2007-11-29 Infineon Technologies Ag Device for data transmission between memories
US20050195629A1 (en) * 2004-03-02 2005-09-08 Leddige Michael W. Interchangeable connection arrays for double-sided memory module placement
US20050207134A1 (en) * 2004-03-16 2005-09-22 Belady Christian L Cell board interconnection architecture
US9047094B2 (en) * 2004-03-31 2015-06-02 Icera Inc. Apparatus and method for separate asymmetric control processing and data path processing in a dual path processor
US7370163B2 (en) * 2004-05-03 2008-05-06 Gemini Storage Adaptive cache engine for storage area network including systems and methods related thereto
US7460375B2 (en) 2004-05-07 2008-12-02 Rackable Systems, Inc. Interface assembly
US20070266388A1 (en) * 2004-06-18 2007-11-15 Cluster Resources, Inc. System and method for providing advanced reservations in a compute environment
US20050281014A1 (en) * 2004-06-21 2005-12-22 Carullo Thomas J Surrogate card for printed circuit board assembly
JP2006023963A (en) * 2004-07-07 2006-01-26 Fujitsu Frontech Ltd Wireless ic tag reader/writer, wireless ic tag system and wireless ic tag data writing method
US8001294B2 (en) * 2004-09-28 2011-08-16 Sony Computer Entertainment Inc. Methods and apparatus for providing a compressed network in a multi-processing system
US20060072879A1 (en) * 2004-09-30 2006-04-06 Lizhang Yang Optical fiber polishing method
AT347731T (en) * 2004-10-04 2006-12-15 Research In Motion Ltd System and method for securing data in case of power failure
JP4376750B2 (en) 2004-10-14 2009-12-02 株式会社日立製作所 Computer system
JP4496061B2 (en) * 2004-11-11 2010-07-07 パナソニック株式会社 Confidential information processing device
US7657578B1 (en) * 2004-12-20 2010-02-02 Symantec Operating Corporation System and method for volume replication in a storage environment employing distributed block virtualization
CN1816003A (en) 2005-02-06 2006-08-09 华为技术有限公司 Telecommunication method and apparatus of dissimilar chain protocol
US7613595B2 (en) * 2005-03-01 2009-11-03 The Math Works, Inc. Execution and real-time implementation of a temporary overrun scheduler
US7398278B2 (en) * 2005-03-04 2008-07-08 Nec Electronics Corporation Prefix processing technique for faster IP routing
US20060242380A1 (en) 2005-04-20 2006-10-26 Anuja Korgaonkar Virtually unlimited storage
US20060253472A1 (en) * 2005-05-03 2006-11-09 Wasserman Theodore J System, method, and service for automatically determining an initial sizing of a hardware configuration for a database system running a business intelligence workload
US7953980B2 (en) * 2005-06-30 2011-05-31 Intel Corporation Signed manifest for run-time verification of software program identity and integrity
US7489923B2 (en) * 2005-08-05 2009-02-10 Research In Motion Limited Methods and systems for handling software operations associated with startup and shutdown of handheld devices
US20070176782A1 (en) * 2005-08-08 2007-08-02 Mohalik Swarup K Device location system and method
US7865570B2 (en) * 2005-08-30 2011-01-04 Illinois Institute Of Technology Memory server
US7424666B2 (en) * 2005-09-26 2008-09-09 Intel Corporation Method and apparatus to detect/manage faults in a system
US7800932B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Memory cell comprising switchable semiconductor memory element with trimmable resistance
US7296135B2 (en) * 2005-10-05 2007-11-13 Hewlett-Packard Development Company, L.P. Data misalignment detection and correction in a computer system utilizing a mass storage subsystem
US7356638B2 (en) * 2005-10-12 2008-04-08 International Business Machines Corporation Using out-of-band signaling to provide communication between storage controllers in a computer storage system
US7725212B2 (en) 2005-10-21 2010-05-25 Hewlett-Packard Development Company, L.P. Datacenter with automated robotic maintenance
US7298612B2 (en) * 2005-10-25 2007-11-20 Hewlett-Packard Development Company, L.P. Server with vertical drive arrangement
US7545630B2 (en) * 2005-11-01 2009-06-09 Dell Products L.P. Method and apparatus for thermal dissipation
US7634585B2 (en) * 2005-11-04 2009-12-15 Sandisk Corporation In-line cache using nonvolatile memory between host and disk device
US20100165562A1 (en) * 2006-01-12 2010-07-01 Para Kanagasabai Segaram Memory module
CN100571202C (en) 2006-01-27 2009-12-16 华为技术有限公司 A kind of transfer approach and transfer system that carries the data of routing iinformation
US9164679B2 (en) * 2011-04-06 2015-10-20 Patents1, Llc System, method and computer program product for multi-thread operation involving first memory of a first memory class and second memory of a second memory class
US7904894B2 (en) * 2006-03-29 2011-03-08 Microsoft Corporation Automatically optimize performance of package execution
US20070230109A1 (en) 2006-03-31 2007-10-04 Spectra Logic Corporation High density array system with active storage blades
US10026255B2 (en) * 2006-04-13 2018-07-17 Igt Presentation of remotely-hosted and locally rendered content for gaming systems
US9128766B1 (en) * 2006-04-24 2015-09-08 Hewlett-Packard Development Company, L.P. Computer workload redistribution schedule
US8555288B2 (en) * 2006-05-17 2013-10-08 Teradata Us, Inc. Managing database utilities to improve throughput and concurrency
US7461229B2 (en) * 2006-05-23 2008-12-02 Dataram, Inc. Software program for managing and protecting data written to a hybrid solid-state disk drive
US7613809B2 (en) 2006-05-30 2009-11-03 Intel Corporation Supporting ephemeral ports in a virtualized environment
US8112756B2 (en) 2006-07-20 2012-02-07 Hewlett-Packard Development Company, L.P. System and method for evaluating a workload and its impact on performance of a workload manager
US8046765B2 (en) 2006-07-25 2011-10-25 Hewlett-Packard Development Company, L.P. System and method for determining allocation of resource access demands to different classes of service based at least in part on permitted degraded performance
US8209695B1 (en) * 2006-07-28 2012-06-26 Hewlett-Packard Development Company, L.P. Reserving resources in a resource-on-demand system for user desktop utility demand
US8099583B2 (en) * 2006-08-23 2012-01-17 Axis Semiconductor, Inc. Method of and apparatus and architecture for real time signal processing by switch-controlled programmable processor configuring and flexible pipeline and parallel processing
MX2009002215A (en) * 2006-09-01 2009-03-16 Adc Gmbh Active signal cross-connect system.
CN101206618A (en) * 2006-09-08 2008-06-25 三星电子株式会社 Fusion memory device and method
JP5076418B2 (en) * 2006-09-19 2012-11-21 ソニー株式会社 Shared memory device
US8516172B1 (en) * 2007-08-30 2013-08-20 Virident Systems, Inc. Methods for early write termination and power failure with non-volatile memory
US7553091B2 (en) * 2006-10-19 2009-06-30 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Stackable multi-optical fiber connector modules and devices for aligning sets of the stackable multi-optical fiber connector modules and coupling optical signals between them
JP4241802B2 (en) * 2006-10-27 2009-03-18 株式会社東芝 Component placement support apparatus, method, and program
US8489817B2 (en) 2007-12-06 2013-07-16 Fusion-Io, Inc. Apparatus, system, and method for caching data
EP2126680A2 (en) * 2006-12-06 2009-12-02 Fusion Multisystems, Inc. Apparatus, system, and method for a front-end, distributed raid
US20080144293A1 (en) * 2006-12-19 2008-06-19 International Business Machines Corporation Cable Management System and Method for Rack Mountable Equipment
US7751918B2 (en) * 2007-01-05 2010-07-06 International Business Machines Corporation Methods for configuring tubing for interconnecting in-series multiple liquid-cooled cold plates
US7710731B2 (en) * 2007-01-25 2010-05-04 Mitac International Corp. Chassis partition framework for personal cluster computer
US7452236B2 (en) * 2007-02-01 2008-11-18 Aprius, Inc. Cabling for rack-mount devices
WO2008095201A1 (en) * 2007-02-02 2008-08-07 Psimast, Inc. Processor chip architecture having integrated high-speed packet switched serial interface
JP5026102B2 (en) * 2007-02-07 2012-09-12 株式会社日立製作所 Storage control device and data management method
US7680982B2 (en) * 2007-02-20 2010-03-16 International Business Machines Corporation Preservation of cache data following failover
US8848722B2 (en) 2007-03-14 2014-09-30 Zonit Structured Solutions, Llc Data center network distribution system
WO2008127672A2 (en) * 2007-04-11 2008-10-23 Slt Logic Llc Modular blade for providing scalable mechanical, electrical and environmental functionality in the enterprise using advanced tca boards
US9367465B2 (en) * 2007-04-12 2016-06-14 Hewlett Packard Enterprise Development Lp Method and system for improving memory access performance
US7857214B2 (en) * 2007-04-26 2010-12-28 Liebert Corporation Intelligent track system for mounting electronic equipment
US8543711B2 (en) * 2007-04-30 2013-09-24 Hewlett-Packard Development Company, L.P. System and method for evaluating a pattern of resource demands of a workload
US8539164B2 (en) * 2007-04-30 2013-09-17 Hewlett-Packard Development Company, L.P. Cache coherency within multiprocessor computer system
US20080294728A1 (en) * 2007-05-22 2008-11-27 Microsoft Corporation Service Discovery for Electronic Messaging Clients
US8756307B1 (en) * 2007-07-30 2014-06-17 Hewlett-Packard Development Company, L.P. Translating service level objectives to system metrics
US20090041412A1 (en) * 2007-08-07 2009-02-12 Jeffrey Dean Danley Laser erosion processes for fiber optic ferrules
US8090027B2 (en) 2007-08-29 2012-01-03 Red Hat, Inc. Data compression using an arbitrary-sized dictionary
US7623365B2 (en) * 2007-08-29 2009-11-24 Micron Technology, Inc. Memory device interface methods, apparatus, and systems
JP5061797B2 (en) 2007-08-31 2012-10-31 ソニー株式会社 Transmission system and method, transmission device and method, reception device and method, program, and recording medium
GB2452524A (en) * 2007-09-06 2009-03-11 Cambridge Silicon Radio Ltd A jitter insensitive sigma-delta modulator
US8248928B1 (en) * 2007-10-09 2012-08-21 Foundry Networks, Llc Monitoring server load balancing
US7639903B2 (en) * 2007-10-15 2009-12-29 Hewlett-Packard Development Company, L.P. Daisy chain optical interconnect
US8410602B2 (en) * 2007-10-15 2013-04-02 Intel Corporation Cooling system for semiconductor devices
US7895348B2 (en) 2007-10-17 2011-02-22 Dispersive Networks Inc. Virtual dispersive routing
IL187042D0 (en) * 2007-10-30 2008-02-09 Sandisk Il Ltd Write failure protection for hierarchical integrity schemes
US7872483B2 (en) * 2007-12-12 2011-01-18 Samsung Electronics Co., Ltd. Circuit board having bypass pad
US7979652B1 (en) * 2007-12-20 2011-07-12 Amazon Technologies, Inc. System and method for M-synchronous replication
US8086825B2 (en) * 2007-12-31 2011-12-27 Advanced Micro Devices, Inc. Processing pipeline having stage-specific thread selection and method thereof
US20090204718A1 (en) * 2008-02-08 2009-08-13 Lawton Kevin P Using memory equivalency across compute clouds for accelerated virtual memory migration and memory de-duplication
US7797578B2 (en) * 2008-02-25 2010-09-14 Kingston Technology Corp. Fault diagnosis of serially-addressed memory chips on a test adaptor board to a middle memory-module slot on a PC motherboard
US8082400B1 (en) 2008-02-26 2011-12-20 Hewlett-Packard Development Company, L.P. Partitioning a memory pool among plural computing nodes
US20090222686A1 (en) * 2008-03-03 2009-09-03 Sun Microsystems, Inc. Self maintained computer system utilizing robotics
JP5153392B2 (en) * 2008-03-11 2013-02-27 株式会社日立製作所 Storage control apparatus and method
US8402468B2 (en) 2008-03-17 2013-03-19 Ca, Inc. Capacity planning based on resource utilization as a function of workload
US8208532B2 (en) * 2008-03-31 2012-06-26 Oracle America, Inc. Method and apparatus for data compression and decompression
US20090254705A1 (en) * 2008-04-07 2009-10-08 International Business Machines Corporation Bus attached compressed random access memory
US7948196B2 (en) * 2008-04-09 2011-05-24 International Business Machines Corporation Plurality of configurable independent compute nodes sharing a fan assembly
US8078862B2 (en) * 2008-04-25 2011-12-13 Intel Corporation Method for assigning physical data address range in multiprocessor system
JP5053179B2 (en) * 2008-05-30 2012-10-17 株式会社日立製作所 Verification server, program, and verification method
US8706863B2 (en) * 2008-07-18 2014-04-22 Apple Inc. Systems and methods for monitoring data and bandwidth usage
US8015343B2 (en) * 2008-08-08 2011-09-06 Amazon Technologies, Inc. Providing executing programs with reliable access to non-local block data storage
US8265071B2 (en) * 2008-09-11 2012-09-11 Juniper Networks, Inc. Methods and apparatus related to a flexible data center security architecture
US8316196B1 (en) * 2008-09-30 2012-11-20 Emc Corporation Systems, methods and computer readable media for improving synchronization performance after partially completed writes
US8200771B2 (en) * 2008-10-10 2012-06-12 International Business Machines Corporation Workload migration using on demand remote paging
US8365174B2 (en) * 2008-10-14 2013-01-29 Chetan Kumar Gupta System and method for modifying scheduling of queries in response to the balancing average stretch and maximum stretch of scheduled queries
US20110202655A1 (en) * 2008-10-28 2011-08-18 Sharma Ratnesh K Data Center Manager
US20100115095A1 (en) * 2008-10-31 2010-05-06 Xiaoyun Zhu Automatically managing resources among nodes
US20100131959A1 (en) * 2008-11-26 2010-05-27 Spiers Adam Z Proactive application workload management
US8127940B2 (en) * 2008-12-08 2012-03-06 Dell Products L.P. Rail including a shelf for supporting an information handling system
US20100161926A1 (en) * 2008-12-23 2010-06-24 Hong Li Data protection by segmented storage
US8180995B2 (en) * 2009-01-21 2012-05-15 Micron Technology, Inc. Logical address offset in response to detecting a memory formatting operation
US8380915B2 (en) * 2010-01-27 2013-02-19 Fusion-Io, Inc. Apparatus, system, and method for managing solid-state storage media
WO2010114687A1 (en) * 2009-03-30 2010-10-07 Megica Corporation Integrated circuit chip using top post-passivation technology and bottom structure technology
US9024972B1 (en) * 2009-04-01 2015-05-05 Microsoft Technology Licensing, Llc Augmented reality computing with inertial sensors
US20100257294A1 (en) * 2009-04-06 2010-10-07 Greg Regnier Configurable provisioning of computer system resources
US20100266245A1 (en) * 2009-04-16 2010-10-21 Hon Hai Precision Ind. Co., Ltd. Fiber termination for fiber optic connection system
US8271818B2 (en) 2009-04-30 2012-09-18 Hewlett-Packard Development Company, L.P. Managing under-utilized resources in a computer
WO2010128958A1 (en) 2009-05-06 2010-11-11 Hewlett-Packard Development Company, L.P. Bus-based scalable optical fabrics
US20100289620A1 (en) * 2009-05-14 2010-11-18 International Buisness Machines Corporation Connectionless location identification within a server system
US9270683B2 (en) * 2009-05-15 2016-02-23 Amazon Technologies, Inc. Storage device authentication
KR101600951B1 (en) * 2009-05-18 2016-03-08 삼성전자주식회사 Solid state drive device
US9497039B2 (en) * 2009-05-28 2016-11-15 Microsoft Technology Licensing, Llc Agile data center network architecture
US8719831B2 (en) * 2009-06-18 2014-05-06 Microsoft Corporation Dynamically change allocation of resources to schedulers based on feedback and policies from the schedulers and availability of the resources
US8144506B2 (en) * 2009-06-23 2012-03-27 Micron Technology, Inc. Cross-point memory devices, electronic systems including cross-point memory devices and methods of accessing a plurality of memory cells in a cross-point memory array
US20100332622A1 (en) * 2009-06-25 2010-12-30 Sun Microsystems, Inc. Distributed Resource and Service Management System and Method for Managing Distributed Resources and Services
US8839254B2 (en) * 2009-06-26 2014-09-16 Microsoft Corporation Precomputation for data center load balancing
US8819359B2 (en) * 2009-06-29 2014-08-26 Oracle America, Inc. Hybrid interleaving in memory modules by interleaving physical addresses for a page across ranks in a memory module
US8514637B2 (en) * 2009-07-13 2013-08-20 Seagate Technology Llc Systems and methods of cell selection in three-dimensional cross-point array memory devices
US8527697B2 (en) * 2009-07-20 2013-09-03 Netapp, Inc. Virtualized data storage in a network computing environment
US8089863B2 (en) * 2009-07-28 2012-01-03 Motorola Solutions, Inc. RF site resilience using multiple visitor location registers simultaneously
US7982636B2 (en) * 2009-08-20 2011-07-19 International Business Machines Corporation Data compression using a nested hierachy of fixed phrase length static and dynamic dictionaries
WO2011021909A2 (en) * 2009-08-21 2011-02-24 Samsung Electronics Co., Ltd. Method and apparatus for providing contents via network, method and apparatus for receiving contents via network, and method and apparatus for backing up data via network, backup data providing device, and backup system
US20110055276A1 (en) * 2009-08-26 2011-03-03 Brocade Communications Systems, Inc. Systems and methods for automatic inclusion of entities into management resource groups
US9210040B2 (en) * 2009-09-03 2015-12-08 C3Dna Apparatus and methods for cognitive containters to optimize managed computations and computing resources
US10031750B2 (en) * 2009-09-03 2018-07-24 C3Dna Inc. Apparatus and methods for cognitive containters to optimize managed computations and computing resources
US8881157B2 (en) * 2009-09-11 2014-11-04 Empire Technology Development Llc Allocating threads to cores based on threads falling behind thread completion target deadline
US8190850B1 (en) * 2009-10-01 2012-05-29 Emc Corporation Virtual block mapping for relocating compressed and/or encrypted file data block blocks
US8688654B2 (en) * 2009-10-06 2014-04-01 International Business Machines Corporation Data compression algorithm selection and tiering
US8264354B2 (en) * 2009-10-14 2012-09-11 Attend Systems, Llc Data center equipment location and monitoring system
US8630087B1 (en) * 2009-10-22 2014-01-14 Juniper Networks, Inc. Airflow system, cable access system, and cable management system based on midplane having holes, side access of chassis, and card configuration
US8634240B2 (en) * 2009-10-28 2014-01-21 SanDisk Technologies, Inc. Non-volatile memory and method with accelerated post-write read to manage errors
US8578126B1 (en) * 2009-10-29 2013-11-05 Netapp, Inc. Mapping of logical start addresses to physical start addresses in a system having misalignment between logical and physical data blocks
US8762930B2 (en) * 2009-10-30 2014-06-24 Realization Technologies, Inc. Post facto identification and prioritization of causes of buffer consumption
US8171253B2 (en) * 2009-10-30 2012-05-01 Brocade Communications Systems, Inc. Virtual disk mapping
CN201654651U (en) * 2009-11-09 2010-11-24 鸿富锦精密工业(深圳)有限公司 Fixing device assembly of radiator
US8370605B2 (en) * 2009-11-11 2013-02-05 Sunman Engineering, Inc. Computer architecture for a mobile communication platform
WO2011061724A1 (en) * 2009-11-23 2011-05-26 Amir Ban Memory controller and methods for enhancing write performance of a flash device
US9081621B2 (en) * 2009-11-25 2015-07-14 Microsoft Technology Licensing, Llc Efficient input/output-aware multi-processor virtual machine scheduling
US8533440B2 (en) * 2009-12-15 2013-09-10 Microsoft Corporation Accelerating parallel transactions using cache resident transactions
US8869160B2 (en) * 2009-12-24 2014-10-21 International Business Machines Corporation Goal oriented performance management of workload utilizing accelerators
US8310950B2 (en) * 2009-12-28 2012-11-13 Oracle America, Inc. Self-configuring networking devices for providing services in a nework
WO2011081620A1 (en) 2009-12-28 2011-07-07 Hewlett-Packard Development Company A system for providing physically separated compute and i/o resources in the datacenter to enable space and power savings
WO2011088430A2 (en) * 2010-01-17 2011-07-21 Chatsworth Products, Inc. Horizontal cable manager
US20110183546A1 (en) * 2010-01-25 2011-07-28 Wael William Diab Method And Apparatus For An Ethernet Connector Comprising An Integrated PHY
KR100989920B1 (en) * 2010-01-27 2010-10-26 인텔라 주식회사 Ethernet switch
US8687356B2 (en) 2010-02-02 2014-04-01 Teradyne, Inc. Storage device testing system cooling
US8886602B2 (en) * 2010-02-09 2014-11-11 Google Inc. Location assignment daemon (LAD) for a distributed storage system
US20110206063A1 (en) * 2010-02-23 2011-08-25 Wael William Diab Method And System For Ethernet Converter And/Or Adapter That Enables Conversion Between A Plurality Of Different Ethernet Interfaces
US8671265B2 (en) * 2010-03-05 2014-03-11 Solidfire, Inc. Distributed data storage system providing de-duplication of data using block identifiers
US8442064B2 (en) * 2010-03-19 2013-05-14 Juniper Networks, Inc. Virtual link aggregation of network traffic in an aggregation switch
US9183134B2 (en) * 2010-04-22 2015-11-10 Seagate Technology Llc Data segregation in a storage device
US8217813B2 (en) * 2010-04-29 2012-07-10 Advanced Micro Devices, Inc. System and method for low-latency data compression/decompression
US8688792B2 (en) * 2010-05-06 2014-04-01 Nec Laboratories America, Inc. Methods and systems for discovering configuration data
US8423998B2 (en) * 2010-06-04 2013-04-16 International Business Machines Corporation System and method for virtual machine multiplexing for resource provisioning in compute clouds
US9063715B2 (en) * 2010-06-10 2015-06-23 Hewlett-Packard Development Company, L. P. Management of a virtual power infrastructure
CN102934040B (en) * 2010-06-16 2015-11-25 惠普发展公司,有限责任合伙企业 Computer rack
CN102289268A (en) * 2010-06-17 2011-12-21 英业达股份有限公司 rack server
US8788783B1 (en) * 2010-06-18 2014-07-22 Disney Enterprises, Inc. Dynamically tuning the size of a cache stored in a shared memory
KR20120001405A (en) * 2010-06-29 2012-01-04 삼성전자주식회사 Memory system and wear leveling method thereof
US8171142B2 (en) 2010-06-30 2012-05-01 Vmware, Inc. Data center inventory management using smart racks
US9741436B2 (en) * 2010-07-09 2017-08-22 Seagate Technology Llc Dynamically controlling an operation execution time for a storage device
US8386841B1 (en) * 2010-07-21 2013-02-26 Symantec Corporation Systems and methods for improving redundant storage fault tolerance
JP5520747B2 (en) * 2010-08-25 2014-06-11 株式会社日立製作所 Information device equipped with cache and computer-readable storage medium
US8365009B2 (en) * 2010-09-10 2013-01-29 Microsoft Corporation Controlled automatic healing of data-center services
US8732426B2 (en) 2010-09-15 2014-05-20 Pure Storage, Inc. Scheduling of reactive I/O operations in a storage environment
US8472183B1 (en) * 2010-09-20 2013-06-25 Amazon Technologies, Inc. Rack-mounted computer system with front-facing power supply unit
US8400765B2 (en) 2010-09-20 2013-03-19 Amazon Technologies, Inc. System with air flow under data storage devices
US8477491B1 (en) 2010-09-20 2013-07-02 Amazon Technologies, Inc. System with rack-mounted AC fans
US20120079500A1 (en) * 2010-09-29 2012-03-29 International Business Machines Corporation Processor usage accounting using work-rate measurements
US8738846B2 (en) * 2010-10-15 2014-05-27 Arkologic Limited File system-aware solid-state storage management system
US9940230B2 (en) * 2010-10-22 2018-04-10 Cnex Labs, Inc. Compression and decompression of data at high speed in solid state storage
US8503879B2 (en) 2010-10-25 2013-08-06 Nec Laboratories America, Inc. Hybrid optical/electrical switching system for data center networks
US8621477B2 (en) * 2010-10-29 2013-12-31 International Business Machines Corporation Real-time monitoring of job resource consumption and prediction of resource deficiency based on future availability
US8838286B2 (en) * 2010-11-04 2014-09-16 Dell Products L.P. Rack-level modular server and storage framework
US8984519B2 (en) * 2010-11-17 2015-03-17 Nec Laboratories America, Inc. Scheduler and resource manager for coprocessor-based heterogeneous clusters
US8869161B2 (en) * 2010-11-18 2014-10-21 Fujitsu Limited Characterization and assignment of workload requirements to resources based on predefined categories of resource utilization and resource availability
IT1403031B1 (en) * 2010-11-19 2013-09-27 Eurotech S P A Unified Network Equipment for scalable supercomputing systems
KR20120054699A (en) * 2010-11-22 2012-05-31 삼성전자주식회사 Memory controller, data storage system including the same and method thereof
US20120144170A1 (en) * 2010-12-06 2012-06-07 International Business Machines Corporation Dynamically scalable per-cpu counters
US9326414B2 (en) * 2010-12-10 2016-04-26 Commscope Technologies Llc Method and apparatus for mounting rack components on racks
US9208071B2 (en) * 2010-12-13 2015-12-08 SanDisk Technologies, Inc. Apparatus, system, and method for accessing memory
US9218278B2 (en) * 2010-12-13 2015-12-22 SanDisk Technologies, Inc. Auto-commit memory
US8674218B2 (en) 2010-12-15 2014-03-18 General Electric Company Restraint system for an energy storage device
US8239584B1 (en) * 2010-12-16 2012-08-07 Emc Corporation Techniques for automated storage management
US8849758B1 (en) * 2010-12-28 2014-09-30 Amazon Technologies, Inc. Dynamic data set replica management
CN102541222A (en) * 2010-12-31 2012-07-04 鸿富锦精密工业(深圳)有限公司 Rack-mounted server system
US20120192200A1 (en) * 2011-01-21 2012-07-26 Rao Jayanth N Load Balancing in Heterogeneous Computing Environments
US9098257B2 (en) * 2011-02-03 2015-08-04 Dell Products L.P. Information handling system server architecture for improved management communication
US9251087B2 (en) * 2011-02-11 2016-02-02 SanDisk Technologies, Inc. Apparatus, system, and method for virtual memory management
US8638767B2 (en) * 2011-02-14 2014-01-28 Qualcomm Incorporated Multi-communication mode packet routing mechanism for wireless communications systems
US20120215359A1 (en) * 2011-02-21 2012-08-23 Amir Meir Michael Adaptive fan control based on server configuration
WO2012113807A1 (en) 2011-02-22 2012-08-30 Dacentec Be Bvba A data centre rack comprising a power bar
US9025603B2 (en) * 2011-03-08 2015-05-05 Qualcomm Incorporated Addressing scheme for hybrid communication networks
US9055690B2 (en) * 2011-03-22 2015-06-09 Amazon Technologies, Inc. Shelf-mounted modular computing unit
US8724322B2 (en) 2011-03-23 2014-05-13 Rackspace Us, Inc. Targeted liquid cooling for a system
US9361044B2 (en) * 2011-03-28 2016-06-07 Western Digital Technologies, Inc. Power-safe data management system
KR20120110448A (en) * 2011-03-29 2012-10-10 삼성전자주식회사 Semiconductor memory device and method for manufacturing the same
WO2012135520A2 (en) * 2011-03-30 2012-10-04 University Of Houston Methods and apparatus for traffic management in multi-mode switching dwdm netwrks
US8843803B2 (en) * 2011-04-01 2014-09-23 Cleversafe, Inc. Utilizing local memory and dispersed storage memory to access encoded data slices
US8695009B2 (en) * 2011-04-18 2014-04-08 Microsoft Corporation Allocating tasks to machines in computing clusters
US8539008B2 (en) * 2011-04-29 2013-09-17 Netapp, Inc. Extent-based storage architecture
WO2012147087A1 (en) * 2011-04-29 2012-11-01 Tata Consultancy Services Limited Archival storage and retrieval system
US8508956B2 (en) * 2011-05-05 2013-08-13 Carefusion 303, Inc. Modular shielded electronics enclosure
US8391663B2 (en) * 2011-05-24 2013-03-05 Methode Electronics, Inc. Rack cabling system
DE112011105140T5 (en) * 2011-05-25 2014-01-09 Hewlett-Packard Development Company, L.P. Blade computer system
US8386286B2 (en) * 2011-05-26 2013-02-26 Xerox Corporation System and method for the dynamic allocation of resources
US9288555B2 (en) 2011-11-01 2016-03-15 Plexxi Inc. Data center network architecture
US8868869B2 (en) * 2011-08-08 2014-10-21 International Business Machines Corporation Enhanced copy-on-write operation for solid state drives
US9052899B2 (en) * 2011-08-10 2015-06-09 Intel Corporation Idle power reduction for memory subsystems
US8909996B2 (en) 2011-08-12 2014-12-09 Oracle International Corporation Utilizing multiple storage devices to reduce write latency for database logging
TWI422310B (en) 2011-09-02 2014-01-01 Giga Byte Tech Co Ltd Server rank
JP2013061799A (en) * 2011-09-13 2013-04-04 Toshiba Corp Memory device, control method for memory device and controller
WO2013048494A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Mechanism for facilitating customization of multipurpose interconnect agents at computing devices
US9042229B2 (en) * 2011-10-06 2015-05-26 International Business Machines Corporation Partitioning a network switch into multiple switching domains
US8964601B2 (en) * 2011-10-07 2015-02-24 International Business Machines Corporation Network switching domains with a virtualized control plane
US8914515B2 (en) * 2011-10-28 2014-12-16 International Business Machines Corporation Cloud optimization using workload analysis
US8610604B2 (en) * 2011-11-24 2013-12-17 International Business Machines Corporation Compression algorithm incorporating a feedback loop for dynamic selection of a predefined Huffman dictionary
US9582284B2 (en) * 2011-12-01 2017-02-28 International Business Machines Corporation Performance of processors is improved by limiting number of branch prediction levels
JP5542788B2 (en) * 2011-12-13 2014-07-09 株式会社日立製作所 Virtual computer system and virtual computer migration control method
US8867214B2 (en) * 2011-12-15 2014-10-21 Amazon Technologies, Inc. Modular server design for use in reconfigurable server shelf
US8725934B2 (en) * 2011-12-22 2014-05-13 Fusion-Io, Inc. Methods and appratuses for atomic storage operations
US9274838B2 (en) * 2011-12-22 2016-03-01 Netapp, Inc. Dynamic instantiation and management of virtual caching appliances
US8656130B2 (en) 2011-12-23 2014-02-18 International Business Machines Corporation Low latency and persistent data storage
US9565132B2 (en) 2011-12-27 2017-02-07 Intel Corporation Multi-protocol I/O interconnect including a switching fabric
US9811288B1 (en) * 2011-12-30 2017-11-07 EMC IP Holding Company LLC Managing data placement based on flash drive wear level
US9274885B2 (en) * 2011-12-30 2016-03-01 Intel Corporation Phase change memory with switch (PCMS) write error detection
US20130185729A1 (en) * 2012-01-13 2013-07-18 Rutgers, The State University Of New Jersey Accelerating resource allocation in virtualized environments using workload classes and/or workload signatures
US8732291B2 (en) * 2012-01-13 2014-05-20 Accenture Global Services Limited Performance interference model for managing consolidated workloads in QOS-aware clouds
KR20130084469A (en) * 2012-01-17 2013-07-25 삼성전자주식회사 Method for compressing and storing data and storage device using method thereof
CN102609378B (en) * 2012-01-18 2016-03-30 中国科学院计算技术研究所 A kind of message type internal storage access device and access method thereof
US20150019792A1 (en) * 2012-01-23 2015-01-15 The Regents Of The University Of California System and method for implementing transactions using storage device support for atomic updates and flexible interface for managing data logging
US9251086B2 (en) * 2012-01-24 2016-02-02 SanDisk Technologies, Inc. Apparatus, system, and method for managing a cache
US9356793B1 (en) * 2012-02-09 2016-05-31 Google Inc. System and method for managing load on a downstream server in a distributed storage system
US20130230272A1 (en) * 2012-03-01 2013-09-05 Oracle International Corporation Chip assembly configuration with densely packed optical interconnects
US20130232215A1 (en) * 2012-03-05 2013-09-05 Riverbed Technology, Inc. Virtualized data storage system architecture using prefetching agent
US9417811B2 (en) * 2012-03-07 2016-08-16 International Business Machines Corporation Efficient inline data de-duplication on a storage system
US9335948B1 (en) * 2012-03-27 2016-05-10 Emc Corporation Method and apparatus for enabling access to tiered shared storage using dynamic tier partitioning
US20130268940A1 (en) * 2012-04-04 2013-10-10 Daniel Juergen Gmach Automating workload virtualization
JP5797329B2 (en) * 2012-04-19 2015-10-21 株式会社日立製作所 Electronic computer with cooling system
KR102015565B1 (en) * 2012-06-04 2019-08-28 삼성전자주식회사 Electronic device and method for controlling temperature thereof
US20130339784A1 (en) * 2012-06-15 2013-12-19 International Business Machines Corporation Error recovery in redundant storage systems
US8804313B2 (en) * 2012-06-22 2014-08-12 Microsoft Corporation Enclosure power distribution architectures
US9342376B2 (en) * 2012-06-27 2016-05-17 Intel Corporation Method, system, and device for dynamic energy efficient job scheduling in a cloud computing environment
US20140006536A1 (en) 2012-06-29 2014-01-02 Intel Corporation Techniques to accelerate lossless compression
US9391841B2 (en) * 2012-07-03 2016-07-12 Solarflare Communications, Inc. Fast linkup arbitration
US8854819B2 (en) * 2012-07-03 2014-10-07 Dong Guan Yung Teng Electronic Products Co., Ltd. Cooling device
US9087163B2 (en) * 2012-07-11 2015-07-21 Silicon Image, Inc. Transmission of multiple protocol data elements via an interface utilizing a data tunnel
US20140025890A1 (en) * 2012-07-19 2014-01-23 Lsi Corporation Methods and structure for improved flexibility in shared storage caching by multiple systems operating as multiple virtual machines
US9513950B2 (en) * 2012-07-25 2016-12-06 Vmware, Inc. Dynamic resource configuration based on context
KR20140021780A (en) * 2012-08-10 2014-02-20 삼성전자주식회사 Nonvolatile memory device and control method thereof
US8801297B2 (en) * 2012-08-24 2014-08-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Methods and systems for blind mating multi-optical fiber connector modules
US9116660B1 (en) * 2012-08-31 2015-08-25 Extreme Networks, Inc. Midplane for orthogonal direct connection
US10359972B2 (en) 2012-08-31 2019-07-23 Sandisk Technologies Llc Systems, methods, and interfaces for adaptive persistence
US9424098B2 (en) * 2012-08-31 2016-08-23 Silicon Graphics International Corp. Dynamic resource scheduling
US9026765B1 (en) * 2012-09-11 2015-05-05 Emc Corporation Performing write operations in a multi-tiered storage environment
US9892798B2 (en) * 2012-09-11 2018-02-13 Seagate Technology Llc Data protection for unexpected power loss
US9390278B2 (en) * 2012-09-14 2016-07-12 Freescale Semiconductor, Inc. Systems and methods for code protection in non-volatile memory systems
CN103677179A (en) 2012-09-21 2014-03-26 英业达科技有限公司 Server
EP2887223A4 (en) * 2012-10-12 2015-08-19 Huawei Tech Co Ltd Memory system, memory module, memory module access method and computer system
US8791843B2 (en) * 2012-10-15 2014-07-29 Lsi Corporation Optimized bitstream encoding for compression
US9191313B2 (en) 2012-10-15 2015-11-17 International Business Machines Corporation Communications over multiple protocol interfaces in a computing environment
US9116703B2 (en) * 2012-10-15 2015-08-25 Advanced Micro Devices, Inc. Semi-static power and performance optimization of data centers
US9136779B2 (en) * 2012-10-30 2015-09-15 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Dynamically modified fan speed table for cooling a computer
US9467397B2 (en) * 2012-10-31 2016-10-11 Hangzhou H3C Technologies Co., Ltd. Port mode synchronization between switches
US9032250B1 (en) * 2012-11-05 2015-05-12 Google Inc. Online testing of secondary power unit
US9167705B2 (en) 2012-11-07 2015-10-20 Dell Products L.P. Chassis drawer for modular information handling resources
US8880446B2 (en) * 2012-11-15 2014-11-04 Purepredictive, Inc. Predictive analytics factory
US9501437B2 (en) * 2012-11-15 2016-11-22 Empire Technology Development Llc Scalable storage system having multiple storage channels
US9209901B2 (en) 2012-11-20 2015-12-08 Telefonaktiebolaget L M Ericsson (Publ) Configurable single-fiber or dual-fiber optical transceiver
US9122652B2 (en) * 2012-12-17 2015-09-01 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Cascading failover of blade servers in a data center
US10076050B2 (en) * 2012-12-21 2018-09-11 Nathan R. Roberts Storage and charging station system for portable electronic devices
US9477627B2 (en) * 2012-12-26 2016-10-25 Intel Corporation Interconnect to communicate information uni-directionally
US9501398B2 (en) * 2012-12-26 2016-11-22 Sandisk Technologies Llc Persistent storage device with NVRAM for staging writes
US20140189249A1 (en) * 2012-12-28 2014-07-03 Futurewei Technologies, Inc. Software and Hardware Coordinated Prefetch
US8949483B1 (en) * 2012-12-28 2015-02-03 Emc Corporation Techniques using I/O classifications in connection with determining data movements
US9329900B2 (en) * 2012-12-28 2016-05-03 Intel Corporation Hetergeneous processor apparatus and method
US10268526B1 (en) * 2012-12-28 2019-04-23 EMC IP Holding Company LLC Using response time objectives in a storage system
US20140188996A1 (en) 2012-12-31 2014-07-03 Advanced Micro Devices, Inc. Raw fabric interface for server system with virtualized interfaces
TWI568335B (en) * 2013-01-15 2017-01-21 英特爾股份有限公司 A rack assembly structure
US20140206271A1 (en) * 2013-01-22 2014-07-24 Roland M. Ignacio Electronics rack cooling duct
US9304790B2 (en) * 2013-01-31 2016-04-05 Empire Technology Development Llc Masking power usage of co-processors on field-programmable gate arrays using negative feedback to adjust a voltage variation on an FPGA power distribution trace
US9645950B2 (en) * 2013-01-31 2017-05-09 Vmware, Inc. Low-cost backup and edge caching using unused disk blocks
US9335786B2 (en) * 2013-02-28 2016-05-10 Oracle International Corporation Adapter facilitating blind-mate electrical connection of field replaceable units with virtual backplane of computing rack
US9936603B2 (en) 2013-02-28 2018-04-03 Oracle International Corporation Backplane nodes for blind mate adapting field replaceable units to bays in storage rack
US9864417B2 (en) 2013-03-08 2018-01-09 International Business Machines Corporation Server rack for improved data center management
US9201837B2 (en) * 2013-03-13 2015-12-01 Futurewei Technologies, Inc. Disaggregated server architecture for data centers
US8766827B1 (en) * 2013-03-15 2014-07-01 Intel Corporation Parallel apparatus for high-speed, highly compressed LZ77 tokenization and Huffman encoding for deflate compression
US10073626B2 (en) 2013-03-15 2018-09-11 Virident Systems, Llc Managing the write performance of an asymmetric memory system
GB2513987B (en) 2013-03-15 2016-01-06 Intel Corp Parallel apparatus for high-speed, highly compressed LZ77 tokenization and huffman encoding for deflate compression
US9202547B2 (en) * 2013-03-15 2015-12-01 Intel Corporation Managing disturbance induced errors
US9723069B1 (en) * 2013-03-15 2017-08-01 Kaazing Corporation Redistributing a connection
US9778885B2 (en) * 2013-03-15 2017-10-03 Skyera, Llc Compressor resources for high density storage units
US10613914B2 (en) 2013-04-01 2020-04-07 Oracle International Corporation Orchestration service for a distributed computing system
US9081622B2 (en) * 2013-05-13 2015-07-14 Vmware, Inc. Automated scaling of applications in virtual data centers
KR101553649B1 (en) * 2013-05-13 2015-09-16 삼성전자 주식회사 Multicore apparatus and job scheduling method thereof
US20140351811A1 (en) * 2013-05-24 2014-11-27 Empire Technology Development Llc Datacenter application packages with hardware accelerators
US9274951B2 (en) * 2013-05-31 2016-03-01 Altera Corporation Cache memory controller for accelerated data transfer
US9639459B2 (en) * 2013-06-04 2017-05-02 Globalfoundries Inc. I/O latency and IOPs performance in thin provisioned volumes
US9548940B2 (en) 2013-06-09 2017-01-17 Apple Inc. Master election among resource managers
US9468126B2 (en) 2013-06-11 2016-10-11 Seagate Technology Llc Multi-device storage enclosure with extendable device support sleds
KR20140144520A (en) * 2013-06-11 2014-12-19 삼성전자주식회사 Processor module, server system and method for controlling processor module
US9858181B2 (en) * 2013-06-20 2018-01-02 Hitachi, Ltd. Memory module having different types of memory mounted together thereon, and information processing device having memory module mounted therein
US9218221B2 (en) * 2013-06-25 2015-12-22 Amazon Technologies, Inc. Token sharing mechanisms for burst-mode operations
US20150019834A1 (en) * 2013-07-11 2015-01-15 Advanced Micro Devices, Inc. Memory hierarchy using page-based compression
US10419305B2 (en) * 2013-07-26 2019-09-17 International Business Machines Corporation Visualization of workload distribution on server resources
US20150028940A1 (en) * 2013-07-26 2015-01-29 Mediatek Inc. Integrated circuit having at least one functional circuit block operating in multi-source power domain and related system with power management
US9229496B2 (en) * 2013-08-08 2016-01-05 Dell Products, L.P. Supplemental storage tray for increasing storage capacity within an information handling system
JP6224244B2 (en) * 2013-08-13 2017-11-01 インテル コーポレイション Power balancing to increase working density and improve energy efficiency
US9311207B1 (en) * 2013-09-12 2016-04-12 Emc Corporation Data storage system optimizations in a multi-tiered environment
US9563385B1 (en) * 2013-09-16 2017-02-07 Amazon Technologies, Inc. Profile-guided data preloading for virtualized resources
US10318473B2 (en) 2013-09-24 2019-06-11 Facebook, Inc. Inter-device data-transport via memory channels
US9021154B2 (en) 2013-09-27 2015-04-28 Intel Corporation Read training a memory controller
US20150095553A1 (en) * 2013-10-01 2015-04-02 International Business Machines Corporation Selective software-based data compression in a storage system based on data heat
WO2015051023A1 (en) 2013-10-03 2015-04-09 Coadna Photonics Inc. Distributed optical switching architecture for data center networking
US9647941B2 (en) * 2013-10-04 2017-05-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Hierarchical hashing for longest prefix matching
US9059731B2 (en) * 2013-10-21 2015-06-16 International Business Machines Corporation Boosting decompression in the presence of reoccurring Huffman trees
US9870568B2 (en) * 2013-11-19 2018-01-16 Xerox Corporation Methods and systems to price customized virtual machines
US9336504B2 (en) * 2013-11-25 2016-05-10 International Business Machines Corporation Eliminating execution of jobs-based operational costs of related reports
CN104684330A (en) * 2013-11-26 2015-06-03 鸿富锦精密工业(深圳)有限公司 Circuit board fixing structure and electronic device using same
US9331058B2 (en) * 2013-12-05 2016-05-03 Apple Inc. Package with SoC and integrated memory
US20150161156A1 (en) * 2013-12-07 2015-06-11 Appex Networks Holding Limited System and method for compression and decompression of data containing redundancies
US9602392B2 (en) * 2013-12-18 2017-03-21 Nicira, Inc. Connectivity segment coloring
DE102013114289A1 (en) * 2013-12-18 2015-06-18 Juvema Ag Shelving system with electrical supply
US9292449B2 (en) * 2013-12-20 2016-03-22 Intel Corporation Cache memory data compression and decompression
US9456519B2 (en) 2013-12-23 2016-09-27 Dell Products, L.P. Single unit height storage sled with lateral storage device assembly supporting hot-removal of storage devices and slidable insertion and extraction from an information handling system rack
US9232678B2 (en) * 2013-12-30 2016-01-05