US20160264547A1 - Herbicidal Compounds - Google Patents

Herbicidal Compounds Download PDF

Info

Publication number
US20160264547A1
US20160264547A1 US15/027,768 US201415027768A US2016264547A1 US 20160264547 A1 US20160264547 A1 US 20160264547A1 US 201415027768 A US201415027768 A US 201415027768A US 2016264547 A1 US2016264547 A1 US 2016264547A1
Authority
US
United States
Prior art keywords
compound
formula
alkyl
alkoxy
haloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/027,768
Other languages
English (en)
Inventor
Mangala Phadte
Ravindra Sonawane
James Alan Morris
Jutta Elisabeth Boehmer
Timothy Robert Desson
Sally Elizabeth RUSSELL
Kenneth Ling
Alan Joseph Hennessy
Matthew Brian Hotson
Adrian Longstaff
Clarie Janet RUSSELL
Jake GOODWIN-TINDALL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Participations AG
Syngenta Ltd
Original Assignee
Syngenta Participations AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations AG filed Critical Syngenta Participations AG
Assigned to SYNGENTA LIMITED reassignment SYNGENTA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOEHMER, JUTTA ELISABETH, DESSON, Timothy Robert, GOODWIN-TINDALL, Jake, HENNESSY, ALAN JOSEPH, HOTSON, MATTHEW BRIAN, LING, KENNETH, LONGSTAFF, ADRIAN, MORRIS, JAMES ALAN, Phadte, Mangala, RUSSELL, CLAIRE JANET, RUSSELL, Sally Elizabeth, SONAWANE, Ravindra
Publication of US20160264547A1 publication Critical patent/US20160264547A1/en
Assigned to SYNGENTA PARTICIPATIONS AG, SYNGENTA LIMITED reassignment SYNGENTA PARTICIPATIONS AG CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 039725 FRAME: 0135. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: BOEHMER, JUTTA ELISABETH, DESSON, Timothy Robert, GOODWIN-TINDALL, Jake, HENNESSY, ALAN JOSEPH, HOTSON, MATTHEW BRIAN, LING, KENNETH, LONGSTAFF, ADRIAN, MORRIS, JAMES ALAN, Phadte, Mangala, RUSSELL, CLAIRE JANET, RUSSELL, SALLY ELISABETH, SONAWANE, Ravindra
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to certain substituted dihydro-hydantoin derivatives, to processes for their preparation, herbicidal compositions comprising them, and their use in controlling plants or inhibiting plant growth.
  • the invention provides compounds of the formula (I)
  • X is selected from S and O;
  • R a is selected from hydrogen and halogen
  • R b is selected from hydrogen, halogen, C 1 -C 4 alkyl, C 2 -C 4 alkenyl C 1 -C 4 haloalkyl, C 1 -C 6 alkoxy, C 2 -C 4 alkenyloxy, C 2 -C 4 alkynyloxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 4 haloalkoxy, C 1 -C 3 alkoxy-C 1 -C 3 alkoxy, C 1 -C 4 alkylthio, C 1 -C 4 alkylsulfinyl, C 1 -C 4 alkylsulfonyl, a group R 5 R 6 N—, a group R 5 C(O)N(R 6 )—, a group R 5 S(O 2 )N(R 6 )—, a group R 5 R 6 NSO 2 —, a group R 5 R 6 NC(O)—, aryl optionally
  • R c is selected from hydrogen, halogen, C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl, C 1 -C 6 alkoxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 6 hydroxyalkyl, C 2 -C 6 alkenyloxy C 1 -C 6 alkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, C 1 -C 3 alkyl and C 1 -C 3 alkoxy;
  • R d is selected from hydrogen, halogen, cyano, C 1 -C 6 alkyl and C 1 -C 6 haloalkyl;
  • R 1 is selected from hydrogen, hydroxyl, C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C 1 -C 4 cyanoalkyl, C 3 -C 6 cycloalkyl, C 1 -C 4 alkoxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl and C 1 -C 4 haloalkyl and R 2 is selected from hydrogen, hydroxyl, C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 1 -C 4 alkoxy, C 2 -C 4 alkenyloxy, C 2 -C 4 alkynyloxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 4 alkoxy-C 1 -C 4 alkoxy, C 1 -C 4 hydroxyalkyl, C 1 -C 4 haloalkyl, C 1 -C 3 halo
  • R 1 and R 2 together with the nitrogen and carbon atoms to which they are attached form a 3-7 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from hydroxyl, ⁇ O, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 3 is selected from halogen, hydroxyl, —NR 14 R 15 , or any one of the following groups
  • R 5 and R 6 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 cyanoalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy and C 1 -C 6 alkoxy-C 1 -C 6 alkyl, or R 5 and R 6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C 1 -C 6 alkyl;
  • R 7 and R 8 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, a C 3 -C 6 cycloalkyl group optionally substituted with 1 to 3 groups independently selected from C 1 -C 3 alkyl, C 2 -C 4 alkenyl, C 1 -C 3 haloalkyl and C 2 -C 4 haloalkenyl, a C 5 -C 10 heterocyclyl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C 1 -C 3 alkyl, C 1 -C 3 haloalkyl and C 1 -C 3 alkoxy, a C 5 -C 10 heteroaryl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from
  • R 9 is selected from C 1 -C 6 alkyl and benzyl optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy;
  • R 14 and R 15 are, independently, selected from hydrogen, C 1 -C 20 alkyl, C 1 -C 20 haloalkyl, C 1 -C 20 alkoxy, C 1 -C 20 alkoxy-C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl and benzyl, or R 14 and R 15 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C 1 -C 6 alkyl;
  • the invention provides herbicidal compositions comprising a compound of the invention together with at least one agriculturally acceptable adjuvant or diluent.
  • the invention provides the use of a compound or a composition of the invention for use as a herbicide.
  • the invention provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful crop plants, a compound or a composition of the invention.
  • the invention relates to processes useful in the preparation of compounds of the invention.
  • the invention relates to intermediates useful in the preparation of compounds of the invention.
  • the preferred groups for X, R a , R b R c , R d , R 1 , R 2 and R 3 , in any combination thereof, are as set out below.
  • X is O.
  • R a is hydrogen
  • R d is hydrogen
  • R 1 is selected from C 1 -C 4 alkyl, C 1 -C 4 alkoxy and C 1 -C 4 haloalkyl. More preferably, R 1 is selected from C 1 -C 4 alkyl and C 1 -C 4 alkoxy. Most preferably, R 1 is selected from methyl and methoxy.
  • R 2 is selected from C 1 -C 3 alkyl, C 1 -C 3 alkoxy and C 1 -C 3 alkoxy-C 1 -C 3 alkyl. More preferably, R 2 is selected from methyl, ethyl, methoxy, ethoxy and methoxymethyl. Even more preferably, R 2 is selected from methyl and ethoxy. Most preferably, R 2 is methyl.
  • R 3 is selected from hydroxyl, halogen, C 1 -C 6 alkylcarbonyloxy, C 1 -C 6 alkoxycarbonyloxy and aryloxycarbonyloxy wherein the aryl group may be substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy. Even more preferably, R 3 is selected from hydroxyl and halogen. Most preferably, R 3 is hydroxyl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b and R c are as described below in any combination.
  • R b is selected from hydrogen, halogen, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 alkoxy-C 1 -C 3 alkyl, heteroaryl substituted by halogen or methoxy and aryl substituted by halogen or methoxy. More preferably, R b is selected from hydrogen, halogen, methoxy, heteroaryl substituted by halogen or methoxy and aryl substituted by halogen or methoxy groups. Even more preferably, R b is hydrogen.
  • R c is selected from C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is selected from C 1 -C 6 alkyl, C 1 -C 3 haloalkyl, C 1 -C 6 cyanoalkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is selected from methyl, ethyl, iso-propyl, (2-methyl)-prop-1-yl, (1-methyl)-prop-1-yl, tert-butyl, (1,1-dimethyl)-prop-1-yl, (1,1-dimethyl)-but-1-yl, (1-methyl-1-ethyl)-prop-1-yl, cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, (1-methyl-1-cyano)-eth-1-yl, (1-methyl-1-ethyl-2-cyano)-prop-1-yl, (1,1-dimethyl-2-cyano)-prop-1-yl, 1-fluoroethyl, 1,1-difluoroethyl, difluoromethyl, 1-fluoro-1-methylethyl and trifluoromethyl.
  • R c is selected from tert-butyl, (1-methyl-1-cyano)-eth-1-yl, 1,1-difluoroethyl, 1-fluoro-1-methylethyl and trifluoromethyl.
  • R c is trifluoromethyl.
  • the substituted pyridine may be 4-tert-butyl-pyrid-2-yl, 4-((1-methyl-1-cyano)-eth-1-yl)-pyrid-2-yl, 4-(1,1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is selected from R 5 R 6 NC(O)— and R 5 C(O)N(R 6 )—, wherein R 5 and R 6 are as described above, and R c is selected from hydrogen, halo, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl. More preferably, R b is R 5 R 6 NC(O)—.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is selected from halogen and C 1 -C 4 alkyl and R c is C 1 -C 3 haloalkyl, preferably trifluoromethyl.
  • the invention provides compounds of the formula (I)
  • X is selected from S and O;
  • R a is selected from hydrogen and halogen
  • R b is selected from hydrogen, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 6 alkoxy, C 1 -C 3 alkoxy-C 1 -C 3 alkoxy, a group R 5 R 6 N—, a group R 5 C(O)N(R 6 )—, a group R 5 S(O 2 )N(R 6 )—, a group R 5 R 6 NSO 2 —, a group R 5 R 6 NC(O)—, aryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy, and heteroaryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alk
  • R c is selected from hydrogen, halogen, C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl, C 1 -C 6 alkoxy, C 1 -C 6 hydroxyalkyl, C 2 -C 6 alkenyloxy C 1 -C 6 alkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, C 1 -C 3 alkyl and C 1 -C 3 alkoxy;
  • R d is selected from hydrogen, halogen, cyano, C 1 -C 6 alkyl and C 1 -C 6 haloalkyl;
  • R 1 is selected from hydrogen, C 1 -C 4 alkyl, C 1 -C 4 alkoxy and C 1 -C 4 haloalkyl and R 2 is selected from hydrogen, hydroxyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 3 haloalkoxy and C 1 -C 4 cyanoalkyl, with the proviso that when R 1 is methyl, R 2 is not H;
  • R 1 and R 2 together with the nitrogen and carbon atoms to which they are attached form a 3-7 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from hydroxyl, ⁇ O, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 3 is selected from halogen, hydroxyl, and any one of the following groups
  • R 5 and R 6 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, or R 5 and R 6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C 1 -C 6 alkyl;
  • R 7 and R 8 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, a C 5 -C 10 heteroaryl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C 1 -C 3 alkyl, C 1 -C 3 haloalkyl and C 1 -C 3 alkoxy, a C 6 -C 10 aryl group optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy, or R 7 and R 8 together with the atoms to which they are attached form a 3-6 membered saturated or partially
  • R 9 is selected from C 1 -C 6 alkyl and benzyl optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy;
  • X is O.
  • R a is hydrogen
  • R d is hydrogen
  • R 1 is C 1 -C 4 alkyl, C 1 -C 4 alkoxy or C 1 -C 4 haloalkyl. More preferably, R 1 is C 1 -C 4 alkyl or C 1 -C 4 alkoxy. Most preferably, R 1 is methyl or methoxy.
  • R 2 is C 1 -C 3 alkyl, C 1 -C 3 alkoxy or C 1 -C 3 alkoxy-C 1 -C 3 alkyl. More preferably R 2 is methyl, methoxy, ethoxy or methoxymethyl.
  • R 3 is hydroxyl, halogen, C 1 -C 6 alkylcarbonyloxy, C 1 -C 6 alkoxycarbonyloxy or aryloxycarbonyloxy wherein the aryl group may be substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy. Even more preferably, R 3 is hydroxyl or halogen. Most preferably, R 3 is hydroxyl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b and R c are as described below in any combination.
  • R b is hydrogen, halogen, methoxy, heteroaryl substituted by halogen or methoxy or aryl substituted by halogen or methoxy groups.
  • R b is hydrogen
  • R c is C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl or C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is C 1 -C 6 alkyl, C 1 -C 3 haloalkyl, C 1 -C 6 cyanoalkyl or C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is methyl, ethyl, iso-propyl, (2-methyl)-prop-1-yl, (1-methyl)-prop-1-yl, tert-butyl, (1,1-dimethyl)-prop-1-yl, (1,1-dimethyl)-but-1-yl, (1-methyl-1-ethyl)-prop-1-yl, cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, (1-methyl-1-cyano)-eth-1-yl, (1-methyl-1-ethyl-2-cyano)-prop-1-yl, (1,1-dimethyl-2-cyano)-prop-1-yl, 1-fluoroethyl, 1,1-difluoroethyl, difluoromethyl, 1-fluoro-1-methylethyl or trifluoromethyl.
  • R c is tert-butyl, (1-methyl-1-cyano)-eth-1-yl, 1,1-difluoroethyl, 1-fluoro-1-methylethyl or trifluoromethyl.
  • R c is trifluoromethyl.
  • the substituted pyridine may be 4-tert-butyl-pyrid-2-yl, 4-((1-methyl-1-cyano)-eth-1-yl)-pyrid-2-yl, 4-(1,1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is R 5 R 6 NC(O)— or R 5 C(O)N(R 6 )—, wherein R 5 and R 6 are as described above, and R c is hydrogen, halo, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl. More preferably, R b is R 5 R 6 NC(O)—.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is halogen or C 1 -C 4 alkyl and R c is C 1 -C 3 haloalkyl, preferably trifluoromethyl.
  • the compounds of formula (I) may exist as different geometric isomers, or in different tautomeric forms. This invention covers all such isomers and tautomers, and mixtures thereof in all proportions, as well as isotopic forms such as deuterated compounds.
  • the compounds of this invention may contain one or more asymmetric centers and may thus give rise to optical isomers and diastereomers. While shown without respect to stereochemistry, the present invention includes all such optical isomers and diastereomers as well as the racemic and resolved, enantiomerically pure R and S stereoisomers and other mixtures of the R and S stereoisomers and agrochemically acceptable salts thereof. It is recognized certain optical isomers or diastereomers may have favorable properties over the other. Thus when disclosing and claiming the invention, when a racemic mixture is disclosed, it is clearly contemplated that both optical isomers, including diastereomers, substantially free of the other, are disclosed and claimed as well.
  • Alkyl refers to an aliphatic hydrocarbon chain and includes straight and branched chains e.g. of 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, and isohexyl.
  • Alkenyl refers to an aliphatic hydrocarbon chain having at least one double bond, and preferably one double bond, and includes straight and branched chains e.g. of 2 to 8 carbon atoms such as ethenyl (vinyl), prop-1-enyl, prop-2-enyl (allyl), isopropenyl, but-1-enyl, but-2-enyl, but-3-enyl, 2-methypropenyl.
  • Alkynyl refers to an aliphatic hydrocarbon chain having at least one triple bond, and preferably one triple bond, and includes straight and branched chains e.g. of 2 to 8 carbon atoms such as ethynyl, prop-1-ynyl, prop-2-ynyl (propargyl) but-1-ynyl, but-2-ynyl and but-3-ynyl.
  • Cycloalkyl refers to a cyclic, saturated hydrocarbon group having from 3 to 6 ring carbon atoms.
  • Examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Hydroxyalkyl refers to the group —ROH, wherein R is alkyl as defined above.
  • Alkoxy refers to the group —OR, wherein R is alkyl as defined above.
  • alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, t-butoxy, n-pentoxy, isopentoxy, neo-pentoxy, n-hexyloxy, and isohexyloxy.
  • Alkenyloxy refers to the group —OR, wherein R is alkenyl as defined above.
  • alkenyloxy groups are ethenyloxy, propenyloxy, isopropenyloxy, but-1-enyloxy, but-2-enyloxy, but-3-enyloxy, 2-methypropenyloxy etc.
  • Alkynyloxy refers to the group —OR, wherein R is alkynyl is as defined above.
  • alkynyloxy groups are ethynyloxy, propynyloxy, but-1-ynyloxy, but-2-ynyloxy and but-3-ynyloxy.
  • Alkoxyalkyl refers to a group R, substituted at any position with one or more groups —OR, wherein each R is, independently, alkyl as defined herein.
  • Alkoxyalkoxy refers to the group —OROR, wherein each R is, independently, an alkyl group as defined above.
  • Alkenyloxyalkyl refers to the group —ROR′, wherein R is alkyl as used herein and R′ is alkenyl as used herein.
  • Cyanoalkyl refers to an alkyl group substituted with one or more cyano groups.
  • Halogen, halide and halo refer to iodine, bromine, chlorine and fluorine.
  • Haloalkyl refers to an alkyl group as defined above wherein at least one hydrogen atom has been replaced with a halogen atom as defined above.
  • haloalkyl groups include chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl and trifluoromethyl.
  • Preferred haloalkyl groups are fluoroalkyl groups ⁇ i.e. haloalkyl groups, containing fluorine as the only halogen). More highly preferred haloalkyl groups are perfluoroalkyl groups, i.e. alkyl groups wherein all the hydrogen atoms are replaced with fluorine atoms.
  • Haloalkenyl refers to an alkenyl group as defined above wherein at least one hydrogen atom has been replaced with a halogen atom as defined above.
  • Haloalkoxy refers to the group —OR, wherein R is haloalkyl as defined above.
  • Alkylthio refers to the group —SR, wherein R is an alkyl group as defined above.
  • Alkylthio groups include, but are not limited to, methylthio, ethylthio, propylthio, tert-butylthio, and the like.
  • Alkylsulfinyl refers to the group —S(O)R, wherein R is an alkyl group as defined above.
  • Alkylsulfonyl refers to the group —S(O) 2 R, wherein R is an alkyl group as defined above.
  • Alkylcarbonyloxy refers to the group —OC(O)R, wherein R is alkyl as defined herein.
  • Alkoxycarbonyloxy refers to the group —OC(O)OR, wherein R is an alkyl group as defined above.
  • alkoxycarbonyloxy groups are methoxycarbonyloxy, ethoxycarbonyloxy, propoxycarbonyloxy, but-1-oxycarbonyloxy, but-2-oxycarbonyloxy and but-3-oxycarbonyloxy.
  • Hydroxy or hydroxyl refers to the group —OH.
  • Nitro refers to the group —NO 2 .
  • Cyano refers to the group —CN.
  • Aryl refers to an unsaturated aromatic carbocyclic group of from 6 to 10 carbon atoms having a single ring (e.g., phenyl) or multiple condensed (fused) rings, at least one of which is aromatic (e.g., indanyl, naphthyl).
  • Preferred aryl groups include phenyl, naphthyl and the like. Most preferably, an aryl group is a phenyl group.
  • Aryloxy refers to the group —O-aryl, wherein aryl is as defined above.
  • Preferred aryloxy groups include phenoxy, naphthyloxy and the like.
  • Aryloxycarbonyloxy refers to the group —OC(O)O-aryl wherein aryl is a as defined above.
  • Arylalkyl refers to a group R—Ar, wherein R is alkyl as defined herein and Ar is aryl as defined herein.
  • Arylalkyl groups may be substituted on the alkyl linker or on the ring.
  • An example of an arylalkyl group is the benzyl group (—CH 2 C 6 H 5 ).
  • Heterocyclyl refers to a non-aromatic ring system containing 3 to 10 ring atoms, at least one ring heteroatom and consisting either of a single ring or of two or more fused rings.
  • single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be chosen from nitrogen, oxygen and sulfur.
  • Examples of such groups include pyrrolidinyl, imidazolinyl, pyrazolidinyl, piperidyl, piperazinyl, quinuclidinyl, morpholinyl, together with unsaturated or partially unsaturated analogues such as 4,5,6,7-tetrahydro-benzothiophenyl, chromen-4-onyl, 9H-fluorenyl, 3,4-dihydro-2H-benzo-1,4-dioxepinyl, 2,3-dihydro-benzofuranyl, piperidinyl, 1,3-dioxolanyl, 1,3-dioxanyl, 4,5-dihydro-isoxazolyl, tetrahydrofuranyl and morpholinyl.
  • unsaturated or partially unsaturated analogues such as 4,5,6,7-tetrahydro-benzothiophenyl, chromen-4-onyl, 9H-fluor
  • Heteroaryl refers to a ring system containing 5 to 10 ring atoms, 1 to 4 ring heteroatoms and consisting either of a single aromatic ring or of two or more fused rings, at least one of which is aromatic.
  • single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be independently chosen from nitrogen, oxygen and sulfur.
  • Examples of such groups include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, furanyl, thiophenyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl and tetrazolyl.
  • bicyclic groups are benzothiophenyl, benzimidazolyl, benzothiadiazolyl, quinolinyl, cinnolinyl, quinoxalinyl and pyrazolo[1,5-a]pyrimidinyl.
  • “Saturated ring’ refers to a ring system in which the atoms in the ring are linked by single bonds.
  • Partially unsaturated ring refers to a ring system in which at least two atoms in the ring are linked by a double bond. Partially unsaturated ring systems do not include aromatic rings.
  • Optionally substituted means the group referred to can be substituted at one or more positions by any one or any combination of the radicals listed thereafter. For most groups, one or more hydrogen atoms are replaced by the radicals listed thereafter. For halogenated groups, for example, haloalkyl groups, one or more halogen atoms are replaced by the radicals listed thereafter.
  • Suitable salts include those derived from alkali or alkaline earth metals and those derived from ammonia and amines.
  • Preferred cations include sodium, potassium, magnesium, and ammonium cations of the formula N+(R 19 R 20 R 21 R 22 ) wherein R 19 , R 20 , R 21 and R 22 are independently selected from hydrogen, C 1 -C 6 alkyl and C 1 -C 6 hydroxyalkyl.
  • Salts of the compounds of Formula I can be prepared by treatment of compounds of Formula I with a metal hydroxide, such as sodium hydroxide, or an amine, such as ammonia, trimethylamine, diethanolamine, 2-methylthiopropylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine.
  • a metal hydroxide such as sodium hydroxide
  • an amine such as ammonia, trimethylamine, diethanolamine, 2-methylthiopropylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine.
  • Amine salts are often preferred forms of the compounds of Formula I because they are water-soluble and lend themselves to the preparation of desirable aqueous based herbicidal compositions.
  • Acceptable salts can be formed from organic and inorganic acids, for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesulfonic, benzenesulfonic, toluenesulfonic, camphorsulfonic, and similarly known acceptable acids when a compound of this invention contains a basic moiety.
  • organic and inorganic acids for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesulfonic, benzenesulfonic, toluene
  • the present invention provides intermediates useful in the preparation of compounds of the invention.
  • compounds of formula (IX) wherein R 1 is an alkyl or alkoxy group and R 2 is a hydrogen or alkyl group may be prepared by reaction of amino-pyridine (IV) with phenylchloroformate to give carbamate product (V).
  • the subsequent reaction with an appropriately substituted amino-ester (VI) gives compounds of type (VII) and subsequent cyclisation gives compounds of type (VIII) and reduction with e.g. with sodium borohydride gives compounds of type (IX).
  • the methyl amino-ester (VI) may also be replaced by other amino esters or amino-acids.
  • Phenyl chloroformate may be replaced by other activating groups such as phosgene or para-nitrophenyl chloroformate.
  • the cyclisation to (VIII) may occur in situ or require heating for carboxylic acids or esters or treatment with a reagent such as thionyl chloride for carboxylic acids.
  • a reagent such as thionyl chloride for carboxylic acids.
  • Compounds of type (VII) can be converted to compounds of type (IX) directly by treatment with a reducing reagent such as DIBAL-H or NaBH 4 .
  • Esters of type (VII) may also be reduced to their corresponding primary alcohols and then such alcohols can be re-oxidised to compounds of type (IX) with oxidants such as Dess-Martin periodinane.
  • compounds of formula (IX) wherein R 1 is an alkyl group or alkoxy group and R 2 is a hydrogen or alkyl group may be prepared by Palladium catalysed reaction of chloro-pyridine (X) with urea (XI) to give (XII) (for a reference to a related reaction see WO2006048249, example 3.1) and then subsequent cyclisation gives compounds of type (IX).
  • Urea (XI) may be formed by reaction of ester (XII) with Grignard reagents, reductive amination of the product ketone (XIV) with amines and finally reaction of the subsequent product amine (XV) with TMS-isocyanate to give compounds of type (XI).
  • (XV) can be formed by a Grignard addition of type R 2 MgCl to appropriate imines.
  • a nitrile can replace the ester group of (XIII) in the reaction with Grignard reagents.
  • reaction of compounds of type (XIV) with methoxylamine following by reduction of the oxime ether formed gives compounds of type (XV) which can form compounds of type (XI) where R 1 is alkoxy.
  • reaction of compounds of type (XIV) where R 2 is hydrogen with methoxylamine followed by addition of Grignard reagents to the formed oxime also can give compounds of type (XV).
  • Compounds of formula (XVIII) wherein R 2 is an hydroxy group may be prepared by the Palladium catalysed reaction of chloro-pyridine (X) with urea (XVI) to give urea (XVII) (for a reference to a related reaction see WO2006048249, example 3.1), which can react with aqueous glyoxal solution to give product (XVIII).
  • Compounds of formula (IX) where R 2 is an alkoxy group may be prepared by reacting compounds of formula (XVIII) with alcohols of type R 4 —OH under acidic conditions.
  • compounds of formula (V) may be reacted with compounds of formula (XIX) wherein R 2 is a hydrogen or alkyl group to give products of type (XX).
  • Reduction as before gives compounds of type (IX).
  • compounds of type (XXIII) may be coupled with compounds of type (X) under Palladium catalysed conditions to give compounds of type (VIII) and then standard reduction with NaBH 4 for example gives products of type (IX).
  • Amino and chloro-pyridines where not commercially available, may be made by literature routes such as below and as detailed in J. March, Advanced Organic Chemistry, 4th ed. Wiley, New York, 1992.
  • the compounds of formula (I) according to the invention can be used as herbicides in unmodified form, as obtained in the synthesis, but they are generally formulated into herbicidal compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances. Therefore, the invention also relates to a herbicidal composition which comprises a herbicidally effective amount of a compound of formula (I) in addition to formulation adjuvants.
  • the formulations can be in various physical forms, e.g.
  • the formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions.
  • the active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.
  • the active ingredients can also be contained in very fine microcapsules consisting of a polymer. Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release). Microcapsules usually have a diameter of from 0.1 to 500 microns.
  • the active ingredients contain active ingredients in an amount of about from 25 to 95% by weight of the capsule weight.
  • the active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution.
  • the encapsulating membranes comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art in this connection.
  • very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the microcapsules are not themselves encapsulated.
  • liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, dipropylene glycol
  • Water is generally the carrier of choice for diluting the concentrates.
  • suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances, as described, for example, in CFR 180.1001. (c) & (d).
  • a large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use.
  • Surface-active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes.
  • Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecyl-benzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of
  • Further adjuvants that can usually be used in pesticidal formulations include crystallization inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralizing or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and also liquid and solid fertilizers.
  • compositions according to the invention can additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives.
  • the amount of oil additive in the composition according to the invention is generally from 0.01 to 10%, based on the spray mixture.
  • the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared.
  • Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® (Rhône-Poulenc Canada Inc.), alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow.
  • a preferred additive contains, for example, as active components essentially 80% by weight alkyl esters of fish oils and 15% by weight methylated rapeseed oil, and also 5% by weight of customary emulsifiers and pH modifiers.
  • Especially preferred oil additives comprise alkyl esters of C 8 -C 22 fatty acids, especially the methyl derivatives of C 12 -C 18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid, being of importance. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9).
  • a preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Cognis GmbH). Those and other oil derivatives are also known from the Compendium of Herbicide Adjuvants, 5th Edition, Southern Illinois University, 2000.
  • the application and action of the oil additives can be further improved by combination with surface-active substances, such as non-ionic, anionic or cationic surfactants.
  • surface-active substances such as non-ionic, anionic or cationic surfactants.
  • suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of WO 97/34485.
  • Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C 12 -C 22 fatty alcohols having a degree of ethoxylation of from 5 to 40.
  • Examples of commercially available surfactants are the Genapol types (Clariant AG).
  • silicone surfactants especially polyalkyl-oxide-modified heptamethyltriloxanes which are commercially available e.g. as Silwet L-77®, and also perfluorinated surfactants.
  • concentration of the surface-active substances in relation to the total additive is generally from 1 to 30% by weight.
  • oil additives consisting of mixtures of oil or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Syngenta AG, CH) or ActipronC (BP Oil UK Limited, GB).
  • an organic solvent may contribute to an additional enhancement of action.
  • Suitable solvents are, for example, Solvesso® (ESSO) or Aromatic Solvent® (Exxon Corporation). The concentration of such solvents can be from 10 to 80% by weight of the total weight.
  • Oil additives that are present in admixture with solvents are described, for example, in U.S. Pat. No. 4,834,908.
  • a commercially available oil additive disclosed therein is known by the name MERGE® (BASF Corporation).
  • a further oil additive that is preferred according to the invention is SCORE® (Syngenta Crop Protection Canada).
  • alkylpyrrolidones e.g. Agrimax®
  • formulations of alkylpyrrolidones e.g. Agrimax®
  • synthetic lattices e.g. polyacrylamide, polyvinyl compounds or poly-1-p-menthene (e.g. Bond®, Courier® or Emerald®)
  • propionic acid for example Eurogkem Pen-e-trate®
  • the herbicidal compositions generally comprise from 0.1 to 99% by weight, especially from 0.1 to 95% by weight, compounds of formula (I) and from 1 to 99.9% by weight of a formulation adjuvant which preferably includes from 0 to 25% by weight of a surface-active substance. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.
  • the rates of application of compounds of formula (I) may vary within wide limits and depend on the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the grass or weed to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop.
  • the compounds of formula (I) according to the invention are generally applied at a rate of from 10 to 2000 g/ha, especially from 50 to 1000 g/ha.
  • active ingredient 1 to 95%, preferably 60 to 90% surface-active agent: 1 to 30%, preferably 5 to 20% liquid carrier: 1 to 80%, preferably 1 to 35%
  • active ingredient 0.1 to 10%, preferably 0.1 to 5% solid carrier: 99.9 to 90%, preferably 99.9 to 99%
  • active ingredient 5 to 75%, preferably 10 to 50% water: 94 to 24%, preferably 88 to 30% surface-active agent: 1 to 40%, preferably 2 to 30%
  • active ingredient 0.5 to 90%, preferably 1 to 80% surface-active agent: 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 95%, preferably 15 to 90%
  • active ingredient 0.1 to 30%, preferably 0.1 to 15% solid carrier: 99.5 to 70%, preferably 97 to 85%
  • solid carrier 99.5 to 70%, preferably 97 to 85%
  • Emulsifiable concentrates a) b) c) d) active ingredient 5% 10% 25% 50% calcium dodecylbenzenesulfonate 6% 8% 6% 8% castor oil polyglycol ether 4% — 4% 4% (36 mol of ethylene oxide) octylphenol polyglycol ether — 4% — 2% (7-8 mol of ethylene oxide) NMP — — 10% 20% arom. hydrocarbon mixture 85% 78% 55% 16% C 9 -C 12 Emulsions of any desired concentration can be obtained from such concentrates by dilution with water.
  • Wettable powders a) b) c) d) active ingredient 5% 25% 50% 80% sodium lignosulfonate 4% — 3% — sodium lauryl sulfate 2% 3% — 4% sodium diisobutylnaphthalene- — 6% 5% 6% sulfonate octylphenol polyglycol ether — 1% 2% — (7-8 mol of ethylene oxide) highly dispersed silicic acid 1% 3% 5% 10% kaolin 88% 62% 35% — The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.
  • Coated granules a) b) c) active ingredient 0.1% 5% 15% highly dispersed silicic acid 0.9% 2% 2% inorganic carrier 99.0% 93% 83% (diameter 0.1-1 mm) e.g. CaCO 3 or SiO 2
  • active ingredient 0.1% 5% 15% highly dispersed silicic acid 0.9% 2% 2% inorganic carrier 99.0% 93% 83% (diameter 0.1-1 mm) e.g. CaCO 3 or SiO 2
  • the active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off in vacuo.
  • Suspension concentrates a) b) c) d) active ingredient 3% 10% 25% 50% ethylene glycol 5% 5% 5% nonylphenol polyglycol ether — 1% 2% — (15 mol of ethylene oxide) sodium lignosulfonate 3% 3% 4% 5% carboxymethylcellulose 1% 1% 1% 1% 37% aqueous formaldehyde 0.2% 0.2% 0.2% 0.2% 0.2% solution silicone oil emulsion 0.8% 0.8% 0.8% 0.8% water 87% 79% 62% 38%
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.
  • the invention also provides a method of controlling plants which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I).
  • the invention also provides a method of inhibiting plant growth which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I).
  • the invention also provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful plants or to the locus of said useful plants, a compound or a composition of the invention.
  • the invention also provides a method of selectively controlling grasses and/or weeds in crops of useful plants which comprises applying to the useful plants or locus thereof or to the area of cultivation a herbicidally effective amount of a compound of formula (I).
  • herbicide as used herein means a compound that controls or modifies the growth of plants.
  • herbicidally effective amount means the quantity of such a compound or combination of such compounds that is capable of producing a controlling or modifying effect on the growth of plants. Controlling or modifying effects include all deviation from natural development, for example: killing, retardation, leaf burn, albinism, dwarfing and the like.
  • plants refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits.
  • locus is intended to include soil, seeds, and seedlings, as well as established vegetation and includes not only areas where weeds may already be growing, but also areas where weeds have yet to emerge, and also to areas under cultivation with respect to crops of useful plants.
  • Areas under cultivation include land on which the crop plants are already growing and land intended for cultivation with such crop plants.
  • weeds as used herein means any undesired plant, and thus includes not only agronomically important weeds as described below, but also volunteer crop plants.
  • the compounds of the invention can be applied before or after planting of the crops, before weeds emerge (pre-emergence application) or after weeds emerge (post-emergence application), and are particularly effective when applied post-emergence to the weeds.
  • Crops of useful plants in which the composition according to the invention can be used include, but are not limited to, perennial crops, such as citrus fruit, grapevines, nuts, oil palms, olives, pome fruit, stone fruit and rubber, and annual arable crops, such as cereals, for example barley and wheat, cotton, oilseed rape, maize, rice, soy beans, sugar beet, sugar cane, sunflowers, ornamentals, switchgrass, turf and vegetables, especially cereals, maize and soy beans.
  • perennial crops such as citrus fruit, grapevines, nuts, oil palms, olives, pome fruit, stone fruit and rubber
  • annual arable crops such as cereals, for example barley and wheat, cotton, oilseed rape, maize, rice, soy beans, sugar beet, sugar cane, sunflowers, ornamentals, switchgrass, turf and vegetables, especially cereals, maize and soy beans.
  • the grasses and weeds to be controlled may be both monocotyledonous species, for example Agrostis, Alopecurus, Avena, Brachiaria, Bromus, Cenchrus, Cyperus, Digitaria, Echinochloa, Eriochloa, Lolium, Monochoria, Panicum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sida and Sorghum , and dicotyledonous species, for example Abutilon, Amaranthus, Chenopodium, Chrysanthemum, Euphorbia, Galium, Ipomoea, Kochia, Nasturtium, Polygonum, Sida, Sinapis, Solanum, Stellaria, Veronica, Viola and Xanthium.
  • Agrostis Alopecurus
  • Avena Brachiaria
  • Bromus Cenchrus
  • Cyperus Digitaria
  • Echinochloa Eriochloa
  • Lolium Monochor
  • the weeds e.g. to be controlled and/or growth-inhibited may be monocotyledonous or dicotyledonous weeds, which are tolerant or resistant to one or more other herbicides for example, HPPD inhibitor herbicides such as mesotrione, PSII inhibitor herbicides such as atrazine or EPSPS inhibitors such as glyphosate.
  • HPPD inhibitor herbicides such as mesotrione
  • PSII inhibitor herbicides such as atrazine or EPSPS inhibitors
  • glyphosate glyphosate.
  • Such weeds include, but are not limited to resistant Amaranthus biotypes.
  • Crops are to be understood as also including those crops which have been rendered tolerant to herbicides or classes of herbicides (e.g. auxins or ALS-, EPSPS-, PPO- and HPPD-inhibitors) by conventional methods of breeding or by genetic engineering.
  • herbicides or classes of herbicides e.g. auxins or ALS-, EPSPS-, PPO- and HPPD-inhibitors
  • An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding is Clearfield® summer rape (canola).
  • crops that have been rendered tolerant to herbicides by genetic engineering methods include e.g. glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®, respectively.
  • Crops are also to be understood as being those which have been rendered resistant to harmful insects by genetic engineering methods, for example Bt maize (resistant to European corn borer), Bt cotton (resistant to cotton boll weevil) and also Bt potatoes (resistant to Colorado beetle).
  • Bt maize are the Bt 176 maize hybrids of NK® (Syngenta Seeds).
  • the Bt toxin is a protein that is formed naturally by Bacillus thuringiensis soil bacteria.
  • Examples of toxins, or transgenic plants able to synthesize such toxins are described in EP-A-451 878, EP-A-374 753, WO 93/07278, WO 95/34656, WO 03/052073 and EP-A-427 529.
  • transgenic plants comprising one or more genes that code for an insecticidal resistance and express one or more toxins are KnockOut® (maize), Yield Gard® (maize), NuCOTIN33B® (cotton), Bollgard® (cotton), NewLeaf® (potatoes), NatureGard® and Protexcta®.
  • Plant crops or seed material thereof can be both resistant to herbicides and, at the same time, resistant to insect feeding (“stacked” transgenic events).
  • seed can have the ability to express an insecticidal Cry3 protein while at the same time being tolerant to glyphosate.
  • Crops are also to be understood as being those which are obtained by conventional methods of breeding or genetic engineering and contain so-called output traits (e.g. improved storage stability, higher nutritional value and improved flavor).
  • output traits e.g. improved storage stability, higher nutritional value and improved flavor.
  • Any method of application to weeds/crop of useful plant, or locus thereof, which is routinely used in agriculture may be used, for example application by spray or broadcast method typically after suitable dilution of a compound of formula (I) (whether said compound is formulated and/or in combination with one or more further active ingredients and/or safeners, as described herein).
  • the compounds of formula (I) according to the invention can also be used in combination with other active ingredients, e.g. other herbicides, and/or insecticides, and/or acaricides, and/or nematocides, and/or molluscicides, and/or fungicides, and/or plant growth regulators.
  • other active ingredients e.g. other herbicides, and/or insecticides, and/or acaricides, and/or nematocides, and/or molluscicides, and/or fungicides, and/or plant growth regulators.
  • mixtures of invention also include mixtures of two or more different compounds of formula (I).
  • the present invention also relates to a composition of the invention which comprises at least one further herbicide in addition to the compound of formula (I).
  • acetanilide e.g. compound of formula (I)+acetochlor, compound of formula (I)+dimethenamid, compound of formula (I)+metolachlor, compound of formula (I)+S-metolachlor, or compound of formula (I)+pretilachlor
  • other inhibitors of VLCFAE e.g. compound of formula (I)+pyroxasulfone
  • HPPD inhibitor e.g. compound of formula (I)+isoxaflutole, compound of formula (I)+mesotrione, compound of formula (I)+pyrasulfotole, compound of formula (I)+sulcotrione, compound of formula (I)+tembotrione, compound of formula (I)+topramezone, compound of formula (I)+bicyclopyrone;
  • a PPO inhibitor e.g. compound of formula (I)+acifluorfen-sodium, compound of formula (I)+butafenacil, compound of formula (I)+carfentrazone-ethyl, compound of formula (I)+cinidon-ethyl, compound of formula (I)+flumioxazin, compound of formula (I)+fomesafen, compound of formula (I)+lactofen, or compound of formula (I)+SYN 523 ([3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester) (CAS RN 353292-31-6)).
  • a PPO inhibitor e.g. compound of formula (I)+acifluorfen-sodium, compound of formula (I)+butaf
  • a compound of formula (I) with a triazine and an HPPD inhibitor e.g. compound of formula (I)+triazine+isoxaflutole, compound of formula (I)+triazine+mesotrione, compound of formula (I)+triazine+pyrasulfotole, compound of formula (I)+triazine+sulcotrione, compound of formula (I)+triazine+tembotrione, compound of formula (I)+triazine+topramezone, compound of formula (I)+triazine+bicyclopyrone;
  • HPPD inhibitor e.g. compound of formula (I)+triazine+isoxaflutole, compound of formula (I)+triazine+mesotrione, compound of formula (I)+triazine+pyrasulfotole, compound of formula (I)+triazine+sulcotrione, compound of formula (I)+triazine+tembotrione, compound of
  • mixtures of a compound of formula (I) with glyphosate and an HPPD inhibitor e.g. compound of formula (I)+glyphosate+isoxaflutole, compound of formula (I)+glyphosate+mesotrione, compound of formula (I)+glyphosate+pyrasulfotole, compound of formula (I)+glyphosate+sulcotrione, compound of formula (I)+glyphosate+tembotrione, compound of formula (I)+glyphosate+topramezone, compound of formula (I)+glyphosate+bicyclopyrone;
  • HPPD inhibitor e.g. compound of formula (I)+glyphosate+isoxaflutole, compound of formula (I)+glyphosate+mesotrione, compound of formula (I)+glyphosate+pyrasulfotole, compound of formula (I)+glyphosate+sulcotrione, compound of formula (I)+glyphosate+tembotrione,
  • a compound of formula (I) with glufosinate-ammonium and an HPPD inhibitor e.g. compound of formula (I)+glufosinate-ammonium+isoxaflutole, compound of formula (I)+glufosinate-ammonium+mesotrione, compound of formula (I)+glufosinate-ammonium+pyrasulfotole, compound of formula (I)+glufosinate-ammonium+sulcotrione, compound of formula (I)+glufosinate-ammonium+tembotrione, compound of formula (I)+glufosinate-ammonium+topramezone, compound of formula (I)+glufosinate-ammonium+bicyclopyrone;
  • HPPD inhibitor e.g. compound of formula (I)+glufosinate-ammonium+isoxaflutole, compound of formula (I)+glufosinate-ammonium+mesotrione, compound of formula (I)+
  • a compound of formula (I) with glyphosate and a VLCFAE inhibitor e.g. compound of formula (I)+glyphosate+S-metolachlor, compound of formula (I)+glyphosate+acetochlor, compound of formula (I)+glyphosate+pyroxasulfone.
  • the mixing partners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006.
  • the reference to acifluorfen-sodium also applies to acifluorfen
  • the reference to dimethenamid also applies to dimethenamid-P
  • the reference to glufosinate-ammonium also applies to glufosinate
  • the reference to bensulfuron-methyl also applies to bensulfuron
  • the reference to cloransulam-methyl also applies to cloransulam
  • the reference to flamprop-M also applies to flamprop
  • the reference to pyrithiobac-sodium also applies to pyrithiobac, etc.
  • the mixing ratio of the compound of formula (I) to the mixing partner is preferably from 1:100 to 1000:1.
  • mixtures can advantageously be used in the above-mentioned formulations (in which case “active ingredient” relates to the respective mixture of compound of formula (I) with the mixing partner).
  • the compounds of formula (I) according to the invention can also be used in combination with one or more safeners.
  • mixtures of a compound of formula (I) according to the invention with one or more further active ingredients, in particular with one or more further herbicides can also be used in combination with one or more safeners.
  • safener as used herein means a chemical that when used in combination with a herbicide reduces the undesirable effects of the herbicide on non-target organisms, for example, a safener protects crops from injury by herbicides but does not prevent the herbicide from killing the weeds.
  • a compound of formula (I) is combined with a safener, the following combinations of the compound of formula (I) and the safener are particularly preferred.
  • the safeners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006.
  • the reference to cloquintocet-mexyl also applies to cloquintocet and to a lithium, sodium, potassium, calcium, magnesium, aluminium, iron, ammonium, quaternary ammonium, sulfonium or phosphonium salt thereof as disclosed in WO02/34048 and the reference to fenchlorazole-ethyl also applies to fenchlorazole, etc.
  • the mixing ratio of compound of formula (I) to safener is from 100:1 to 1:10, especially from 20:1 to 1:1.
  • active ingredient relates to the respective mixture of compound of formula (I) and any further active ingredient, in particular a further herbicide, with the safener).
  • the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied simultaneously.
  • the safener, a compound of formula (I) and one or more additional herbicide(s), if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence.
  • the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied sequentially.
  • the safener might be applied before sowing the seeds as a seed treatment and a compound of formula (I) and one or more additional herbicides, if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence.
  • Preferred mixtures of a compound of formula (I) with further herbicides and safeners include:
  • the compounds may exist in a mixture of diastereoisomers, which may be observed by LC-MS and NMR.
  • the stereochemistry of the chiral centre at the carbon containing the R 3 group was generally found to interconvert at room temperature when R 3 is hydroxyl.
  • purification and analysis the ratio of diastereomers may change.
  • reaction was heated for 80 minutes at 100° C., then treated with further 6-methyl-3-pyridyl)boronic acid (2.2 equiv.), tricyclohexyl phosphine (4 mg, 0.12 equiv.), tris(dibenzylideneacetone)dipalladium(0) (6 mg, 0.05 equiv), K 3 PO 4 (45 mg, 1.7 equiv.) and the reaction was then heated for a further 75 minutes at 100° C.
  • reaction mixture was diluted with EtOAc (6 mL) then filtered through celite, evaporated, then chromatographed on silica eluting with 20-100% EtOAc in isohexane. Fractions containing product were evaporated to give desired product as an amber gum (35 mg, 69%).
  • Methoxylamine hydrochloride (21.2 g) was suspended in methanol (65 mL) then potassium acetate (50.4 g, quickly ground in pestle and mortar to break up lumps) was added all at once and the thick white suspension resulting was stirred at room temp for 15 mins then cooled to 15° C. and then 1,1-dimethoxypropan-2-one (30 g) was added slowly over 25 mins. The reaction was stirred at room temperature for 50 mins and then diluted with 200 ml DCM, then 100 ml sat. NaHCO 3 (aq) was added cautiously over 15 mins.
  • N,1,1-trimethoxypropan-2-imine (20 g) was dissolved in acetic acid (80 mL) then was cooled to 13° C.
  • NaBH 3 CN (9.82 g) was added portionwise over 10 mins. After 18 hrs at room temperature, the reaction was concentrated to remove bulk of HOAc then residue dissolved in DCM (300 mL) and satd. NaHCO 3 (aq) (300 mL) was added slowly with stirring. The mixture was stirred at rt for 90 mins, and then 40% NaOH(aq) was added until the solution reached pH 12. The layers were separated, extracted with further DCM (3 ⁇ 100 mL).
  • N,1,1-trimethoxypropan-2-amine (2.000 g, 13.41 mmol) was dissolved in IPA (5 mL) and the mixture was cooled to 0° C. under N 2 , then trimethylsilyl isocyanate (commercially available) (4.83 mL, 33.51 mmol) was added and the reaction was allowed to warm to room temperature and was stirred at room temperature for 24 h.
  • the reaction mixture was worked up by adding DCM (30 mL) and water (15 mL), extracting with further DCM (2 ⁇ 15 mL), dried (Na 2 SO 4 ), filtered and evaporated then chromatographed on silica eluting with 50-100% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a white solid (2.08 g, 81% yield).
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methoxy-urea 300 mg, 1.56 mmol
  • 2-chloro-4-(trifluoromethyl)pyridine commercially available
  • potassium carbonate 324 mg
  • tris(dibenzylideneacetone)dipalladium(0) 30 mg
  • 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene 70 mg
  • NMR indicated a ratio of diastereoisomers in approximately a 2:1 ratio.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (for a synthesis see WO 2007004749) (9.93 g, 1.05 equiv.) was suspended in 1,4-dioxane (25 mL) under a Nitrogen atmosphere and treated with N,1,1-trimethoxypropan-2-amine (5.00 g, 22.51 mmol, 1 equiv.) and the reaction was heated to reflux for 2.5 h. The reaction was cooled to room temperature, then 2N aqueous HCl (30 mL) was added to the reaction mixture and heated to 50° C. for 25 minutes.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • a sample of compound A8 was separated into two major fractions by preparative chiral SFC (Lux Cellulose-4 column, eluting with IPA (7%) with other fractions discarded.
  • the analysis could be performed by HPLC on a Lux Amylose-2 or WHELK-O1 column eluting with heptane/IPA in a 70/30 ratio.
  • the absolute stereochemistry may be proven by synthesis (in an analogous way to example 8-alternative synthesis below).
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • O-methylhydroxylamine hydrochloride (65.98 g, 790.0 mmol) was dissolved in water (130 mL) then sodium hydroxide (50% aqueous) (33.1 mL 632.0 mmol) was added.
  • the solution of O-methylhydroxylamine in water was added to the solution of methyl (2R)-2-(trifluoromethylsulfonyloxy)propanoate in DCM, and the mixture was stirred at room temperature for 30 minutes.
  • the organic layer was separated and chromatographed on silica eluting with 0-45% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a pale yellow oil (23.5 g). The product appears to have some volatility so caution was taken with the evaporation step. The product was used without further purification.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • the reaction mixture was diluted with EtOAc (20 mL) and water (20 mL) and filtered through a pad of celite, rinsing through with further small portions of EtOAc and water.
  • the organic phase was separated and the aqueous further extracted with EtOAc (5 mL).
  • the organic extracts were combined, washed with brine (10 mL), dried over MgSO 4 , filtered and the filtrate evaporated giving an orange liquid. This was chromatographed (eluting with an EtOAc/iso-hexane gradient) and fractions containing product were evaporated and triturated with iso-hexane to give the desired product as a light yellow powder (0.669 g, 55%).
  • A34 The first eluting enantiomer E1 was purified further by chromatography on silica eluting with EtOAc in isohexane. Fractions containing product were evaporated to give pure enantiomer E1 (A34).
  • A34 could be assigned as (5R)-5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one by inference from biological activity of related compounds of known absolute configuration and comparison of elution time from chiral HPLC.
  • Enantiomer E2 (A35) was sufficiently pure after the chiral HPLC purification and could be assigned as (5S)-5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one by inference from biological activity of related compounds of known absolute configuration and comparison of elution time from chiral HPLC.
  • Ti(O-iPr) 4 (34.3 g, 2 equiv.) was cooled to 10° C. under a nitrogen atmosphere then ethanol (89 mL) was added followed by 1,1-dimethoxypropan-2-one (7.14 g, 1 equiv), methylamine hydrochloride (8.16 g, 2 equiv.) and triethylamine (16.8 mL, 2 equiv.). The reaction was stirred at room temperature for 15 h. The reaction was cooled to 10° C. and then NaBH 4 (3.43 g, 1.5 equiv.) was added and the reaction was stirred at room temperature for 6 h.
  • 1,1-dimethoxy-N-methyl-propan-2-amine (1.0 g, 7.50 mmol) was dissolved in CDCl 3 (1.5 mL). Trimethylsilyl isocyanate (commercially available) (2 equiv.) was added and the reaction was stirred at room temp for 4 days. The reaction mixture heated to reflux for 160 minutes while incrementally adding a further trimethylsilyl isocyanate (1.5 equiv.) The reaction was evaporated and treated with water (10 mL), stirred for 90 minutes, then evaporated to give crude product (1.08 g) which was used without further purification.
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methyl-urea (220 mg, 1.249 mmol), 2-chloro-4-(trifluoromethyl)pyridine (commercially available) (272 mg, 1.2 equiv.), potassium carbonate (259 mg, 1.5 equiv.), tris(dibenzylideneacetone)dipalladium(0) (47 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (111 mg) were suspended in 1-4-dioxane (6 mL) and the mixture was then heated at 105° C. in a sealed vial for 1 h.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (4.54 g, 1.05 equiv.) was suspended in 1,4-dioxane (12 mL) under a Nitrogen atmosphere and then 1,1-dimethoxy-N-methyl-propan-2-amine (3.46 g, 15.3 mmol) was added and the reaction was heated at 105° C. for 25 mins. Aqueous 2N HCl (20 mL) was added to the reaction mixture and this was heated to 32° C. for 30 mins.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Methyl 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoate (0.114 g, 0.359 mmol) was dissolved in 1,4-dioxane (4 mL) was treated with 2N hydrochloric acid (4 mL) and the mixture was heated at 60-70° C. for 3 h. The reaction temp was raised to 85° C. and heating continued for a further 1 h. The reaction mixture then being allowed to cool to room temperature and then concentrated. The residue was taken into DCM (15 mL) and the organic phase separated.
  • the aqueous was further extracted with DCM (2 ⁇ 10 mL) and the DCM extracts combined, dried over MgSO 4 , filtered and the filtrate concentrated giving crude intermediate 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid as a white gum (47 mg).
  • the aqueous phase was evaporated giving further 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid as a white foam (73 mg).
  • reaction mixture was quenched by the careful addition of water (2 mL), then concentrated and the residue being left to stand at room temperature for 72 h.
  • the mixture was diluted with EtOAc (20 mL) and the organic phase separated.
  • the aqueous phase was further extracted with EtOAc (15 mL) and the organic extracts combined, washed with water (5 mL), dried over MgSO 4 , filtered and evaporated to give product as a light grey gum (56 mg, 98%).
  • Methylamine hydrochloride (4.05 g, 1.05 equiv.) in DCM (60 mL) was cooled to 0° C., then K 2 CO 3 (5.53 g, 1 equiv.) was added over 5 minutes. Reaction was stirred at 0° C. for a further 10 minutes then 2,2-dimethoxyacetaldehyde (6.04 mL, 40 mmol) was added and the reaction was stirred vigorously at 0° C. After 5 minutes at 0° C., the reaction was allowed to warm to room temperature. After 15 minutes at room temperature, DCM was decanted off, solid was extracted with DCM (2 ⁇ 15 mL). Combined DCM fractions were dried (Na 2 SO 4 ), filtered, and evaporated to give product which was used without further purification (4.10 g, 87%).
  • 1,1,1-trifluoro-3,3-dimethoxy-N-methyl-propan-2-amine (0.377 g) was suspended in water (2 mL) and then treated with TFA (2 mL) and the reaction mixture was then heated to 60° C. for 1.5 h. The reaction was evaporated and treated with sat. aqueous NaHCO 3 (15 mL) and DCM (15 mL). The aqueous phase was further extracted with DCM (2 ⁇ 10 mL) and then the combined DCM phases were dried (Na 2 SO 4 ), filtered and evaporated to give product as a white solid (320 mg, 97%).
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • R a , R b , R c , R d , R 1 , R 2 , R 3 and X are as defined above.
  • positive ES MH+ 290 A2 8.47 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.72 (d, 1H), 4.81 (d, 1H), 4.71 (s, 1H), 3.54 (ddq, 2H), 3.00 (s, 3H), 1.65 (m, 2H), 0.96 (t, 3H).
  • positive ES MH+ 320 A3 As for A8 As for A8 A4 As for A8 As for A8 A5 8.46 (s, 1H), 8.39 (d, 1H), 7.19 (d, 1H), 5.74 (d, 1H), 4.82 (d, 1H), 4.67 (s, 1H), 3.43 (s, 3H), 3.01 (s, 3H).
  • positive ES MH+ 292 A6 8.46 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.73 (d, 1H), 4.82 (d, 1H), 4.71 (s, 1H), 3.66 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • positive ES MH+ 306 A13 8.56 (s, 1H), 8.23 (s, 1H), 7.44 (m, 3H), 7.32 (m, 2H), 5.77 (d, 1H), 4.81 (d, 1H), 4.74 (s, 1H), 3.66 (m, 2H), 3.03 (s, 3H), 1.28 (m, 3H).
  • positive ES MH+ 382 A14 9.30 (s, 1H), 8.75 (s, 2H), 8.70 (s, 1H), 8.24 (s, 1H), 5.80 (d, 1H), 4.75 (s, 1H), 4.71 (d, 1H), 3.69 (m, 2H), 3.04 (s, 3H), 1.29 (t, 3H).
  • positive ES MH+ 360 A40 (DMSO-d6): 8.57 (d, 1H), 8.47 (s, 1H), 7.75 (s, 1H), 7.36 (d, 1H), 6.46 (d, 1H), 5.68 (d, 1H), 3.43 (q, 1H), 1.15 (d, 3H).
  • positive ES MH+ 262 A41 8.46 (s, 1H), 8.38 (d, 1H), 7.19 (dd, 1H), 5.94 (m, 1H), 5.75 (d, 1H), 5.36 (dd, 1H), 5.26 (dd, 1H), 4.80 (d, 1H), 4.77 (s, 1H), 4.15 (m, 2H), 3.01 (s, 3H).
  • positive ES MH+ 288 A47 As for A46 As for A46 A48 8.46 (s, 1H), 8.37 (d, 1H), 7.17 (d, 1H), 5.66 (d, 1H), 4.80 (d, 1H), 4.71 (s, 1H), 3.93 (dt, 1H), 2.96 (s, 3H), 1.27 (dd, 6H).
  • positive ES MH+ 320 A53 8.57 (s, 1H), 8.34 (s, 1H), 5.70 (d, 1H), 4.70 (s, 1H), 4.52 (d, 1H), 3.67 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • positive ES MH+ 340 A54 8.55 (s, 1H), 8.39 (d, 1H), 7.17 (d, 1H), 5.82 (s, 1H), 3.58 (br s, 3H), 3.39 (s, 3H), 2.98 (s, 3H).
  • positive ES MH+ 306 A59 8.28 (m, 2H), 7.10 (dd, 1H), 5.72 (d, 1H), 5.00 (d, 1H), 4.71(s, 1H), 3.66 (m, 2H), 2.99 (s, 3H), 1.91(t, 3H), 1.27(t, 3H).
  • positive ES MH+ 302 A60 Major diastereomer: 8.36 (d, 1H), 8.30 (d, 1H), 7.09 (dd, 1H), 5.59 (m, 1H), 5.12 (d, 1H), 3.51 (m, 1H), 2.93 (s, 3H), 1.92 (t, 3H), 1.33 (d, 3H).
  • positive ES MH+ 292 A81 8.49 (d, 1H), 8.28 (d, 1H), 7.89 (dd, 1H), 5.73 (d, 1H), 5.00 (d, 1H), 4.79 (d, 1H), 3.02 (s, 3H), 2.74 (d, 1H).
  • positive ES MH+ 278 A82 8.47 (s, 1H), 8.40 (d, 1H), 7.18 (d, 1H), 5.74 (s, 1H), 4.85 (brs, 1H), 4.71 (s, 1H), 3.67 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • positive ES MH+ 356 A83 8.50 (d, 1H), 8.30 (d, 1H), 7.89 (dd, 1H), 5.74 (d, 1H), 4.80 (d, 1H), 4.71 (s, 1H), 3.68 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • Methyl 6-chloro-4-(trifluoromethyl)pyridine-3-carboxylate (commercially available) (1.00 g) was dissolved in dry THF (12 mL) under a N 2 atmosphere and the reaction was cooled to ⁇ 60° C. then LiAlH4 (163 mg) was added over 10 mins. The reaction was stirred at ⁇ 60° C. for 25 mins and was then treated with saturated NH 4 Cl (aq) (5 mL) and then EtOAc (60 mL). Filtration through celite and then evaporation gave a crude oil which was dissolved in MeOH (5 mL), cooled to 0° C. then NaBH 4 (53 mg) was added portionwise and the reaction was stirred at 0° C. The reaction was then concentrated, treated with EtOAc (10 mL) and washed with 10% citric acid and then saturated brine and finally the organic layer was dried Na 2 SO 4 and evaporated to give the desired product.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyrrole Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US15/027,768 2013-10-07 2014-10-02 Herbicidal Compounds Abandoned US20160264547A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN2977/DEL/2013 2013-10-07
PCT/EP2014/071167 WO2015052076A1 (en) 2013-10-07 2014-10-02 Herbicidal compounds
IN2977DE2013 IN2013DE02977A (zh) 2013-10-07 2014-10-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/071167 A-371-Of-International WO2015052076A1 (en) 2013-10-07 2014-10-02 Herbicidal compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/222,900 Continuation US11608323B2 (en) 2013-10-07 2018-12-17 Herbicidal compounds

Publications (1)

Publication Number Publication Date
US20160264547A1 true US20160264547A1 (en) 2016-09-15

Family

ID=51659651

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/027,768 Abandoned US20160264547A1 (en) 2013-10-07 2014-10-02 Herbicidal Compounds
US16/222,900 Active 2035-09-08 US11608323B2 (en) 2013-10-07 2018-12-17 Herbicidal compounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/222,900 Active 2035-09-08 US11608323B2 (en) 2013-10-07 2018-12-17 Herbicidal compounds

Country Status (17)

Country Link
US (2) US20160264547A1 (zh)
EP (1) EP3054773B1 (zh)
JP (1) JP6419171B2 (zh)
KR (1) KR20160067950A (zh)
CN (2) CN111961033A (zh)
AR (1) AR097936A1 (zh)
AU (1) AU2014333967B2 (zh)
BR (1) BR112016007356B1 (zh)
CA (1) CA2924243C (zh)
EA (1) EA032393B1 (zh)
ES (1) ES2910437T3 (zh)
HK (1) HK1222980A1 (zh)
IN (1) IN2013DE02977A (zh)
UA (1) UA118035C2 (zh)
UY (1) UY35769A (zh)
WO (1) WO2015052076A1 (zh)
ZA (1) ZA201601788B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006358A1 (en) * 2017-06-30 2019-01-03 Syngenta Participations Ag HERBICIDE COMPOSITION AND METHOD OF USE
US20220159956A1 (en) * 2019-02-15 2022-05-26 Syngenta Crop Protection Ag Herbicidal compositions

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201505852D0 (en) * 2015-04-07 2015-05-20 Syngenta Participations Ag Herbicidal mixtures
UA125690C2 (uk) * 2016-03-23 2022-05-18 Сінгента Партісіпейшнс Аг Гербіциди
GB201604969D0 (en) 2016-03-23 2016-05-04 Syngenta Participations Ag Improvements in or relating to organic compounds
GB201604970D0 (en) * 2016-03-23 2016-05-04 Syngenta Participations Ag Improvements in or relating to organic compounds
CA3019878A1 (en) * 2016-04-29 2017-11-02 Syngenta Participations Ag Process for the preparation of herbicidal compounds
AR108107A1 (es) * 2016-04-29 2018-07-18 Syngenta Participations Ag Proceso para preparar compuestos herbicidas
US11547706B2 (en) 2016-06-08 2023-01-10 President And Fellows Of Harvard College Methods and compositions for reducing tactile dysfunction and anxiety associated with autism spectrum disorder, Rett syndrome, and Fragile X syndrome
GB201612748D0 (en) * 2016-07-22 2016-09-07 Syngenta Participations Ag Method of controlling plants
BR112019002733A2 (pt) 2016-08-11 2019-05-14 Bayer Cropscience Ag derivados de pirazolinil substituídos, processos para sua preparação e seu uso como herbicidas e/ou reguladores de crescimento da planta
GB201617062D0 (en) 2016-10-07 2016-11-23 Syngenta Participations Ag Herbicidal mixtures
GB201617050D0 (en) * 2016-10-07 2016-11-23 Syngenta Participations Ag Herbicidal mixtures
GB201715324D0 (en) 2017-09-22 2017-11-08 Syngenta Participations Ag Improvements in or relating to organic compounds
AU2019279858A1 (en) 2018-05-29 2020-11-26 President And Fellows Of Harvard College Compositions and methods for reducing tactile dysfunction, anxiety, and social impairment
GB201818117D0 (en) 2018-11-06 2018-12-19 Syngenta Participations Ag Enantioselective process
GB201901559D0 (en) * 2019-02-05 2019-03-27 Syngenta Crop Protection Ag Herbicidal compositions
CN113045548B (zh) * 2020-07-15 2022-01-28 周银平 一种化合物、除草组合物及其用途

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2194369B1 (zh) * 1972-08-04 1980-04-25 Roussel Uclaf
CA1031349A (en) * 1973-12-26 1978-05-16 John Krenzer Thiadiazolylimidazolidinones
US4130714A (en) * 1977-05-23 1978-12-19 Pfizer Inc. Hydantoin therapeutic agents
US4426527A (en) * 1982-02-12 1984-01-17 Ppg Industries, Inc. 3-[5- Or 3-substituted-1,2,4-oxadiazol-3- or -5-yl]-1-substituted-4-substituted-5-substituted or unsubstituted-2-imidazolidinones
JPS608290A (ja) * 1983-06-27 1985-01-17 ピーピージー・インダストリィズ・インコーポレイテッド 3−〔5−もしくは3−置換−1・2・4−オキサジアゾル−3−もしくは−5−イル〕−1−置換−4−置換−5−置換もしくは非置換−2−イミダゾリジノン
ATE37182T1 (de) * 1983-08-02 1988-09-15 American Cyanamid Co Imidazolinone und imidazolidinthione, verfahren zu deren herstellung und verwendung dieser verbindungen als herbizide.
EP0169050A3 (en) * 1984-07-17 1986-12-10 Eli Lilly And Company Pyridazinylimidazolidinone compounds
US4604127A (en) * 1984-07-17 1986-08-05 Eli Lilly And Company Herbicidal pyridazinylimidazolidinone compounds
US4600430A (en) * 1985-02-22 1986-07-15 Eli Lilly And Company Pyridinylimidazolidinone compounds
DE3604042A1 (de) * 1986-02-08 1987-08-13 Hoechst Ag Imidazolidin(thi)on-derivate, verfahren zu ihrer herstellung sowie ihre verwendung im pflanzenschutz
FI90869C (fi) * 1986-11-14 1994-04-11 Tanabe Seiyaku Co Menetelmä lääkeaineena käyttökelpoisten imidatsolidinonijohdannaisten valmistamiseksi
JPH0940673A (ja) * 1994-12-27 1997-02-10 Sagami Chem Res Center ヒダントイン誘導体、これらの製造方法、及びこれらを有効成分とする除草剤
CA2631259A1 (en) * 2005-11-28 2007-06-07 Mallinckrodt Inc. Improved method of preparation for imidazolepyridines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Beckie et al., Weed Technology (2009), pp. 363-370. *
Davies, Pesticide Outlook (2001), pp. 10-15. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006358A1 (en) * 2017-06-30 2019-01-03 Syngenta Participations Ag HERBICIDE COMPOSITION AND METHOD OF USE
US20220159956A1 (en) * 2019-02-15 2022-05-26 Syngenta Crop Protection Ag Herbicidal compositions

Also Published As

Publication number Publication date
UA118035C2 (uk) 2018-11-12
ZA201601788B (en) 2020-09-30
HK1222980A1 (zh) 2017-07-21
CN111961033A (zh) 2020-11-20
CA2924243C (en) 2023-01-17
AU2014333967B2 (en) 2018-06-21
US11608323B2 (en) 2023-03-21
CA2924243A1 (en) 2015-04-16
BR112016007356A2 (pt) 2017-09-12
JP6419171B2 (ja) 2018-11-07
ES2910437T3 (es) 2022-05-12
JP2016534037A (ja) 2016-11-04
US20190112288A1 (en) 2019-04-18
KR20160067950A (ko) 2016-06-14
EA032393B1 (ru) 2019-05-31
BR112016007356B1 (pt) 2021-01-05
WO2015052076A1 (en) 2015-04-16
IN2013DE02977A (zh) 2015-04-10
EP3054773B1 (en) 2022-01-26
EA201600317A1 (ru) 2016-09-30
CN105636439A (zh) 2016-06-01
AR097936A1 (es) 2016-04-20
UY35769A (es) 2015-05-29
AU2014333967A1 (en) 2016-03-31
EP3054773A1 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
US11608323B2 (en) Herbicidal compounds
EP3060558B1 (en) Pyridinylimidazolones as herbicides
US9751865B2 (en) Dihydro-hydantoin derivatives with herbicidal activity
US10499640B2 (en) Herbicidal compounds
EP3154965B1 (en) Herbicidal compounds
US9936701B2 (en) Herbicidal compounds
US10098351B2 (en) Herbicidal compounds
WO2016071360A1 (en) Herbicidal pyrrolone derivatives
US20160168126A1 (en) Chemical compounds
US20170339954A1 (en) Herbicidal compounds
EP3036232B1 (en) Herbicidal compounds
US9723840B2 (en) 1-(pyridazin-3-yl)-imidazolidin-2-one derivatives as herbicides
AU2014345555A1 (en) 1 -(pyridazin-3-yl)-imidazolidin-2-one derivatives as herbicides

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNGENTA LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORRIS, JAMES ALAN;BOEHMER, JUTTA ELISABETH;SONAWANE, RAVINDRA;AND OTHERS;REEL/FRAME:039725/0135

Effective date: 20141107

AS Assignment

Owner name: SYNGENTA PARTICIPATIONS AG, SWITZERLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 039725 FRAME: 0135. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MORRIS, JAMES ALAN;BOEHMER, JUTTA ELISABETH;SONAWANE, RAVINDRA;AND OTHERS;REEL/FRAME:044205/0033

Effective date: 20141107

Owner name: SYNGENTA LIMITED, UNITED KINGDOM

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 039725 FRAME: 0135. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MORRIS, JAMES ALAN;BOEHMER, JUTTA ELISABETH;SONAWANE, RAVINDRA;AND OTHERS;REEL/FRAME:044205/0033

Effective date: 20141107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION