US20180022066A1 - Laminated-glass interlayer and laminated glass - Google Patents

Laminated-glass interlayer and laminated glass Download PDF

Info

Publication number
US20180022066A1
US20180022066A1 US15/549,015 US201615549015A US2018022066A1 US 20180022066 A1 US20180022066 A1 US 20180022066A1 US 201615549015 A US201615549015 A US 201615549015A US 2018022066 A1 US2018022066 A1 US 2018022066A1
Authority
US
United States
Prior art keywords
interlayer film
layer
laminated glass
mole
polyvinyl acetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/549,015
Other languages
English (en)
Inventor
Tatsuya Iwamoto
Nami Minakuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Assigned to SEKISUI CHEMICAL CO., LTD. reassignment SEKISUI CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWAMOTO, TATSUYA, MINAKUCHI, Nami
Publication of US20180022066A1 publication Critical patent/US20180022066A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10605Type of plasticiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Definitions

  • the present invention relates to an interlayer film for laminated glass which is used for obtaining laminated glass. Moreover, the present invention relates to laminated glass prepared with the interlayer film for laminated glass.
  • laminated glass Since laminated glass generates only a small amount of scattering glass fragments even when subjected to external impact and broken, laminated glass is excellent in safety. As such, the laminated glass is widely used for automobiles, railway vehicles, aircraft, ships, buildings and the like.
  • the laminated glass is produced by sandwiching an interlayer film for laminated glass between two glass plates.
  • Examples of the interlayer film for laminated glass include a single-layered interlayer film having a one-layer structure and a multi-layered interlayer film having a two or more-layer structure.
  • Patent Document 1 discloses a sound insulating layer including 100 parts by weight of a polyvinyl acetal resin with an acetalization degree of 60 to 85% by mole, 0.001 to 1.0 part by weight of at least one kind of metal salt among an alkali metal salt and an alkaline earth metal salt, and a plasticizer in an amount greater than 30 parts by weight.
  • This sound insulating layer can be used alone as a single-layered interlayer film.
  • Patent Document 1 also describes a multi-layered interlayer film in which the sound insulating layer and another layer are layered.
  • Another layer to be layered with the sound insulating layer includes 100 parts by weight of a polyvinyl acetal resin with an acetalization degree of 60 to 85% by mole, 0.001 to 1.0 part by weight of at least one kind of metal salt among an alkali metal salt and an alkaline earth metal salt, and a plasticizer in an amount of 30 parts by weight or less.
  • Patent Document 2 discloses an interlayer film which is constituted of a polymer layer having a glass transition temperature of 33° C. or more.
  • Patent Document 3 discloses a polyvinyl acetal-based resin film having a thickness distribution in the width direction of 10% or less and a volatile matter content of 1.0% by mass or less.
  • this polyvinyl acetal-based resin film when two 5%-inside portions from both ends in the width direction of the film overall width are heated for 30 minutes at 150° C.
  • a value of the thermal shrinkage ratio of one 5%-inside portion larger in thermal shrinkage ratio in the flow direction, which is parallel to the film and perpendicular to the width direction is defined as the thermal shrinkage ratio MD1
  • a value of the thermal shrinkage ratio of the other 5%-inside portion smaller in thermal shrinkage ratio therein is defined as the thermal shrinkage ratio MD2
  • a value of the thermal shrinkage ratio of a central portion in the flow direction, which is parallel to the film and perpendicular to the width direction, obtained at the time of heating the central portion in the width direction of the film for 30 minutes at 150° C. is defined as the thermal shrinkage ratio MD3, all of the thermal shrinkage ratio MD1, the thermal shrinkage ratio MD2 and the thermal shrinkage ratio MD3 are 3 to 20%.
  • Patent Document 1 JP 2007-070200 A
  • Patent Document 2 US 2013/0236711 A1
  • Patent Document 3 WO 2012/133668 A1
  • An object of the present invention is to provide an interlayer film for laminated glass with which the thickness of a sheet of laminated glass can be controlled with high precision. Moreover, the present invention is also aimed at providing laminated glass prepared with the interlayer film for laminated glass.
  • an interlayer film for laminated glass having an MD direction and a TD direction, the dimension in the MD direction of the interlayer film after storage being 1.05X or more when an interlayer film with a dimension in the MD direction of X is heated for 10 minutes at 110° C., the heated interlayer film is extended so that the dimension in the MD direction becomes 1.2X, the interlayer film in the extended state is fixed by a fixture, the fixed interlayer film is immersed for 1 minute in water at 0° C., the interlayer film is taken out of water at 0° C., the fixture is removed from the interlayer film, the interlayer film from which the fixture is removed is stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH, and the interlayer film after storage is measured for the dimension in the MD direction.
  • the dimension in the MD direction of the interlayer film after stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH is 1.08X or more.
  • the interlayer film further has a one-layer structure or a two or more-layer structure and is provided with a first layer containing a thermoplastic resin, and the softening point of the first layer is 60° C. or more.
  • the interlayer film further includes a second layer containing a thermoplastic resin, and the first layer is arranged on a first surface side of the second layer.
  • thermoplastic resin in the first layer is a polyvinyl acetal resin and the thermoplastic resin in the second layer is a polyvinyl acetal resin.
  • the content of the hydroxyl group of the polyvinyl acetal resin in the first layer is larger by 9.5% by mole or more than the content of the hydroxyl group of the polyvinyl acetal resin in the second layer.
  • the second layer contains filler.
  • the interlayer film further includes a third layer containing a thermoplastic resin, and the third layer is arranged on a second surface side at the opposite side of the first surface of the second layer.
  • the thermoplastic resin in the first layer is a polyvinyl acetal resin and the content of the hydroxyl group of the polyvinyl acetal resin in the first layer is 33% by mole or more.
  • the first layer contains a plasticizer and the content of the plasticizer in the first layer is 25 parts by weight or more and 35 parts by weight or less relative to 100 parts by weight of the thermoplastic resin in the first layer.
  • laminated glass including a first lamination glass member, a second lamination glass member and the interlayer film for laminated glass described above, the interlayer film for laminated glass being arranged between the first lamination glass member and the second lamination glass member.
  • the interlayer film for laminated glass according to the present invention has an MD direction and a TD direction and the dimension in the MD direction of the interlayer film after storage is 1.05X or more when an interlayer film with a dimension in the MD direction of X is heated for 10 minutes at 110° C., the heated interlayer film is extended so that the dimension in the MD direction becomes 1.2X, the interlayer film in the extended state is fixed by a fixture, the fixed interlayer film is immersed for 1 minute in water at 0° C., the interlayer film is taken out of water at 0° C., the fixture is removed from the interlayer film, the interlayer film from which the fixture is removed is stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH, and the interlayer film after storage is measured for the dimension in the MD direction, the thickness of a sheet of laminated glass can be controlled with high precision.
  • FIG. 1 is a sectional view schematically showing an interlayer film for laminated glass in accordance with a first embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing an interlayer film for laminated glass in accordance with a second embodiment of the present invention.
  • FIG. 3 is a sectional view schematically showing an example of laminated glass prepared with the interlayer film for laminated glass shown in FIG. 1 .
  • FIG. 4 is a sectional view schematically showing an example of laminated glass prepared with the interlayer film for laminated glass shown in FIG. 2 .
  • FIG. 5 is a figure for illustrating an object to be measured (an interlayer film) for measuring the dimension in the MD direction of the interlayer film after being stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH.
  • FIGS. 6( a ) and 6( b ) are figures for illustrating a method for measuring the dimension in the MD direction of the interlayer film after being stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH.
  • the present invention is provided with the following configuration.
  • the interlayer film for laminated glass (in the present specification, sometimes abbreviated as “the interlayer film”) according to the present invention has an MD direction and a TD direction.
  • the interlayer film is obtained by melt extrusion molding.
  • the MD direction is a flow direction of an interlayer film at the time of producing the interlayer film.
  • the TD direction is a direction orthogonal to the flow direction of an interlayer film at the time of producing the interlayer film and a direction orthogonal to the thickness direction of the interlayer film.
  • the dimension in the MD direction of an interlayer film is defined as X.
  • An interlayer film with a dimension in the MD direction of X is heated for 10 minutes at 110° C., 2) the heated interlayer film is extended so that the dimension in the MD direction becomes 1.2X, 3) the interlayer film in the extended state is fixed by a fixture, 4) the fixed interlayer film is immersed for 1 minute in water at 0° C., 5) the interlayer film is taken out of water at 0° C., 6) the fixture is removed from the interlayer film, 7) the interlayer film from which the fixture is removed is stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH, and 8) the interlayer film after storage is measured for the dimension in the MD direction.
  • the dimension in the MD direction of the interlayer film after storage obtained by being made to undergo the above-mentioned processes 1) to 8) as conditions in this order is 1.05X or more.
  • the thickness of a sheet of laminated glass can be controlled with high precision.
  • shrinkage of the extended interlayer film does not excessively occur after the extended interlayer film is stored for a certain period of time.
  • the glass plate is a curved sheet of glass
  • a sheet of laminated glass with an intended thickness is easily produced because shrinkage of a fan-shaped interlayer film can be controlled.
  • the dimension in the MD direction of the interlayer film after storage is preferably 1.07X or more, more preferably 1.08X or more, further preferably 1.09X or more, still further preferably 1.10X or more and especially preferably 1.12X or more.
  • the dimension in the MD direction of the interlayer film after storage is 1.20X or less, and is preferably 1.18X or less and more preferably 1.17X or less.
  • the interlayer film according to the present invention has a one-layer structure or a two or more-layer structure. It is preferred that the interlayer film according to the present invention be provided with a first layer containing a thermoplastic resin.
  • the softening point of the first layer be 60° C. or more.
  • the first layer is relatively hard.
  • An interlayer film provided with such a first layer becomes relatively hard.
  • shrinkage of the interlayer film is difficult to be controlled, but in the interlayer film according to the present invention, even in the case of an interlayer film provided with a thermoplastic resin layer with a high softening point, because shrinkage of the interlayer film can be controlled, in particular, because shrinkage of a fan-shaped interlayer film can be controlled, a sheet of laminated glass with an intended thickness is easily produced.
  • Examples of a method for attaining the above-mentioned dimensional change include a method of relaxing the stress of an interlayer film, and the like. Specifically, examples thereof include a method of subjecting an interlayer film to an annealing treatment, a method of weakening the force for drawing an interlayer film in the extrusion process, and the like. Moreover, by adjusting the aging temperature at the time of synthesizing a polyvinyl acetal resin, the shrinkage by heating of the resulting interlayer film can be controlled.
  • the dimension in the MD direction of the interlayer film after storage obtained by being made to undergo the above-mentioned processes 1) to 8) as conditions in this order is measured in the following procedure.
  • a rectangular-shaped interlayer film A with a dimension in the MD direction of 12.5 cm and a dimension in the TD direction of 10 cm is cut out from the central portion in the TD direction of an interlayer film for laminated glass.
  • the interlayer film A is positioned so that the center line in the TD direction is overlapped with the center line of the interlayer film A.
  • a straight line L with a length of 5.5 cm extending in a direction parallel to the MD direction and perpendicular to the TD direction is marked on the central portion of a measurement sample with an oil-based ballpoint pen. Then, as shown in FIGS. 6( a ) and 6( b ) , to each of both ends in the MD direction of an interlayer film A, a pair of fixing members P (2.5 cm in longitudinal length (corresponding to the MD direction of the interlayer film A) ⁇ 17 cm in transversal length (corresponding to the TD direction of the interlayer film A), quality-of-material glass) is attached so that one fixing member P, a double-sided tape Q, an interlayer film A, a double-sided tape Q and the other fixing member P are stacked in this order.
  • the dimensions of an interlayer film A portion to which the fixing member P is not attached are 7.5 cm in the MD direction by 10 cm in the TD direction.
  • the interlayer film A attached with the fixing member P is heated for 10 minutes in an oven preheated at 110° C.
  • the interlayer film A attached with the fixing member P is taken out of the oven.
  • the interlayer film A is extended so that the dimension in the MD direction becomes 1.2 times its original dimension, that is, the straight line L extends to a length of 6.6 cm.
  • the interlayer film A attached with the fixing member P is attached onto a fixture R (9.0 cm in longitudinal length (corresponding to the MD direction of the interlayer film A) ⁇ 15 cm in transversal length (corresponding to the TD direction of the interlayer film A), quality-of-material glass, a fixture in which a glass plate with a size of 9.0 cm in longitudinal length (corresponding to the MD direction of the interlayer film A) ⁇ 2.5 cm in transversal length (corresponding to the TD direction of the interlayer film A) is attached to each of both ends in the transversal direction) to keep the extended state thereof.
  • the fixture R plays a role in keeping the distance between the fixing members P constant.
  • the interlayer film A in the extended state is fixed by the fixture R. Furthermore, within 30 seconds after the interlayer film A in the extended state is fixed, the interlayer film A which is in the extended state and fixed by the fixture R is immersed in pure water at 0° C. At the end of 1 minute after the interlayer film A is immersed, the interlayer film A is taken out thereof.
  • the fixing members P, double-sided tapes Q and fixtures R are removed from the interlayer film A.
  • the interlayer film A is laid on a styrene board (foam core board) to be stored for 10 hours under a constant-temperature and constant-humidity environment of a temperature of 23° C.
  • the straight line L after being stored for 10 hours is measured for the dimension Y cm.
  • the dimension Z in the MD direction of the interlayer film A after being stored for 10 hours under a constant-temperature and constant-humidity environment of a temperature of 23° C. and a humidity of 30% RH is calculated according to the following equation.
  • the interlayer film may have a one-layer structure, may have a two-layer structure, may have a two or more-layer structure, may have a three-layer structure and may have a three or more-layer structure.
  • the first layer corresponds to the interlayer film.
  • the interlayer film is provided with the first layer and an additional layer (a second layer, a third layer and the like).
  • the interlayer film be provided with the first layer as a surface layer. It is preferred that the interlayer film be provided with a third layer described below as a surface layer.
  • FIG. 1 schematically shows an interlayer film for laminated glass in accordance with a first embodiment of the present invention as a sectional view.
  • An interlayer film 11 shown in FIG. 1 is a multi-layered interlayer film having a two or more-layer structure.
  • the interlayer film 11 is used for obtaining laminated glass.
  • the interlayer film 11 is an interlayer film for laminated glass.
  • the interlayer film 11 is provided with a first layer 1 , a second layer 2 and a third layer 3 .
  • the first layer 1 is arranged on a first surface 2 a of the second layer 2 to be layered thereon.
  • the third layer 3 is arranged on a second surface 2 b at the opposite side of the first surface 2 a of the second layer 2 to be layered thereon.
  • the second layer 2 is an intermediate layer.
  • Each of the first layer 1 and the third layer 3 is a protective layer and is a surface layer in the present embodiment.
  • the second layer 2 is arranged between the first layer 1 and the third layer 3 to be sandwiched therebetween. Accordingly, the interlayer film 11 has a multilayer structure (a first layer 1 / a second layer 2 / a third layer 3 ) in which the first layer 1 , the second layer 2 and the third layer 3 are layered in this order.
  • first layer 1 and the second layer 2 and between the second layer 2 and the third layer 3 may be arranged between the first layer 1 and the second layer 2 and between the second layer 2 and the third layer 3 , respectively. It is preferred that each of the first layer 1 and the third layer 3 be directly layered on the second layer 2 .
  • another layer include a layer containing polyethylene terephthalate and the like.
  • FIG. 2 shows an interlayer film for laminated glass in accordance with a second embodiment of the present invention schematically represented as a sectional view.
  • the interlayer film 11 A shown in FIG. 2 is a single-layered interlayer film having a one-layer structure.
  • the interlayer film 11 A is singly constituted by a first layer.
  • the interlayer film 11 A is used for obtaining laminated glass.
  • the interlayer film 11 A is an interlayer film for laminated glass.
  • the interlayer film may be provided with a second layer as an intermediate layer of the interlayer film or a layer which is not a surface layer of the interlayer film. It is preferred that the interlayer film be provided with a first layer as a surface layer of the interlayer film. It is preferred that the interlayer film be provided with a third layer as a surface layer of the interlayer film.
  • the first layer contains a thermoplastic resin (hereinafter, sometimes described as a thermoplastic resin (1)), and it is preferred that the first layer contain a polyvinyl acetal resin (hereinafter, sometimes described as a polyvinyl acetal resin (1)) as the thermoplastic resin (1).
  • the second layer contains a thermoplastic resin (hereinafter, sometimes described as a thermoplastic resin (2)), and it is preferred that the second layer contain a polyvinyl acetal resin (hereinafter, sometimes described as a polyvinyl acetal resin (2)) as the thermoplastic resin (2).
  • the third layer contains a thermoplastic resin (hereinafter, sometimes described as a thermoplastic resin (3)), and it is preferred that the third layer contain a polyvinyl acetal resin (hereinafter, sometimes described as a polyvinyl acetal resin (3)) as the thermoplastic resin (3)
  • a polyvinyl acetal resin hereinafter, sometimes described as a polyvinyl acetal resin (3)
  • the polyvinyl acetal resin (1), the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) may be the same as or different from one another, it is preferred that the polyvinyl acetal resin (2) be different from the polyvinyl acetal resin (1) and the polyvinyl acetal resin (3) because the sound insulating properties are further heightened.
  • the thermoplastic resin (1) and the thermoplastic resin (3) may be the same as or different from each other.
  • One kind of each of the polyvinyl acetal resin (1), the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) may be used alone, and two or more kinds thereof may be used in combination.
  • One kind of each of the thermoplastic resin (1), the thermoplastic resin (2) and the thermoplastic resin (3) may be used alone, and two or more kinds thereof may be used in combination.
  • thermoplastic resin examples include a polyvinyl acetal resin, an ethylene-vinyl acetate copolymer resin, an ethylene-acrylic acid copolymer resin, a polyurethane resin, a polyvinyl alcohol resin, and the like. Thermoplastic resins other than these may be used.
  • the polyvinyl acetal resin can be produced by acetalizing polyvinyl alcohol with an aldehyde. It is preferred that the polyvinyl acetal resin be an acetalized product of polyvinyl alcohol.
  • the polyvinyl alcohol can be obtained by saponifying polyvinyl acetate. The saponification degree of the polyvinyl alcohol generally falls within the range of 70 to 99.9% by mole.
  • the average polymerization degree of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, even more preferably 1500 or more, further preferably 1600 or more, especially preferably 2600 or more, most preferably 2700 or more, preferably 5000 or less, more preferably 4000 or less and further preferably 3500 or less.
  • PVA polyvinyl alcohol
  • the average polymerization degree of the polyvinyl alcohol is determined by a method in accordance with JIS K6726 “Testing methods for polyvinyl alcohol”.
  • the number of carbon atoms of the acetal group in the polyvinyl acetal resin lie within the range of 3 to 5, and it is preferred that the number of carbon atoms of the acetal group be 4 or 5.
  • aldehyde an aldehyde with 1 to 10 carbon atoms is suitably used.
  • aldehyde with 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, n-nonylaldehyde, n-decylaidehyde, benzaldehyde, and the like.
  • acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferred
  • acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde or n-valeraldehyde is more preferred
  • n-butyraldehyde or n-valeraldehyde is further preferred.
  • One kind of the aldehyde may be used alone, and two or more kinds thereof may be used in combination.
  • the content ratio of the hydroxyl group (the amount of hydroxyl groups) of the polyvinyl acetal resin (2) is preferably 17% by mole or more, more preferably 20% by mole or more, further preferably 22% by mole or more, preferably 30% by mole or less, more preferably less than 27% by mole, further preferably 25% by mole or less and especially preferably less than 25% by mole.
  • the content of the hydroxyl group is the above lower limit or more, the adhesive force of the interlayer film is further heightened.
  • the content of the hydroxyl group of the polyvinyl acetal resin (2) is 20% by mole or more, the resin is high in reaction efficiency and is excellent in productivity, and moreover, when less than 27% by mole, the sound insulating properties of laminated glass are further heightened.
  • the content of the hydroxyl group is the above upper limit or less, the flexibility of the interlayer film is enhanced and the handling of the interlayer film is facilitated.
  • the content of the hydroxyl group of each of the polyvinyl acetal resin (1) and the polyvinyl acetal resin (3) is preferably 25% by mole or more, more preferably 28% by mole or more, more preferably 30% by mole or more, even more preferably more than 31% by mole, further preferably 31.5% by mole or more, still further preferably 32% by mole or more, especially preferably 33% by mole or more, preferably 37% by mole or less, more preferably 36.5% by mole or less and further preferably 36% by mole or less.
  • the content of the hydroxyl group is the above lower limit or more, the adhesive force of the interlayer film is further heightened.
  • the flexibility of the interlayer film is enhanced and the handling of the interlayer film is facilitated.
  • the content of the hydroxyl group of each of the polyvinyl acetal resin (1) and the polyvinyl acetal resin (3) be 33% by mole or more.
  • each of the content of the hydroxyl group of the polyvinyl acetal resin (1) and the content of the hydroxyl group of the polyvinyl acetal resin (3) be larger than the content of the hydroxyl group of the polyvinyl acetal resin (2).
  • each of the absolute value of the difference between the content of the hydroxyl group of the polyvinyl acetal resin (1) and the content of the hydroxyl group of the polyvinyl acetal resin (2) and the absolute value of the difference between the content of the hydroxyl group of the polyvinyl acetal resin (3) and the content of the hydroxyl group of the polyvinyl acetal resin (2) is preferably 1% by mole or more, more preferably 5% by mole or more, further preferably 9% by mole or more, still further preferably 9.5% by mole or more, especially preferably 10% by mole or more and most preferably 12% by mole or more.
  • Each of the absolute value of the difference between the content of the hydroxyl group of the polyvinyl acetal resin (1) and the content of the hydroxyl group of the polyvinyl acetal resin (2) and the absolute value of the difference between the content of the hydroxyl group of the polyvinyl acetal resin (3) and the content of the hydroxyl group of the polyvinyl acetal resin (2) is preferably 20% by mole or less.
  • the content of the hydroxyl group of the polyvinyl acetal resin (1) be larger by 9.5% by mole or more than the content of the hydroxyl group of the polyvinyl acetal resin (2).
  • the content of the hydroxyl group of the polyvinyl acetal resin (3) be larger by 9.5% by mole or more than the content of the hydroxyl group of the polyvinyl acetal resin (2).
  • the content of the hydroxyl group of the polyvinyl acetal resin is a mole fraction, represented in percentage, obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain.
  • the amount of ethylene groups to which the hydroxyl group is bonded can be measured in accordance with JIS K6728 “Testing methods for polyvinyl butyral” to be determined.
  • the acetylation degree (the amount of acetyl groups) of the polyvinyl acetal resin (2) is preferably 0.01% by mole or more, more preferably 0.1% by mole or more, even more preferably 7% by mole or more, further preferably 9% by mole or more, preferably 30% by mole or less, more preferably 25% by mole or less, further preferably 24% by mole or less and especially preferably 20% by mole or less.
  • the acetylation degree is the above lower limit or more, the compatibility between the polyvinyl acetal resin and a plasticizer is heightened.
  • the acetylation degree is the above upper limit or less, with regard to the interlayer film and laminated glass, the moisture resistance thereof is enhanced.
  • the acetylation degree of the polyvinyl acetal resin (2) is 0.1% by mole or more and 25% by mole or less, the resulting laminated glass is excellent in penetration resistance.
  • the acetylation degree of each of the polyvinyl acetal resin (1) and the polyvinyl acetal resin (3) is preferably 0.01% by mole or more, more preferably 0.5% by mole or more, preferably 10% by mole or less and more preferably 2% by mole or less.
  • the acetylation degree is the above lower limit or more, the compatibility between the polyvinyl acetal resin and a plasticizer is heightened.
  • the acetylation degree is the above upper limit or less, with regard to the interlayer film and laminated glass, the moisture resistance thereof is enhanced.
  • the acetylation degree is a mole fraction, represented in percentage, obtained by dividing the amount of ethylene groups to which the acetyl group is bonded by the total amount of ethylene groups in the main chain.
  • the amount of ethylene groups to which the acetyl group is bonded can be measured in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
  • the acetalization degree of the polyvinyl acetal resin (2) (the butyralization degree in the case of a polyvinyl butyral resin) is preferably 47% by mole or more, more preferably 60% by mole or more, preferably 85% by mole or less, more preferably 80% by mole or less and further preferably 75% by mole or less.
  • the acetalization degree is the above lower limit or more, the compatibility between the polyvinyl acetal resin and a plasticizer is heightened.
  • the acetalization degree is the above upper limit or less, the reaction time required for producing the polyvinyl acetal resin is shortened.
  • the acetalization degree of each of the polyvinyl acetal resin (1) and the polyvinyl acetal resin (3) is preferably 55% by mole or more, more preferably 60% by mole or more, preferably 75% by mole or less and more preferably 71% by mole or less.
  • the acetalization degree is the above lower limit or more, the compatibility between the polyvinyl acetal resin and a plasticizer is heightened.
  • the acetalization degree is the above upper limit or less, the reaction time required for producing the polyvinyl acetal resin is shortened.
  • the acetalization degree is a mole fraction, represented in percentage, obtained by dividing a value obtained by subtracting the amount of ethylene groups to which the hydroxyl group is bonded and the amount of ethylene groups to which the acetyl group is bonded from the total amount of ethylene groups in the main chain by the total amount of ethylene groups in the main chain.
  • the content of the hydroxyl group (the amount of hydroxyl groups), the acetalization degree (the butyralization degree) and the acetylation degree be calculated from the results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
  • a method in accordance with ASTM D1396-92 may be used.
  • the content of the hydroxyl group (the amount of hydroxyl groups), the acetalization degree (the butyralization degree) and the acetylation degree can be calculated from the results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
  • the polyvinyl acetal resin (2) be a polyvinyl acetal resin (A) with an acetylation degree (a) of less than 8% by mole and an acetalization degree (a) of 65% by mole or more or a polyvinyl acetal resin (B) with an acetylation degree (b) of 8% by mole or more.
  • Each of the polyvinyl acetal resin (1) and the polyvinyl acetal resin (3) may be the polyvinyl acetal resin (A) and may be the polyvinyl acetal resin (B).
  • the acetylation degree (a) of the polyvinyl acetal resin (A) is less than 8% by mole, preferably 7.9% by mole or less, more preferably 7.8% by mole or less, further preferably 6.5% by mole or less, especially preferably 6% by mole or less, preferably 0.1% by mole or more, more preferably 0.5% by mole or more, further preferably 5% by mole or more and especially preferably 5.5% by mole or more.
  • the acetylation degree (a) is 0.1% by mole or more and less than 8% by mole, the transfer of a plasticizer can be easily controlled and the sound insulating properties of laminated glass are further heightened.
  • the acetalization degree (a) of the polyvinyl acetal resin (A) is 65% by mole or more, preferably 66% by mole or more, more preferably 67% by mole or more, further preferably 67.5% by mole or more, especially preferably 75% by mole or more, preferably 85% by mole or less, more preferably 84% by mole or less, further preferably 83% by mole or less and especially preferably 82% by mole or less.
  • the acetalization degree (a) is the above lower limit or more, the sound insulating properties of laminated glass are further heightened.
  • the acetalization degree (a) is the above upper limit or less, the reaction time required for producing the polyvinyl acetal resin (A) can be shortened.
  • the content (a) of the hydroxyl group of the polyvinyl acetal resin (A) is preferably 18% by mole or more, more preferably 19% by mole or more, further preferably 20% by mole or more, especially preferably 21% by mole or more, most preferably 23% by mole or more, preferably 31% by mole or less, more preferably 30% by mole or less, further preferably 29% by mole or less and especially preferably 28% by mole or less.
  • the content (a) of the hydroxyl group is the above lower limit or more, the adhesive force of the second layer is further heightened.
  • the content (a) of the hydroxyl group is the above upper limit or less, the sound insulating properties of laminated glass are further heightened.
  • the acetylation degree (b) of the polyvinyl acetal resin (B) is 8% by mole or more, preferably 9% by mole or more, more preferably 9.5% by mole or more, further preferably 10% by mole or more, especially preferably 10.5% by mole or more, preferably 30% by mole or less, more preferably 28% by mole or less, further preferably 26% by mole or less and especially preferably 24% by mole or less.
  • the acetylation degree (b) is the above lower limit or more, the sound insulating properties of laminated glass are further heightened.
  • the reaction time required for producing the polyvinyl acetal resin (B) can be shortened.
  • the acetalization degree (b) of the polyvinyl acetal resin (B) is preferably 50% by mole or more, more preferably 53% by mole or more, further preferably 55% by mole or more, especially preferably 60% by mole or more, preferably 78% by mole or less, more preferably 75% by mole or less, further preferably 72% by mole or less and especially preferably 70% by mole or less.
  • the acetalization degree (b) is the above lower limit or more, the sound insulating properties of laminated glass are further heightened.
  • the reaction time required for producing the polyvinyl acetal resin (B) can be shortened.
  • the content (b) of the hydroxyl group of the polyvinyl acetal resin (B) is preferably 18% by mole or more, more preferably 19% by mole or more, further preferably 20% by mole or more, especially preferably 21% by mole or more, most preferably 23% by mole or more, preferably 31% by mole or less, more preferably 30% by mole or less, further preferably 29% by mole or less and especially preferably 28% by mole or less.
  • the content (b) of the hydroxyl group is the above lower limit or more, the adhesive force of the second layer is further heightened.
  • the content (b) of the hydroxyl group is the above upper limit or less, the sound insulating properties of laminated glass are further heightened.
  • each of the polyvinyl acetal resin (A) and the polyvinyl acetal resin (B) be a polyvinyl butyral resin.
  • the first layer (including a single-layered interlayer film) contain a plasticizer (hereinafter, sometimes described as a plasticizer (1)). It is preferred that the second layer contain a plasticizer (hereinafter, sometimes described as a plasticizer (2)). It is preferred that the third layer contain a plasticizer (hereinafter, sometimes described as a plasticizer (3)).
  • a plasticizer hereinafter, sometimes described as a plasticizer (1).
  • the plasticizer (2) and the plasticizer (3) may be the same as or different from one another. One kind of each of the plasticizer (1), the plasticizer (2) and the plasticizer (3) may be used alone, and two or more kinds thereof may be used in combination.
  • plasticizer examples include organic ester plasticizers such as a monobasic organic acid ester and a polybasic organic acid ester, organic phosphate plasticizers such as an organic phosphate plasticizer and an organic phosphite plasticizer, and the like. Of these, organic ester plasticizers are preferred. It is preferred that the plasticizer be a liquid plasticizer.
  • Examples of the monobasic organic acid ester include a glycol ester obtained by the reaction of a glycol with a monobasic organic acid, and the like.
  • Examples of the glycol include triethylene glycol, tetraethylene glycol, tripropylene glycol, and the like.
  • Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptanoic acid, n-octylic acid, 2-ethylhexanoic acid, n-nonylic acid, decanoic acid, and the like.
  • polybasic organic acid ester examples include an ester compound of a polybasic organic acid and an alcohol having a linear or branched structure of 4 to 8 carbon atoms.
  • polybasic organic acid examples include adipic acid, sebacic acid, azelaic acid, and the like.
  • organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethy
  • organic phosphate plasticizer examples include tributoxyethyl phosphate, isodecyl phenyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizer be a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represent an organic group with 2 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10. It is preferred that R1 and R2 in the foregoing formula (1) each be an organic group with 5 to 10 carbon atoms, and it is more preferred that R1 and R2 each be an organic group with 6 to 10 carbon atoms.
  • the plasticizer include triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate, it is more preferred that the plasticizer include triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and it is further preferred that the plasticizer include triethylene glycol di-2-ethylhexanoate.
  • 3GO triethylene glycol di-2-ethylhexanoate
  • 3GH triethylene glycol di-2-ethylbutyrate
  • the plasticizer include triethylene glycol di-2-ethylhexanoate.
  • each of the content of the plasticizer (1) (hereinafter, sometimes described as the content (1)) relative to 100 parts by weight of the thermoplastic resin (1) (100 parts by weight of a polyvinyl acetal resin (1) when the thermoplastic resin (1) is the polyvinyl acetal resin (1)) and the content of the plasticizer (3) (hereinafter, sometimes described as the content (3)) relative to 100 parts by weight of the thermoplastic resin (3) (100 parts by weight of a polyvinyl acetal resin (3) when the thermoplastic resin (3) is the polyvinyl acetal resin (3)) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, further preferably 20 parts by weight or more, still further preferably 25 parts by weight or more, especially preferably 30 parts by weight or more, preferably 40 parts by weight or less, more preferably 39 parts by weight or less, further preferably 35 parts by weight or less, still further preferably 32 parts by weight or less and especially preferably 30 parts by weight or less.
  • the content (1) and the content (3) are the above lower limit or more, the flexibility of the interlayer film is enhanced and the handling of the interlayer film is facilitated.
  • the content (1) and the content (3) are the above upper limit or less, the penetration resistance of laminated glass is further enhanced.
  • the content (1) be 25 parts by weight or more and 35 parts by weight or less.
  • the content (3) be 25 parts by weight or more and 35 parts by weight or less.
  • the content of the plasticizer (2) (hereinafter, sometimes described as the content (2)) relative to 100 parts by weight of the thermoplastic resin (2) (100 parts by weight of a polyvinyl acetal resin (2) when the thermoplastic resin (2) is the polyvinyl acetal resin (2)) is preferably 50 parts by weight or more, more preferably 55 parts by weight or more, further preferably 60 parts by weight or more, preferably 100 parts by weight or less, more preferably 90 parts by weight or less, further preferably 85 parts by weight or less and especially preferably 80 parts by weight or less.
  • the content (2) is the above lower limit or more, the flexibility of the interlayer film is enhanced and the handling of the interlayer film is facilitated.
  • the content (2) is the above upper limit or less, the penetration resistance of laminated glass is further enhanced.
  • the content (2) be larger than the content (1) and it is preferred that the content (2) be larger than the content (3).
  • each of the absolute value of the difference between the content (1) and the content (2) and the absolute value of the difference between the content (3) and the content (2) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and further preferably 20 parts by weight or more.
  • Each of the absolute value of the difference between the content (1) and the content (2) and the absolute value of the difference between the content (3) and the content (2) is preferably 80 parts by weight or less, more preferably 75 parts by weight or less and further preferably 70 parts by weight or less.
  • the second layer contain a kind of filler.
  • the first layer may contain a kind of filler.
  • the third layer may contain a kind of filler.
  • the filler examples include calcium carbonate particles, silica particles, and the like. It is preferred that the filler be constituted of calcium carbonate particles or silica particles, and it is more preferred that the filler be constituted of silica particles. By the use of the filler, the sound insulating properties and the flexural rigidity are enhanced, and furthermore, the adhesive force between respective layers is also heightened.
  • One kind of the filler may be used alone, and two or more kinds thereof may be used in combination.
  • the specific surface area by the BET method of the silica particle is preferably 50 m 2 /g or more, more preferably 100 m 2 /g or more, further preferably 200 m 2 /g or more, especially preferably 250 m 2 /g or more, most preferably 300 m 2 /g or more and preferably 500 m 2 /g or less.
  • the specific surface area can be measured by a gas adsorption method using a specific surface area/fine pore distribution measuring apparatus. Examples of the measuring apparatus include “ASAP 2420” available from SHIMADZU CORPORATION, and the like.
  • the content of the filler is preferably 2 parts by weight or more, more preferably 5 parts by weight or more, further preferably 10 parts by weight or more, preferably 65 parts by weight or less, more preferably 60 parts by weight or less, further preferably 50 parts by weight or less and especially preferably 30 parts by weight or less.
  • the content of the filler is the above lower limit or more and the above upper limit or less, the adhesive force between respective layers is further heightened and the flexural rigidity is further enhanced.
  • the content of the filler is the above upper limit or less, the sound insulating properties are further heightened.
  • the interlayer film include a heat shielding compound. It is preferred that the first layer contain a heat shielding compound. It is preferred that the second layer contain a heat shielding compound. It is preferred that the third layer contain a heat shielding compound.
  • One kind of the heat shielding compound may be used alone, and two or more kinds thereof may be used in combination.
  • the interlayer film include at least one kind of Ingredient X among a phthalocyanine compound, a naphthalocyanine compound and an anthracyanine compound. It is preferred that the first layer contain the Ingredient X. It is preferred that the second layer contain the Ingredient X. It is preferred that the third layer contain the Ingredient X.
  • the Ingredient X is a heat shielding compound. One kind of the Ingredient X may be used alone, and two or more kinds thereof may be used in combination.
  • the Ingredient X is not particularly limited.
  • As the Ingredient X conventionally known phthalocyanine compound, naphthalocyanine compound and anthracyanine compound can be used.
  • the Ingredient X be at least one kind selected from the group consisting of phthalocyanine, a derivative of phthalocyanine, naphthalocyanine and a derivative of naphthalocyanine, and it is more preferred that the Ingredient X be at least one kind among phthalocyanine and a derivative of phthalocyanine.
  • the Ingredient X contain vanadium atoms or copper atoms. It is preferred that the Ingredient X contain vanadium atoms and it is also preferred that the Ingredient X contain copper atoms. It is more preferred that the Ingredient X be at least one kind among phthalocyanine containing vanadium atoms or copper atoms and a derivative of phthalocyanine containing vanadium atoms or copper atoms. With regard to the interlayer film and laminated glass, from the viewpoint of still further enhancing the heat shielding properties thereof, it is preferred that the Ingredient X have a structural unit in which an oxygen atom is bonded to a vanadium atom.
  • the content of the Ingredient X is preferably 0.001% by weight or more, more preferably 0.005% by weight or more, further preferably 0.01% by weight or more, especially preferably 0.02% by weight or more, preferably 0.2% by weight or less, more preferably 0.1% by weight or less, further preferably 0.05% by weight or less and especially preferably 0.04% by weight or less.
  • the content of the Ingredient X is the above lower limit or more and the above upper limit or less, the heat shielding properties are sufficiently enhanced and the visible light transmittance is sufficiently heightened. For example, it is possible to make the visible light transmittance 70% or more.
  • the interlayer film include heat shielding particles. It is preferred that the first layer contain the heat shielding particles. It is preferred that the second layer contain the heat shielding particles. It is preferred that the third layer contain the heat shielding particles.
  • the heat shielding particle is of a heat shielding compound. By the use of heat shielding particles, infrared rays (heat rays) can be effectively cut off. One kind of the heat shielding particles may be used alone, and two or more kinds thereof may be used in combination.
  • the heat shielding particles be metal oxide particles. It is preferred that the heat shielding particle be a particle (a metal oxide particle) formed from an oxide of a metal.
  • the energy amount of an infrared ray with a wavelength of 780 nm or longer which is longer than that of visible light is small as compared with an ultraviolet ray.
  • the thermal action of infrared rays is large, and when infrared rays are absorbed into a substance, heat is released from the substance.
  • infrared rays are generally called heat rays.
  • the heat shielding particle means a particle capable of absorbing infrared rays.
  • the heat shielding particles include metal oxide particles such as aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), indium-doped zinc oxide particles (IZO particles), aluminum-doped zinc oxide particles (AZO particles), niobium-doped titanium oxide particles, sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, rubidium-doped tungsten oxide particles, tin-doped indium oxide particles (ITO particles), tin-doped zinc oxide particles and silicon-doped zinc oxide particles, lanthanum hexaboride (LaB 6 ) particles, and the like.
  • metal oxide particles such as aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles
  • Heat shielding particles other than these may be used.
  • metal oxide particles more preferred are ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles, and especially preferred are ITO particles or tungsten oxide particles.
  • ITO particles tin-doped indium oxide particles
  • the tungsten oxide particles be metal-doped tungsten oxide particles.
  • the “tungsten oxide particles” include metal-doped tungsten oxide particles.
  • the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, rubidium-doped tungsten oxide particles, and the like.
  • the interlayer film and laminated glass from the viewpoint of further enhancing the heat shielding properties thereof, cesium-doped tungsten oxide particles are especially preferred.
  • the cesium-doped tungsten oxide particles be tungsten oxide particles represented by the formula: Cs 0.33 WO 3 .
  • the average particle diameter of the heat shielding particles is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, preferably 0.1 ⁇ m or less and more preferably 0.05 ⁇ m or less.
  • the average particle diameter is the above lower limit or more, the heat ray shielding properties are sufficiently heightened.
  • the average particle diameter is the above upper limit or less, the dispersibility of heat shielding particles is enhanced.
  • the “average particle diameter” refers to the volume average particle diameter.
  • the average particle diameter can be measured using a particle size distribution measuring apparatus (“UPA-EX150” available from NIKKISO CO., LTD.), or the like.
  • each content of the heat shielding particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, further preferably 1% by weight or more, especially preferably 1.5% by weight or more, preferably 6% by weight or less, more preferably 5.5% by weight or less, further preferably 4% by weight or less, especially preferably 3.5% by weight or less and most preferably 3% by weight or less.
  • the content of the heat shielding particles is the above lower limit or more and the above upper limit or less, the heat shielding properties are sufficiently enhanced and the visible light transmittance is sufficiently heightened.
  • the interlayer film include at least one kind of metal salt (hereinafter, sometimes described as Metal salt M) among an alkali metal salt and an alkaline earth metal salt. It is preferred that the first layer contain the Metal salt M. It is preferred that the second layer contain the Metal salt M. It is preferred that the third layer contain the Metal salt M.
  • Metal salt M By the use of the Metal salt M, controlling the adhesivity between the interlayer film and a lamination glass member or the adhesivity between respective layers in the interlayer film is facilitated.
  • One kind of the Metal salt M may be used alone, and two or more kinds thereof may be used in combination.
  • the Metal salt M contain at least one kind of metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba. It is preferred that the metal salt included in the interlayer film contain at least one kind of metal among K and Mg.
  • the Metal salt M be an alkali metal salt of an organic acid with 2 to 16 carbon atoms or an alkaline earth metal salt of an organic acid with 2 to 16 carbon atoms, and it is further preferred that the Metal salt M be a magnesium carboxylate with 2 to 16 carbon atoms or a potassium carboxylate with 2 to 16 carbon atoms.
  • magnesium carboxylate with 2 to 16 carbon atoms and the potassium carboxylate with 2 to 16 carbon atoms are not particularly limited, examples thereof include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, potassium 2-ethylbutanoate, magnesium 2-ethylhexanoate, potassium 2-ethylhexanoate, and the like.
  • the total of the contents of Mg and K in a layer containing the Metal salt M is preferably 5 ppm or more, more preferably 10 ppm or more, further preferably 20 ppm or more, preferably 300 ppm or less, more preferably 250 ppm or less and further preferably 200 ppm or less.
  • the adhesivity between the interlayer film and a lamination glass member or the adhesivity between respective layers in the interlayer film can be further well controlled.
  • the interlayer film include an ultraviolet ray screening agent. It is preferred that the first layer contain an ultraviolet ray screening agent. It is preferred that the second layer contain an ultraviolet ray screening agent. It is preferred that the third layer contain an ultraviolet ray screening agent.
  • an ultraviolet ray screening agent By the use of an ultraviolet ray screening agent, even when the interlayer film and the laminated glass are used for a long period of time, the visible light transmittance becomes further difficult to be lowered.
  • One kind of the ultraviolet ray screening agent may be used alone, and two or more kinds thereof may be used in combination.
  • Examples of the ultraviolet ray screening agent include an ultraviolet ray absorber. It is preferred that the ultraviolet ray screening agent be an ultraviolet ray absorber.
  • Examples of the ultraviolet ray screening agent include an ultraviolet ray screening agent containing a metal atom, an ultraviolet ray screening agent containing a metal oxide, an ultraviolet ray screening agent having a benzotriazole structure, an ultraviolet ray screening agent having a benzophenone structure, an ultraviolet ray screening agent having a triazine structure, an ultraviolet ray screening agent having a malonic acid ester structure, an ultraviolet ray screening agent having an oxanilide structure, an ultraviolet ray screening agent having a benzoate structure, and the like.
  • Examples of the ultraviolet ray screening agent containing a metal atom include platinum particles, particles in which the surface of platinum particles is coated with silica, palladium particles, particles in which the surface of palladium particles is coated with silica, and the like. It is preferred that the ultraviolet ray screening agent not be heat shielding particles.
  • the ultraviolet ray screening agent is preferably an ultraviolet ray screening agent having a benzotriazole structure, an ultraviolet ray screening agent having a benzophenone structure, an ultraviolet ray screening agent having a triazine structure or an ultraviolet ray screening agent having a benzoate structure, more preferably an ultraviolet ray screening agent having a benzotriazole structure or an ultraviolet ray screening agent having a benzophenone structure, and further preferably an ultraviolet ray screening agent having a benzotriazole structure.
  • Examples of the ultraviolet ray screening agent containing a metal oxide include zinc oxide, titanium oxide, cerium oxide, and the like. Furthermore, with regard to the ultraviolet ray screening agent containing a metal oxide, the surface thereof may be coated with any material. Examples of the coating material for the surface of the ultraviolet ray screening agent containing a metal oxide include an insulating metal oxide, a hydrolyzable organosilicon compound, a silicone compound, and the like.
  • Examples of the ultraviolet ray screening agent having a benzotriazole structure include ultraviolet ray screening agents having a benzotriazole structure such as 2-(2′-hydroxy-5′-methylphenyl)benzotriazole (“Tinuvin P” available from BASF Japan Ltd.), 2-(2′-hydroxy-3′,5′-di-t-butylphenyl)benzotriazole (“Tinuvin 320” available from BASF Japan Ltd.), 2-(2′-hydroxy-3′-t-butyl-5-methylphenyl)-5-chlorobenzotriazole (“Tinuvin 326” available from BASF Japan Ltd.) and 2-(2′-hydroxy-3′,5′-di-amylphenyl)benzotriazole (“Tinuvin 328” available from BASF Japan Ltd.).
  • ultraviolet ray screening agents having a benzotriazole structure such as 2-(2′-hydroxy-5′-methylphenyl)benzotriazole (“Tinuvin P” available from BASF Japan Ltd
  • the ultraviolet ray screening agent be an ultraviolet ray screening agent having a benzotriazole structure containing a halogen atom, and it is more preferred that the ultraviolet ray screening agent be an ultraviolet ray screening agent having a benzotriazole structure containing a chlorine atom, because those are excellent in ultraviolet ray absorbing performance.
  • Examples of the ultraviolet ray screening agent having a benzophenone structure include octabenzone (“Chimassorb 81” available from BASF Japan Ltd.), and the like.
  • Examples of the ultraviolet ray screening agent having a triazine structure include “LA-F70” available from ADEKA CORPORATION, 2-(4,6-diphenyl-1,3,5-triazine-2-yl)-5-[(hexyl)oxy]-phenol (“Tinuvin 1577FF” available from BASF Japan Ltd.), and the like.
  • Examples of the ultraviolet ray screening agent having a malonic acid ester structure include dimethyl(p-methoxybenzylidene)malonate, tetraethyl-2,2-(1,4-phenylenedimethylidene)bismalonate, 2-(p-methoxybenzylidene)-bis(1,2,2,6,6-pentamethyl-4-piperidinyl)malonate, and the like.
  • Examples of a commercial product of the ultraviolet ray screening agent having a malonic acid ester structure include Hostavin B-CAP, Hostavin PR-25 and Hostavin PR-31 (any of these is available from Clariant Japan K.K.).
  • Examples of the ultraviolet ray screening agent having an oxanilide structure include a kind of oxalic acid diamide having a substituted aryl group and the like on the nitrogen atom such as N-(2-ethylphenyl)-N′-(2-ethoxy-5-t-butylphenyl)oxalic acid diamide, N-(2-ethylphenyl)-N′-(2-ethoxy-phenyl)oxalic acid diamide and 2-ethyl-2′-ethoxy-oxanilide (“Sanduvor VSU” available from Clariant Japan K.K.).
  • Examples of the ultraviolet ray screening agent having a benzoate structure include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” available from BASF Japan Ltd.), and the like.
  • the content of the ultraviolet ray screening agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, further preferably 0.3% by weight or more, especially preferably 0.5% by weight or more, preferably 2.5% by weight or less, more preferably 2% by weight or less, further preferably 1% by weight or less and especially preferably 0.8% by weight or less.
  • the content of the ultraviolet ray screening agent to be 0.2% by weight or more in 100% by weight of a layer containing the ultraviolet ray screening agent, with regard to the interlayer film and laminated glass, the lowering in visible light transmittance thereof after the lapse of a certain period of time can be significantly suppressed.
  • the interlayer film include an oxidation inhibitor. It is preferred that the first layer contain an oxidation inhibitor. It is preferred that the second layer contain an oxidation inhibitor. It is preferred that the third layer contain an oxidation inhibitor. One kind of the oxidation inhibitor may be used alone, and two or more kinds thereof may be used in combination.
  • the oxidation inhibitor examples include a phenol-based oxidation inhibitor, a sulfur-based oxidation inhibitor, a phosphorus-based oxidation inhibitor, and the like.
  • the phenol-based oxidation inhibitor is an oxidation inhibitor having a phenol skeleton.
  • the sulfur-based oxidation inhibitor is an oxidation inhibitor containing a sulfur atom.
  • the phosphorus-based oxidation inhibitor is an oxidation inhibitor containing a phosphorus atom.
  • the oxidation inhibitor be a phenol-based oxidation inhibitor or a phosphorus-based oxidation inhibitor.
  • phenol-based oxidation inhibitor examples include 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2′-methylenebis-(4-methyl-6-butylphenol), 2,2′-methylenebis-(4-ethyl-6-t-butylphenol), 4,4′-butylidene-bis-(3-methyl-6-t-butylphenol), 1,1,3-tris-(2-methyl-hydroxy-5-t-butylphenyl)butane, tetrakis[methylene-3-(3′,5′-butyl-4-hydroxyphenyl)propionate]methane, 1,3,3-tris-(2-methyl-4-hydroxy-5-t-butylphenol)butane, 1,3,5-tri
  • Examples of the phosphorus-based oxidation inhibitor include tridecyl phosphite, tris(tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis(tridecyl)pentaerithritol diphosphite, bis(decyl)pentaerithritol diphosphite, tris(2,4-di-t-butylphenyl) phosphite, bis(2,4-di-t-butyl-6-methylphenyl)ethyl ester phosphorous acid, tris(2,4-di-t-butylphenyl) phosphite, 2,2′-methylenebis(4,6-di-t-butyl-1-phenyloxy)(2-ethylhexyloxy)phosphorus, and the like.
  • One kind or two or more kinds among these oxidation inhibitors
  • Examples of a commercial product of the oxidation inhibitor include “IRGANOX 245” available from BASF Japan Ltd., “IRGAFOS 168” available from BASF Japan Ltd., “IRGAFOS 38” available from BASF Japan Ltd., “Sumilizer BHT” available from Sumitomo Chemical Co., Ltd., “IRGANOX 1010” available from BASF Japan Ltd., and the like.
  • the content of the oxidation inhibitor be 0.1% by weight or more in 100% by weight of the interlayer film or in 100% by weight of the layer containing the oxidation inhibitor (a first layer, a second layer or a third layer). Moreover, since an effect commensurate with the addition of an oxidation inhibitor is not attained, it is preferred that the content of the oxidation inhibitor be 2% by weight or less in 100% by weight of the interlayer film or in 100% by weight of the layer containing the oxidation inhibitor.
  • Each of the first layer, the second layer and the third layer may contain additives such as a coupling agent containing silicon, aluminum or titanium, a dispersing agent, a surfactant, a flame retardant, an antistatic agent, a pigment, a dye, an adhesive force regulating agent, a moisture-resistance improving agent, a fluorescent brightening agent and an infrared ray absorber, as necessary.
  • additives such as a coupling agent containing silicon, aluminum or titanium, a dispersing agent, a surfactant, a flame retardant, an antistatic agent, a pigment, a dye, an adhesive force regulating agent, a moisture-resistance improving agent, a fluorescent brightening agent and an infrared ray absorber, as necessary.
  • additives such as a coupling agent containing silicon, aluminum or titanium, a dispersing agent, a surfactant, a flame retardant, an antistatic agent, a pigment, a dye, an adhesive force regulating agent, a moisture
  • the softening point of the first layer is preferably 58° C. or more and more preferably 60° C. or more.
  • the softening point of the first layer is preferably 61.5° C. or more, more preferably 62.5° C. or more, even more preferably 64° C. or more, further preferably 65° C. or more, still further preferably 66° C. or more and especially preferably 70° C. or more.
  • the softening point of the third layer is preferably 58° C. or more, more preferably 60° C. or more, even more preferably 61.5° C. or more, further preferably 62.5° C. or more, further preferably 64° C. or more, further preferably 65° C. or more, still further preferably 66° C. or more and most preferably 70° C. or more.
  • the upper limit of the softening point of each of the first layer and the third layer is not particularly limited.
  • the softening point of each of the first layer and the third layer is preferably 80° C. or less, more preferably 78° C. or less, further preferably 76° C. or less and especially preferably 75° C. or less.
  • the glass transition temperature of each of the first layer and the third layer is preferably 31° C. or more, more preferably 35° C. or more and further preferably 38° C. or more.
  • the upper limit of the glass transition temperature of each of the first layer and the third layer is not particularly limited.
  • the glass transition temperature of each of the first layer and the third layer is preferably 48° C. or less.
  • the softening point and the glass transition temperature are measured in the following manner.
  • the interlayer film obtained is stored for 1 month or more or 1 month at a temperature of 23° C. and a humidity of 30%, after which, when the interlayer film is a multi-layered interlayer film, each of the first layer and the third layer is peeled off to be isolated and press-molded with a press molding machine to obtain an object to be measured. And with regard to the object to be measured, the measurement is performed using the “ARES-G2” available from TA Instruments Japan Inc. In this connection, when the interlayer film is a single-layered interlayer film, the interlayer film is cut so as to have a diameter of 8 mm to be measured.
  • a parallel plate with a diameter of 8 mm is used as a jig, and the measurement is performed under the condition in which the temperature is decreased from 100° C. to ⁇ 10° C. at a temperature decreasing rate of 3° C./minute and under the condition of a frequency of 1 Hz and a strain of 1%.
  • the peak temperature of the loss tangent is defined as the glass transition temperature Tg (° C.).
  • the temperature at which a value of the loss tangent in a temperature region between 100° C. and Tg (° C.) becomes minimal is defined as the softening point.
  • a humidity of 30% is not particularly limited as long as the period is one month or more, it is preferred that the period be one month.
  • the thickness of an object to be measured is not particularly limited, for example, it is preferred that the thickness lie within the range of 300 to 800 ⁇ m.
  • the thickness of the interlayer film is not particularly limited. From the viewpoint of the practical aspect and the viewpoint of sufficiently enhancing the penetration resistance of laminated glass, the thickness of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less and more preferably 1.5 mm or less. When the thickness of the interlayer film is the above lower limit or more, the penetration resistance of laminated glass is enhanced. When the thickness of the interlayer film is the above upper limit or less, the transparency of the interlayer film is further improved.
  • the interlayer film be obtained by melt extrusion molding.
  • the production method of the interlayer film is not particularly limited.
  • examples of the production method of the interlayer film include a method of extruding a resin composition with an extruder.
  • examples of the production method of the interlayer film include a method of separately forming respective resin compositions used for constituting respective layers into respective layers, and then, for example, layering the respective obtained layers, a method of coextruding respective resin compositions used for constituting respective layers with an extruder and layering the respective layers, and the like.
  • a production method of extrusion-molding is preferred because the method is suitable for continuous production.
  • respective polyvinyl acetal resins contained in the first layer and the third layer be the same as each other, it is more preferred that respective polyvinyl acetal resins contained in the first layer and the third layer be the same as each other and respective plasticizers contained therein be the same as each other, and it is further preferred that the first layer and the third layer be formed from the same resin composition as each other.
  • the sectional shape of the interlayer film may be a rectangular shape and may be a wedge-like shape.
  • an emboss pattern be imparted to a surface of the interlayer film.
  • the softening point of the outermost surface portion of the interlayer film is high, there is a case where it is difficult to perform emboss processing and there is a case where an emboss pattern is not collapsed in the production process of laminated glass and thus bubbles are generated inside the laminated glass.
  • an appropriate emboss pattern can be imparted thereto.
  • FIG. 3 is a sectional view schematically showing an example of laminated glass prepared with the interlayer film for laminated glass shown in FIG. 1 .
  • the laminated glass 31 shown in FIG. 3 is provided with a first lamination glass member 21 , a second lamination glass member 22 and an interlayer film 11 .
  • the interlayer film 11 is arranged between the first lamination glass member 21 and the second lamination glass member 22 to be sandwiched therebetween.
  • the first lamination glass member 21 is layered on a first surface 11 a of the interlayer film 11 .
  • the second lamination glass member 22 is layered on a second surface 11 b opposite to the first surface 11 a of the interlayer film 11 .
  • the first lamination glass member 21 is layered on an outer surface 1 a of a first layer 1 .
  • the second lamination glass member 22 is layered on an outer surface 3 a of a third layer 3 .
  • FIG. 4 is a sectional view schematically showing an example of laminated glass prepared with the interlayer film for laminated glass shown in FIG. 2 .
  • the laminated glass 31 A shown in FIG. 4 is provided with a first lamination glass member 21 , a second lamination glass member 22 and an interlayer film 11 A.
  • the interlayer film 11 A is arranged between the first lamination glass member 21 and the second lamination glass member 22 to be sandwiched therebetween.
  • the first lamination glass member 21 is layered on a first surface 11 a of the interlayer film 11 A.
  • the second lamination glass member 22 is layered on a second surface 11 b opposite to the first surface 11 a of the interlayer film 11 A.
  • the laminated glass is provided with a first lamination glass member, a second lamination glass member and an interlayer film
  • the interlayer film is the interlayer film for laminated glass according to the present invention.
  • the above-mentioned interlayer film is arranged between the first lamination glass member and the second lamination glass member.
  • the lamination glass member examples include a glass plate, a PET (polyethylene terephthalate) film, and the like.
  • laminated glass laminated glass in which an interlayer film is sandwiched between a glass plate and a PET film or the like, as well as laminated glass in which an interlayer film is sandwiched between two glass plates, is included.
  • the laminated glass is a laminate provided with a glass plate, and it is preferred that at least one glass plate be used. It is preferred that each of the first lamination glass member and the second lamination glass member be a glass plate or a PET film, and the laminated glass be provided with a glass plate as at least one among the first lamination glass member and the second lamination glass member. It is preferred that both of the first lamination glass member and the second lamination glass member be glass plates (a first glass plate and a second glass plate).
  • the interlayer film is arranged between a first glass plate and a second glass plate to suitably obtain laminated glass.
  • the glass plate examples include a sheet of inorganic glass and a sheet of organic glass.
  • the inorganic glass examples include float plate glass, heat ray-absorbing plate glass, heat ray-reflecting plate glass, polished plate glass, figured glass, wired plate glass, and the like.
  • the organic glass is synthetic resin glass substituted for inorganic glass.
  • the organic glass examples include a polycarbonate plate, a poly(meth)acrylic resin plate, and the like.
  • the poly(meth)acrylic resin plate examples include a polymethyl (meth)acrylate plate, and the like.
  • the thickness of the lamination glass member is preferably 1 mm or more, preferably 5 mm or less and more preferably 3 mm or less. Moreover, when the lamination glass member is a glass plate, the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less and more preferably 3 mm or less. When the lamination glass member is a PET film, the thickness of the PET film is preferably 0.03 mm or more and preferably 0.5 mm or less.
  • the lamination glass member may be a flat sheet of glass and may be a curved sheet of glass, for example, when the thickness of the lamination glass member is 1.8 mm or less, the rigidity of laminated glass can be enhanced by using the curved sheet of glass.
  • the rigidity of laminated glass can be enhanced by using the curved sheet of glass.
  • it is difficult to make an interlayer film with a high softening point fit into a curved shape of the curved sheet of glass by imparting an emboss pattern to the interlayer film, it becomes easy to make the interlayer film fit into a curved shape of the curved sheet of glass.
  • the method for producing the laminated glass is not particularly limited.
  • the interlayer film is sandwiched between the first lamination glass member and the second lamination glass member, and then, passed through pressure rolls or subjected to decompression suction in a rubber bag, so that the air remaining between the first and the second lamination glass members and the interlayer film is removed.
  • the members are preliminarily bonded together at about 70 to 110° C. to obtain a laminate.
  • the members are press-bonded together at about 120 to 150° C. and under a pressure of 1 to 1.5 MPa. In this way, laminated glass can be obtained.
  • a first layer, a second layer and a third layer may be layered.
  • each of the interlayer film and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings and the like. Each of the interlayer film and the laminated glass can also be used for applications other than these applications. It is preferred that the interlayer film and the laminated glass be an interlayer film and laminated glass for vehicles or for building respectively, and it is more preferred that the interlayer film and the laminated glass be an interlayer film and laminated glass for vehicles respectively. Each of the interlayer film and the laminated glass can be used for a windshield, side glass, rear glass or roof glass of an automobile, and the like. The interlayer film and the laminated glass are suitably used for automobiles. The interlayer film is used for obtaining laminated glass of an automobile.
  • the visible light transmittance of laminated glass is preferably 65% or more and more preferably 70% or more.
  • the visible light transmittance of laminated glass can be measured in accordance with JIS R3211 (1998). It is preferred that the visible light transmittance of laminated glass obtained by sandwiching the interlayer film for laminated glass according to the present invention between two sheets of green glass (heat ray-absorbing plate glass) with a thickness of 2 mm in accordance with JIS R3208 be 70% or more.
  • the visible light transmittance is more preferably 75% or more.
  • Polyvinyl acetal resins shown in the following Tables 1 to 4 were appropriately used. In all polyvinyl acetal resins used, n-butyraldehyde which has 4 carbon atoms is used for the acetalization.
  • the acetalization degree (the butyralization degree), the acetylation degree and the content of the hydroxyl group were measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
  • JIS K6728 “Testing methods for polyvinyl butyral”.
  • Nipgel AZ201 silicon particles, available from TOSOH SILICA CORPORATION, the specific surface area by the BET method of 300 m 2 /g
  • AEROSIL 380 silicon particles, available from NIPPON AEROSIL CO., LTD., the specific surface area by the BET method of 380 ⁇ 30 m 2 /g
  • Nipgel AZ204 silicon particles, available from TOSOH SILICA CORPORATION, the specific surface area by the BET method of 300 m 2 /g
  • Tinuvin 326 (2-(2′-hydroxy-3′-t-butyl-5-methylphenyl)-5-chlorobenzotriazole, “Tinuvin 326” available from BASF Japan Ltd.)
  • a plasticizer 3GO
  • an ultraviolet ray screening agent Tinuvin 326
  • BHT oxidation inhibitor
  • composition for forming second layer One hundred parts by weight of a polyvinyl acetal resin of a kind of shown in the following Table 1, 60 parts by weight of a plasticizer (3GO), 20 parts by weight of a kind of filler (AEROSIL 380), 0.2 part by weight of an ultraviolet ray screening agent (Tinuvin 326) and 0.2 part by weight of an oxidation inhibitor (BHT) were mixed to obtain a composition for forming a second layer.
  • a plasticizer 3GO
  • AEROSIL 380 a kind of filler
  • Tinuvin 326 0.2 part by weight of an ultraviolet ray screening agent
  • BHT oxidation inhibitor
  • an interlayer film (780 ⁇ m in thickness) having a layered structure with a stack of a first layer (340 ⁇ m in thickness)/a second layer (100 ⁇ m in thickness)/a third layer (340 ⁇ m in thickness) was prepared.
  • the coextrusion condition was as follows.
  • the distance between a mold outlet used in the coextruder and a contact point on the first roll nearest to the mold, the linear velocity of an interlayer film between the mold outlet and the first roll and the temperature of the interlayer film were adjusted to be 12 cm, 0.6 m/minute and 175° C., respectively.
  • the temperature of the interlayer film was decreased to 25° C. by making the interlayer film pass through the first roll and a second roll (a cooling roll). Furthermore, the temperature of the interlayer film was adjusted to be 90° C.
  • the interlayer film was made to pass through a third roll (a temperature adjusting roll) and the interlayer film was made to pass through a fourth roll (for example, an emboss pattern forming roll) the temperature of which is adjusted to 135° C.
  • the velocity ratio of the fourth roll to the third roll was adjusted to 1.45 times.
  • the temperature of the interlayer film was adjusted to 25° C. by making the interlayer film pass through a fifth roll (a cooling roll), after which the interlayer film was wound around a core at a linear velocity of 0.9 m/minute.
  • both end parts in the TD direction were cut out from an interlayer film with a length in the TD direction of 150 cm so that respective 25-cm portions from both ends were removed, and an interlayer film with a length in the TD direction of 100 cm was wound around a core.
  • An interlayer film was prepared in the same manner as that in Example 1 except that the kind of ingredients to be blended and the blending amount thereof for the composition for forming a first layer and a third layer and the composition for forming a second layer and the thicknesses of a first layer, a second layer and a third layer were set to those listed in the following Table 1.
  • the coextrusion condition is the same as that in Example 1.
  • the kind of ingredients to be blended and the blending amount thereof for the composition for forming a first layer and a third layer and the composition for forming a second layer were set to those listed in the following Table 1.
  • the coextrusion condition was as follows.
  • the distance between a mold outlet used in the coextruder and a contact point on the first roll nearest to the mold, the linear velocity of an interlayer film between the mold outlet and the first roll and the temperature of the interlayer film were adjusted to be 12 cm, 0.9 m/minute and 175° C., respectively.
  • the temperature of the interlayer film was decreased to 25° C. by making the interlayer film pass through the first roll and a second roll (a cooling roll). After being made to pass through the second roll, the interlayer film was annealed for 10 minutes at 110° C.
  • the temperature of the interlayer film was adjusted to 25° C., after which the interlayer film was wound around a core at a linear velocity of 0.9 m/minute.
  • both end parts in the TD direction were cut out from an interlayer film with a length in the TD direction of 150 cm so that respective 25-cm portions from both ends were removed, and an interlayer with a length in the TD direction of 100 cm was wound around a core.
  • An interlayer film was prepared in the same manner as that in Example 1 except that the kind of ingredients to be blended and the blending amount thereof for the composition for forming a first layer and a third layer and the composition for forming a second layer and the thicknesses of a first layer, a second layer and a third layer were set to those listed in the following Tables 2 to 4.
  • the coextrusion condition is the same as that in Example 1.
  • compositions for preparing an interlayer film were set to those listed in the following Tables 3 to 4 to prepare compositions for preparing an interlayer film.
  • the coextrusion condition was as follows, and interlayer films in which the thicknesses of a first layer, a second layer and a third layer were set to those listed in the following Tables 3 to 4 were prepared.
  • the distance between a mold outlet used in the coextruder and a point on the surface of a first roll nearest to the mold and at which a film is firstly brought into contact with the first roll, the linear velocity of an interlayer film between the mold outlet and the first roll and the temperature of the interlayer film were adjusted to be 12 cm, 0.6 m/minute and 175° C., respectively.
  • the temperature of the interlayer film was decreased to 25° C. by making the interlayer film pass through the first roll and a second roll (a cooling roll).
  • the temperature of the interlayer film was adjusted to be 90° C. by making the interlayer film pass through a third roll (a temperature adjusting roll) and the interlayer film was made to pass through a fourth roll (for example, an emboss pattern forming roll) the temperature of which is adjusted to 135° C.
  • the velocity ratio of the fourth roll to the third roll was adjusted to 1.2 times.
  • the temperature of the interlayer film was adjusted to 25° C. by making the interlayer film pass through a fifth roll (a cooling roll), after which the interlayer film was annealed for 2 minutes at 110° C. after being made to pass through the fifth roll.
  • the interlayer film was wound around a core at a linear velocity of 0.7 m/minute.
  • both end parts in the TD direction were cut out from an interlayer film with a length in the TD direction of 150 cm so that respective 25-cm portions from both ends were removed, and an interlayer film with a length in the TD direction of 100 cm was wound around a core.
  • each of the ultraviolet ray screening agent and the oxidation inhibitor of the same kind as that in Example 1 was blended in an amount of 0.2 part by weight relative to 100 parts by weight of the polyvinyl acetal resin in a composition for forming a first layer and a third layer, and each of the ultraviolet ray screening agent and the oxidation inhibitor of the same kind as that in Example 1 was blended in an amount of 0.2 part by weight relative to 100 parts by weight of the polyvinyl acetal resin in a composition for forming a second layer.
  • the interlayer film obtained was stored for 1 month at a temperature of 23 C and a humidity of 30%, after which each of the surface layers (the first layer and the third layer) was peeled off to be isolated and press-molded with a press molding machine to obtain an object to be measured and press-molded with a press molding machine to obtain an object to be measured. And with regard to the object to be measured, the measurement was performed using the “ARES-G2” available from TA Instruments Japan Inc. A parallel plate with a diameter of 8 mm was used as a jig, and the measurement was performed under the condition in which the temperature is decreased from 100° C. to ⁇ 10° C.
  • the peak temperature of the loss tangent was defined as the glass transition temperature Tg (° C.).
  • the temperature at which a value of the loss tangent in a temperature region between 100° C. and Tg (° C.) becomes minimal was defined as the softening point.
  • an interlayer film after stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH was measured for the dimension Z in the MD direction.
  • the difference c was calculated by substituting the thickness a of an interlayer film obtained when being extended so that the dimension in the MD direction becomes 1.2 times its original dimension and then stored for 10 hours at a temperature of 23° C. and a humidity of 30% RH and the thickness b estimated after the 1.2-times extension into the following equation.
  • the difference c was evaluated according to the following criteria for judgment.
  • The above-mentioned difference c is 10% or more and less than 15%.
  • Example 2 Example 3
  • Example 4 Example 1 Composition Each thickness ⁇ m 340 340 340 340 355 of each of first Polyvinyl Average polymerization degree of PVA 1700 1700 1700 1700 1700 and third layers acetal resin Content of hydroxyl group % by mole 34.5 30.7 34.5 30.7 34.4 Acetylation degree % by mole 0.8 0.8 0.8 0.8 Acetalization degree % by mole 64.7 68.5 64.7 68.5 64.8 Content Parts by 100 100 100 100 100 100 100 100 weight Plasticizer Kind 3GO 3GO 3GO 3GO 3GO Content Parts by 24 38.5 24 38.5 32.1 weight Composition Thickness ⁇ m 100 100 100 100 100 100 100 100 100 of second layer Polyvinyl Average polymerization degree of PVA 1700 1700 1700 1700 acetal resin Content of hydroxyl group % by mole 21.2 24.3 21.2 24.3 23.5 Acetylation degree % by mole 12.6 12.0 12.6 12.0 13.3 Acetalization degree % by mole 66.2
  • Example 11 Composition Each thickness ⁇ m 340 340 340 340 340 340 340 340 340 of each of Polyvinyl Average 1700 1700 1700 1700 1700 1700 1700 first and acetal resin polymerization third layers degree of PVA Content of hydroxyl % by mole 30.5 34.5 34.5 34.5 34.5 34.5 30.4 group Acetylation degree % by mole 1 0.8 0.8 0.8 0.8 0.9 Acetalization degree % by mole 68.5 64.7 64.7 64.7 64.7 64.7 68.7 Content Parts by 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 weight Plasticizer Kind 3GO 3GO 3GO 3GO 3GO 3GO 3GO 3GO 3GO 3GO 3GO Content Parts by 38.5 36 34 32 30 28 39.5 weight Composition Thickness ⁇ m 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 of second Polyvinyl Average 3000 3100 3100 3100 3100 3050 layer ace
  • Example Example 12 13
  • Example 14 15
  • Example 16 17
  • Example Example Example 18 19 20 21 22 Composition Each thickness ⁇ m 350 350 350 350 290 290 of each of Polyvinyl Average 1700 1700 1700 1700 1700 first and acetal resin polymerization third degree of PVA layers Content of % by 30.8 30.8 30.8 30.8 hydroxyl group mole Acetylation % by 0.8 0.8 0.8 0.8 degree mole Acetalization % by 68.4 68.4 68.4 68.4 68.4 degree mole Content Parts by 100 100 100 100 100 100 100 100 100 weight Plasticizer Kind 3GO 3GO 3GO 3GO 3GO Content Parts by 30 32 34 30 32 weight Composition Thickness ⁇ m 80 80 80 200 200 of second Polyvinyl Average 1700 1700 1700 3000 3000 layer acetal resin polymerization degree of PVA Content of % by 21.2 21.2 21.2 24.4 24.4 hydroxyl group mole Acetylation % by 17.2 17.2 17.2 12 12 degree mole Acetalization % by 61.6 61.6 6

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Glass Melting And Manufacturing (AREA)
US15/549,015 2015-02-05 2016-02-05 Laminated-glass interlayer and laminated glass Abandoned US20180022066A1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2015-021626 2015-02-05
JP2015021627 2015-02-05
JP2015021626 2015-02-05
JP2015021628 2015-02-05
JP2015021629 2015-02-05
JP2015-021628 2015-02-05
JP2015-021627 2015-02-05
JP2015-021629 2015-02-05
PCT/JP2016/053519 WO2016125894A1 (ja) 2015-02-05 2016-02-05 合わせガラス用中間膜及び合わせガラス

Publications (1)

Publication Number Publication Date
US20180022066A1 true US20180022066A1 (en) 2018-01-25

Family

ID=56564230

Family Applications (6)

Application Number Title Priority Date Filing Date
US15/549,015 Abandoned US20180022066A1 (en) 2015-02-05 2016-02-05 Laminated-glass interlayer and laminated glass
US15/549,113 Active 2036-03-08 US10576714B2 (en) 2015-02-05 2016-02-05 Interlayer film for laminated glass, and laminated glass
US15/549,059 Active US10611127B2 (en) 2015-02-05 2016-02-05 Interlayer film for laminated glass, and laminated glass
US15/549,089 Active 2036-02-28 US10569510B2 (en) 2015-02-05 2016-02-05 Interlayer film for laminated glass, and laminated glass
US16/669,072 Active US10913245B2 (en) 2015-02-05 2019-10-30 Interlayer film for laminated glass, and laminated glass
US16/680,236 Active US10913246B2 (en) 2015-02-05 2019-11-11 Interlayer film for laminated glass, and laminated glass

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/549,113 Active 2036-03-08 US10576714B2 (en) 2015-02-05 2016-02-05 Interlayer film for laminated glass, and laminated glass
US15/549,059 Active US10611127B2 (en) 2015-02-05 2016-02-05 Interlayer film for laminated glass, and laminated glass
US15/549,089 Active 2036-02-28 US10569510B2 (en) 2015-02-05 2016-02-05 Interlayer film for laminated glass, and laminated glass
US16/669,072 Active US10913245B2 (en) 2015-02-05 2019-10-30 Interlayer film for laminated glass, and laminated glass
US16/680,236 Active US10913246B2 (en) 2015-02-05 2019-11-11 Interlayer film for laminated glass, and laminated glass

Country Status (13)

Country Link
US (6) US20180022066A1 (ja)
EP (4) EP3255019A4 (ja)
JP (5) JP7010586B2 (ja)
KR (4) KR102579234B1 (ja)
CN (4) CN107207339B (ja)
AU (4) AU2016216328A1 (ja)
BR (4) BR112017016640A2 (ja)
CA (4) CA2975580A1 (ja)
MX (5) MX2017010133A (ja)
RU (4) RU2707229C2 (ja)
TW (4) TWI691540B (ja)
WO (4) WO2016125896A1 (ja)
ZA (3) ZA201705567B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376819B2 (en) 2017-06-07 2022-07-05 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11958270B2 (en) 2018-03-29 2024-04-16 Sekisui Chemical Co., Ltd. Intermediate film for laminated glasses, laminated glass, and method for manufacturing head up display system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180022066A1 (en) 2015-02-05 2018-01-25 Sekisui Chemical Co., Ltd. Laminated-glass interlayer and laminated glass
MX2019013233A (es) * 2017-06-07 2020-02-03 Sekisui Chemical Co Ltd Pelicula intercalar para vidrio laminado, y vidrio laminado.
KR101894921B1 (ko) * 2018-01-19 2018-09-04 에스케이씨 주식회사 플라스틱 광학 렌즈용 폴리티올 조성물
WO2020017502A1 (ja) * 2018-07-20 2020-01-23 Agc株式会社 合わせガラス
CN118510732A (zh) * 2021-12-28 2024-08-16 Agc株式会社 夹层玻璃和夹层玻璃的制造方法
WO2024204439A1 (ja) * 2023-03-31 2024-10-03 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070172642A1 (en) * 2004-07-06 2007-07-26 Juichi Fukatani Interlayer film for laminated glass and laminated glass
US20090324969A1 (en) * 2008-06-25 2009-12-31 Wenjie Chen Polymer interlayers comprising blends of plasticized poly(vinyl butyral) and poly(cyclohexanedimethylene terephthalate-co-ethylene terephthalate) copolyester
US20130183507A1 (en) * 2010-09-30 2013-07-18 Shota Matsuda Intermediate film for laminated glass and laminated glass

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692781A (en) * 1950-09-27 1954-10-26 Singer Mfg Co Connector device for vacuum cleaner dust bags
JP2742450B2 (ja) 1989-07-20 1998-04-22 株式会社フジクラ 紫外線硬化型樹脂の硬化度測定方法
DE4015571A1 (de) * 1990-05-15 1991-11-21 Hoechst Ag Verfahren zur herstellung einer folie aus thermoplastischem kunststoff, folie, hergestellt nach dem verfahren, und verbundsicherheitsglas, hergestellt unter verwendung der folie
JPH05294680A (ja) 1992-04-16 1993-11-09 Sekisui Chem Co Ltd 合わせガラス用中間膜
JP2863984B2 (ja) * 1994-05-23 1999-03-03 旭化成工業株式会社 高剛性長尺フィルム
JP3290573B2 (ja) * 1994-11-07 2002-06-10 積水化学工業株式会社 合わせガラス用中間膜および合わせガラス
EP0710545A1 (en) 1994-11-07 1996-05-08 Sekisui Chemical Co., Ltd. An interlayer film for laminated glass and laminated glass using the same
DE19534420C2 (de) 1995-09-16 1999-05-12 Flachglas Automotive Gmbh Verfahren zur Herstellung einer von verwerfungsbedingten optischen Störungen freien Verbundsicherheitsglasscheibe, Verwendung einer Trägerfolie und Trägerfolie
JP3296984B2 (ja) * 1996-12-09 2002-07-02 トヨタ車体株式会社 自動車用遮音シート
CA2423183A1 (en) * 2000-09-28 2002-04-04 Solutia, Inc. Intrusion resistant glass laminate
FR2838517B1 (fr) 2002-04-15 2004-09-10 Saint Gobain Procede pour evaluer la resistance mecanique d'un intercalaire
US20050084687A1 (en) * 2002-10-22 2005-04-21 Opaci Lam Pty Ltd. Laminated glass
JP4742566B2 (ja) * 2003-12-05 2011-08-10 東レ株式会社 二軸延伸積層フィルム、合わせガラス用フィルムおよび合わせガラス
US7510771B2 (en) * 2005-03-17 2009-03-31 Solutia Incorporated Sound reducing polymer interlayers
CN101171541A (zh) 2005-05-11 2008-04-30 纳幕尔杜邦公司 具有楔形轮廓的聚合物夹层
US20070009714A1 (en) 2005-05-11 2007-01-11 Lee David J Polymeric interlayers having a wedge profile
JP2007070200A (ja) 2005-09-09 2007-03-22 Asahi Glass Co Ltd 合わせガラス
US7348062B2 (en) 2006-06-10 2008-03-25 Solutia Incorporated Interlayers comprising modified fumed silica
JP2009543065A (ja) 2006-06-29 2009-12-03 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ ブラッグファイバーを用いた光ファイバーセンサ
EP1977885A1 (en) * 2007-04-05 2008-10-08 Kuraray Europe GmbH Interlayer films for laminated glazing containing silica with specific refractive index
CN101687357B (zh) 2007-06-27 2014-01-15 积水化学工业株式会社 安全玻璃用多层中间膜的制造装置及制造方法
MX2010007972A (es) * 2008-01-23 2010-09-30 Sekisui Chemical Co Ltd Pelicula intercapas para vidrio laminado, y vidrio laminado.
DE102008001655A1 (de) * 2008-05-08 2009-11-12 Kuraray Europe Gmbh Weichmacherhaltige Folien aus Polyvinylacetal mit Cyclohexan-1,2-dicarbon-säureestern als Weichmacher
EP2298707A4 (en) 2008-06-16 2013-02-27 Central Glass Co Ltd METHOD FOR THE PRODUCTION OF COMPOSITE GLASS WITH INTEGRATED PLASTIC FOIL AND COMPOSITE GLASS WITH PLASTIC FOIL INSERTED
JP5707669B2 (ja) 2009-02-05 2015-04-30 セントラル硝子株式会社 プラスチックフィルム挿入合わせガラス
JP2010232588A (ja) 2009-03-30 2010-10-14 Lintec Corp 太陽電池モジュール用裏面保護シートおよびそれを用いてなる太陽電池モジュール
WO2011078137A1 (ja) * 2009-12-24 2011-06-30 旭硝子株式会社 合わせガラスとその製造方法
JP5806467B2 (ja) * 2009-12-28 2015-11-10 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
KR101761436B1 (ko) 2009-12-28 2017-07-25 세키스이가가쿠 고교가부시키가이샤 합판 유리용 중간막 및 합판 유리
JP5599639B2 (ja) * 2010-04-06 2014-10-01 富士フイルム株式会社 転写用フィルム、合わせガラス及びその製造方法
JP5244243B2 (ja) * 2010-07-16 2013-07-24 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
EP2612843B1 (en) 2010-09-01 2015-07-08 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass, and laminated glass
CN103153904B (zh) * 2010-09-30 2015-08-05 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
EP2623473B1 (en) * 2010-09-30 2020-03-18 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass
WO2012048715A1 (en) * 2010-10-11 2012-04-19 Novopolymers A process for annealing photovoltaic encapsulation polymer film
JP5650515B2 (ja) * 2010-12-20 2015-01-07 株式会社ブリヂストン 合わせガラスの製造方法
CN106082713B (zh) 2010-12-28 2019-04-12 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
CN103476841B (zh) * 2011-03-29 2015-04-29 株式会社可乐丽 聚乙烯醇缩醛系树脂薄膜及使用了其的多层结构体
JP2013001613A (ja) * 2011-06-17 2013-01-07 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2013001611A (ja) * 2011-06-17 2013-01-07 Kureha Corp 合わせガラスの加熱方法およびデフロスタ装置
JP2013006727A (ja) * 2011-06-23 2013-01-10 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2013006728A (ja) * 2011-06-23 2013-01-10 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
EP2548729A1 (de) 2011-07-22 2013-01-23 Kuraray Europe GmbH Folien aus weichmacherhaltigem Polyvinyl(iso)acetal
WO2013051454A1 (ja) 2011-10-04 2013-04-11 株式会社クラレ ポリビニルアセタールフィルム
US10173396B2 (en) 2012-03-09 2019-01-08 Solutia Inc. High rigidity interlayers and light weight laminated multiple layer panels
CN104185547B (zh) 2012-03-16 2016-05-04 东丽株式会社 多层层叠膜
JP3187697U (ja) * 2013-09-12 2013-12-12 中和製漆廠股▲分▼有限公司 安全合わせガラス構造
WO2016039477A1 (ja) * 2014-09-12 2016-03-17 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US20180022066A1 (en) * 2015-02-05 2018-01-25 Sekisui Chemical Co., Ltd. Laminated-glass interlayer and laminated glass
EP3348530A4 (en) * 2015-09-11 2019-05-08 Sekisui Chemical Co., Ltd. INTERMEDIATE LAYER FOR LAMINATED GLASS AND LAMINATED GLASS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070172642A1 (en) * 2004-07-06 2007-07-26 Juichi Fukatani Interlayer film for laminated glass and laminated glass
US20090324969A1 (en) * 2008-06-25 2009-12-31 Wenjie Chen Polymer interlayers comprising blends of plasticized poly(vinyl butyral) and poly(cyclohexanedimethylene terephthalate-co-ethylene terephthalate) copolyester
US20130183507A1 (en) * 2010-09-30 2013-07-18 Shota Matsuda Intermediate film for laminated glass and laminated glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376819B2 (en) 2017-06-07 2022-07-05 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11590736B2 (en) 2017-06-07 2023-02-28 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11590735B2 (en) 2017-06-07 2023-02-28 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, and laminated glass
US11958270B2 (en) 2018-03-29 2024-04-16 Sekisui Chemical Co., Ltd. Intermediate film for laminated glasses, laminated glass, and method for manufacturing head up display system

Also Published As

Publication number Publication date
US20180029336A1 (en) 2018-02-01
US10913245B2 (en) 2021-02-09
JPWO2016125894A1 (ja) 2017-11-30
CN107207339B (zh) 2021-02-19
EP3255019A1 (en) 2017-12-13
JPWO2016125896A1 (ja) 2017-11-09
TW201634559A (zh) 2016-10-01
KR102579234B1 (ko) 2023-09-18
RU2696734C2 (ru) 2019-08-05
US20200079058A1 (en) 2020-03-12
US10611127B2 (en) 2020-04-07
KR102560885B1 (ko) 2023-07-31
JPWO2016125895A1 (ja) 2017-11-09
JP7010588B2 (ja) 2022-01-26
US20180022068A1 (en) 2018-01-25
RU2017131065A (ru) 2019-03-05
US10569510B2 (en) 2020-02-25
RU2706843C2 (ru) 2019-11-21
KR20170115050A (ko) 2017-10-16
MX2023010251A (es) 2023-09-12
AU2016216328A1 (en) 2017-08-17
KR20170113563A (ko) 2017-10-12
BR112017016612A2 (ja) 2018-04-03
RU2017131063A (ru) 2019-03-05
WO2016125896A1 (ja) 2016-08-11
JP7010587B2 (ja) 2022-02-10
CN107207340A (zh) 2017-09-26
BR112017016622A2 (ja) 2018-04-03
RU2017131066A3 (ja) 2019-06-10
CN107207341B (zh) 2020-08-18
ZA201705567B (en) 2018-12-19
US20200061977A1 (en) 2020-02-27
EP3255017A4 (en) 2018-10-10
US20180022071A1 (en) 2018-01-25
JPWO2016125897A1 (ja) 2017-11-16
RU2707229C2 (ru) 2019-11-25
CA2975587A1 (en) 2016-08-11
MX2017010135A (es) 2017-11-01
CN107406311B (zh) 2020-10-02
BR112017016616B1 (pt) 2022-05-24
EP3255020A1 (en) 2017-12-13
CN107207341A (zh) 2017-09-26
ZA201705569B (en) 2018-12-19
MX2017010136A (es) 2017-11-01
TWI685530B (zh) 2020-02-21
EP3255017A1 (en) 2017-12-13
RU2017131063A3 (ja) 2019-06-10
TWI711593B (zh) 2020-12-01
WO2016125897A1 (ja) 2016-08-11
AU2016216327A1 (en) 2017-08-17
US10576714B2 (en) 2020-03-03
KR102560888B1 (ko) 2023-07-31
KR20170113562A (ko) 2017-10-12
MX2017010138A (es) 2017-11-01
CA2975582A1 (en) 2016-08-11
AU2016216389A1 (en) 2017-08-17
RU2017131062A (ru) 2019-03-05
TW201634557A (zh) 2016-10-01
KR102591279B1 (ko) 2023-10-20
BR112017016640A2 (ja) 2018-04-03
KR20170115533A (ko) 2017-10-17
CN107207339A (zh) 2017-09-26
WO2016125895A1 (ja) 2016-08-11
TWI691540B (zh) 2020-04-21
CN107207340B (zh) 2020-11-24
TWI725955B (zh) 2021-05-01
RU2017131062A3 (ja) 2019-06-14
RU2017131066A (ru) 2019-03-05
ZA201705568B (en) 2018-12-19
JP7010586B2 (ja) 2022-01-26
BR112017016616A2 (ja) 2018-04-03
AU2016216329A1 (en) 2017-08-17
EP3255018A4 (en) 2018-10-03
CN107406311A (zh) 2017-11-28
EP3255019A4 (en) 2018-10-10
JP6683599B2 (ja) 2020-04-22
WO2016125894A1 (ja) 2016-08-11
EP3255020A4 (en) 2018-11-21
MX2017010133A (es) 2017-11-01
TW201630848A (zh) 2016-09-01
RU2017131065A3 (ja) 2019-06-14
RU2696736C2 (ru) 2019-08-05
CA2975580A1 (en) 2016-08-11
JP2020109054A (ja) 2020-07-16
EP3255018A1 (en) 2017-12-13
TW201634558A (zh) 2016-10-01
US10913246B2 (en) 2021-02-09
CA2975586A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US11135811B2 (en) Interlayer for laminated glass, and laminated glass
US11186068B2 (en) Interlayer for laminated glass, roll body, and laminated glass
US10913245B2 (en) Interlayer film for laminated glass, and laminated glass
US20170266928A1 (en) Intermediate film for laminated glass, and laminated glass
US10836143B2 (en) Interlayer film for laminated glass, roll, and laminated glass
US10814592B2 (en) Interlayer for laminated glass and laminated glass

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEKISUI CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IWAMOTO, TATSUYA;MINAKUCHI, NAMI;REEL/FRAME:043205/0230

Effective date: 20170517

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION