US20160264547A1 - Herbicidal Compounds - Google Patents

Herbicidal Compounds Download PDF

Info

Publication number
US20160264547A1
US20160264547A1 US15/027,768 US201415027768A US2016264547A1 US 20160264547 A1 US20160264547 A1 US 20160264547A1 US 201415027768 A US201415027768 A US 201415027768A US 2016264547 A1 US2016264547 A1 US 2016264547A1
Authority
US
United States
Prior art keywords
compound
formula
alkyl
alkoxy
haloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/027,768
Inventor
Mangala Phadte
Ravindra Sonawane
James Alan Morris
Jutta Elisabeth Boehmer
Timothy Robert Desson
Sally Elizabeth RUSSELL
Kenneth Ling
Alan Joseph Hennessy
Matthew Brian Hotson
Adrian Longstaff
Clarie Janet RUSSELL
Jake GOODWIN-TINDALL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Participations AG
Syngenta Ltd
Original Assignee
Syngenta Participations AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations AG filed Critical Syngenta Participations AG
Assigned to SYNGENTA LIMITED reassignment SYNGENTA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOEHMER, JUTTA ELISABETH, DESSON, Timothy Robert, GOODWIN-TINDALL, Jake, HENNESSY, ALAN JOSEPH, HOTSON, MATTHEW BRIAN, LING, KENNETH, LONGSTAFF, ADRIAN, MORRIS, JAMES ALAN, Phadte, Mangala, RUSSELL, CLAIRE JANET, RUSSELL, Sally Elizabeth, SONAWANE, Ravindra
Publication of US20160264547A1 publication Critical patent/US20160264547A1/en
Assigned to SYNGENTA PARTICIPATIONS AG, SYNGENTA LIMITED reassignment SYNGENTA PARTICIPATIONS AG CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 039725 FRAME: 0135. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: BOEHMER, JUTTA ELISABETH, DESSON, Timothy Robert, GOODWIN-TINDALL, Jake, HENNESSY, ALAN JOSEPH, HOTSON, MATTHEW BRIAN, LING, KENNETH, LONGSTAFF, ADRIAN, MORRIS, JAMES ALAN, Phadte, Mangala, RUSSELL, CLAIRE JANET, RUSSELL, SALLY ELISABETH, SONAWANE, Ravindra
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to certain substituted dihydro-hydantoin derivatives, to processes for their preparation, herbicidal compositions comprising them, and their use in controlling plants or inhibiting plant growth.
  • the invention provides compounds of the formula (I)
  • X is selected from S and O;
  • R a is selected from hydrogen and halogen
  • R b is selected from hydrogen, halogen, C 1 -C 4 alkyl, C 2 -C 4 alkenyl C 1 -C 4 haloalkyl, C 1 -C 6 alkoxy, C 2 -C 4 alkenyloxy, C 2 -C 4 alkynyloxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 4 haloalkoxy, C 1 -C 3 alkoxy-C 1 -C 3 alkoxy, C 1 -C 4 alkylthio, C 1 -C 4 alkylsulfinyl, C 1 -C 4 alkylsulfonyl, a group R 5 R 6 N—, a group R 5 C(O)N(R 6 )—, a group R 5 S(O 2 )N(R 6 )—, a group R 5 R 6 NSO 2 —, a group R 5 R 6 NC(O)—, aryl optionally
  • R c is selected from hydrogen, halogen, C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl, C 1 -C 6 alkoxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 6 hydroxyalkyl, C 2 -C 6 alkenyloxy C 1 -C 6 alkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, C 1 -C 3 alkyl and C 1 -C 3 alkoxy;
  • R d is selected from hydrogen, halogen, cyano, C 1 -C 6 alkyl and C 1 -C 6 haloalkyl;
  • R 1 is selected from hydrogen, hydroxyl, C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C 1 -C 4 cyanoalkyl, C 3 -C 6 cycloalkyl, C 1 -C 4 alkoxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl and C 1 -C 4 haloalkyl and R 2 is selected from hydrogen, hydroxyl, C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 1 -C 4 alkoxy, C 2 -C 4 alkenyloxy, C 2 -C 4 alkynyloxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 4 alkoxy-C 1 -C 4 alkoxy, C 1 -C 4 hydroxyalkyl, C 1 -C 4 haloalkyl, C 1 -C 3 halo
  • R 1 and R 2 together with the nitrogen and carbon atoms to which they are attached form a 3-7 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from hydroxyl, ⁇ O, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 3 is selected from halogen, hydroxyl, —NR 14 R 15 , or any one of the following groups
  • R 5 and R 6 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 cyanoalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy and C 1 -C 6 alkoxy-C 1 -C 6 alkyl, or R 5 and R 6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C 1 -C 6 alkyl;
  • R 7 and R 8 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, a C 3 -C 6 cycloalkyl group optionally substituted with 1 to 3 groups independently selected from C 1 -C 3 alkyl, C 2 -C 4 alkenyl, C 1 -C 3 haloalkyl and C 2 -C 4 haloalkenyl, a C 5 -C 10 heterocyclyl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C 1 -C 3 alkyl, C 1 -C 3 haloalkyl and C 1 -C 3 alkoxy, a C 5 -C 10 heteroaryl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from
  • R 9 is selected from C 1 -C 6 alkyl and benzyl optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy;
  • R 14 and R 15 are, independently, selected from hydrogen, C 1 -C 20 alkyl, C 1 -C 20 haloalkyl, C 1 -C 20 alkoxy, C 1 -C 20 alkoxy-C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl and benzyl, or R 14 and R 15 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C 1 -C 6 alkyl;
  • the invention provides herbicidal compositions comprising a compound of the invention together with at least one agriculturally acceptable adjuvant or diluent.
  • the invention provides the use of a compound or a composition of the invention for use as a herbicide.
  • the invention provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful crop plants, a compound or a composition of the invention.
  • the invention relates to processes useful in the preparation of compounds of the invention.
  • the invention relates to intermediates useful in the preparation of compounds of the invention.
  • the preferred groups for X, R a , R b R c , R d , R 1 , R 2 and R 3 , in any combination thereof, are as set out below.
  • X is O.
  • R a is hydrogen
  • R d is hydrogen
  • R 1 is selected from C 1 -C 4 alkyl, C 1 -C 4 alkoxy and C 1 -C 4 haloalkyl. More preferably, R 1 is selected from C 1 -C 4 alkyl and C 1 -C 4 alkoxy. Most preferably, R 1 is selected from methyl and methoxy.
  • R 2 is selected from C 1 -C 3 alkyl, C 1 -C 3 alkoxy and C 1 -C 3 alkoxy-C 1 -C 3 alkyl. More preferably, R 2 is selected from methyl, ethyl, methoxy, ethoxy and methoxymethyl. Even more preferably, R 2 is selected from methyl and ethoxy. Most preferably, R 2 is methyl.
  • R 3 is selected from hydroxyl, halogen, C 1 -C 6 alkylcarbonyloxy, C 1 -C 6 alkoxycarbonyloxy and aryloxycarbonyloxy wherein the aryl group may be substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy. Even more preferably, R 3 is selected from hydroxyl and halogen. Most preferably, R 3 is hydroxyl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b and R c are as described below in any combination.
  • R b is selected from hydrogen, halogen, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 alkoxy-C 1 -C 3 alkyl, heteroaryl substituted by halogen or methoxy and aryl substituted by halogen or methoxy. More preferably, R b is selected from hydrogen, halogen, methoxy, heteroaryl substituted by halogen or methoxy and aryl substituted by halogen or methoxy groups. Even more preferably, R b is hydrogen.
  • R c is selected from C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is selected from C 1 -C 6 alkyl, C 1 -C 3 haloalkyl, C 1 -C 6 cyanoalkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is selected from methyl, ethyl, iso-propyl, (2-methyl)-prop-1-yl, (1-methyl)-prop-1-yl, tert-butyl, (1,1-dimethyl)-prop-1-yl, (1,1-dimethyl)-but-1-yl, (1-methyl-1-ethyl)-prop-1-yl, cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, (1-methyl-1-cyano)-eth-1-yl, (1-methyl-1-ethyl-2-cyano)-prop-1-yl, (1,1-dimethyl-2-cyano)-prop-1-yl, 1-fluoroethyl, 1,1-difluoroethyl, difluoromethyl, 1-fluoro-1-methylethyl and trifluoromethyl.
  • R c is selected from tert-butyl, (1-methyl-1-cyano)-eth-1-yl, 1,1-difluoroethyl, 1-fluoro-1-methylethyl and trifluoromethyl.
  • R c is trifluoromethyl.
  • the substituted pyridine may be 4-tert-butyl-pyrid-2-yl, 4-((1-methyl-1-cyano)-eth-1-yl)-pyrid-2-yl, 4-(1,1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is selected from R 5 R 6 NC(O)— and R 5 C(O)N(R 6 )—, wherein R 5 and R 6 are as described above, and R c is selected from hydrogen, halo, C 1 -C 4 alkyl and C 1 -C 4 haloalkyl. More preferably, R b is R 5 R 6 NC(O)—.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is selected from halogen and C 1 -C 4 alkyl and R c is C 1 -C 3 haloalkyl, preferably trifluoromethyl.
  • the invention provides compounds of the formula (I)
  • X is selected from S and O;
  • R a is selected from hydrogen and halogen
  • R b is selected from hydrogen, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 6 alkoxy, C 1 -C 3 alkoxy-C 1 -C 3 alkoxy, a group R 5 R 6 N—, a group R 5 C(O)N(R 6 )—, a group R 5 S(O 2 )N(R 6 )—, a group R 5 R 6 NSO 2 —, a group R 5 R 6 NC(O)—, aryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy, and heteroaryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alk
  • R c is selected from hydrogen, halogen, C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl, C 1 -C 6 alkoxy, C 1 -C 6 hydroxyalkyl, C 2 -C 6 alkenyloxy C 1 -C 6 alkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, C 1 -C 3 alkyl and C 1 -C 3 alkoxy;
  • R d is selected from hydrogen, halogen, cyano, C 1 -C 6 alkyl and C 1 -C 6 haloalkyl;
  • R 1 is selected from hydrogen, C 1 -C 4 alkyl, C 1 -C 4 alkoxy and C 1 -C 4 haloalkyl and R 2 is selected from hydrogen, hydroxyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 alkoxy-C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 3 haloalkoxy and C 1 -C 4 cyanoalkyl, with the proviso that when R 1 is methyl, R 2 is not H;
  • R 1 and R 2 together with the nitrogen and carbon atoms to which they are attached form a 3-7 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from hydroxyl, ⁇ O, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl.
  • R 3 is selected from halogen, hydroxyl, and any one of the following groups
  • R 5 and R 6 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, or R 5 and R 6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C 1 -C 6 alkyl;
  • R 7 and R 8 are independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, a C 5 -C 10 heteroaryl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C 1 -C 3 alkyl, C 1 -C 3 haloalkyl and C 1 -C 3 alkoxy, a C 6 -C 10 aryl group optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy, or R 7 and R 8 together with the atoms to which they are attached form a 3-6 membered saturated or partially
  • R 9 is selected from C 1 -C 6 alkyl and benzyl optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy;
  • X is O.
  • R a is hydrogen
  • R d is hydrogen
  • R 1 is C 1 -C 4 alkyl, C 1 -C 4 alkoxy or C 1 -C 4 haloalkyl. More preferably, R 1 is C 1 -C 4 alkyl or C 1 -C 4 alkoxy. Most preferably, R 1 is methyl or methoxy.
  • R 2 is C 1 -C 3 alkyl, C 1 -C 3 alkoxy or C 1 -C 3 alkoxy-C 1 -C 3 alkyl. More preferably R 2 is methyl, methoxy, ethoxy or methoxymethyl.
  • R 3 is hydroxyl, halogen, C 1 -C 6 alkylcarbonyloxy, C 1 -C 6 alkoxycarbonyloxy or aryloxycarbonyloxy wherein the aryl group may be substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C 1 -C 3 alkyl, C 1 -C 3 alkoxy, C 1 -C 3 haloalkyl and C 1 -C 3 haloalkoxy. Even more preferably, R 3 is hydroxyl or halogen. Most preferably, R 3 is hydroxyl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b and R c are as described below in any combination.
  • R b is hydrogen, halogen, methoxy, heteroaryl substituted by halogen or methoxy or aryl substituted by halogen or methoxy groups.
  • R b is hydrogen
  • R c is C 1 -C 8 alkyl, C 1 -C 6 haloalkyl, C 2 -C 8 alkenyl, C 1 -C 6 cyanoalkyl or C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is C 1 -C 6 alkyl, C 1 -C 3 haloalkyl, C 1 -C 6 cyanoalkyl or C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C 1 -C 3 alkyl.
  • R c is methyl, ethyl, iso-propyl, (2-methyl)-prop-1-yl, (1-methyl)-prop-1-yl, tert-butyl, (1,1-dimethyl)-prop-1-yl, (1,1-dimethyl)-but-1-yl, (1-methyl-1-ethyl)-prop-1-yl, cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, (1-methyl-1-cyano)-eth-1-yl, (1-methyl-1-ethyl-2-cyano)-prop-1-yl, (1,1-dimethyl-2-cyano)-prop-1-yl, 1-fluoroethyl, 1,1-difluoroethyl, difluoromethyl, 1-fluoro-1-methylethyl or trifluoromethyl.
  • R c is tert-butyl, (1-methyl-1-cyano)-eth-1-yl, 1,1-difluoroethyl, 1-fluoro-1-methylethyl or trifluoromethyl.
  • R c is trifluoromethyl.
  • the substituted pyridine may be 4-tert-butyl-pyrid-2-yl, 4-((1-methyl-1-cyano)-eth-1-yl)-pyrid-2-yl, 4-(1,1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is R 5 R 6 NC(O)— or R 5 C(O)N(R 6 )—, wherein R 5 and R 6 are as described above, and R c is hydrogen, halo, C 1 -C 4 alkyl or C 1 -C 4 haloalkyl. More preferably, R b is R 5 R 6 NC(O)—.
  • X, R a , R d , R 1 , R 2 and R 3 are as described above in any combination and R b is halogen or C 1 -C 4 alkyl and R c is C 1 -C 3 haloalkyl, preferably trifluoromethyl.
  • the compounds of formula (I) may exist as different geometric isomers, or in different tautomeric forms. This invention covers all such isomers and tautomers, and mixtures thereof in all proportions, as well as isotopic forms such as deuterated compounds.
  • the compounds of this invention may contain one or more asymmetric centers and may thus give rise to optical isomers and diastereomers. While shown without respect to stereochemistry, the present invention includes all such optical isomers and diastereomers as well as the racemic and resolved, enantiomerically pure R and S stereoisomers and other mixtures of the R and S stereoisomers and agrochemically acceptable salts thereof. It is recognized certain optical isomers or diastereomers may have favorable properties over the other. Thus when disclosing and claiming the invention, when a racemic mixture is disclosed, it is clearly contemplated that both optical isomers, including diastereomers, substantially free of the other, are disclosed and claimed as well.
  • Alkyl refers to an aliphatic hydrocarbon chain and includes straight and branched chains e.g. of 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, and isohexyl.
  • Alkenyl refers to an aliphatic hydrocarbon chain having at least one double bond, and preferably one double bond, and includes straight and branched chains e.g. of 2 to 8 carbon atoms such as ethenyl (vinyl), prop-1-enyl, prop-2-enyl (allyl), isopropenyl, but-1-enyl, but-2-enyl, but-3-enyl, 2-methypropenyl.
  • Alkynyl refers to an aliphatic hydrocarbon chain having at least one triple bond, and preferably one triple bond, and includes straight and branched chains e.g. of 2 to 8 carbon atoms such as ethynyl, prop-1-ynyl, prop-2-ynyl (propargyl) but-1-ynyl, but-2-ynyl and but-3-ynyl.
  • Cycloalkyl refers to a cyclic, saturated hydrocarbon group having from 3 to 6 ring carbon atoms.
  • Examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Hydroxyalkyl refers to the group —ROH, wherein R is alkyl as defined above.
  • Alkoxy refers to the group —OR, wherein R is alkyl as defined above.
  • alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, t-butoxy, n-pentoxy, isopentoxy, neo-pentoxy, n-hexyloxy, and isohexyloxy.
  • Alkenyloxy refers to the group —OR, wherein R is alkenyl as defined above.
  • alkenyloxy groups are ethenyloxy, propenyloxy, isopropenyloxy, but-1-enyloxy, but-2-enyloxy, but-3-enyloxy, 2-methypropenyloxy etc.
  • Alkynyloxy refers to the group —OR, wherein R is alkynyl is as defined above.
  • alkynyloxy groups are ethynyloxy, propynyloxy, but-1-ynyloxy, but-2-ynyloxy and but-3-ynyloxy.
  • Alkoxyalkyl refers to a group R, substituted at any position with one or more groups —OR, wherein each R is, independently, alkyl as defined herein.
  • Alkoxyalkoxy refers to the group —OROR, wherein each R is, independently, an alkyl group as defined above.
  • Alkenyloxyalkyl refers to the group —ROR′, wherein R is alkyl as used herein and R′ is alkenyl as used herein.
  • Cyanoalkyl refers to an alkyl group substituted with one or more cyano groups.
  • Halogen, halide and halo refer to iodine, bromine, chlorine and fluorine.
  • Haloalkyl refers to an alkyl group as defined above wherein at least one hydrogen atom has been replaced with a halogen atom as defined above.
  • haloalkyl groups include chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl and trifluoromethyl.
  • Preferred haloalkyl groups are fluoroalkyl groups ⁇ i.e. haloalkyl groups, containing fluorine as the only halogen). More highly preferred haloalkyl groups are perfluoroalkyl groups, i.e. alkyl groups wherein all the hydrogen atoms are replaced with fluorine atoms.
  • Haloalkenyl refers to an alkenyl group as defined above wherein at least one hydrogen atom has been replaced with a halogen atom as defined above.
  • Haloalkoxy refers to the group —OR, wherein R is haloalkyl as defined above.
  • Alkylthio refers to the group —SR, wherein R is an alkyl group as defined above.
  • Alkylthio groups include, but are not limited to, methylthio, ethylthio, propylthio, tert-butylthio, and the like.
  • Alkylsulfinyl refers to the group —S(O)R, wherein R is an alkyl group as defined above.
  • Alkylsulfonyl refers to the group —S(O) 2 R, wherein R is an alkyl group as defined above.
  • Alkylcarbonyloxy refers to the group —OC(O)R, wherein R is alkyl as defined herein.
  • Alkoxycarbonyloxy refers to the group —OC(O)OR, wherein R is an alkyl group as defined above.
  • alkoxycarbonyloxy groups are methoxycarbonyloxy, ethoxycarbonyloxy, propoxycarbonyloxy, but-1-oxycarbonyloxy, but-2-oxycarbonyloxy and but-3-oxycarbonyloxy.
  • Hydroxy or hydroxyl refers to the group —OH.
  • Nitro refers to the group —NO 2 .
  • Cyano refers to the group —CN.
  • Aryl refers to an unsaturated aromatic carbocyclic group of from 6 to 10 carbon atoms having a single ring (e.g., phenyl) or multiple condensed (fused) rings, at least one of which is aromatic (e.g., indanyl, naphthyl).
  • Preferred aryl groups include phenyl, naphthyl and the like. Most preferably, an aryl group is a phenyl group.
  • Aryloxy refers to the group —O-aryl, wherein aryl is as defined above.
  • Preferred aryloxy groups include phenoxy, naphthyloxy and the like.
  • Aryloxycarbonyloxy refers to the group —OC(O)O-aryl wherein aryl is a as defined above.
  • Arylalkyl refers to a group R—Ar, wherein R is alkyl as defined herein and Ar is aryl as defined herein.
  • Arylalkyl groups may be substituted on the alkyl linker or on the ring.
  • An example of an arylalkyl group is the benzyl group (—CH 2 C 6 H 5 ).
  • Heterocyclyl refers to a non-aromatic ring system containing 3 to 10 ring atoms, at least one ring heteroatom and consisting either of a single ring or of two or more fused rings.
  • single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be chosen from nitrogen, oxygen and sulfur.
  • Examples of such groups include pyrrolidinyl, imidazolinyl, pyrazolidinyl, piperidyl, piperazinyl, quinuclidinyl, morpholinyl, together with unsaturated or partially unsaturated analogues such as 4,5,6,7-tetrahydro-benzothiophenyl, chromen-4-onyl, 9H-fluorenyl, 3,4-dihydro-2H-benzo-1,4-dioxepinyl, 2,3-dihydro-benzofuranyl, piperidinyl, 1,3-dioxolanyl, 1,3-dioxanyl, 4,5-dihydro-isoxazolyl, tetrahydrofuranyl and morpholinyl.
  • unsaturated or partially unsaturated analogues such as 4,5,6,7-tetrahydro-benzothiophenyl, chromen-4-onyl, 9H-fluor
  • Heteroaryl refers to a ring system containing 5 to 10 ring atoms, 1 to 4 ring heteroatoms and consisting either of a single aromatic ring or of two or more fused rings, at least one of which is aromatic.
  • single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be independently chosen from nitrogen, oxygen and sulfur.
  • Examples of such groups include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, furanyl, thiophenyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl and tetrazolyl.
  • bicyclic groups are benzothiophenyl, benzimidazolyl, benzothiadiazolyl, quinolinyl, cinnolinyl, quinoxalinyl and pyrazolo[1,5-a]pyrimidinyl.
  • “Saturated ring’ refers to a ring system in which the atoms in the ring are linked by single bonds.
  • Partially unsaturated ring refers to a ring system in which at least two atoms in the ring are linked by a double bond. Partially unsaturated ring systems do not include aromatic rings.
  • Optionally substituted means the group referred to can be substituted at one or more positions by any one or any combination of the radicals listed thereafter. For most groups, one or more hydrogen atoms are replaced by the radicals listed thereafter. For halogenated groups, for example, haloalkyl groups, one or more halogen atoms are replaced by the radicals listed thereafter.
  • Suitable salts include those derived from alkali or alkaline earth metals and those derived from ammonia and amines.
  • Preferred cations include sodium, potassium, magnesium, and ammonium cations of the formula N+(R 19 R 20 R 21 R 22 ) wherein R 19 , R 20 , R 21 and R 22 are independently selected from hydrogen, C 1 -C 6 alkyl and C 1 -C 6 hydroxyalkyl.
  • Salts of the compounds of Formula I can be prepared by treatment of compounds of Formula I with a metal hydroxide, such as sodium hydroxide, or an amine, such as ammonia, trimethylamine, diethanolamine, 2-methylthiopropylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine.
  • a metal hydroxide such as sodium hydroxide
  • an amine such as ammonia, trimethylamine, diethanolamine, 2-methylthiopropylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine.
  • Amine salts are often preferred forms of the compounds of Formula I because they are water-soluble and lend themselves to the preparation of desirable aqueous based herbicidal compositions.
  • Acceptable salts can be formed from organic and inorganic acids, for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesulfonic, benzenesulfonic, toluenesulfonic, camphorsulfonic, and similarly known acceptable acids when a compound of this invention contains a basic moiety.
  • organic and inorganic acids for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesulfonic, benzenesulfonic, toluene
  • the present invention provides intermediates useful in the preparation of compounds of the invention.
  • compounds of formula (IX) wherein R 1 is an alkyl or alkoxy group and R 2 is a hydrogen or alkyl group may be prepared by reaction of amino-pyridine (IV) with phenylchloroformate to give carbamate product (V).
  • the subsequent reaction with an appropriately substituted amino-ester (VI) gives compounds of type (VII) and subsequent cyclisation gives compounds of type (VIII) and reduction with e.g. with sodium borohydride gives compounds of type (IX).
  • the methyl amino-ester (VI) may also be replaced by other amino esters or amino-acids.
  • Phenyl chloroformate may be replaced by other activating groups such as phosgene or para-nitrophenyl chloroformate.
  • the cyclisation to (VIII) may occur in situ or require heating for carboxylic acids or esters or treatment with a reagent such as thionyl chloride for carboxylic acids.
  • a reagent such as thionyl chloride for carboxylic acids.
  • Compounds of type (VII) can be converted to compounds of type (IX) directly by treatment with a reducing reagent such as DIBAL-H or NaBH 4 .
  • Esters of type (VII) may also be reduced to their corresponding primary alcohols and then such alcohols can be re-oxidised to compounds of type (IX) with oxidants such as Dess-Martin periodinane.
  • compounds of formula (IX) wherein R 1 is an alkyl group or alkoxy group and R 2 is a hydrogen or alkyl group may be prepared by Palladium catalysed reaction of chloro-pyridine (X) with urea (XI) to give (XII) (for a reference to a related reaction see WO2006048249, example 3.1) and then subsequent cyclisation gives compounds of type (IX).
  • Urea (XI) may be formed by reaction of ester (XII) with Grignard reagents, reductive amination of the product ketone (XIV) with amines and finally reaction of the subsequent product amine (XV) with TMS-isocyanate to give compounds of type (XI).
  • (XV) can be formed by a Grignard addition of type R 2 MgCl to appropriate imines.
  • a nitrile can replace the ester group of (XIII) in the reaction with Grignard reagents.
  • reaction of compounds of type (XIV) with methoxylamine following by reduction of the oxime ether formed gives compounds of type (XV) which can form compounds of type (XI) where R 1 is alkoxy.
  • reaction of compounds of type (XIV) where R 2 is hydrogen with methoxylamine followed by addition of Grignard reagents to the formed oxime also can give compounds of type (XV).
  • Compounds of formula (XVIII) wherein R 2 is an hydroxy group may be prepared by the Palladium catalysed reaction of chloro-pyridine (X) with urea (XVI) to give urea (XVII) (for a reference to a related reaction see WO2006048249, example 3.1), which can react with aqueous glyoxal solution to give product (XVIII).
  • Compounds of formula (IX) where R 2 is an alkoxy group may be prepared by reacting compounds of formula (XVIII) with alcohols of type R 4 —OH under acidic conditions.
  • compounds of formula (V) may be reacted with compounds of formula (XIX) wherein R 2 is a hydrogen or alkyl group to give products of type (XX).
  • Reduction as before gives compounds of type (IX).
  • compounds of type (XXIII) may be coupled with compounds of type (X) under Palladium catalysed conditions to give compounds of type (VIII) and then standard reduction with NaBH 4 for example gives products of type (IX).
  • Amino and chloro-pyridines where not commercially available, may be made by literature routes such as below and as detailed in J. March, Advanced Organic Chemistry, 4th ed. Wiley, New York, 1992.
  • the compounds of formula (I) according to the invention can be used as herbicides in unmodified form, as obtained in the synthesis, but they are generally formulated into herbicidal compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances. Therefore, the invention also relates to a herbicidal composition which comprises a herbicidally effective amount of a compound of formula (I) in addition to formulation adjuvants.
  • the formulations can be in various physical forms, e.g.
  • the formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions.
  • the active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.
  • the active ingredients can also be contained in very fine microcapsules consisting of a polymer. Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release). Microcapsules usually have a diameter of from 0.1 to 500 microns.
  • the active ingredients contain active ingredients in an amount of about from 25 to 95% by weight of the capsule weight.
  • the active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution.
  • the encapsulating membranes comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art in this connection.
  • very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the microcapsules are not themselves encapsulated.
  • liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, dipropylene glycol
  • Water is generally the carrier of choice for diluting the concentrates.
  • suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances, as described, for example, in CFR 180.1001. (c) & (d).
  • a large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use.
  • Surface-active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes.
  • Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecyl-benzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of
  • Further adjuvants that can usually be used in pesticidal formulations include crystallization inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralizing or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and also liquid and solid fertilizers.
  • compositions according to the invention can additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives.
  • the amount of oil additive in the composition according to the invention is generally from 0.01 to 10%, based on the spray mixture.
  • the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared.
  • Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® (Rhône-Poulenc Canada Inc.), alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow.
  • a preferred additive contains, for example, as active components essentially 80% by weight alkyl esters of fish oils and 15% by weight methylated rapeseed oil, and also 5% by weight of customary emulsifiers and pH modifiers.
  • Especially preferred oil additives comprise alkyl esters of C 8 -C 22 fatty acids, especially the methyl derivatives of C 12 -C 18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid, being of importance. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9).
  • a preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Cognis GmbH). Those and other oil derivatives are also known from the Compendium of Herbicide Adjuvants, 5th Edition, Southern Illinois University, 2000.
  • the application and action of the oil additives can be further improved by combination with surface-active substances, such as non-ionic, anionic or cationic surfactants.
  • surface-active substances such as non-ionic, anionic or cationic surfactants.
  • suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of WO 97/34485.
  • Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C 12 -C 22 fatty alcohols having a degree of ethoxylation of from 5 to 40.
  • Examples of commercially available surfactants are the Genapol types (Clariant AG).
  • silicone surfactants especially polyalkyl-oxide-modified heptamethyltriloxanes which are commercially available e.g. as Silwet L-77®, and also perfluorinated surfactants.
  • concentration of the surface-active substances in relation to the total additive is generally from 1 to 30% by weight.
  • oil additives consisting of mixtures of oil or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Syngenta AG, CH) or ActipronC (BP Oil UK Limited, GB).
  • an organic solvent may contribute to an additional enhancement of action.
  • Suitable solvents are, for example, Solvesso® (ESSO) or Aromatic Solvent® (Exxon Corporation). The concentration of such solvents can be from 10 to 80% by weight of the total weight.
  • Oil additives that are present in admixture with solvents are described, for example, in U.S. Pat. No. 4,834,908.
  • a commercially available oil additive disclosed therein is known by the name MERGE® (BASF Corporation).
  • a further oil additive that is preferred according to the invention is SCORE® (Syngenta Crop Protection Canada).
  • alkylpyrrolidones e.g. Agrimax®
  • formulations of alkylpyrrolidones e.g. Agrimax®
  • synthetic lattices e.g. polyacrylamide, polyvinyl compounds or poly-1-p-menthene (e.g. Bond®, Courier® or Emerald®)
  • propionic acid for example Eurogkem Pen-e-trate®
  • the herbicidal compositions generally comprise from 0.1 to 99% by weight, especially from 0.1 to 95% by weight, compounds of formula (I) and from 1 to 99.9% by weight of a formulation adjuvant which preferably includes from 0 to 25% by weight of a surface-active substance. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.
  • the rates of application of compounds of formula (I) may vary within wide limits and depend on the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the grass or weed to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop.
  • the compounds of formula (I) according to the invention are generally applied at a rate of from 10 to 2000 g/ha, especially from 50 to 1000 g/ha.
  • active ingredient 1 to 95%, preferably 60 to 90% surface-active agent: 1 to 30%, preferably 5 to 20% liquid carrier: 1 to 80%, preferably 1 to 35%
  • active ingredient 0.1 to 10%, preferably 0.1 to 5% solid carrier: 99.9 to 90%, preferably 99.9 to 99%
  • active ingredient 5 to 75%, preferably 10 to 50% water: 94 to 24%, preferably 88 to 30% surface-active agent: 1 to 40%, preferably 2 to 30%
  • active ingredient 0.5 to 90%, preferably 1 to 80% surface-active agent: 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 95%, preferably 15 to 90%
  • active ingredient 0.1 to 30%, preferably 0.1 to 15% solid carrier: 99.5 to 70%, preferably 97 to 85%
  • solid carrier 99.5 to 70%, preferably 97 to 85%
  • Emulsifiable concentrates a) b) c) d) active ingredient 5% 10% 25% 50% calcium dodecylbenzenesulfonate 6% 8% 6% 8% castor oil polyglycol ether 4% — 4% 4% (36 mol of ethylene oxide) octylphenol polyglycol ether — 4% — 2% (7-8 mol of ethylene oxide) NMP — — 10% 20% arom. hydrocarbon mixture 85% 78% 55% 16% C 9 -C 12 Emulsions of any desired concentration can be obtained from such concentrates by dilution with water.
  • Wettable powders a) b) c) d) active ingredient 5% 25% 50% 80% sodium lignosulfonate 4% — 3% — sodium lauryl sulfate 2% 3% — 4% sodium diisobutylnaphthalene- — 6% 5% 6% sulfonate octylphenol polyglycol ether — 1% 2% — (7-8 mol of ethylene oxide) highly dispersed silicic acid 1% 3% 5% 10% kaolin 88% 62% 35% — The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.
  • Coated granules a) b) c) active ingredient 0.1% 5% 15% highly dispersed silicic acid 0.9% 2% 2% inorganic carrier 99.0% 93% 83% (diameter 0.1-1 mm) e.g. CaCO 3 or SiO 2
  • active ingredient 0.1% 5% 15% highly dispersed silicic acid 0.9% 2% 2% inorganic carrier 99.0% 93% 83% (diameter 0.1-1 mm) e.g. CaCO 3 or SiO 2
  • the active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off in vacuo.
  • Suspension concentrates a) b) c) d) active ingredient 3% 10% 25% 50% ethylene glycol 5% 5% 5% nonylphenol polyglycol ether — 1% 2% — (15 mol of ethylene oxide) sodium lignosulfonate 3% 3% 4% 5% carboxymethylcellulose 1% 1% 1% 1% 37% aqueous formaldehyde 0.2% 0.2% 0.2% 0.2% 0.2% solution silicone oil emulsion 0.8% 0.8% 0.8% 0.8% water 87% 79% 62% 38%
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.
  • the invention also provides a method of controlling plants which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I).
  • the invention also provides a method of inhibiting plant growth which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I).
  • the invention also provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful plants or to the locus of said useful plants, a compound or a composition of the invention.
  • the invention also provides a method of selectively controlling grasses and/or weeds in crops of useful plants which comprises applying to the useful plants or locus thereof or to the area of cultivation a herbicidally effective amount of a compound of formula (I).
  • herbicide as used herein means a compound that controls or modifies the growth of plants.
  • herbicidally effective amount means the quantity of such a compound or combination of such compounds that is capable of producing a controlling or modifying effect on the growth of plants. Controlling or modifying effects include all deviation from natural development, for example: killing, retardation, leaf burn, albinism, dwarfing and the like.
  • plants refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits.
  • locus is intended to include soil, seeds, and seedlings, as well as established vegetation and includes not only areas where weeds may already be growing, but also areas where weeds have yet to emerge, and also to areas under cultivation with respect to crops of useful plants.
  • Areas under cultivation include land on which the crop plants are already growing and land intended for cultivation with such crop plants.
  • weeds as used herein means any undesired plant, and thus includes not only agronomically important weeds as described below, but also volunteer crop plants.
  • the compounds of the invention can be applied before or after planting of the crops, before weeds emerge (pre-emergence application) or after weeds emerge (post-emergence application), and are particularly effective when applied post-emergence to the weeds.
  • Crops of useful plants in which the composition according to the invention can be used include, but are not limited to, perennial crops, such as citrus fruit, grapevines, nuts, oil palms, olives, pome fruit, stone fruit and rubber, and annual arable crops, such as cereals, for example barley and wheat, cotton, oilseed rape, maize, rice, soy beans, sugar beet, sugar cane, sunflowers, ornamentals, switchgrass, turf and vegetables, especially cereals, maize and soy beans.
  • perennial crops such as citrus fruit, grapevines, nuts, oil palms, olives, pome fruit, stone fruit and rubber
  • annual arable crops such as cereals, for example barley and wheat, cotton, oilseed rape, maize, rice, soy beans, sugar beet, sugar cane, sunflowers, ornamentals, switchgrass, turf and vegetables, especially cereals, maize and soy beans.
  • the grasses and weeds to be controlled may be both monocotyledonous species, for example Agrostis, Alopecurus, Avena, Brachiaria, Bromus, Cenchrus, Cyperus, Digitaria, Echinochloa, Eriochloa, Lolium, Monochoria, Panicum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sida and Sorghum , and dicotyledonous species, for example Abutilon, Amaranthus, Chenopodium, Chrysanthemum, Euphorbia, Galium, Ipomoea, Kochia, Nasturtium, Polygonum, Sida, Sinapis, Solanum, Stellaria, Veronica, Viola and Xanthium.
  • Agrostis Alopecurus
  • Avena Brachiaria
  • Bromus Cenchrus
  • Cyperus Digitaria
  • Echinochloa Eriochloa
  • Lolium Monochor
  • the weeds e.g. to be controlled and/or growth-inhibited may be monocotyledonous or dicotyledonous weeds, which are tolerant or resistant to one or more other herbicides for example, HPPD inhibitor herbicides such as mesotrione, PSII inhibitor herbicides such as atrazine or EPSPS inhibitors such as glyphosate.
  • HPPD inhibitor herbicides such as mesotrione
  • PSII inhibitor herbicides such as atrazine or EPSPS inhibitors
  • glyphosate glyphosate.
  • Such weeds include, but are not limited to resistant Amaranthus biotypes.
  • Crops are to be understood as also including those crops which have been rendered tolerant to herbicides or classes of herbicides (e.g. auxins or ALS-, EPSPS-, PPO- and HPPD-inhibitors) by conventional methods of breeding or by genetic engineering.
  • herbicides or classes of herbicides e.g. auxins or ALS-, EPSPS-, PPO- and HPPD-inhibitors
  • An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding is Clearfield® summer rape (canola).
  • crops that have been rendered tolerant to herbicides by genetic engineering methods include e.g. glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®, respectively.
  • Crops are also to be understood as being those which have been rendered resistant to harmful insects by genetic engineering methods, for example Bt maize (resistant to European corn borer), Bt cotton (resistant to cotton boll weevil) and also Bt potatoes (resistant to Colorado beetle).
  • Bt maize are the Bt 176 maize hybrids of NK® (Syngenta Seeds).
  • the Bt toxin is a protein that is formed naturally by Bacillus thuringiensis soil bacteria.
  • Examples of toxins, or transgenic plants able to synthesize such toxins are described in EP-A-451 878, EP-A-374 753, WO 93/07278, WO 95/34656, WO 03/052073 and EP-A-427 529.
  • transgenic plants comprising one or more genes that code for an insecticidal resistance and express one or more toxins are KnockOut® (maize), Yield Gard® (maize), NuCOTIN33B® (cotton), Bollgard® (cotton), NewLeaf® (potatoes), NatureGard® and Protexcta®.
  • Plant crops or seed material thereof can be both resistant to herbicides and, at the same time, resistant to insect feeding (“stacked” transgenic events).
  • seed can have the ability to express an insecticidal Cry3 protein while at the same time being tolerant to glyphosate.
  • Crops are also to be understood as being those which are obtained by conventional methods of breeding or genetic engineering and contain so-called output traits (e.g. improved storage stability, higher nutritional value and improved flavor).
  • output traits e.g. improved storage stability, higher nutritional value and improved flavor.
  • Any method of application to weeds/crop of useful plant, or locus thereof, which is routinely used in agriculture may be used, for example application by spray or broadcast method typically after suitable dilution of a compound of formula (I) (whether said compound is formulated and/or in combination with one or more further active ingredients and/or safeners, as described herein).
  • the compounds of formula (I) according to the invention can also be used in combination with other active ingredients, e.g. other herbicides, and/or insecticides, and/or acaricides, and/or nematocides, and/or molluscicides, and/or fungicides, and/or plant growth regulators.
  • other active ingredients e.g. other herbicides, and/or insecticides, and/or acaricides, and/or nematocides, and/or molluscicides, and/or fungicides, and/or plant growth regulators.
  • mixtures of invention also include mixtures of two or more different compounds of formula (I).
  • the present invention also relates to a composition of the invention which comprises at least one further herbicide in addition to the compound of formula (I).
  • acetanilide e.g. compound of formula (I)+acetochlor, compound of formula (I)+dimethenamid, compound of formula (I)+metolachlor, compound of formula (I)+S-metolachlor, or compound of formula (I)+pretilachlor
  • other inhibitors of VLCFAE e.g. compound of formula (I)+pyroxasulfone
  • HPPD inhibitor e.g. compound of formula (I)+isoxaflutole, compound of formula (I)+mesotrione, compound of formula (I)+pyrasulfotole, compound of formula (I)+sulcotrione, compound of formula (I)+tembotrione, compound of formula (I)+topramezone, compound of formula (I)+bicyclopyrone;
  • a PPO inhibitor e.g. compound of formula (I)+acifluorfen-sodium, compound of formula (I)+butafenacil, compound of formula (I)+carfentrazone-ethyl, compound of formula (I)+cinidon-ethyl, compound of formula (I)+flumioxazin, compound of formula (I)+fomesafen, compound of formula (I)+lactofen, or compound of formula (I)+SYN 523 ([3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester) (CAS RN 353292-31-6)).
  • a PPO inhibitor e.g. compound of formula (I)+acifluorfen-sodium, compound of formula (I)+butaf
  • a compound of formula (I) with a triazine and an HPPD inhibitor e.g. compound of formula (I)+triazine+isoxaflutole, compound of formula (I)+triazine+mesotrione, compound of formula (I)+triazine+pyrasulfotole, compound of formula (I)+triazine+sulcotrione, compound of formula (I)+triazine+tembotrione, compound of formula (I)+triazine+topramezone, compound of formula (I)+triazine+bicyclopyrone;
  • HPPD inhibitor e.g. compound of formula (I)+triazine+isoxaflutole, compound of formula (I)+triazine+mesotrione, compound of formula (I)+triazine+pyrasulfotole, compound of formula (I)+triazine+sulcotrione, compound of formula (I)+triazine+tembotrione, compound of
  • mixtures of a compound of formula (I) with glyphosate and an HPPD inhibitor e.g. compound of formula (I)+glyphosate+isoxaflutole, compound of formula (I)+glyphosate+mesotrione, compound of formula (I)+glyphosate+pyrasulfotole, compound of formula (I)+glyphosate+sulcotrione, compound of formula (I)+glyphosate+tembotrione, compound of formula (I)+glyphosate+topramezone, compound of formula (I)+glyphosate+bicyclopyrone;
  • HPPD inhibitor e.g. compound of formula (I)+glyphosate+isoxaflutole, compound of formula (I)+glyphosate+mesotrione, compound of formula (I)+glyphosate+pyrasulfotole, compound of formula (I)+glyphosate+sulcotrione, compound of formula (I)+glyphosate+tembotrione,
  • a compound of formula (I) with glufosinate-ammonium and an HPPD inhibitor e.g. compound of formula (I)+glufosinate-ammonium+isoxaflutole, compound of formula (I)+glufosinate-ammonium+mesotrione, compound of formula (I)+glufosinate-ammonium+pyrasulfotole, compound of formula (I)+glufosinate-ammonium+sulcotrione, compound of formula (I)+glufosinate-ammonium+tembotrione, compound of formula (I)+glufosinate-ammonium+topramezone, compound of formula (I)+glufosinate-ammonium+bicyclopyrone;
  • HPPD inhibitor e.g. compound of formula (I)+glufosinate-ammonium+isoxaflutole, compound of formula (I)+glufosinate-ammonium+mesotrione, compound of formula (I)+
  • a compound of formula (I) with glyphosate and a VLCFAE inhibitor e.g. compound of formula (I)+glyphosate+S-metolachlor, compound of formula (I)+glyphosate+acetochlor, compound of formula (I)+glyphosate+pyroxasulfone.
  • the mixing partners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006.
  • the reference to acifluorfen-sodium also applies to acifluorfen
  • the reference to dimethenamid also applies to dimethenamid-P
  • the reference to glufosinate-ammonium also applies to glufosinate
  • the reference to bensulfuron-methyl also applies to bensulfuron
  • the reference to cloransulam-methyl also applies to cloransulam
  • the reference to flamprop-M also applies to flamprop
  • the reference to pyrithiobac-sodium also applies to pyrithiobac, etc.
  • the mixing ratio of the compound of formula (I) to the mixing partner is preferably from 1:100 to 1000:1.
  • mixtures can advantageously be used in the above-mentioned formulations (in which case “active ingredient” relates to the respective mixture of compound of formula (I) with the mixing partner).
  • the compounds of formula (I) according to the invention can also be used in combination with one or more safeners.
  • mixtures of a compound of formula (I) according to the invention with one or more further active ingredients, in particular with one or more further herbicides can also be used in combination with one or more safeners.
  • safener as used herein means a chemical that when used in combination with a herbicide reduces the undesirable effects of the herbicide on non-target organisms, for example, a safener protects crops from injury by herbicides but does not prevent the herbicide from killing the weeds.
  • a compound of formula (I) is combined with a safener, the following combinations of the compound of formula (I) and the safener are particularly preferred.
  • the safeners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006.
  • the reference to cloquintocet-mexyl also applies to cloquintocet and to a lithium, sodium, potassium, calcium, magnesium, aluminium, iron, ammonium, quaternary ammonium, sulfonium or phosphonium salt thereof as disclosed in WO02/34048 and the reference to fenchlorazole-ethyl also applies to fenchlorazole, etc.
  • the mixing ratio of compound of formula (I) to safener is from 100:1 to 1:10, especially from 20:1 to 1:1.
  • active ingredient relates to the respective mixture of compound of formula (I) and any further active ingredient, in particular a further herbicide, with the safener).
  • the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied simultaneously.
  • the safener, a compound of formula (I) and one or more additional herbicide(s), if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence.
  • the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied sequentially.
  • the safener might be applied before sowing the seeds as a seed treatment and a compound of formula (I) and one or more additional herbicides, if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence.
  • Preferred mixtures of a compound of formula (I) with further herbicides and safeners include:
  • the compounds may exist in a mixture of diastereoisomers, which may be observed by LC-MS and NMR.
  • the stereochemistry of the chiral centre at the carbon containing the R 3 group was generally found to interconvert at room temperature when R 3 is hydroxyl.
  • purification and analysis the ratio of diastereomers may change.
  • reaction was heated for 80 minutes at 100° C., then treated with further 6-methyl-3-pyridyl)boronic acid (2.2 equiv.), tricyclohexyl phosphine (4 mg, 0.12 equiv.), tris(dibenzylideneacetone)dipalladium(0) (6 mg, 0.05 equiv), K 3 PO 4 (45 mg, 1.7 equiv.) and the reaction was then heated for a further 75 minutes at 100° C.
  • reaction mixture was diluted with EtOAc (6 mL) then filtered through celite, evaporated, then chromatographed on silica eluting with 20-100% EtOAc in isohexane. Fractions containing product were evaporated to give desired product as an amber gum (35 mg, 69%).
  • Methoxylamine hydrochloride (21.2 g) was suspended in methanol (65 mL) then potassium acetate (50.4 g, quickly ground in pestle and mortar to break up lumps) was added all at once and the thick white suspension resulting was stirred at room temp for 15 mins then cooled to 15° C. and then 1,1-dimethoxypropan-2-one (30 g) was added slowly over 25 mins. The reaction was stirred at room temperature for 50 mins and then diluted with 200 ml DCM, then 100 ml sat. NaHCO 3 (aq) was added cautiously over 15 mins.
  • N,1,1-trimethoxypropan-2-imine (20 g) was dissolved in acetic acid (80 mL) then was cooled to 13° C.
  • NaBH 3 CN (9.82 g) was added portionwise over 10 mins. After 18 hrs at room temperature, the reaction was concentrated to remove bulk of HOAc then residue dissolved in DCM (300 mL) and satd. NaHCO 3 (aq) (300 mL) was added slowly with stirring. The mixture was stirred at rt for 90 mins, and then 40% NaOH(aq) was added until the solution reached pH 12. The layers were separated, extracted with further DCM (3 ⁇ 100 mL).
  • N,1,1-trimethoxypropan-2-amine (2.000 g, 13.41 mmol) was dissolved in IPA (5 mL) and the mixture was cooled to 0° C. under N 2 , then trimethylsilyl isocyanate (commercially available) (4.83 mL, 33.51 mmol) was added and the reaction was allowed to warm to room temperature and was stirred at room temperature for 24 h.
  • the reaction mixture was worked up by adding DCM (30 mL) and water (15 mL), extracting with further DCM (2 ⁇ 15 mL), dried (Na 2 SO 4 ), filtered and evaporated then chromatographed on silica eluting with 50-100% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a white solid (2.08 g, 81% yield).
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methoxy-urea 300 mg, 1.56 mmol
  • 2-chloro-4-(trifluoromethyl)pyridine commercially available
  • potassium carbonate 324 mg
  • tris(dibenzylideneacetone)dipalladium(0) 30 mg
  • 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene 70 mg
  • NMR indicated a ratio of diastereoisomers in approximately a 2:1 ratio.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (for a synthesis see WO 2007004749) (9.93 g, 1.05 equiv.) was suspended in 1,4-dioxane (25 mL) under a Nitrogen atmosphere and treated with N,1,1-trimethoxypropan-2-amine (5.00 g, 22.51 mmol, 1 equiv.) and the reaction was heated to reflux for 2.5 h. The reaction was cooled to room temperature, then 2N aqueous HCl (30 mL) was added to the reaction mixture and heated to 50° C. for 25 minutes.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • a sample of compound A8 was separated into two major fractions by preparative chiral SFC (Lux Cellulose-4 column, eluting with IPA (7%) with other fractions discarded.
  • the analysis could be performed by HPLC on a Lux Amylose-2 or WHELK-O1 column eluting with heptane/IPA in a 70/30 ratio.
  • the absolute stereochemistry may be proven by synthesis (in an analogous way to example 8-alternative synthesis below).
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • O-methylhydroxylamine hydrochloride (65.98 g, 790.0 mmol) was dissolved in water (130 mL) then sodium hydroxide (50% aqueous) (33.1 mL 632.0 mmol) was added.
  • the solution of O-methylhydroxylamine in water was added to the solution of methyl (2R)-2-(trifluoromethylsulfonyloxy)propanoate in DCM, and the mixture was stirred at room temperature for 30 minutes.
  • the organic layer was separated and chromatographed on silica eluting with 0-45% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a pale yellow oil (23.5 g). The product appears to have some volatility so caution was taken with the evaporation step. The product was used without further purification.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • the reaction mixture was diluted with EtOAc (20 mL) and water (20 mL) and filtered through a pad of celite, rinsing through with further small portions of EtOAc and water.
  • the organic phase was separated and the aqueous further extracted with EtOAc (5 mL).
  • the organic extracts were combined, washed with brine (10 mL), dried over MgSO 4 , filtered and the filtrate evaporated giving an orange liquid. This was chromatographed (eluting with an EtOAc/iso-hexane gradient) and fractions containing product were evaporated and triturated with iso-hexane to give the desired product as a light yellow powder (0.669 g, 55%).
  • A34 The first eluting enantiomer E1 was purified further by chromatography on silica eluting with EtOAc in isohexane. Fractions containing product were evaporated to give pure enantiomer E1 (A34).
  • A34 could be assigned as (5R)-5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one by inference from biological activity of related compounds of known absolute configuration and comparison of elution time from chiral HPLC.
  • Enantiomer E2 (A35) was sufficiently pure after the chiral HPLC purification and could be assigned as (5S)-5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one by inference from biological activity of related compounds of known absolute configuration and comparison of elution time from chiral HPLC.
  • Ti(O-iPr) 4 (34.3 g, 2 equiv.) was cooled to 10° C. under a nitrogen atmosphere then ethanol (89 mL) was added followed by 1,1-dimethoxypropan-2-one (7.14 g, 1 equiv), methylamine hydrochloride (8.16 g, 2 equiv.) and triethylamine (16.8 mL, 2 equiv.). The reaction was stirred at room temperature for 15 h. The reaction was cooled to 10° C. and then NaBH 4 (3.43 g, 1.5 equiv.) was added and the reaction was stirred at room temperature for 6 h.
  • 1,1-dimethoxy-N-methyl-propan-2-amine (1.0 g, 7.50 mmol) was dissolved in CDCl 3 (1.5 mL). Trimethylsilyl isocyanate (commercially available) (2 equiv.) was added and the reaction was stirred at room temp for 4 days. The reaction mixture heated to reflux for 160 minutes while incrementally adding a further trimethylsilyl isocyanate (1.5 equiv.) The reaction was evaporated and treated with water (10 mL), stirred for 90 minutes, then evaporated to give crude product (1.08 g) which was used without further purification.
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methyl-urea (220 mg, 1.249 mmol), 2-chloro-4-(trifluoromethyl)pyridine (commercially available) (272 mg, 1.2 equiv.), potassium carbonate (259 mg, 1.5 equiv.), tris(dibenzylideneacetone)dipalladium(0) (47 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (111 mg) were suspended in 1-4-dioxane (6 mL) and the mixture was then heated at 105° C. in a sealed vial for 1 h.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (4.54 g, 1.05 equiv.) was suspended in 1,4-dioxane (12 mL) under a Nitrogen atmosphere and then 1,1-dimethoxy-N-methyl-propan-2-amine (3.46 g, 15.3 mmol) was added and the reaction was heated at 105° C. for 25 mins. Aqueous 2N HCl (20 mL) was added to the reaction mixture and this was heated to 32° C. for 30 mins.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Methyl 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoate (0.114 g, 0.359 mmol) was dissolved in 1,4-dioxane (4 mL) was treated with 2N hydrochloric acid (4 mL) and the mixture was heated at 60-70° C. for 3 h. The reaction temp was raised to 85° C. and heating continued for a further 1 h. The reaction mixture then being allowed to cool to room temperature and then concentrated. The residue was taken into DCM (15 mL) and the organic phase separated.
  • the aqueous was further extracted with DCM (2 ⁇ 10 mL) and the DCM extracts combined, dried over MgSO 4 , filtered and the filtrate concentrated giving crude intermediate 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid as a white gum (47 mg).
  • the aqueous phase was evaporated giving further 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid as a white foam (73 mg).
  • reaction mixture was quenched by the careful addition of water (2 mL), then concentrated and the residue being left to stand at room temperature for 72 h.
  • the mixture was diluted with EtOAc (20 mL) and the organic phase separated.
  • the aqueous phase was further extracted with EtOAc (15 mL) and the organic extracts combined, washed with water (5 mL), dried over MgSO 4 , filtered and evaporated to give product as a light grey gum (56 mg, 98%).
  • Methylamine hydrochloride (4.05 g, 1.05 equiv.) in DCM (60 mL) was cooled to 0° C., then K 2 CO 3 (5.53 g, 1 equiv.) was added over 5 minutes. Reaction was stirred at 0° C. for a further 10 minutes then 2,2-dimethoxyacetaldehyde (6.04 mL, 40 mmol) was added and the reaction was stirred vigorously at 0° C. After 5 minutes at 0° C., the reaction was allowed to warm to room temperature. After 15 minutes at room temperature, DCM was decanted off, solid was extracted with DCM (2 ⁇ 15 mL). Combined DCM fractions were dried (Na 2 SO 4 ), filtered, and evaporated to give product which was used without further purification (4.10 g, 87%).
  • 1,1,1-trifluoro-3,3-dimethoxy-N-methyl-propan-2-amine (0.377 g) was suspended in water (2 mL) and then treated with TFA (2 mL) and the reaction mixture was then heated to 60° C. for 1.5 h. The reaction was evaporated and treated with sat. aqueous NaHCO 3 (15 mL) and DCM (15 mL). The aqueous phase was further extracted with DCM (2 ⁇ 10 mL) and then the combined DCM phases were dried (Na 2 SO 4 ), filtered and evaporated to give product as a white solid (320 mg, 97%).
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • the diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis.
  • the stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • R a , R b , R c , R d , R 1 , R 2 , R 3 and X are as defined above.
  • positive ES MH+ 290 A2 8.47 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.72 (d, 1H), 4.81 (d, 1H), 4.71 (s, 1H), 3.54 (ddq, 2H), 3.00 (s, 3H), 1.65 (m, 2H), 0.96 (t, 3H).
  • positive ES MH+ 320 A3 As for A8 As for A8 A4 As for A8 As for A8 A5 8.46 (s, 1H), 8.39 (d, 1H), 7.19 (d, 1H), 5.74 (d, 1H), 4.82 (d, 1H), 4.67 (s, 1H), 3.43 (s, 3H), 3.01 (s, 3H).
  • positive ES MH+ 292 A6 8.46 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.73 (d, 1H), 4.82 (d, 1H), 4.71 (s, 1H), 3.66 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • positive ES MH+ 306 A13 8.56 (s, 1H), 8.23 (s, 1H), 7.44 (m, 3H), 7.32 (m, 2H), 5.77 (d, 1H), 4.81 (d, 1H), 4.74 (s, 1H), 3.66 (m, 2H), 3.03 (s, 3H), 1.28 (m, 3H).
  • positive ES MH+ 382 A14 9.30 (s, 1H), 8.75 (s, 2H), 8.70 (s, 1H), 8.24 (s, 1H), 5.80 (d, 1H), 4.75 (s, 1H), 4.71 (d, 1H), 3.69 (m, 2H), 3.04 (s, 3H), 1.29 (t, 3H).
  • positive ES MH+ 360 A40 (DMSO-d6): 8.57 (d, 1H), 8.47 (s, 1H), 7.75 (s, 1H), 7.36 (d, 1H), 6.46 (d, 1H), 5.68 (d, 1H), 3.43 (q, 1H), 1.15 (d, 3H).
  • positive ES MH+ 262 A41 8.46 (s, 1H), 8.38 (d, 1H), 7.19 (dd, 1H), 5.94 (m, 1H), 5.75 (d, 1H), 5.36 (dd, 1H), 5.26 (dd, 1H), 4.80 (d, 1H), 4.77 (s, 1H), 4.15 (m, 2H), 3.01 (s, 3H).
  • positive ES MH+ 288 A47 As for A46 As for A46 A48 8.46 (s, 1H), 8.37 (d, 1H), 7.17 (d, 1H), 5.66 (d, 1H), 4.80 (d, 1H), 4.71 (s, 1H), 3.93 (dt, 1H), 2.96 (s, 3H), 1.27 (dd, 6H).
  • positive ES MH+ 320 A53 8.57 (s, 1H), 8.34 (s, 1H), 5.70 (d, 1H), 4.70 (s, 1H), 4.52 (d, 1H), 3.67 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • positive ES MH+ 340 A54 8.55 (s, 1H), 8.39 (d, 1H), 7.17 (d, 1H), 5.82 (s, 1H), 3.58 (br s, 3H), 3.39 (s, 3H), 2.98 (s, 3H).
  • positive ES MH+ 306 A59 8.28 (m, 2H), 7.10 (dd, 1H), 5.72 (d, 1H), 5.00 (d, 1H), 4.71(s, 1H), 3.66 (m, 2H), 2.99 (s, 3H), 1.91(t, 3H), 1.27(t, 3H).
  • positive ES MH+ 302 A60 Major diastereomer: 8.36 (d, 1H), 8.30 (d, 1H), 7.09 (dd, 1H), 5.59 (m, 1H), 5.12 (d, 1H), 3.51 (m, 1H), 2.93 (s, 3H), 1.92 (t, 3H), 1.33 (d, 3H).
  • positive ES MH+ 292 A81 8.49 (d, 1H), 8.28 (d, 1H), 7.89 (dd, 1H), 5.73 (d, 1H), 5.00 (d, 1H), 4.79 (d, 1H), 3.02 (s, 3H), 2.74 (d, 1H).
  • positive ES MH+ 278 A82 8.47 (s, 1H), 8.40 (d, 1H), 7.18 (d, 1H), 5.74 (s, 1H), 4.85 (brs, 1H), 4.71 (s, 1H), 3.67 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • positive ES MH+ 356 A83 8.50 (d, 1H), 8.30 (d, 1H), 7.89 (dd, 1H), 5.74 (d, 1H), 4.80 (d, 1H), 4.71 (s, 1H), 3.68 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • Methyl 6-chloro-4-(trifluoromethyl)pyridine-3-carboxylate (commercially available) (1.00 g) was dissolved in dry THF (12 mL) under a N 2 atmosphere and the reaction was cooled to ⁇ 60° C. then LiAlH4 (163 mg) was added over 10 mins. The reaction was stirred at ⁇ 60° C. for 25 mins and was then treated with saturated NH 4 Cl (aq) (5 mL) and then EtOAc (60 mL). Filtration through celite and then evaporation gave a crude oil which was dissolved in MeOH (5 mL), cooled to 0° C. then NaBH 4 (53 mg) was added portionwise and the reaction was stirred at 0° C. The reaction was then concentrated, treated with EtOAc (10 mL) and washed with 10% citric acid and then saturated brine and finally the organic layer was dried Na 2 SO 4 and evaporated to give the desired product.

Abstract

The invention relates to pyrrolone compounds of the formula (I), wherein X, R1, R2, R3, Ra, Rb, Rc and Rd are as defined in the specification. Furthermore, the present invention relates to processes and intermediates for making compounds of formula (I), to herbicidal compositions comprising these compounds and to methods of using these compounds to control plant growth.
Figure US20160264547A1-20160915-C00001

Description

  • The present invention relates to certain substituted dihydro-hydantoin derivatives, to processes for their preparation, herbicidal compositions comprising them, and their use in controlling plants or inhibiting plant growth.
  • Herbicidal dihydro-hydantoins of the formula
  • Figure US20160264547A1-20160915-C00002
  • wherein A is a pyridine ring are taught in U.S. Pat. No. 4,600,430. Similar compounds wherein A is a pyridazine ring are taught in U.S. Pat. No. 4,604,127.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the invention provides compounds of the formula (I)
  • Figure US20160264547A1-20160915-C00003
  • wherein
  • X is selected from S and O;
  • Ra is selected from hydrogen and halogen;
  • Rb is selected from hydrogen, halogen, C1-C4 alkyl, C2-C4 alkenyl C1-C4 haloalkyl, C1-C6 alkoxy, C2-C4 alkenyloxy, C2-C4 alkynyloxy, C1-C4 alkoxy-C1-C4 alkyl, C1-C4 haloalkoxy, C1-C3 alkoxy-C1-C3 alkoxy, C1-C4 alkylthio, C1-C4 alkylsulfinyl, C1-C4 alkylsulfonyl, a group R5R6N—, a group R5C(O)N(R6)—, a group R5S(O2)N(R6)—, a group R5R6NSO2—, a group R5R6NC(O)—, aryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy, aryloxy optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy and heteroaryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy;
  • Rc is selected from hydrogen, halogen, C1-C8 alkyl, C1-C6 haloalkyl, C2-C8 alkenyl, C1-C6 cyanoalkyl, C1-C6 alkoxy, C1-C4 alkoxy-C1-C4 alkyl, C1-C6 hydroxyalkyl, C2-C6 alkenyloxy C1-C6 alkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, C1-C3 alkyl and C1-C3 alkoxy;
  • Rd is selected from hydrogen, halogen, cyano, C1-C6 alkyl and C1-C6 haloalkyl;
  • R1 is selected from hydrogen, hydroxyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1-C4 cyanoalkyl, C3-C6 cycloalkyl, C1-C4 alkoxy, C1-C4 alkoxy-C1-C4 alkyl and C1-C4 haloalkyl and R2 is selected from hydrogen, hydroxyl, C1-C4 alkyl, C2-C4 alkenyl, C1-C4 alkoxy, C2-C4 alkenyloxy, C2-C4 alkynyloxy, C1-C4 alkoxy-C1-C4 alkyl, C1-C4 alkoxy-C1-C4 alkoxy, C1-C4 hydroxyalkyl, C1-C4 haloalkyl, C1-C3 haloalkoxy and C1-C4 cyanoalkyl, with the proviso that when R1 is methyl, R2 is not H;
  • or R1 and R2 together with the nitrogen and carbon atoms to which they are attached form a 3-7 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from hydroxyl, ═O, C1-C6 alkyl or C1-C6 haloalkyl.
  • R3 is selected from halogen, hydroxyl, —NR14R15, or any one of the following groups
  • Figure US20160264547A1-20160915-C00004
  • R5 and R6 are independently selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 cyanoalkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy and C1-C6 alkoxy-C1-C6 alkyl, or R5 and R6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C1-C6 alkyl;
  • R7 and R8 are independently selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, a C3-C6 cycloalkyl group optionally substituted with 1 to 3 groups independently selected from C1-C3 alkyl, C2-C4 alkenyl, C1-C3 haloalkyl and C2-C4 haloalkenyl, a C5-C10 heterocyclyl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C1-C3 alkyl, C1-C3 haloalkyl and C1-C3 alkoxy, a C5-C10 heteroaryl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C1-C3 alkyl, C1-C3 haloalkyl and C1-C3 alkoxy, a C6-C10 aryl group optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy, a C6-C10 arylalkyl group optionally substituted with 1 to 3 groups independently selected from C1-C4 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and the group —OC(O)—C1-C4 alkyl, or R7 and R8 together with the atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C1-C6 alkyl;
  • R9 is selected from C1-C6 alkyl and benzyl optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy;
  • R14 and R15 are, independently, selected from hydrogen, C1-C20 alkyl, C1-C20 haloalkyl, C1-C20 alkoxy, C1-C20 alkoxy-C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl and benzyl, or R14 and R15 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C1-C6 alkyl;
  • or an N-oxide or salt form thereof.
  • In a second aspect, the invention provides herbicidal compositions comprising a compound of the invention together with at least one agriculturally acceptable adjuvant or diluent.
  • In a third aspect, the invention provides the use of a compound or a composition of the invention for use as a herbicide.
  • In a fourth aspect, the invention provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful crop plants, a compound or a composition of the invention.
  • In a fifth aspect, the invention relates to processes useful in the preparation of compounds of the invention.
  • In a sixth aspect, the invention relates to intermediates useful in the preparation of compounds of the invention.
  • DETAILED DESCRIPTION
  • In particularly preferred embodiments of the invention, the preferred groups for X, Ra, Rb Rc, Rd, R1, R2 and R3, in any combination thereof, are as set out below.
  • Preferably, X is O.
  • Preferably, Ra is hydrogen.
  • Preferably, Rd is hydrogen.
  • Preferably, R1 is selected from C1-C4 alkyl, C1-C4 alkoxy and C1-C4 haloalkyl. More preferably, R1 is selected from C1-C4 alkyl and C1-C4 alkoxy. Most preferably, R1 is selected from methyl and methoxy.
  • Preferably, R2 is selected from C1-C3 alkyl, C1-C3 alkoxy and C1-C3 alkoxy-C1-C3 alkyl. More preferably, R2 is selected from methyl, ethyl, methoxy, ethoxy and methoxymethyl. Even more preferably, R2 is selected from methyl and ethoxy. Most preferably, R2 is methyl.
  • Preferably, R3 is selected from hydroxyl, halogen, C1-C6 alkylcarbonyloxy, C1-C6 alkoxycarbonyloxy and aryloxycarbonyloxy wherein the aryl group may be substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy. Even more preferably, R3 is selected from hydroxyl and halogen. Most preferably, R3 is hydroxyl.
  • In one embodiment, X, Ra, Rd, R1, R2 and R3 are as described above in any combination and Rb and Rc are as described below in any combination.
  • Preferably Rb is selected from hydrogen, halogen, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 alkoxy-C1-C3 alkyl, heteroaryl substituted by halogen or methoxy and aryl substituted by halogen or methoxy. More preferably, Rb is selected from hydrogen, halogen, methoxy, heteroaryl substituted by halogen or methoxy and aryl substituted by halogen or methoxy groups. Even more preferably, Rb is hydrogen.
  • Preferably, Rc is selected from C1-C8 alkyl, C1-C6 haloalkyl, C2-C8 alkenyl, C1-C6 cyanoalkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C1-C3 alkyl.
  • Even more preferably, Rc is selected from C1-C6 alkyl, C1-C3 haloalkyl, C1-C6 cyanoalkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C1-C3 alkyl.
  • Even more preferably Rc is selected from methyl, ethyl, iso-propyl, (2-methyl)-prop-1-yl, (1-methyl)-prop-1-yl, tert-butyl, (1,1-dimethyl)-prop-1-yl, (1,1-dimethyl)-but-1-yl, (1-methyl-1-ethyl)-prop-1-yl, cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, (1-methyl-1-cyano)-eth-1-yl, (1-methyl-1-ethyl-2-cyano)-prop-1-yl, (1,1-dimethyl-2-cyano)-prop-1-yl, 1-fluoroethyl, 1,1-difluoroethyl, difluoromethyl, 1-fluoro-1-methylethyl and trifluoromethyl.
  • Even more preferably, Rc is selected from tert-butyl, (1-methyl-1-cyano)-eth-1-yl, 1,1-difluoroethyl, 1-fluoro-1-methylethyl and trifluoromethyl.
  • Most preferably, Rc is trifluoromethyl.
  • In particular, the substituted pyridine may be 4-tert-butyl-pyrid-2-yl, 4-((1-methyl-1-cyano)-eth-1-yl)-pyrid-2-yl, 4-(1,1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl.
  • In a further embodiment, X, Ra, Rd, R1, R2 and R3 are as described above in any combination and Rb is selected from R5R6NC(O)— and R5C(O)N(R6)—, wherein R5 and R6 are as described above, and Rc is selected from hydrogen, halo, C1-C4 alkyl and C1-C4 haloalkyl. More preferably, Rb is R5R6NC(O)—.
  • In a further embodiment, X, Ra, Rd, R1, R2 and R3 are as described above in any combination and Rb is selected from halogen and C1-C4 alkyl and Rc is C1-C3 haloalkyl, preferably trifluoromethyl.
  • In a further embodiment, the invention provides compounds of the formula (I)
  • Figure US20160264547A1-20160915-C00005
  • wherein
  • X is selected from S and O;
  • Ra is selected from hydrogen and halogen;
  • Rb is selected from hydrogen, halogen, C1-C4 alkyl, C1-C4 haloalkyl, C1-C6 alkoxy, C1-C3 alkoxy-C1-C3 alkoxy, a group R5R6N—, a group R5C(O)N(R6)—, a group R5S(O2)N(R6)—, a group R5R6NSO2—, a group R5R6NC(O)—, aryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy, and heteroaryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy;
  • Rc is selected from hydrogen, halogen, C1-C8 alkyl, C1-C6 haloalkyl, C2-C8 alkenyl, C1-C6 cyanoalkyl, C1-C6 alkoxy, C1-C6 hydroxyalkyl, C2-C6 alkenyloxy C1-C6 alkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, C1-C3 alkyl and C1-C3 alkoxy;
  • Rd is selected from hydrogen, halogen, cyano, C1-C6 alkyl and C1-C6 haloalkyl;
  • R1 is selected from hydrogen, C1-C4 alkyl, C1-C4 alkoxy and C1-C4 haloalkyl and R2 is selected from hydrogen, hydroxyl, C1-C4 alkyl, C1-C4 alkoxy, C1-C4 alkoxy-C1-C4 alkyl, C1-C4 haloalkyl, C1-C3 haloalkoxy and C1-C4 cyanoalkyl, with the proviso that when R1 is methyl, R2 is not H;
  • or R1 and R2 together with the nitrogen and carbon atoms to which they are attached form a 3-7 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from hydroxyl, ═O, C1-C6 alkyl or C1-C6 haloalkyl.
  • R3 is selected from halogen, hydroxyl, and any one of the following groups
  • Figure US20160264547A1-20160915-C00006
  • R5 and R6 are independently selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, or R5 and R6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C1-C6 alkyl;
  • R7 and R8 are independently selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, a C5-C10 heteroaryl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C1-C3 alkyl, C1-C3 haloalkyl and C1-C3 alkoxy, a C6-C10 aryl group optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy, or R7 and R8 together with the atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen or C1-C6 alkyl;
  • R9 is selected from C1-C6 alkyl and benzyl optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy;
  • or an N-oxide or salt form thereof.
  • In this particular embodiment, the preferred groups for X, Ra, Rb Rc, Rd, R1, R2 and R3, in any combination thereof, are as set out below.
  • Preferably X is O.
  • Preferably Ra is hydrogen.
  • Preferably, Rd is hydrogen.
  • Preferably R1 is C1-C4 alkyl, C1-C4 alkoxy or C1-C4 haloalkyl. More preferably, R1 is C1-C4 alkyl or C1-C4 alkoxy. Most preferably, R1 is methyl or methoxy.
  • Preferably R2 is C1-C3 alkyl, C1-C3 alkoxy or C1-C3 alkoxy-C1-C3 alkyl. More preferably R2 is methyl, methoxy, ethoxy or methoxymethyl.
  • Preferably, R3 is hydroxyl, halogen, C1-C6 alkylcarbonyloxy, C1-C6 alkoxycarbonyloxy or aryloxycarbonyloxy wherein the aryl group may be substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy. Even more preferably, R3 is hydroxyl or halogen. Most preferably, R3 is hydroxyl.
  • In one embodiment of this embodiment, X, Ra, Rd, R1, R2 and R3 are as described above in any combination and Rb and Rc are as described below in any combination.
  • Preferably Rb is hydrogen, halogen, methoxy, heteroaryl substituted by halogen or methoxy or aryl substituted by halogen or methoxy groups.
  • Even more preferably, Rb is hydrogen.
  • Preferably, Rc is C1-C8 alkyl, C1-C6 haloalkyl, C2-C8 alkenyl, C1-C6 cyanoalkyl or C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C1-C3 alkyl.
  • Even more preferably, Rc is C1-C6 alkyl, C1-C3 haloalkyl, C1-C6 cyanoalkyl or C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C1-C3 alkyl.
  • Even more preferably Rc is methyl, ethyl, iso-propyl, (2-methyl)-prop-1-yl, (1-methyl)-prop-1-yl, tert-butyl, (1,1-dimethyl)-prop-1-yl, (1,1-dimethyl)-but-1-yl, (1-methyl-1-ethyl)-prop-1-yl, cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, (1-methyl-1-cyano)-eth-1-yl, (1-methyl-1-ethyl-2-cyano)-prop-1-yl, (1,1-dimethyl-2-cyano)-prop-1-yl, 1-fluoroethyl, 1,1-difluoroethyl, difluoromethyl, 1-fluoro-1-methylethyl or trifluoromethyl.
  • Even more preferably, Rc is tert-butyl, (1-methyl-1-cyano)-eth-1-yl, 1,1-difluoroethyl, 1-fluoro-1-methylethyl or trifluoromethyl.
  • Most preferably, Rc is trifluoromethyl.
  • In particular, the substituted pyridine may be 4-tert-butyl-pyrid-2-yl, 4-((1-methyl-1-cyano)-eth-1-yl)-pyrid-2-yl, 4-(1,1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl.
  • In a further embodiment of this embodiment, X, Ra, Rd, R1, R2 and R3 are as described above in any combination and Rb is R5R6NC(O)— or R5C(O)N(R6)—, wherein R5 and R6 are as described above, and Rc is hydrogen, halo, C1-C4 alkyl or C1-C4 haloalkyl. More preferably, Rb is R5R6NC(O)—.
  • In a further embodiment of this embodiment, X, Ra, Rd, R1, R2 and R3 are as described above in any combination and Rb is halogen or C1-C4 alkyl and Rc is C1-C3 haloalkyl, preferably trifluoromethyl.
  • The compounds of formula (I) may exist as different geometric isomers, or in different tautomeric forms. This invention covers all such isomers and tautomers, and mixtures thereof in all proportions, as well as isotopic forms such as deuterated compounds.
  • The compounds of this invention may contain one or more asymmetric centers and may thus give rise to optical isomers and diastereomers. While shown without respect to stereochemistry, the present invention includes all such optical isomers and diastereomers as well as the racemic and resolved, enantiomerically pure R and S stereoisomers and other mixtures of the R and S stereoisomers and agrochemically acceptable salts thereof. It is recognized certain optical isomers or diastereomers may have favorable properties over the other. Thus when disclosing and claiming the invention, when a racemic mixture is disclosed, it is clearly contemplated that both optical isomers, including diastereomers, substantially free of the other, are disclosed and claimed as well.
  • Alkyl, as used herein, refers to an aliphatic hydrocarbon chain and includes straight and branched chains e.g. of 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, and isohexyl.
  • Alkenyl, as used herein, refers to an aliphatic hydrocarbon chain having at least one double bond, and preferably one double bond, and includes straight and branched chains e.g. of 2 to 8 carbon atoms such as ethenyl (vinyl), prop-1-enyl, prop-2-enyl (allyl), isopropenyl, but-1-enyl, but-2-enyl, but-3-enyl, 2-methypropenyl.
  • Alkynyl, as used herein, refers to an aliphatic hydrocarbon chain having at least one triple bond, and preferably one triple bond, and includes straight and branched chains e.g. of 2 to 8 carbon atoms such as ethynyl, prop-1-ynyl, prop-2-ynyl (propargyl) but-1-ynyl, but-2-ynyl and but-3-ynyl.
  • Cycloalkyl, as used herein, refers to a cyclic, saturated hydrocarbon group having from 3 to 6 ring carbon atoms. Examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Hydroxyalkyl, as used herein, refers to the group —ROH, wherein R is alkyl as defined above.
  • Alkoxy, as used herein, refers to the group —OR, wherein R is alkyl as defined above. Examples of alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, t-butoxy, n-pentoxy, isopentoxy, neo-pentoxy, n-hexyloxy, and isohexyloxy.
  • Alkenyloxy, as used herein, refers to the group —OR, wherein R is alkenyl as defined above. Examples of alkenyloxy groups are ethenyloxy, propenyloxy, isopropenyloxy, but-1-enyloxy, but-2-enyloxy, but-3-enyloxy, 2-methypropenyloxy etc.
  • Alkynyloxy, as used herein, refers to the group —OR, wherein R is alkynyl is as defined above. Examples of alkynyloxy groups are ethynyloxy, propynyloxy, but-1-ynyloxy, but-2-ynyloxy and but-3-ynyloxy.
  • Alkoxyalkyl, as used herein, refers to a group R, substituted at any position with one or more groups —OR, wherein each R is, independently, alkyl as defined herein.
  • Alkoxyalkoxy, as used herein, refers to the group —OROR, wherein each R is, independently, an alkyl group as defined above.
  • Alkenyloxyalkyl, as used herein, refers to the group —ROR′, wherein R is alkyl as used herein and R′ is alkenyl as used herein.
  • Cyanoalkyl, as used herein, refers to an alkyl group substituted with one or more cyano groups.
  • Halogen, halide and halo, as used herein, refer to iodine, bromine, chlorine and fluorine.
  • Haloalkyl, as used herein, refers to an alkyl group as defined above wherein at least one hydrogen atom has been replaced with a halogen atom as defined above. Examples of haloalkyl groups include chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl and trifluoromethyl. Preferred haloalkyl groups are fluoroalkyl groups {i.e. haloalkyl groups, containing fluorine as the only halogen). More highly preferred haloalkyl groups are perfluoroalkyl groups, i.e. alkyl groups wherein all the hydrogen atoms are replaced with fluorine atoms.
  • Haloalkenyl, as used herein, refers to an alkenyl group as defined above wherein at least one hydrogen atom has been replaced with a halogen atom as defined above.
  • Haloalkoxy, as used herein, refers to the group —OR, wherein R is haloalkyl as defined above.
  • Alkylthio, as used herein, refers to the group —SR, wherein R is an alkyl group as defined above. Alkylthio groups include, but are not limited to, methylthio, ethylthio, propylthio, tert-butylthio, and the like.
  • Alkylsulfinyl, as used herein, refers to the group —S(O)R, wherein R is an alkyl group as defined above.
  • Alkylsulfonyl, as used herein, refers to the group —S(O)2R, wherein R is an alkyl group as defined above.
  • Alkylcarbonyloxy, as used herein, refers to the group —OC(O)R, wherein R is alkyl as defined herein.
  • Alkoxycarbonyloxy, as used herein, refers to the group —OC(O)OR, wherein R is an alkyl group as defined above. Examples of alkoxycarbonyloxy groups are methoxycarbonyloxy, ethoxycarbonyloxy, propoxycarbonyloxy, but-1-oxycarbonyloxy, but-2-oxycarbonyloxy and but-3-oxycarbonyloxy.
  • Hydroxy or hydroxyl, as used herein, refers to the group —OH.
  • Nitro, as used herein, refers to the group —NO2.
  • Cyano, as used herein, refers to the group —CN.
  • Aryl, as used herein, refers to an unsaturated aromatic carbocyclic group of from 6 to 10 carbon atoms having a single ring (e.g., phenyl) or multiple condensed (fused) rings, at least one of which is aromatic (e.g., indanyl, naphthyl). Preferred aryl groups include phenyl, naphthyl and the like. Most preferably, an aryl group is a phenyl group.
  • Aryloxy, as used herein, refers to the group —O-aryl, wherein aryl is as defined above. Preferred aryloxy groups include phenoxy, naphthyloxy and the like.
  • Aryloxycarbonyloxy, as used herein, refers to the group —OC(O)O-aryl wherein aryl is a as defined above.
  • Arylalkyl, as used herein, refers to a group R—Ar, wherein R is alkyl as defined herein and Ar is aryl as defined herein. Arylalkyl groups may be substituted on the alkyl linker or on the ring. An example of an arylalkyl group is the benzyl group (—CH2C6H5).
  • Heterocyclyl, as used herein, refers to a non-aromatic ring system containing 3 to 10 ring atoms, at least one ring heteroatom and consisting either of a single ring or of two or more fused rings. Preferably, single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be chosen from nitrogen, oxygen and sulfur. Examples of such groups include pyrrolidinyl, imidazolinyl, pyrazolidinyl, piperidyl, piperazinyl, quinuclidinyl, morpholinyl, together with unsaturated or partially unsaturated analogues such as 4,5,6,7-tetrahydro-benzothiophenyl, chromen-4-onyl, 9H-fluorenyl, 3,4-dihydro-2H-benzo-1,4-dioxepinyl, 2,3-dihydro-benzofuranyl, piperidinyl, 1,3-dioxolanyl, 1,3-dioxanyl, 4,5-dihydro-isoxazolyl, tetrahydrofuranyl and morpholinyl.
  • Heteroaryl, as used herein, refers to a ring system containing 5 to 10 ring atoms, 1 to 4 ring heteroatoms and consisting either of a single aromatic ring or of two or more fused rings, at least one of which is aromatic. Preferably, single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be independently chosen from nitrogen, oxygen and sulfur. Examples of such groups include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, furanyl, thiophenyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl and tetrazolyl. Examples of bicyclic groups are benzothiophenyl, benzimidazolyl, benzothiadiazolyl, quinolinyl, cinnolinyl, quinoxalinyl and pyrazolo[1,5-a]pyrimidinyl.
  • ‘Saturated ring’, as used herein, refers to a ring system in which the atoms in the ring are linked by single bonds.
  • ‘Partially unsaturated ring’, as used herein, refers to a ring system in which at least two atoms in the ring are linked by a double bond. Partially unsaturated ring systems do not include aromatic rings.
  • “Optionally substituted”, as used herein, means the group referred to can be substituted at one or more positions by any one or any combination of the radicals listed thereafter. For most groups, one or more hydrogen atoms are replaced by the radicals listed thereafter. For halogenated groups, for example, haloalkyl groups, one or more halogen atoms are replaced by the radicals listed thereafter.
  • Suitable salts include those derived from alkali or alkaline earth metals and those derived from ammonia and amines. Preferred cations include sodium, potassium, magnesium, and ammonium cations of the formula N+(R19R20R21R22) wherein R19, R20, R21 and R22 are independently selected from hydrogen, C1-C6 alkyl and C1-C6 hydroxyalkyl. Salts of the compounds of Formula I can be prepared by treatment of compounds of Formula I with a metal hydroxide, such as sodium hydroxide, or an amine, such as ammonia, trimethylamine, diethanolamine, 2-methylthiopropylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine. Amine salts are often preferred forms of the compounds of Formula I because they are water-soluble and lend themselves to the preparation of desirable aqueous based herbicidal compositions.
  • Acceptable salts can be formed from organic and inorganic acids, for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesulfonic, benzenesulfonic, toluenesulfonic, camphorsulfonic, and similarly known acceptable acids when a compound of this invention contains a basic moiety.
  • In another aspect the present invention provides intermediates useful in the preparation of compounds of the invention.
  • In one embodiment, there are provided intermediates of the formula (III) wherein X, R1, R2, Ra, Rb, Rc and Rd are as defined above.
  • Figure US20160264547A1-20160915-C00007
  • In another embodiment, there are provided intermediates shown below wherein X, R1, R2, R14, R15, Ra, Rb, Rc and Rd are as defined above.
  • Figure US20160264547A1-20160915-C00008
  • Compounds of the invention may be prepared by techniques known to the person skilled in the art of organic chemistry. General methods for the production of compounds of formula (I) are described below. Unless otherwise stated in the text, the substituents X, R1, R2, R3, Ra, Rb, Rc and Rd are as defined hereinbefore. The starting materials used for the preparation of the compounds of the invention may be purchased from usual commercial suppliers or may be prepared by known methods. The starting materials as well as the intermediates may be purified before use in the next step by state of the art methodologies such as chromatography, crystallization, distillation and filtration.
  • For example, compounds of formula (IX) wherein R1 is an alkyl or alkoxy group and R2 is a hydrogen or alkyl group may be prepared by reaction of amino-pyridine (IV) with phenylchloroformate to give carbamate product (V). The subsequent reaction with an appropriately substituted amino-ester (VI) gives compounds of type (VII) and subsequent cyclisation gives compounds of type (VIII) and reduction with e.g. with sodium borohydride gives compounds of type (IX). The methyl amino-ester (VI) may also be replaced by other amino esters or amino-acids. Phenyl chloroformate may be replaced by other activating groups such as phosgene or para-nitrophenyl chloroformate. The cyclisation to (VIII) may occur in situ or require heating for carboxylic acids or esters or treatment with a reagent such as thionyl chloride for carboxylic acids. Compounds of type (VII) can be converted to compounds of type (IX) directly by treatment with a reducing reagent such as DIBAL-H or NaBH4. Esters of type (VII) may also be reduced to their corresponding primary alcohols and then such alcohols can be re-oxidised to compounds of type (IX) with oxidants such as Dess-Martin periodinane.
  • Figure US20160264547A1-20160915-C00009
  • Alternatively, compounds of formula (IX) wherein R1 is an alkyl group or alkoxy group and R2 is a hydrogen or alkyl group may be prepared by Palladium catalysed reaction of chloro-pyridine (X) with urea (XI) to give (XII) (for a reference to a related reaction see WO2006048249, example 3.1) and then subsequent cyclisation gives compounds of type (IX).
  • Figure US20160264547A1-20160915-C00010
  • Urea (XI) may be formed by reaction of ester (XII) with Grignard reagents, reductive amination of the product ketone (XIV) with amines and finally reaction of the subsequent product amine (XV) with TMS-isocyanate to give compounds of type (XI). Alternatively (XV) can be formed by a Grignard addition of type R2MgCl to appropriate imines. Alternatively, a nitrile can replace the ester group of (XIII) in the reaction with Grignard reagents.
  • Figure US20160264547A1-20160915-C00011
  • Alternatively, reaction of compounds of type (XIV) with methoxylamine following by reduction of the oxime ether formed gives compounds of type (XV) which can form compounds of type (XI) where R1 is alkoxy. Alternatively, reaction of compounds of type (XIV) where R2 is hydrogen with methoxylamine followed by addition of Grignard reagents to the formed oxime also can give compounds of type (XV).
  • Figure US20160264547A1-20160915-C00012
  • Compounds of formula (XVIII) wherein R2 is an hydroxy group may be prepared by the Palladium catalysed reaction of chloro-pyridine (X) with urea (XVI) to give urea (XVII) (for a reference to a related reaction see WO2006048249, example 3.1), which can react with aqueous glyoxal solution to give product (XVIII). Compounds of formula (IX) where R2 is an alkoxy group may be prepared by reacting compounds of formula (XVIII) with alcohols of type R4—OH under acidic conditions.
  • Figure US20160264547A1-20160915-C00013
  • Alternatively, compounds of formula (V) may be reacted with compounds of formula (XIX) wherein R2 is a hydrogen or alkyl group to give products of type (XX). Cyclisation with a suitable reagent such as thionyl chloride gives compounds of formula (XXI), which can be alkylated with a suitable base such as LiHMDS and a suitable alkylating agent such as methyl iodide (for R1=Me) to give compound (VIII). Reduction as before gives compounds of type (IX).
  • Figure US20160264547A1-20160915-C00014
  • Alternatively oxidative cleavage (using ozonolysis or OsO4/NalO4 or similar conditions) of an appropriate vinyl compound such as (XXII) or derivatives thereof and cyclisation could give the desired product.
  • Figure US20160264547A1-20160915-C00015
  • Alternatively, compounds of type (XXIII) may be coupled with compounds of type (X) under Palladium catalysed conditions to give compounds of type (VIII) and then standard reduction with NaBH4 for example gives products of type (IX).
  • Figure US20160264547A1-20160915-C00016
  • Amino and chloro-pyridines, where not commercially available, may be made by literature routes such as below and as detailed in J. March, Advanced Organic Chemistry, 4th ed. Wiley, New York, 1992.
  • Figure US20160264547A1-20160915-C00017
  • Suitable conditions for effecting these transformations are set out in J. March, Advanced Organic Chemistry, 4th ed. Wiley, New York, 1992.
  • The compounds of formula (I) according to the invention can be used as herbicides in unmodified form, as obtained in the synthesis, but they are generally formulated into herbicidal compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances. Therefore, the invention also relates to a herbicidal composition which comprises a herbicidally effective amount of a compound of formula (I) in addition to formulation adjuvants. The formulations can be in various physical forms, e.g. in the form of dusting powders, gels, wettable powders, water-dispersible granules, water-dispersible tablets, effervescent pellets, emulsifiable concentrates, microemulsifiable concentrates, oil-in-water emulsions, oil-flowables, aqueous dispersions, oily dispersions, suspo-emulsions, capsule suspensions, emulsifiable granules, soluble liquids, water-soluble concentrates (with water or a water-miscible organic solvent as carrier), impregnated polymer films or in other forms known e.g. from the Manual on Development and Use of FAO Specifications for Plant Protection Products, 5th Edition, 1999. Such formulations can either be used directly or they are diluted prior to use. The dilutions can be made, for example, with water, liquid fertilizers, micronutrients, biological organisms, oil or solvents.
  • The formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions. The active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof. The active ingredients can also be contained in very fine microcapsules consisting of a polymer. Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release). Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95% by weight of the capsule weight. The active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution. The encapsulating membranes comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art in this connection. Alternatively, very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the microcapsules are not themselves encapsulated.
  • The formulation adjuvants that are suitable for the preparation of the compositions according to the invention are known per se. As liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol dibenzoate, diproxitol, alkylpyrrolidone, ethyl acetate, 2-ethylhexanol, ethylene carbonate, 1,1,1-trichloroethane, 2-heptanone, alpha-pinene, d-limonene, ethyl lactate, ethylene glycol, ethylene glycol butyl ether, ethylene glycol methyl ether, gamma-butyrolactone, glycerol, glycerol acetate, glycerol diacetate, glycerol triacetate, hexadecane, hexylene glycol, isoamyl acetate, isobornyl acetate, isooctane, isophorone, isopropylbenzene, isopropyl myristate, lactic acid, laurylamine, mesityl oxide, methoxypropanol, methyl isoamyl ketone, methyl isobutyl ketone, methyl laurate, methyl octanoate, methyl oleate, methylene chloride, m-xylene, n-hexane, n-octylamine, octadecanoic acid, octylamine acetate, oleic acid, oleylamine, o-xylene, phenol, polyethylene glycol (PEG400), propionic acid, propyl lactate, propylene carbonate, propylene glycol, propylene glycol methyl ether, p-xylene, toluene, triethyl phosphate, triethylene glycol, xylenesulfonic acid, paraffin, mineral oil, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol methyl ether, diethylene glycol methyl ether, methanol, ethanol, isopropanol, and alcohols of higher molecular weight, such as amyl alcohol, tetrahydro-furfuryl alcohol, hexanol, octanol, ethylene glycol, propylene glycol, glycerol, N-methyl-2-pyrrolidone and the like. Water is generally the carrier of choice for diluting the concentrates. Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances, as described, for example, in CFR 180.1001. (c) & (d).
  • A large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use. Surface-active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes. Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecyl-benzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono- and di-alkylphosphate esters; and also further substances described e.g. in “McCutcheon's Detergents and Emulsifiers Annual” MC Publishing Corp., Ridgewood N.J., 1981.
  • Further adjuvants that can usually be used in pesticidal formulations include crystallization inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralizing or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and also liquid and solid fertilizers.
  • The compositions according to the invention can additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives. The amount of oil additive in the composition according to the invention is generally from 0.01 to 10%, based on the spray mixture. For example, the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared. Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® (Rhône-Poulenc Canada Inc.), alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. A preferred additive contains, for example, as active components essentially 80% by weight alkyl esters of fish oils and 15% by weight methylated rapeseed oil, and also 5% by weight of customary emulsifiers and pH modifiers. Especially preferred oil additives comprise alkyl esters of C8-C22 fatty acids, especially the methyl derivatives of C12-C18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid, being of importance. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9). A preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Cognis GmbH). Those and other oil derivatives are also known from the Compendium of Herbicide Adjuvants, 5th Edition, Southern Illinois University, 2000.
  • The application and action of the oil additives can be further improved by combination with surface-active substances, such as non-ionic, anionic or cationic surfactants. Examples of suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of WO 97/34485. Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C12-C22 fatty alcohols having a degree of ethoxylation of from 5 to 40. Examples of commercially available surfactants are the Genapol types (Clariant AG). Also preferred are silicone surfactants, especially polyalkyl-oxide-modified heptamethyltriloxanes which are commercially available e.g. as Silwet L-77®, and also perfluorinated surfactants. The concentration of the surface-active substances in relation to the total additive is generally from 1 to 30% by weight. Examples of oil additives consisting of mixtures of oil or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Syngenta AG, CH) or ActipronC (BP Oil UK Limited, GB).
  • If desired, it is also possible for the mentioned surface-active substances to be used in the formulations on their own, that is to say, without oil additives.
  • Furthermore, the addition of an organic solvent to the oil additive/surfactant mixture may contribute to an additional enhancement of action. Suitable solvents are, for example, Solvesso® (ESSO) or Aromatic Solvent® (Exxon Corporation). The concentration of such solvents can be from 10 to 80% by weight of the total weight. Oil additives that are present in admixture with solvents are described, for example, in U.S. Pat. No. 4,834,908. A commercially available oil additive disclosed therein is known by the name MERGE® (BASF Corporation). A further oil additive that is preferred according to the invention is SCORE® (Syngenta Crop Protection Canada).
  • In addition to the oil additives listed above, for the purpose of enhancing the action of the compositions according to the invention it is also possible for formulations of alkylpyrrolidones (e.g. Agrimax®) to be added to the spray mixture. Formulations of synthetic lattices, e.g. polyacrylamide, polyvinyl compounds or poly-1-p-menthene (e.g. Bond®, Courier® or Emerald®) may also be used. It is also possible for solutions that contain propionic acid, for example Eurogkem Pen-e-trate®, to be added to the spray mixture as action-enhancing agent.
  • The herbicidal compositions generally comprise from 0.1 to 99% by weight, especially from 0.1 to 95% by weight, compounds of formula (I) and from 1 to 99.9% by weight of a formulation adjuvant which preferably includes from 0 to 25% by weight of a surface-active substance. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.
  • The rates of application of compounds of formula (I) may vary within wide limits and depend on the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the grass or weed to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. The compounds of formula (I) according to the invention are generally applied at a rate of from 10 to 2000 g/ha, especially from 50 to 1000 g/ha.
  • Preferred formulations have especially the following compositions (%=percent by weight):
  • Emulsifiable Concentrates:
  • active ingredient: 1 to 95%, preferably 60 to 90%
    surface-active agent: 1 to 30%, preferably 5 to 20%
    liquid carrier: 1 to 80%, preferably 1 to 35%
  • Dusts:
  • active ingredient: 0.1 to 10%, preferably 0.1 to 5%
    solid carrier: 99.9 to 90%, preferably 99.9 to 99%
  • Suspension Concentrates:
  • active ingredient: 5 to 75%, preferably 10 to 50%
    water: 94 to 24%, preferably 88 to 30%
    surface-active agent: 1 to 40%, preferably 2 to 30%
  • Wettable Powders:
  • active ingredient: 0.5 to 90%, preferably 1 to 80%
    surface-active agent: 0.5 to 20%, preferably 1 to 15%
    solid carrier: 5 to 95%, preferably 15 to 90%
  • Granules:
  • active ingredient: 0.1 to 30%, preferably 0.1 to 15%
    solid carrier: 99.5 to 70%, preferably 97 to 85%
    The following Examples further illustrate, but do not limit, the invention.
  • Formulation Examples for Herbicides of Formula (I) (%=% by Weight)
  • F1. Emulsifiable concentrates a) b) c) d)
    active ingredient 5% 10% 25% 50%
    calcium dodecylbenzenesulfonate 6%  8% 6% 8%
    castor oil polyglycol ether 4% 4% 4%
    (36 mol of ethylene oxide)
    octylphenol polyglycol ether  4% 2%
    (7-8 mol of ethylene oxide)
    NMP 10% 20%
    arom. hydrocarbon mixture 85%  78% 55% 16%
    C9-C12

    Emulsions of any desired concentration can be obtained from such concentrates by dilution with water.
  • F2. Solutions a) b) c) d)
    active ingredient  5% 10% 50% 90%
    1-methoxy-3-(3-methoxy- 20% 20%
    propoxy)-propane
    polyethylene glycol MW 400 20% 10%
    NMP 30% 10%
    arom. hydrocarbon mixture 75% 60%
    C9-C12

    The solutions are suitable for use in the form of microdrops.
  • F3. Wettable powders a) b) c) d)
    active ingredient 5% 25% 50% 80%
    sodium lignosulfonate 4% 3%
    sodium lauryl sulfate 2% 3%  4%
    sodium diisobutylnaphthalene- 6% 5%  6%
    sulfonate
    octylphenol polyglycol ether 1% 2%
    (7-8 mol of ethylene oxide)
    highly dispersed silicic acid 1% 3% 5% 10%
    kaolin 88%  62% 35%

    The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.
  • F4. Coated granules a) b) c)
    active ingredient 0.1% 5% 15%
    highly dispersed silicic acid 0.9% 2% 2%
    inorganic carrier 99.0% 93% 83%
    (diameter 0.1-1 mm)
    e.g. CaCO3 or SiO2

    The active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off in vacuo.
  • F5. Coated granules a) b) c)
    active ingredient 0.1% 5% 15%
    polyethylene glycol MW 200 1.0% 2% 3%
    highly dispersed silicic acid 0.9% 1% 2%
    inorganic carrier 98.0% 92% 80%
    (diameter 0.1-1 mm)
    e.g. CaCO3 or SiO2

    The finely ground active ingredient is uniformly applied, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
  • F6. Extruder granules a) b) c) d)
    active ingredient 0.1% 3% 5% 15%
    sodium lignosulfonate 1.5% 2% 3% 4%
    carboxymethylcellulose 1.4% 2% 2% 2%
    kaolin 97.0% 93% 90% 79%

    The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.
  • F7. Dusts a) b) c)
    active ingredient 0.1% 1% 5%
    talcum 39.9% 49% 35%
    kaolin 60.0% 50% 60%

    Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.
  • F8. Suspension concentrates a) b) c) d)
    active ingredient 3% 10%  25%  50% 
    ethylene glycol 5% 5% 5% 5%
    nonylphenol polyglycol ether 1% 2%
    (15 mol of ethylene oxide)
    sodium lignosulfonate 3% 3% 4% 5%
    carboxymethylcellulose 1% 1% 1% 1%
    37% aqueous formaldehyde 0.2%   0.2%   0.2%   0.2%  
    solution
    silicone oil emulsion 0.8%   0.8%   0.8%   0.8%  
    water 87%  79%  62%  38% 

    The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.
  • The invention also provides a method of controlling plants which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I).
  • The invention also provides a method of inhibiting plant growth which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I).
  • The invention also provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful plants or to the locus of said useful plants, a compound or a composition of the invention.
  • The invention also provides a method of selectively controlling grasses and/or weeds in crops of useful plants which comprises applying to the useful plants or locus thereof or to the area of cultivation a herbicidally effective amount of a compound of formula (I).
  • The term “herbicide” as used herein means a compound that controls or modifies the growth of plants. The term “herbicidally effective amount” means the quantity of such a compound or combination of such compounds that is capable of producing a controlling or modifying effect on the growth of plants. Controlling or modifying effects include all deviation from natural development, for example: killing, retardation, leaf burn, albinism, dwarfing and the like.
  • The term “plants” refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits. The term “locus” is intended to include soil, seeds, and seedlings, as well as established vegetation and includes not only areas where weeds may already be growing, but also areas where weeds have yet to emerge, and also to areas under cultivation with respect to crops of useful plants. “Areas under cultivation” include land on which the crop plants are already growing and land intended for cultivation with such crop plants. The term “weeds” as used herein means any undesired plant, and thus includes not only agronomically important weeds as described below, but also volunteer crop plants.
  • The compounds of the invention can be applied before or after planting of the crops, before weeds emerge (pre-emergence application) or after weeds emerge (post-emergence application), and are particularly effective when applied post-emergence to the weeds.
  • Crops of useful plants in which the composition according to the invention can be used include, but are not limited to, perennial crops, such as citrus fruit, grapevines, nuts, oil palms, olives, pome fruit, stone fruit and rubber, and annual arable crops, such as cereals, for example barley and wheat, cotton, oilseed rape, maize, rice, soy beans, sugar beet, sugar cane, sunflowers, ornamentals, switchgrass, turf and vegetables, especially cereals, maize and soy beans.
  • The grasses and weeds to be controlled may be both monocotyledonous species, for example Agrostis, Alopecurus, Avena, Brachiaria, Bromus, Cenchrus, Cyperus, Digitaria, Echinochloa, Eriochloa, Lolium, Monochoria, Panicum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sida and Sorghum, and dicotyledonous species, for example Abutilon, Amaranthus, Chenopodium, Chrysanthemum, Euphorbia, Galium, Ipomoea, Kochia, Nasturtium, Polygonum, Sida, Sinapis, Solanum, Stellaria, Veronica, Viola and Xanthium.
  • In all aspects of the invention, in a particular embodiment, the weeds, e.g. to be controlled and/or growth-inhibited may be monocotyledonous or dicotyledonous weeds, which are tolerant or resistant to one or more other herbicides for example, HPPD inhibitor herbicides such as mesotrione, PSII inhibitor herbicides such as atrazine or EPSPS inhibitors such as glyphosate. Such weeds include, but are not limited to resistant Amaranthus biotypes.
  • Crops are to be understood as also including those crops which have been rendered tolerant to herbicides or classes of herbicides (e.g. auxins or ALS-, EPSPS-, PPO- and HPPD-inhibitors) by conventional methods of breeding or by genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding is Clearfield® summer rape (canola). Examples of crops that have been rendered tolerant to herbicides by genetic engineering methods include e.g. glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®, respectively.
  • Crops are also to be understood as being those which have been rendered resistant to harmful insects by genetic engineering methods, for example Bt maize (resistant to European corn borer), Bt cotton (resistant to cotton boll weevil) and also Bt potatoes (resistant to Colorado beetle). Examples of Bt maize are the Bt 176 maize hybrids of NK® (Syngenta Seeds). The Bt toxin is a protein that is formed naturally by Bacillus thuringiensis soil bacteria. Examples of toxins, or transgenic plants able to synthesize such toxins, are described in EP-A-451 878, EP-A-374 753, WO 93/07278, WO 95/34656, WO 03/052073 and EP-A-427 529. Examples of transgenic plants comprising one or more genes that code for an insecticidal resistance and express one or more toxins are KnockOut® (maize), Yield Gard® (maize), NuCOTIN33B® (cotton), Bollgard® (cotton), NewLeaf® (potatoes), NatureGard® and Protexcta®. Plant crops or seed material thereof can be both resistant to herbicides and, at the same time, resistant to insect feeding (“stacked” transgenic events). For example, seed can have the ability to express an insecticidal Cry3 protein while at the same time being tolerant to glyphosate.
  • Crops are also to be understood as being those which are obtained by conventional methods of breeding or genetic engineering and contain so-called output traits (e.g. improved storage stability, higher nutritional value and improved flavor).
  • Any method of application to weeds/crop of useful plant, or locus thereof, which is routinely used in agriculture may be used, for example application by spray or broadcast method typically after suitable dilution of a compound of formula (I) (whether said compound is formulated and/or in combination with one or more further active ingredients and/or safeners, as described herein).
  • The compounds of formula (I) according to the invention can also be used in combination with other active ingredients, e.g. other herbicides, and/or insecticides, and/or acaricides, and/or nematocides, and/or molluscicides, and/or fungicides, and/or plant growth regulators. Such mixtures, and the use of such mixtures to control weeds and/or undesired plant growth, form yet further aspects of the invention. For the avoidance of doubt, mixtures of invention also include mixtures of two or more different compounds of formula (I). In particular, the present invention also relates to a composition of the invention which comprises at least one further herbicide in addition to the compound of formula (I).
  • When a compound of formula (I) is combined with at least one additional herbicide, the following mixtures of the compound of formula (I) are preferred. Compound of formula (I)+acetochlor, compound of formula (I)+acifluorfen, compound of formula (I)+acifluorfen-sodium, compound of formula (I)+aclonifen, compound of formula (I)+acrolein, compound of formula (I)+alachlor, compound of formula (I)+alloxydim, compound of formula (I)+allyl alcohol, compound of formula (I)+ametryn, compound of formula (I)+amicarbazone, compound of formula (I)+amidosulfuron, compound of formula (I)+aminocyclopyrachlor, compound of formula (I)+aminopyralid, compound of formula (I)+amitrole, compound of formula (I)+ammonium sulfamate, compound of formula (I)+anilofos, compound of formula (I)+asulam, compound of formula (I)+atrazine, formula (I)+aviglycine, formula (I)+azafenidin, compound of formula (I)+azimsulfuron, compound of formula (I)+BCPC, compound of formula (I)+beflubutamid, compound of formula (I)+benazolin, formula (I)+bencarbazone, compound of formula (I)+benfluralin, compound of formula (I)+benfuresate, compound of formula (I)+bensulfuron, compound of formula (I)+bensulfuron-methyl, compound of formula (I)+bensulide, compound of formula (I)+bentazone, compound of formula (I)+benzfendizone, compound of formula (I)+benzobicyclon, compound of formula (I)+benzofenap, compound of formula (I)+bicyclopyrone, compound of formula (I)+bifenox, compound of formula (I)+bilanafos, compound of formula (I)+bispyribac, compound of formula (I)+bispyribac-sodium, compound of formula (I)+borax, compound of formula (I)+bromacil, compound of formula (I)+bromobutide, formula (I)+bromophenoxim, compound of formula (I)+bromoxynil, compound of formula (I)+butachlor, compound of formula (I)+butafenacil, compound of formula (I)+butamifos, compound of formula (I)+butralin, compound of formula (I)+butroxydim, compound of formula (I)+butylate, compound of formula (I)+cacodylic acid, compound of formula (I)+calcium chlorate, compound of formula (I)+cafenstrole, compound of formula (I)+carbetamide, compound of formula (I)+carfentrazone, compound of formula (I)+carfentrazone-ethyl, compound of formula (I)+CDEA, compound of formula (I)+CEPC, compound of formula (I)+chlorflurenol, compound of formula (I)+chlorflurenol-methyl, compound of formula (I)+chloridazon, compound of formula (I)+chlorimuron, compound of formula (I)+chlorimuron-ethyl, compound of formula (I)+chloroacetic acid, compound of formula (I)+chlorotoluron, compound of formula (I)+chlorpropham, compound of formula (I)+chlorsulfuron, compound of formula (I)+chlorthal, compound of formula (I)+chlorthal-dimethyl, compound of formula (I)+cinidon-ethyl, compound of formula (I)+cinmethylin, compound of formula (I)+cinosulfuron, compound of formula (I)+cisanilide, compound of formula (I)+clethodim, compound of formula (I)+clodinafop, compound of formula (I)+clodinafop-propargyl, compound of formula (I)+clomazone, compound of formula (I)+clomeprop, compound of formula (I)+clopyralid, compound of formula (I)+cloransulam, compound of formula (I)+cloransulam-methyl, compound of formula (I)+CMA, compound of formula (I)+4-CPB, compound of formula (I)+CPMF, compound of formula (I)+4-CPP, compound of formula (I)+CPPC, compound of formula (I)+cresol, compound of formula (I)+cumyluron, compound of formula (I)+cyanamide, compound of formula (I)+cyanazine, compound of formula (I)+cycloate, compound of formula (I)+cyclosulfamuron, compound of formula (I)+cycloxydim, compound of formula (I)+cyhalofop, compound of formula (I)+cyhalofop-butyl, compound of formula (I)+2,4-D, compound of formula (I)+3,4-DA, compound of formula (I)+daimuron, compound of formula (I)+dalapon, compound of formula (I)+dazomet, compound of formula (I)+2,4-DB, compound of formula (I)+3,4-DB, compound of formula (I)+2,4-DEB, compound of formula (I)+desmedipham, formula (I)+desmetryn, compound of formula (I)+dicamba, compound of formula (I)+dichlobenil, compound of formula (I)+ortho-dichlorobenzene, compound of formula (I)+para-dichlorobenzene, compound of formula (I)+dichlorprop, compound of formula (I)+dichlorprop-P, compound of formula (I)+diclofop, compound of formula (I)+diclofop-methyl, compound of formula (I)+diclosulam, compound of formula (I)+difenzoquat, compound of formula (I)+difenzoquat metilsulfate, compound of formula (I)+diflufenican, compound of formula (I)+diflufenzopyr, compound of formula (I)+dimefuron, compound of formula (I)+dimepiperate, compound of formula (I)+dimethachlor, compound of formula (I)+dimethametryn, compound of formula (I)+dimethenamid, compound of formula (I)+dimethenamid-P, compound of formula (I)+dimethipin, compound of formula (I)+dimethylarsinic acid, compound of formula (I)+dinitramine, compound of formula (I)+dinoterb, compound of formula (I)+diphenamid, formula (I)+dipropetryn, compound of formula (I)+diquat, compound of formula (I)+diquat dibromide, compound of formula (I)+dithiopyr, compound of formula (I)+diuron, compound of formula (I)+DNOC, compound of formula (I)+3,4-DP, compound of formula (I)+DSMA, compound of formula (I)+EBEP, compound of formula (I)+endothal, compound of formula (I)+EPTC, compound of formula (I)+esprocarb, compound of formula (I)+ethalfluralin, compound of formula (I)+ethametsulfuron, compound of formula (I)+ethametsulfuron-methyl, formula (I)+ethephon, compound of formula (I)+ethofumesate, compound of formula (I)+ethoxyfen, compound of formula (I)+ethoxysulfuron, compound of formula (I)+etobenzanid, compound of formual (I)+fenoxaprop, compound of formula (I)+fenoxaprop-P, compound of formula (I)+fenoxaprop-ethyl, compound of formula (I)+fenoxaprop-P-ethyl, compound of formula (I)+fentrazamide, compound of formula (I)+ferrous sulfate, compound of formula (I)+flamprop-M, compound of formula (I)+flazasulfuron, compound of formula (I)+florasulam, compound of formula (I)+fluazifop, compound of formula (I)+fluazifop-butyl, compound of formula (I)+fluazifop-P, compound of formula (I)+fluazifop-P-butyl, formula (I)+fluazolate, compound of formula (I)+flucarbazone, compound of formula (I)+flucarbazone-sodium, compound of formula (I)+flucetosulfuron, compound of formula (I)+fluchloralin, compound of formula (I)+flufenacet, compound of formula (I)+flufenpyr, compound of formula (I)+flufenpyr-ethyl, formula (I)+flumetralin, compound of formula (I)+flumetsulam, compound of formula (I)+flumiclorac, compound of formula (I)+flumiclorac-pentyl, compound of formula (I)+flumioxazin, formula (I)+flumipropin, compound of formula (I)+fluometuron, compound of formula (I)+fluoroglycofen, compound of formula (I)+fluoroglycofen-ethyl, formula (I)+fluoxaprop, formula (I)+flupoxam, formula (I)+flupropacil, compound of formula (I)+flupropanate, compound of formula (I)+flupyrsulfuron, compound of formula (I)+flupyrsulfuron-methyl-sodium, compound of formula (I)+flurenol, compound of formula (I)+fluridone, compound of formula (I)+flurochloridone, compound of formula (I)+fluroxypyr, compound of formula (I)+flurtamone, compound of formula (I)+fluthiacet, compound of formula (I)+fluthiacet-methyl, compound of formula (I)+fomesafen, compound of formula (I)+foramsulfuron, compound of formula (I)+fosamine, compound of formula (I)+glufosinate, compound of formula (I)+glufosinate-ammonium, compound of formula (I)+glyphosate, compound of formula (I)+halauxifen, compound of formula (I)+halauxifen-methyl, compound of formula (I)+halosulfuron, compound of formula (I)+halosulfuron-methyl, compound of formula (I)+haloxyfop, compound of formula (I)+haloxyfop-P, compound of formula (I)+HC-252, compound of formula (I)+hexazinone, compound of formula (I)+imazamethabenz, compound of formula (I)+imazamethabenz-methyl, compound of formula (I)+imazamox, compound of formula (I)+imazapic, compound of formula (I)+imazapyr, compound of formula (I)+imazaquin, compound of formula (I)+imazethapyr, compound of formula (I)+imazosulfuron, compound of formula (I)+indanofan, compound of formula (I) and indaziflam, compound of formula (I)+iodomethane, compound of formula (I)+iodosulfuron, compound of formula (I)+iodosulfuron-methyl-sodium, compound of formula (I)+ioxynil, compound of formula (I) and ipfencarbazone, compound of formula (I)+isoproturon, compound of formula (I)+isouron, compound of formula (I)+isoxaben, compound of formula (I)+isoxachlortole, compound of formula (I)+isoxaflutole, formula (I)+isoxapyrifop, compound of formula (I)+karbutilate, compound of formula (I)+lactofen, compound of formula (I)+lenacil, compound of formula (I)+linuron, compound of formula (I)+MAA, compound of formula (I)+MAMA, compound of formula (I)+MCPA, compound of formula (I)+MCPA-thioethyl, compound of formula (I)+MCPB, compound of formula (I)+mecoprop, compound of formula (I)+mecoprop-P, compound of formula (I)+mefenacet, compound of formula (I)+mefluidide, compound of formula (I)+mesosulfuron, compound of formula (I)+mesosulfuron-methyl, compound of formula (I)+mesotrione, compound of formula (I)+metam, compound of formula (I)+metamifop, compound of formula (I)+metamitron, compound of formula (I)+metazachlor, compound of formula (I) and metazosulfuron, compound of formula (I)+methabenzthiazuron, formula (I)+methazole, a compound of formula (I) and methiozolin, compound of formula (I)+methylarsonic acid, compound of formula (I)+methyldymron, compound of formula (I)+methyl isothiocyanate, compound of formula (I)+metobenzuron, formula (I)+metobromuron, compound of formula (I)+metolachlor, compound of formula (I)+S-metolachlor, compound of formula (I)+metosulam, compound of formula (I)+metoxuron, compound of formula (I)+metribuzin, compound of formula (I)+metsulfuron, compound of formula (I)+metsulfuron-methyl, compound of formula (I)+MK-616, compound of formula (I)+molinate, compound of formula (I)+monolinuron, a compound of formula (I) and monosulfuron, a compound of formula (I) and monosulfuron-ester compound of formula (I)+MSMA, compound of formula (I)+naproanilide, compound of formula (I)+napropamide, compound of formula (I)+naptalam, formula (I)+NDA-402989, compound of formula (I)+neburon, compound of formula (I)+nicosulfuron, formula (I)+nipyraclofen, formula (I)+n-methyl glyphosate, compound of formula (I)+nonanoic acid, compound of formula (I)+norflurazon, compound of formula (I)+oleic acid (fatty acids), compound of formula (I)+orbencarb, compound of formula (I)+orthosulfamuron, compound of formula (I)+oryzalin, compound of formula (I)+oxadiargyl, compound of formula (I)+oxadiazon, compound of formula (I)+oxasulfuron, compound of formula (I)+oxaziclomefone, compound of formula (I)+oxyfluorfen, compound of formula (I)+paraquat, compound of formula (I)+paraquat dichloride, compound of formula (I)+pebulate, compound of formula (I)+pendimethalin, compound of formula (I)+penoxsulam, compound of formula (I)+pentachlorophenol, compound of formula (I)+pentanochlor, compound of formula (I)+pentoxazone, compound of formula (I)+pethoxamid, compound of formula (I)+petrolium oils, compound of formula (I)+phenmedipham, compound of formula (I)+phenmedipham-ethyl, compound of formula (I)+picloram, compound of formula (I)+picolinafen, compound of formula (I)+pinoxaden, compound of formula (I)+piperophos, compound of formula (I)+potassium arsenite, compound of formula (I)+potassium azide, compound of formula (I)+pretilachlor, compound of formula (I)+primisulfuron, compound of formula (I)+primisulfuron-methyl, compound of formula (I)+prodiamine, compound of formula (I)+profluazol, compound of formula (I)+profoxydim, formula (I)+prohexadione-calcium, compound of formula (I)+prometon, compound of formula (I)+prometryn, compound of formula (I)+propachlor, compound of formula (I)+propanil, compound of formula (I)+propaquizafop, compound of formula (I)+propazine, compound of formula (I)+propham, compound of formula (I)+propisochlor, compound of formula (I)+propoxycarbazone, compound of formula (I)+propoxycarbazone-sodium, compound of formula (I)+propyzamide, compound of formula (I)+prosulfocarb, compound of formula (I)+prosulfuron, compound of formula (I)+pyraclonil, compound of formula (I)+pyraflufen, compound of formula (I)+pyraflufen-ethyl, formula (I)+pyrasulfotole, compound of formula (I)+pyrazolynate, compound of formula (I)+pyrazosulfuron, compound of formula (I)+pyrazosulfuron-ethyl, compound of formula (I)+pyrazoxyfen, compound of formula (I)+pyribenzoxim, compound of formula (I)+pyributicarb, compound of formula (I)+pyridafol, compound of formula (I)+pyridate, compound of formula (I)+pyriftalid, compound of formula (I)+pyriminobac, compound of formula (I)+pyriminobac-methyl, compound of formula (I)+pyrimisulfan, compound of formula (I)+pyrithiobac, compound of formula (I)+pyrithiobac-sodium, formula (I)+pyroxasulfone, formula (I)+pyroxulam, compound of formula (I)+quinclorac, compound of formula (I)+quinmerac, compound of formula (I)+quinoclamine, compound of formula (I)+quizalofop, compound of formula (I)+quizalofop-P, compound of formula (I)+quizalofop-ethyl, compound of formula (I)+quizalofop-P-ethyl, compound of formula (I)+rimsulfuron, compound of formula (I)+saflufenacil, compound of formula (I)+sethoxydim, compound of formula (I)+siduron, compound of formula (I)+simazine, compound of formula (I)+simetryn, compound of formula (I)+SMA, compound of formula (I)+sodium arsenite, compound of formula (I)+sodium azide, compound of formula (I)+sodium chlorate, compound of formula (I)+sulcotrione, compound of formula (I)+sulfentrazone, compound of formula (I)+sulfometuron, compound of formula (I)+sulfometuron-methyl, compound of formula (I)+sulfosate, compound of formula (I)+sulfosulfuron, compound of formula (I)+sulfuric acid, compound of formula (I)+tar oils, compound of formula (I)+2,3,6-TBA, compound of formula (I)+TCA, compound of formula (I)+TCA-sodium, formula (I)+tebutam, compound of formula (I)+tebuthiuron, formula (I)+tefuryltrione, compound of formula 1+tembotrione, compound of formula (I)+tepraloxydim, compound of formula (I)+terbacil, compound of formula (I)+terbumeton, compound of formula (I)+terbuthylazine, compound of formula (I)+terbutryn, compound of formula (I)+thenylchlor, compound of formula (I)+thiazafluron, compound of formula (I)+thiazopyr, compound of formula (I)+thifensulfuron, compound of formula (I)+thiencarbazone, compound of formula (I)+thifensulfuron-methyl, compound of formula (I)+thiobencarb, compound of formula (I)+tiocarbazil, compound of formula (I)+topramezone, compound of formula (I)+tralkoxydim, a compound of formula (I) and triafamone compound of formula (I)+tri-allate, compound of formula (I)+triasulfuron, compound of formula (I)+triaziflam, compound of formula (I)+tribenuron, compound of formula (I)+tribenuron-methyl, compound of formula (I)+tricamba, compound of formula (I)+triclopyr, compound of formula (I)+trietazine, compound of formula (I)+trifloxysulfuron, compound of formula (I)+trifloxysulfuron-sodium, compound of formula (I)+trifluralin, compound of formula (I)+triflusulfuron, compound of formula (I)+triflusulfuron-methyl, compound of formula (I)+trifop, compound of formula (I)+trifop-methyl, compound of formula (I)+trihydroxytriazine, compound of formula (I)+trinexapac-ethyl, compound of formula (I)+tritosulfuron, compound of formula (I)+[3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS RN 353292-31-6), compound of formula (I)+2-[[8-chloro-3,4-dihydro-4-(4-methoxyphenyl)-3-oxo-2-quinoxalinyl]carbonyl-1,3-cyclohexanedione and the compound of formula (I)+VX-573.
  • In particular, the following mixtures are important:
  • mixtures of a compound of formula (I) with an acetanilide (e.g. compound of formula (I)+acetochlor, compound of formula (I)+dimethenamid, compound of formula (I)+metolachlor, compound of formula (I)+S-metolachlor, or compound of formula (I)+pretilachlor) or with other inhibitors of VLCFAE (e.g. compound of formula (I)+pyroxasulfone).
  • mixtures of a compound of formula (I) with an HPPD inhibitor (e.g. compound of formula (I)+isoxaflutole, compound of formula (I)+mesotrione, compound of formula (I)+pyrasulfotole, compound of formula (I)+sulcotrione, compound of formula (I)+tembotrione, compound of formula (I)+topramezone, compound of formula (I)+bicyclopyrone;
  • mixtures of a compound of formula (I) with a triazine (e.g. compound of formula (I)+atrazine, or compound of formula (I)+terbuthylazine);
  • mixtures of a compound of formula (I) with glyphosate;
  • mixtures of a compound of formula (I) with glufosinate-ammonium;
  • mixtures of a compound of formula (I) with a PPO inhibitor (e.g. compound of formula (I)+acifluorfen-sodium, compound of formula (I)+butafenacil, compound of formula (I)+carfentrazone-ethyl, compound of formula (I)+cinidon-ethyl, compound of formula (I)+flumioxazin, compound of formula (I)+fomesafen, compound of formula (I)+lactofen, or compound of formula (I)+SYN 523 ([3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester) (CAS RN 353292-31-6)).
  • Whilst two-way mixtures of a compound of formula (I) and another herbicide are explicitly disclosed above, the skilled man will appreciate that the invention extends to three-way, and further multiple combinations comprising the above two-way mixtures. In particular, the invention extends to:
  • mixtures of a compound of formula (I) with a triazine and an HPPD inhibitor (e.g. compound of formula (I)+triazine+isoxaflutole, compound of formula (I)+triazine+mesotrione, compound of formula (I)+triazine+pyrasulfotole, compound of formula (I)+triazine+sulcotrione, compound of formula (I)+triazine+tembotrione, compound of formula (I)+triazine+topramezone, compound of formula (I)+triazine+bicyclopyrone;
  • mixtures of a compound of formula (I) with glyphosate and an HPPD inhibitor (e.g. compound of formula (I)+glyphosate+isoxaflutole, compound of formula (I)+glyphosate+mesotrione, compound of formula (I)+glyphosate+pyrasulfotole, compound of formula (I)+glyphosate+sulcotrione, compound of formula (I)+glyphosate+tembotrione, compound of formula (I)+glyphosate+topramezone, compound of formula (I)+glyphosate+bicyclopyrone;
  • mixtures of a compound of formula (I) with glufosinate-ammonium and an HPPD inhibitor (e.g. compound of formula (I)+glufosinate-ammonium+isoxaflutole, compound of formula (I)+glufosinate-ammonium+mesotrione, compound of formula (I)+glufosinate-ammonium+pyrasulfotole, compound of formula (I)+glufosinate-ammonium+sulcotrione, compound of formula (I)+glufosinate-ammonium+tembotrione, compound of formula (I)+glufosinate-ammonium+topramezone, compound of formula (I)+glufosinate-ammonium+bicyclopyrone;
  • mixtures of a compound of formula (I) with a VLCFAE inhibitor and an HPPD inhibitor (e.g. compound of formula (I)+S-metolachlor+isoxaflutole, compound of formula (I)+S-metolachlor+mesotrione, compound of formula (I)+S-metolachlor+pyrasulfotole, compound of formula (I)+S-metolachlor+sulcotrione, compound of formula (I)+S-metolachlor+tembotrione, compound of formula (I)+S-metolachlor+topramezone, compound of formula (I)+S-metolachlor+bicyclopyrone, compound of formula (I)+acetochlor+isoxaflutole, compound of formula (I)+acetochlor+mesotrione, compound of formula (I)+acetochlor+pyrasulfotole, compound of formula (I)+acetochlor+sulcotrione, compound of formula (I)+acetochlor+tembotrione, compound of formula (I)+acetochlor+topramezone, compound of formula (I)+acetochlor+bicyclopyrone, compound of formula (I)+pyroxasulfone+isoxaflutole, compound of formula (I)+pyroxasulfone+mesotrione, compound of formula (I)+pyroxasulfone+pyrasulfotole, compound of formula (I)+pyroxasulfone+sulcotrione, compound of formula (I)+pyroxasulfone+tembotrione, compound of formula (I)+pyroxasulfone+topramezone, compound of formula (I)+pyroxasulfone+bicyclopyrone, compound of formula (I)+S-metolachlor+mesotrione+bicyclopyrone.
  • mixtures of a compound of formula (I) with glyphosate and a VLCFAE inhibitor (e.g. compound of formula (I)+glyphosate+S-metolachlor, compound of formula (I)+glyphosate+acetochlor, compound of formula (I)+glyphosate+pyroxasulfone).
  • Particularly preferred are mixtures of the compound of formula (I) with mesotrione, bicyclopyrone, isoxaflutole, tembotrione, topramezone, sulcotrione, pyrasulfotole, metolachlor, S-metolachlor, acetochlor, pyroxasulfone, P-dimethenamid, dimethenamid, flufenacet, pethoxamid, atrazine, terbuthylazine, bromoxynil, metribuzin, amicarbazone, bentazone, ametryn, hexazinone, diuron, tebuthiuron, glyphosate, paraquat, diquat, glufosinate, acifluorfen-sodium, butafenacil, carfentrazone-ethyl, cinidon-ethyl, flumioxazin, fomesafen, lactofen, [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester.
  • The mixing partners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006. The reference to acifluorfen-sodium also applies to acifluorfen, the reference to dimethenamid also applies to dimethenamid-P, the reference to glufosinate-ammonium also applies to glufosinate, the reference to bensulfuron-methyl also applies to bensulfuron, the reference to cloransulam-methyl also applies to cloransulam, the reference to flamprop-M also applies to flamprop, and the reference to pyrithiobac-sodium also applies to pyrithiobac, etc.
  • The mixing ratio of the compound of formula (I) to the mixing partner is preferably from 1:100 to 1000:1.
  • The mixtures can advantageously be used in the above-mentioned formulations (in which case “active ingredient” relates to the respective mixture of compound of formula (I) with the mixing partner).
  • The compounds of formula (I) according to the invention can also be used in combination with one or more safeners. Likewise, mixtures of a compound of formula (I) according to the invention with one or more further active ingredients, in particular with one or more further herbicides, can also be used in combination with one or more safeners. The term “safener” as used herein means a chemical that when used in combination with a herbicide reduces the undesirable effects of the herbicide on non-target organisms, for example, a safener protects crops from injury by herbicides but does not prevent the herbicide from killing the weeds. Where a compound of formula (I) is combined with a safener, the following combinations of the compound of formula (I) and the safener are particularly preferred. Compound of formula (I)+AD 67 (MON 4660), compound of formula (I)+benoxacor, compound of formula (I)+cloquintocet-mexyl, compound of formula (I)+cyometrinil and a compound of formula (I)+the corresponding (Z) isomer of cyometrinil, compound of formula (I)+cyprosulfamide (CAS RN 221667-31-8), compound of formula (I)+dichlormid, compound of formula (I) and dicyclonon, compound of formula (I) and dietholate, compound of formula (I)+fenchlorazole-ethyl, compound of formula (I)+fenclorim, compound of formula (I)+flurazole, compound of formula (I)+fluxofenim, compound of formula (I)+furilazole and a compound of formula (I)+the corresponding R isomer or furilazome, compound of formula (I)+isoxadifen-ethyl, compound of formula (I)+mefenpyr-diethyl, compound of formula (I) and mephenate, compound of formula (I)+oxabetrinil, compound of formula (I)+naphthalic anhydride (CAS RN 81-84-5), compound of formula (I) and TI-35, compound of formula (I)+N-isopropyl-4-(2-methoxy-benzoylsulfamoyl)-benzamide (CAS RN 221668-34-4) and a compound of formula (I)+N-(2-methoxybenzoyl)-4-[(methylaminocarbonyl)amino]benzenesulfonamide. Particularly preferred are mixtures of a compound of formula (I) with benoxacor, a compound of formula (I) with cloquintocet-mexyl, a compound of formula (I)+cyprosulfamide and a compound of formula (I) with N-(2-methoxybenzoyl)-4-[(methylaminocarbonyl)amino]benzenesulfonamide.
  • The safeners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006. The reference to cloquintocet-mexyl also applies to cloquintocet and to a lithium, sodium, potassium, calcium, magnesium, aluminium, iron, ammonium, quaternary ammonium, sulfonium or phosphonium salt thereof as disclosed in WO02/34048 and the reference to fenchlorazole-ethyl also applies to fenchlorazole, etc.
  • Preferably the mixing ratio of compound of formula (I) to safener is from 100:1 to 1:10, especially from 20:1 to 1:1.
  • The mixtures can advantageously be used in the above-mentioned formulations (in which case “active ingredient” relates to the respective mixture of compound of formula (I) and any further active ingredient, in particular a further herbicide, with the safener).
  • It is possible that the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied simultaneously. For example, the safener, a compound of formula (I) and one or more additional herbicide(s), if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence. It is also possible that the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied sequentially. For example, the safener might be applied before sowing the seeds as a seed treatment and a compound of formula (I) and one or more additional herbicides, if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence.
  • Preferred mixtures of a compound of formula (I) with further herbicides and safeners include:
  • Mixtures of a compound of formula (I) with S-metolachlor and a safener, particularly benoxacor.
  • Mixtures of a compound of formula (I) with isoxaflutole and a safener.
  • Mixtures of a compound of formula (I) with mesotrione and a safener.
  • Mixtures of a compound of formula (I) with sulcotrione and a safener.
  • Mixtures of a compound of formula (I) with tembotrione and a safener.
  • Mixtures of a compound of formula (I) with topramezone and a safener.
  • Mixtures of a compound of formula (I) with bicyclopyrone and a safener.
  • Mixtures of a compound of formula (I) with a triazine and a safener.
  • Mixtures of a compound of formula (I) with a triazine and isoxaflutole and a safener.
  • Mixtures of a compound of formula (I) with a triazine and mesotrione and a safener.
  • Mixtures of a compound of formula (I) with a triazine and sulcotrione and a safener.
  • Mixtures of a compound of formula (I) with a triazine and tembotrione and a safener.
  • Mixtures of a compound of formula (I) with a triazine and topramezone and a safener.
  • Mixtures of a compound of formula (I) with a triazine and bicyclopyrone and a safener.
  • Mixtures of a compound of formula (I) with glyphosate and a safener.
  • Mixtures of a compound of formula (I) with glyphosate and isoxaflutole and a safener.
  • Mixtures of a compound of formula (I) with glyphosate and mesotrione and a safener.
  • Mixtures of a compound of formula (I) with glyphosate and sulcotrione and a safener.
  • Mixtures of a compound of formula (I) with glyphosate and tembotrione and a safener.
  • Mixtures of a compound of formula (I) with glyphosate and topramezone and a safener.
  • Mixtures of a compound of formula (I) with glyphosate and bicyclopyrone and a safener.
  • Mixtures of a compound of formula (I) with glufosinate-ammonium and a safener.
  • Mixtures of a compound of formula (I) with glufosinate-ammonium and isoxaflutole and a safener.
  • Mixtures of a compound of formula (I) with glufosinate-ammonium and mesotrione and a safener.
  • Mixtures of a compound of formula (I) with glufosinate-ammonium and sulcotrione and a safener.
  • Mixtures of a compound of formula (I) with glufosinate-ammonium and tembotrione and a safener.
  • Mixtures of a compound of formula (I) with glufosinate-ammonium and topramezone and a safener.
  • Mixtures of a compound of formula (I) with glufosinate-ammonium and bicyclopyrone and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and isoxaflutole and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and mesotrione and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and sulcotrione and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and tembotrione and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and topramezone and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and bicyclopyrone and a safener
  • Mixtures of a compound of formula (I) with pyroxasulfone and a safener.
  • Mixtures of a compound of formula (I) with pyroxasulfone and isoxaflutole and a safener.
  • Mixtures of a compound of formula (I) with pyroxasulfone and mesotrione and a safener.
  • Mixtures of a compound of formula (I) with pyroxasulfone and sulcotrione and a safener.
  • Mixtures of a compound of formula (I) with pyroxasulfone and tembotrione and a safener.
  • Mixtures of a compound of formula (I) with pyroxasulfone and topramezone and a safener.
  • Mixtures of a compound of formula (I) with pyroxasulfone and bicyclopyrone and a safener
  • Mixtures of a compound of formula (I) with acetochlor and a safener.
  • Mixtures of a compound of formula (I) with acetochlor and isoxaflutole and a safener.
  • Mixtures of a compound of formula (I) with acetochlor and mesotrione and a safener.
  • Mixtures of a compound of formula (I) with acetochlor and sulcotrione and a safener.
  • Mixtures of a compound of formula (I) with acetochlor and tembotrione and a safener.
  • Mixtures of a compound of formula (I) with acetochlor and topramezone and a safener.
  • Mixtures of a compound of formula (I) with acetochlor and bicyclopyrone and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and mesotrione and bicyclopyrone and a safener.
  • Mixtures of a compound of formula (I) with S-metolachlor and a triazine and mesotrione and bicyclopyrone and a safener.
  • Various aspects and embodiments of the present invention will now be illustrated in more detail by way of example. It will be appreciated that modification of detail may be made without departing from the scope of the invention.
  • For the avoidance of doubt, where a literary reference, patent application, or patent, is cited within the text of this application, the entire text of said citation is herein incorporated by reference.
  • EXAMPLES Preparation Examples
  • The following abbreviations were used in this section: s=singlet; bs=broad singlet; d=doublet; dd=double doublet; dt=double triplet; t=triplet, tt=triple triplet, q=quartet, sept=septet; m=multiplet; RT=retention time, MH+=molecular mass of the molecular cation.
  • 1H NMR spectra were recorded at 400 MHz either on a Varian Unity Inova instrument 400 MHz or on a Bruker AVANCE-II instrument.
  • The compounds may exist in a mixture of diastereoisomers, which may be observed by LC-MS and NMR. The stereochemistry of the chiral centre at the carbon containing the R3 group was generally found to interconvert at room temperature when R3 is hydroxyl. Depending on the nature of R2 substitution and the conditions for product synthesis, purification and analysis the ratio of diastereomers may change.
  • Example 1 Preparation of 5-hydroxy-1-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-3,4-dimethyl-imidazolidin-2-one (A25)
  • Figure US20160264547A1-20160915-C00018
  • Procedure for synthesis of 1-(2,2-dimethoxy-1-methyl-ethyl)-3-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-1-methyl-urea (Step-1)
  • Figure US20160264547A1-20160915-C00019
  • 5-iodo-4-(trifluoromethyl)pyridin-2-amine (for a synthesis see Bioorganic & Medicinal Chemistry Letters, 1994, 4(6), 835-8) (0.500 g, 1.74 mmol) was dissolved in DCM (5 mL) and then carbonyl-diimidazole (1.06 g, 80% purity) was added. The reaction mixture was heated at 105° C. in a microwave vial for 15 minutes and then cooled to 10° C. 1,1-dimethoxy-N-methyl-propan-2-amine (preparation as in example 13) (695 mg, 3 equiv.) was added and the reaction was stirred at room temperature for 15 mins. The reaction was diluted with DCM (10 mL) and water (5 mL) was added. This mixture was filtered and the aqueous layer extracted with further DCM (2×10 mL). The combined organics were dried (Na2SO4), filtered and evaporated and then chromatographed on silica eluting with 20-30% EtOAc in isohexane. Fractions containing product were evaporated to give desired product as an amber gum (326 mg, 42%).
  • LC-MS: (positive ES MH+ 448).
  • Procedure for synthesis of 5-hydroxy-1-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-3,4-dimethyl-imidazolidin-2-one (Step-2)
  • Figure US20160264547A1-20160915-C00020
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-3-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-1-methyl-urea (260 mg, 0.581 mmol) was dissolved in acetic acid (5.2 mL) and water (2.6 mL). The reaction mixture was stirred at room temperature for 2 days. The reaction mixture was then evaporated and dried (100 to 1 mBar at 20-35° C.) for 2 h to remove traces of acetic acid to give product as a lilac gum which crystallised to give a solid (230 mg, 98%).
  • LC-MS: (positive ES MH+ 402).
  • 1H NMR (CDCl3): Major diastereomer: 8.69 (s, 1H), 8.64 (s, 1H), 5.56 (m, 1H), 4.65 (very br s, 1H), 3.53 (m, 1H), 2.93 (s, 3H), 1.33 (d, 3H).
  • Minor diastereomer: 8.70 (s, 1H), 8.64 (s, 1H), 5.91 (d, 1H), 4.65 (very br s, 1H), 3.76 (m, 1H), 2.88 (s, 3H), 1.38 (d, 3H).
  • Example 2 Preparation of 5-hydroxy-1-[5-(4-methoxy-3-pyridyl)-4-(trifluoromethyl)-2-pyridyl]-3,4-dimethyl-imidazolidin-2-one (A24)
  • Figure US20160264547A1-20160915-C00021
  • 5-hydroxy-1-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-3,4-dimethyl-imidazolidin-2-one (50 mg, 1 equiv. 0.125 mmol), (6-methyl-3-pyridyl)boronic acid (22 mg, 1.1 equiv.), tricyclohexylphosphine (4 mg, 0.12 equiv.) tris(dibenzylideneacetone)dipalladium(0) (6 mg, 0.05 equiv.), in 1,4-dioxane (0.5 mL) was treated with K2CO3 (38 mg) in water (0.2 mL). The reaction was heated for 80 minutes at 100° C., then treated with further 6-methyl-3-pyridyl)boronic acid (2.2 equiv.), tricyclohexyl phosphine (4 mg, 0.12 equiv.), tris(dibenzylideneacetone)dipalladium(0) (6 mg, 0.05 equiv), K3PO4 (45 mg, 1.7 equiv.) and the reaction was then heated for a further 75 minutes at 100° C.
  • The reaction mixture was diluted with EtOAc (6 mL) then filtered through celite, evaporated, then chromatographed on silica eluting with 20-100% EtOAc in isohexane. Fractions containing product were evaporated to give desired product as an amber gum (35 mg, 69%).
  • LC-MS: (positive ES MH+ 367).
  • 1H NMR (CDCl3): Major diastereomer: 8.69 (s, 1H), 8.46 (s, 1H), 8.21 (m, 1H), 7.57 (dm, 1H), 7.25 (dm, 1H), 5.65 (m, 1H), 4.91 (br s, 1H), 3.56 (m, 1H), 2.95 (s, 3H), 2.64 (s, 3H), 1.36 (d, 3H).
  • Minor diastereomer: 8.69 (s, 1H), 8.46 (s, 1H), 8.21 (m, 1H), 7.57 (dm, 1H), 7.25 (dm, 1H), 6.00 (d, 1H), 4.78 (br s, 1H), 3.79 (m, 1H), 2.92 (s, 3H), 2.64 (s, 3H), 1.42 (d, 3H).
  • Example 3 Preparation of 5-hydroxy-1-[5-methoxy-4-(trifluoromethyl)-2-pyridyl]-3,4-dimethyl-imidazolidin-2-one (A12)
  • Figure US20160264547A1-20160915-C00022
  • A mixture of di-tert-butyl-[6-methoxy-3-methyl-2-(2,4,6-triisopropylphenyl)phenyl]phosphane (RockPhos) (11 mg, 4.5 mol %), allylpalladium(II) chloride dimer (3 mg, 1.5 mol %) and Cs2CO3 (245 mg, 1.5 equiv.) in toluene (0.8 mL) was degassed by bubbling N2 through the reaction mixture for 5 mins. This mixture was then heated to 90° C. for 3 mins then methanol (101 μL, 5 equiv.) was added, followed by 5-hydroxy-1-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-3,4-dimethyl-imidazolidin-2-one (200 mg, 0.499 mmol, 1 equiv.). The reaction was then heated in a sealed tube at 80° C. for 1 h and 25 minutes. Further di-tert-butyl-[6-methoxy-3-methyl-2-(2,4,6-triisopropylphenyl)phenyl]phosphane (RockPhos) (11 mg, 4.5 mol %), allylpalladium(II) chloride dimer (3 mg, 1.5 mol %) and methanol (40 μL, 2 equiv.) was added. The reaction was then heated in a sealed tube at 80° C. for a further 1 h. The reaction mixture was diluted with 4 ml EtOAc, filtered through celite, then evaporated, then chromatographed on silica eluting with 0-100% EtOAc in isohexane. Fractions containing product were evaporated to give desired product as a pale yellow solid (80 mg, 53%).
  • LC-MS: (positive ES MH+ 306).
  • 1H NMR (CDCl3): Major diastereomer: 8.45 (s, 1H), 8.03 (s, 1H), 5.53 (m, 1H), 4.90 (br s, 1H), 3.95 (s, 3H), 3.50 (m, 1H), 2.91 (s, 3H), 1.33 (d, 3H).
  • Minor diastereomer: 8.44 (s, 1H), 8.05 (s, 1H), 5.88 (d, 1H), 4.75 (br s, 1H), 3.95 (s, 3H), 3.75 (m, 1H), 2.88 (s, 3H), 1.39 (d, 3H).
  • Example 4 Preparation of 4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A8)
  • Figure US20160264547A1-20160915-C00023
  • Procedure for synthesis of N,1,1-trimethoxypropan-2-imine (Step-1)
  • Figure US20160264547A1-20160915-C00024
  • Methoxylamine hydrochloride (21.2 g) was suspended in methanol (65 mL) then potassium acetate (50.4 g, quickly ground in pestle and mortar to break up lumps) was added all at once and the thick white suspension resulting was stirred at room temp for 15 mins then cooled to 15° C. and then 1,1-dimethoxypropan-2-one (30 g) was added slowly over 25 mins. The reaction was stirred at room temperature for 50 mins and then diluted with 200 ml DCM, then 100 ml sat. NaHCO3 (aq) was added cautiously over 15 mins. After effervescence subsided, the layers were separated, extracted with further DCM (2×80 mL), dried Na2SO4, filtered and concentrated at 220 mbar and 35° C. (care as desired product is volatile) to give 37 g amber liquid, which was used without further purification.
  • 1H NMR (CDCl3) showed a 3:1 ratio of E:Z isomers.
  • Procedure for synthesis of N,1,1-trimethoxypropan-2-amine (Step-2)
  • Figure US20160264547A1-20160915-C00025
  • N,1,1-trimethoxypropan-2-imine (20 g) was dissolved in acetic acid (80 mL) then was cooled to 13° C. NaBH3CN (9.82 g) was added portionwise over 10 mins. After 18 hrs at room temperature, the reaction was concentrated to remove bulk of HOAc then residue dissolved in DCM (300 mL) and satd. NaHCO3 (aq) (300 mL) was added slowly with stirring. The mixture was stirred at rt for 90 mins, and then 40% NaOH(aq) was added until the solution reached pH 12. The layers were separated, extracted with further DCM (3×100 mL). The combined DCM layers were dried (Na2SO4), filtered and evaporated to give 16.4 g of crude product as a pale amber oil, which was further purified by Kugelrohr distillation (120° C. at 70 mBar) to give product (12.0 g, 59% yield) which was approximately 95% pure by NMR and used without further purification.
  • Procedure for synthesis of 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methoxy-urea (Step-3)
  • Figure US20160264547A1-20160915-C00026
  • N,1,1-trimethoxypropan-2-amine (2.000 g, 13.41 mmol) was dissolved in IPA (5 mL) and the mixture was cooled to 0° C. under N2, then trimethylsilyl isocyanate (commercially available) (4.83 mL, 33.51 mmol) was added and the reaction was allowed to warm to room temperature and was stirred at room temperature for 24 h. The reaction mixture was worked up by adding DCM (30 mL) and water (15 mL), extracting with further DCM (2×15 mL), dried (Na2SO4), filtered and evaporated then chromatographed on silica eluting with 50-100% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a white solid (2.08 g, 81% yield).
  • 1H NMR (CDCl3): 5.36 (br s, 2H), 4.47 (d, 1H), 4.32 (pentet, 1H), 3.75 (s, 3H), 3.37 (d, 6H), 1.24 (d, 3H).
  • Procedure for synthesis of 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methoxy-3-[4-(trifluoromethyl)-2-pyridyl]urea (Step-4)
  • Figure US20160264547A1-20160915-C00027
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methoxy-urea (300 mg, 1.56 mmol), 2-chloro-4-(trifluoromethyl)pyridine (commercially available) (312 mg, 1.1 equiv.), potassium carbonate (324 mg), tris(dibenzylideneacetone)dipalladium(0) (30 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (70 mg) were suspended in 1-4-dioxane (4 mL) and the mixture was then heated at 105° C. in a sealed vial for 2 h. The mixture was allowed to cool to room temperature, diluted with EtOAc (6 mL), filtered, then chromatographed on silica eluting with 0-100% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a yellow gum (170 mg, 32%).
  • LC-MS: (positive ES MH+ 338).
  • Procedure for synthesis of 4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (Step-5)
  • Figure US20160264547A1-20160915-C00028
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methoxy-3-[4-(trifluoromethyl)-2-pyridyl]urea (155 mg, 0.459 mmol) was dissolved in acetic acid (1 mL) and water (0.5 mL) and stirred at room temperature for 25 mins and then at 60° C. for 2 h and 45 mins. The reaction was left at room temperature for 18 h before heating again at 60° C. for 2 h. Reaction mixture was evaporated and then chromatographed on silica eluting with 0-24% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a pale beige solid (101 mg, 75%).
  • NMR indicated a ratio of diastereoisomers in approximately a 2:1 ratio.
  • 1H NMR (CDCl3): Major diastereomer: 8.55 (s, 1H), 8.43 (dd, 1H), 7.25 (d, 1H), 5.55 (m, 1H), 5.04 (very br s, 1H), 3.90 (s, 3H), 3.71 (m, 1H), 1.45 (d, 3H).
  • 1H NMR (CDCl3): Minor diastereomer: 8.53 (s, 1H), 8.45 (dd, 1H), 7.24 (d, 1H), 5.87 (d, 1H), 4.60 (very br s, 1H), 3.93 (s, 3H), 3.80 (m, 1H), 1.50 (d, 3H).
  • LC-MS: (positive ES MH+ 292).
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Example 5 Preparation of 4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A8)—Alternative Synthesis
  • Figure US20160264547A1-20160915-C00029
  • Phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (for a synthesis see WO 2007004749) (9.93 g, 1.05 equiv.) was suspended in 1,4-dioxane (25 mL) under a Nitrogen atmosphere and treated with N,1,1-trimethoxypropan-2-amine (5.00 g, 22.51 mmol, 1 equiv.) and the reaction was heated to reflux for 2.5 h. The reaction was cooled to room temperature, then 2N aqueous HCl (30 mL) was added to the reaction mixture and heated to 50° C. for 25 minutes. EtOAc (100 mL) and water (75 mL) was added and the aqueous layer was further extracted EtOAc (2×75 mL). The combined organic fractions were washed with satd NaHCO3 (aq), dried (Na2SO4), filtered and then chromatographed on silica eluting with 0-26% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a crystalline solid (6.865 g).
  • LC-MS: (positive ES MH+ 292).
  • NMR and LC-MS data for A3 and A4 were consistant with A8 (example 4).
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Example 6 Preparation of (4R,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4S,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A3) and Example 7 (4R,5R)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4S,5R)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A4)
  • A sample of compound A8 was separated into two major fractions by preparative chiral SFC (Lux Cellulose-4 column, eluting with IPA (7%) with other fractions discarded. The analysis could be performed by HPLC on a Lux Amylose-2 or WHELK-O1 column eluting with heptane/IPA in a 70/30 ratio.
  • One fraction eluting from the SFC column was found to equilibrate to (4R,5R)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4S,5R)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one.
  • The absolute stereochemistry may be proven by synthesis (in an analogous way to example 8-alternative synthesis below).
  • Another fraction eluting from the SFC column was found to equilibrate to (4R,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4S,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one.
  • The absolute stereochemistry could be proven by synthesis (see Example 8—alternative synthesis below) and also by X-ray crystallography after recrystallization of a sample from DCM/isoHexane. NMR and LC-MS data for A3 and A4 were consistant with A8 (example 4).
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Example 8 Preparation of (4S,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4R,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A3)—Alternative Synthesis Procedure for synthesis of methyl (2S)-2-(methoxyamino)propanoate (Step-1)
  • Figure US20160264547A1-20160915-C00030
  • To a stirred solution of methyl (2R)-2-hydroxypropanoate (16.5 g, 158 mmol, 15.1 mL) in DCM (475 mL) at 0° C. was added trifluoromethanesulfonic anhydride (49.7 g, 174 mmol) followed after 5 mins by 2,6-dimethylpyridine (19.5 g, 182 mmol). The resulting mixture was stirred at 0° C. for 10 minutes to give a solution of methyl (2R)-2-(trifluoromethylsulfonyloxy)propanoate. Separately, O-methylhydroxylamine hydrochloride (65.98 g, 790.0 mmol) was dissolved in water (130 mL) then sodium hydroxide (50% aqueous) (33.1 mL 632.0 mmol) was added. The solution of O-methylhydroxylamine in water was added to the solution of methyl (2R)-2-(trifluoromethylsulfonyloxy)propanoate in DCM, and the mixture was stirred at room temperature for 30 minutes. The organic layer was separated and chromatographed on silica eluting with 0-45% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a pale yellow oil (23.5 g). The product appears to have some volatility so caution was taken with the evaporation step. The product was used without further purification.
  • Procedure for synthesis of methyl (2S)-2-[methoxy-[[4-(trifluoromethyl)-2-pyridyl]carbamoyl]amino]propanoate (Step-2)
  • Figure US20160264547A1-20160915-C00031
  • Procedure as for Example 5 Alternative Synthesis Procedure for synthesis of (4S,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4R,5S)-4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A3) (Step-3)
  • Figure US20160264547A1-20160915-C00032
  • To a stirred solution of methyl (2S)-2-[methoxy-[[4-(trifluoromethyl)-2-pyridyl]carbamoyl]amino]propanoate (18.3 g, 57.0 mmol) in a mixture of tetrahydrofuran (103 mL) and methanol (103 mL) at 5° C. under nitrogen was added NaBH4 (5.10 g, 2.25 equiv.) portionwise over 20 mins, keeping the internal temperature below ˜6.5° C. The mixture was then stirred at 6.5° C. for 1 h before the reaction was quenched with acetone (50 mL) slowly over 45 minutes with external cooling to keep the internal temperature below ˜6.5° C. Sat. aqueous NH4Cl solution (150 mL) was added followed by water (150 mL). The reaction was stirred at 15° C. for 10 mins, then extracted with DCM (4×400 mL and then 1×100 mL). Combined DCM fractions were washed with water (50 mL) dried (Na2SO4), filtered and concentrated to ˜200 mL volume, then chromatographed on silica eluting with 0-27% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a white solid (5.65 g, 34%).
  • NMR and LC-MS data for A3 was consistant with A8 (example 4).
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Examples 9 and 10 Preparation of 4,5-dihydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A7) and 5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A6)
  • Figure US20160264547A1-20160915-C00033
  • Procedure for synthesis of 4 1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]urea (Step-1)
  • Figure US20160264547A1-20160915-C00034
  • A mixture of tris(dibenzylideneacetone)dipalladium(0) (0.202 g, 0.220 mmol), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (0.493 g, 0.826 mmol), potassium carbonate (1.93 g, 13.8 mmol) and methylurea (0.408 g, 5.51 mmol) in 1,4-dioxane (30 mL) was treated with 2-chloro-4-(trifluoromethyl)pyridine (commercially available) (1.0 g, 5.51 mmol), The mixture was warmed to 75-80° C. with stirring under a Nitrogen atmosphere for 3.5 h. The reaction mixture was diluted with EtOAc (20 mL) and water (20 mL) and filtered through a pad of celite, rinsing through with further small portions of EtOAc and water. The organic phase was separated and the aqueous further extracted with EtOAc (5 mL). The organic extracts were combined, washed with brine (10 mL), dried over MgSO4, filtered and the filtrate evaporated giving an orange liquid. This was chromatographed (eluting with an EtOAc/iso-hexane gradient) and fractions containing product were evaporated and triturated with iso-hexane to give the desired product as a light yellow powder (0.669 g, 55%).
  • 1H NMR (CDCl3): 9.44 (br.s, 1H), 9.04 (br.s, 1H), 8.32 (d, 1H), 7.15 (s, 1H), 7.06 (d, 1H), 2.99 (d, 3H).
  • LC-MS: (positive ES MH+ 220).
  • Procedure for synthesis of 4,5-dihydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A7) and 5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A6) (Step-2)
  • Figure US20160264547A1-20160915-C00035
  • To 1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]urea (0.65 g, 3.0 mmol) in ethanol (20 mL) was added glyoxal (40% aqueous solution) (2.6 g, 18 mmol, 2.0 mL) via syringe, the mixture then being warmed and heated at reflux for 2 hours. The reaction mixture was allowed to cool to room temperature and concentrated to give a syrupy residue. This was dissolved in DCM (50 mL) and washed with brine (2×5 mL). The organic phase was dried (MgSO4) filtered and the filtrate concentrated giving the crude product as a dark green gum (1.07 g). The crude product was dissolved in DCM (20 mL) then chromatographed on silica eluting with EtOAc in isohexane. Fractions containing product were evaporated to give 4,5-dihydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (0.562 g, 68%) and 5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (0.11 g, 12%).
  • 4,5-Dihydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one
  • 1H NMR (CDCl3): Major diastereoisomer: 8.35 (br.s, 1H), 8.32 (d, 1H), 7.12 (dd, 1H), 5.71 (d, 1H); 4.96 (m, 1H), 4.82 (m, 1H), 3.54 (d, 1H), 3.01 (s, 3H).
  • Minor diastereoisomer: 8.47 (br.s, 1H), 8.38 (d, 1H), 7.19 (dd, 1H), 5.89 (d, 1H), 5.15 (m, 1H), 5.12 (m, 1H), 3.82 (d, 1H), 2.97 (s, 3H).
  • LC-MS: (positive ES MH+ 278).
  • 5-Ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (existing predominately as the trans diastereoisomer)
  • 1H NMR (CDCl3): 8.46 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.73 (d, 1H), 4.82 (d, 1H), 4.71 (s, 1H), 3.66 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H).
  • LC-MS: (positive ES MH+ 306).
  • Examples 11 and 12 Preparation of 5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (Enantiomer 1, A34) and 5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (Enantiomer 2, A35)
  • Figure US20160264547A1-20160915-C00036
  • 5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A6) was separated into individual enantiomers E1 and E2 by preparative chiral HPLC (CHIRALPAK IC column, eluting with isoHexane (containing 0.1% TFA) and IPA).
  • The first eluting enantiomer E1 was purified further by chromatography on silica eluting with EtOAc in isohexane. Fractions containing product were evaporated to give pure enantiomer E1 (A34). A34 could be assigned as (5R)-5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one by inference from biological activity of related compounds of known absolute configuration and comparison of elution time from chiral HPLC.
  • Enantiomer E2 (A35) was sufficiently pure after the chiral HPLC purification and could be assigned as (5S)-5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one by inference from biological activity of related compounds of known absolute configuration and comparison of elution time from chiral HPLC.
  • NMR and LC-MS data was consistant with racemic 5-ethoxy-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A6)—both enantiomers were of predominantly trans configuration as determined by NMR.
  • Example 13 Preparation of 4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A19)
  • Figure US20160264547A1-20160915-C00037
  • Procedure for synthesis of 1,1-dimethoxy-N-methyl-propan-2-amine (Step 1)
  • Figure US20160264547A1-20160915-C00038
  • Ti(O-iPr)4 (34.3 g, 2 equiv.) was cooled to 10° C. under a nitrogen atmosphere then ethanol (89 mL) was added followed by 1,1-dimethoxypropan-2-one (7.14 g, 1 equiv), methylamine hydrochloride (8.16 g, 2 equiv.) and triethylamine (16.8 mL, 2 equiv.). The reaction was stirred at room temperature for 15 h. The reaction was cooled to 10° C. and then NaBH4 (3.43 g, 1.5 equiv.) was added and the reaction was stirred at room temperature for 6 h. The reaction was cooled to 10° C., then carefully over 10 minutes poured into ice cold aqueous ammonia (180 mL, 2M). The mixture was filtered, washing through with DCM (300 mL). The layers were separated and then the aqueous layer was extracted with further DCM (3×100 mL). The combined DCM layers were dried (Na2SO4), filtered and evaporated with care as to not lose any of the volatile product. This crude material was distilled on a Kugelrohr (70 to 110° C. 14 mBar) to give product (4.41 g) as a colourless oil, which was used without further purification.
  • 1H NMR (CDCl3): 4.11 (d, 1H), 3.41 (s, 6H), 2.69 (pentet, 1H), 2.43 (s, 3H), 1.06 (d, 3H).
  • Procedure for synthesis of 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methyl-urea (Step 2)
  • Figure US20160264547A1-20160915-C00039
  • 1,1-dimethoxy-N-methyl-propan-2-amine (1.0 g, 7.50 mmol) was dissolved in CDCl3 (1.5 mL). Trimethylsilyl isocyanate (commercially available) (2 equiv.) was added and the reaction was stirred at room temp for 4 days. The reaction mixture heated to reflux for 160 minutes while incrementally adding a further trimethylsilyl isocyanate (1.5 equiv.) The reaction was evaporated and treated with water (10 mL), stirred for 90 minutes, then evaporated to give crude product (1.08 g) which was used without further purification.
  • 1H NMR (CDCl3): 4.60 (br s, 2H), 4.30 (br s, 1H), 4.24 (d, 1H), 3.41 (s, 6H), 2.71 (s, 3H), 1.18 (d, 3H).
  • Procedure for synthesis of 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]urea (Step 3)
  • Figure US20160264547A1-20160915-C00040
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methyl-urea (220 mg, 1.249 mmol), 2-chloro-4-(trifluoromethyl)pyridine (commercially available) (272 mg, 1.2 equiv.), potassium carbonate (259 mg, 1.5 equiv.), tris(dibenzylideneacetone)dipalladium(0) (47 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (111 mg) were suspended in 1-4-dioxane (6 mL) and the mixture was then heated at 105° C. in a sealed vial for 1 h. The mixture was allowed to cool to room temperature, diluted with EtOAc (6 mL), filtered then chromatographed on silica eluting with 0-100% EtOAc in isohexane. Fractions containing product were evaporated to give the desired product as a colourless gum (282 mg, 70%).
  • LC-MS: (positive ES MH+ 322).
  • Procedure for synthesis of 4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A19) (Step 4)
  • Figure US20160264547A1-20160915-C00041
  • 1-(2,2-dimethoxy-1-methyl-ethyl)-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]urea (240 mg, 0.787 mmol) was dissolved in acetic acid (6 mL), then water (3 mL) was added to give a homogeneous solution. This was stirred at room temperature for 2 days and then at 60° C. for 1 h. The reaction was evaporated (100 to 1 mBar at 20-35° C. for 2 h) to remove traces of HOAc to give product (204 mg, 99%) as an amber gum.
  • 1H NMR (CDCl3): Major diastereomer: 8.54 (s, 1H), 8.37 (d, 1H), 7.16 (d, 1H), 5.61 (m, 1H), 4.95 (br s, 1H), 3.53 (m, 1H), 2.93 (s, 3H), 1.34 (d, 3H).
  • Minor diastereomer: 8.54 (s, 1H), 8.39 (m, 1H), 7.16 (d, 1H), 5.95 (d, 1H), 4.81 (br s, 1H), 3.76 (pentet, 1H), 2.89 (s, 3H), 1.40 (d, 3H).
  • LC-MS: (positive ES MH+ 276).
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Example 14 Preparation of 4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A19)—Alternative Synthesis
  • Figure US20160264547A1-20160915-C00042
  • Phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (for a synthesis see WO 2007004749) (4.54 g, 1.05 equiv.) was suspended in 1,4-dioxane (12 mL) under a Nitrogen atmosphere and then 1,1-dimethoxy-N-methyl-propan-2-amine (3.46 g, 15.3 mmol) was added and the reaction was heated at 105° C. for 25 mins. Aqueous 2N HCl (20 mL) was added to the reaction mixture and this was heated to 32° C. for 30 mins. EtOAc (5 mL) and water (50 mL) were added and the aqueous phase was extracted with further EtOAc (2×50 mL). The combined EtOAc layers were washed with sat. aqueous NaHCO3 (5 mL), evaporated and then chromatographed on silica eluting with 0-100% EtOAc in isohexane. Fractions containing product were evaporated to give a colourless gum which slowly crystallised to give product (3.80 g, 90%).
  • NMR and LC-MS consistant with A19 from example 13 above.
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Example 15 Preparation of 5-allyl-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A32)
  • Figure US20160264547A1-20160915-C00043
  • Procedure for synthesis of methyl 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoate (Step 1)
  • Figure US20160264547A1-20160915-C00044
  • To phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (for a synthesis see WO 2007004749) (0.328 g, 1.16 mmol) dissolved in 1,4-dioxane (6 mL), under a Nitrogen atmosphere, was added methyl 2-aminopent-4-enoate (for a synthesis see WO2007137168) (0.150 g, 1.16 mmol). The mixture was then warmed to 80° C. for 3 h. The reaction temperature was then raised to 100° C., and heating continued for a further 1.5 h. The reaction mixture was concentrated to remove the bulk of solvent, the oily residue being taken up in EtOAc (20 mL) and washed with water (2×5 mL). The organic phase was separated and dried over MgSO4, filtered and then chromatographed on silica eluting with EtOAc in isohexane. Fractions containing product were evaporated to give product as a white solid (0.167 g, 45%)
  • LC-MS: (positive ES MH+ 318).
  • Procedure for synthesis of 5-allyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidine-2,4-dione (Step 2)
  • Figure US20160264547A1-20160915-C00045
  • Methyl 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoate (0.114 g, 0.359 mmol) was dissolved in 1,4-dioxane (4 mL) was treated with 2N hydrochloric acid (4 mL) and the mixture was heated at 60-70° C. for 3 h. The reaction temp was raised to 85° C. and heating continued for a further 1 h. The reaction mixture then being allowed to cool to room temperature and then concentrated. The residue was taken into DCM (15 mL) and the organic phase separated. The aqueous was further extracted with DCM (2×10 mL) and the DCM extracts combined, dried over MgSO4, filtered and the filtrate concentrated giving crude intermediate 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid as a white gum (47 mg). The aqueous phase was evaporated giving further 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid as a white foam (73 mg). Both fractions of 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid were combined and used with further purification in the next step. The crude 2-[[4-(trifluoromethyl)-2-pyridyl]carbamoylamino]pent-4-enoic acid was taken into DCM (4 mL), then oxalyl chloride (0.0912 g, 0.719 mmol) was added to the fine slurry at room temperature. The reaction mixture was stirred for 2 h and then allowed to stand overnight. The reaction mixture was concentrated and the residue taken into EtOAc (20 mL) and washed with water (5 mL). The organic phase was separated, the aqueous being further extracted with EtOAc (10 mL). The organic extracts were then combined, washed with water (3 mL), dried over MgSO4, filtered and the filtrate concentrated giving crude product as a light brown gum that began to solidify on standing (141 mg). This was used in the next step without further purification.
  • LC-MS: (positive ES MH+ 286).
  • Procedure for synthesis of 5-allyl-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidine-2,4-dione (Step 3)
  • Figure US20160264547A1-20160915-C00046
  • A solution of 5-allyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidine-2,4-dione (0.120 g, 0.421 mmol) in DMF (1.5 mL) was cooled to 0-5° C. in an ice bath was treated dropwise with LiHMDS (1.0M in THF, 0.442 mmol, 0.442 mL). The resultant solution was stirred 5 minutes, then iodomethane (0.0717 g, 0.505 mmol) was added and stirring continued for 40 minutes. The reaction mixture was concentrated and the oily residue being taken up in EtOAc (15 mL) and washed with brine (3×2 mL), dried over MgSO4, filtered and the filtrate concentrated giving crude product, which was chromatographed on silica eluting with EtOAc in isohexane. Fractions containing product were evaporated to give product as a white solid (0.060 g, 48%).
  • LC-MS: (positive ES MH+ 300).
  • Procedure for synthesis of 5-allyl-4-hydroxy-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (Step 4)
  • Figure US20160264547A1-20160915-C00047
  • 5-allyl-1-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidine-2,4-dione (0.057 g, 0.19 mmol) in methanol (10 mL) was cooled to around −35° C. (acetone/CO2 bath). NaBH4 (0.0073 g, 0.19 mmol) was added in a single portion and the reaction was stirred for 30 minutes at between −30 and −40° C. The reaction mixture was allowed to warm slowly to room temperature. Further NaBH4 (0.0073 g, 0.19 mmol) was added and the mixture stirred at room temp for a further 30 minutes.
  • The reaction mixture was quenched by the careful addition of water (2 mL), then concentrated and the residue being left to stand at room temperature for 72 h. The mixture was diluted with EtOAc (20 mL) and the organic phase separated. The aqueous phase was further extracted with EtOAc (15 mL) and the organic extracts combined, washed with water (5 mL), dried over MgSO4, filtered and evaporated to give product as a light grey gum (56 mg, 98%).
  • LC-MS: (positive ES MH+ 302).
  • 1H NMR (CDCl3): Major diastereomer: 8.15 (s, 1H), 8.37 (d, 1H), 7.15 (dd, 1H), 5.75 (m, 1H), 5.70 (d, 1H), 5.23 (dd, 1H), 5.20 (dd, 1H), 4.90 (d, 1H), 3.54 (ddd, 1H), 2.96 (s, 3H), 2.55 (m, 1H), 2.53 (m, 1H).
  • 1H NMR (CDCl3): Minor diastereomer: 8.15 (s, 1H), 8.37 (d, 1H), 7.15 (dd, 1H), 5.98 (m, 1H), 5.70 (d, 1H), 5.26 (dd, 1H), 5.18 (d, 1H), 4.79 (br.s, 1H), 3.65 (ddd, 1H), 2.91 (s, 3H), 2.69 (m, 1H), 2.55 (m, 1H).
  • Example 16 Preparation of 4-hydroxy-1-methyl-5-(trifluoromethyl)-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A33)
  • Figure US20160264547A1-20160915-C00048
  • Procedure for synthesis of 2,2-dimethoxy-N-methyl-ethanimine (Step 1)
  • Figure US20160264547A1-20160915-C00049
  • Methylamine hydrochloride (4.05 g, 1.05 equiv.) in DCM (60 mL) was cooled to 0° C., then K2CO3 (5.53 g, 1 equiv.) was added over 5 minutes. Reaction was stirred at 0° C. for a further 10 minutes then 2,2-dimethoxyacetaldehyde (6.04 mL, 40 mmol) was added and the reaction was stirred vigorously at 0° C. After 5 minutes at 0° C., the reaction was allowed to warm to room temperature. After 15 minutes at room temperature, DCM was decanted off, solid was extracted with DCM (2×15 mL). Combined DCM fractions were dried (Na2SO4), filtered, and evaporated to give product which was used without further purification (4.10 g, 87%).
  • Procedure for synthesis of 1,1,1-trifluoro-3,3-dimethoxy-N-methyl-propan-2-amine (Step 2)
  • Figure US20160264547A1-20160915-C00050
  • KHF2 (2.01 g, 0.75 equiv.) was suspended in MeCN (69 mL) and DMF (8.0 mL) under Nitrogen, and cooled to 0° C. then 2,2-dimethoxy-N-methyl-ethanimine (4.02 g, 1 equiv.) was added followed by dropwise addition of TFA (3.28 mL, 1.25 equiv.) over 2 minutes. Reaction was stirred at 0° C. for 5 minutes, then trimethyl(trifluoromethyl)silane (7.6 mL, 1.5 equiv.) was added over 5 minutes and the reaction was stirred at 0° C. for 3 h. Reaction was then treated with sat. aqueous NaHCO3 (50 mL) over 3 minutes The reaction mixture was then extracted with diethyl ether (3×200 mL), dried (Na2SO4), filtered and evaporated (care as product is volatile) to give product (14.1 g, 44%), which was used without further purification.
  • Procedure for synthesis of 1,1,1-trifluoro-3,3-dimethoxy-N-methyl-propan-2-amine (Step 3)
  • Figure US20160264547A1-20160915-C00051
  • Crude 1,1,1-trifluoro-3,3-dimethoxy-N-methyl-propan-2-amine (3.58 g, 1.2 equiv.) was dissolved in 1,4-dioxane (2.5 mL) and treated with N-[4-(trifluoromethyl)-2-pyridyl]carbamate (for a synthesis see WO 2007004749) (1.00 g, 3.19 mmol) and heated at 110° C. for 2 h 15 minutes. Reaction mixture was then evaporated and the residue chromatographed on silica eluting with EtOAc in isohexane (0-35%). Fractions containing product were evaporated to give product as a gum (0.40 g, 33%).
  • LC-MS: (positive ES MH+ 376).
  • Procedure for synthesis of 4-hydroxy-1-methyl-5-(trifluoromethyl)-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (Step 4)
  • Figure US20160264547A1-20160915-C00052
  • 1,1,1-trifluoro-3,3-dimethoxy-N-methyl-propan-2-amine (0.377 g) was suspended in water (2 mL) and then treated with TFA (2 mL) and the reaction mixture was then heated to 60° C. for 1.5 h. The reaction was evaporated and treated with sat. aqueous NaHCO3 (15 mL) and DCM (15 mL). The aqueous phase was further extracted with DCM (2×10 mL) and then the combined DCM phases were dried (Na2SO4), filtered and evaporated to give product as a white solid (320 mg, 97%).
  • LC-MS: (positive ES MH+ 330).
  • 1H NMR (CDCl3): 8.48 (s, 1H), 8.42 (d, 1H), 7.25 (d, 1H), 6.02 (m, 1H), 5.01 (br s, 1H), 3.93 (m, 1H), 3.10 (s, 3H).
  • Example 17 Preparation of (4R,5S)-4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4S,5S)-4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A37)
  • Figure US20160264547A1-20160915-C00053
  • Procedure for synthesis of (4-nitrophenyl) N-[4-(trifluoromethyl)-2-pyridyl]carbamate (Step 1)
  • Figure US20160264547A1-20160915-C00054
  • To a stirred solution of 4-(trifluoromethyl)pyridin-2-amine (5 g, 30.84 mmol) and pyridine (2.56 g, 32.38 mmol) in DCM (75 mL) at 0° C. (internal temp) was added (4-nitrophenyl) carbonochloridate (6.22 g, 30.84 mmol) over 15 mins, keeping temp at or below 8° C., and the reaction mixture was then stirred at 0° C. for 1 h. After 90 mins at 0° C., the reaction was allowed to warm to room temperature, and stirred at for 1 hr. Ice cold water (25 mL) was added. The biphasic mixture was filtered and the precipitate washed with ice cold water (10 mL) and DCM (2×10 mL). The precipitate was dried under vacuum to give product as a white solid (7.60 g, 75%).
  • LC-MS: (positive ES MH+ 328).
  • Procedure for synthesis of (5S)-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidine-2,4-dione (Step 2)
  • Figure US20160264547A1-20160915-C00055
  • A mixture of (4-nitrophenyl) N-[4-(trifluoromethyl)-2-pyridyl]carbamate (1.20 g, 3.67 mmol) and 1,4-dioxane (12 mL), under a nitrogen atmosphere, was treated with (2S)-2-(methylamino)propanoic acid (commercially available) (0.416 g, 4.03 mmol, and the mixture was stirred at room temperature for 5 h then at 60° C. for 1.5 h, left at room temperature overnight, then heated at 80° C. for 1.5 h and then left over the weekend at rt. The reaction mixture was filtered rinsing through with small portions of EtOAc, then the filtrate and washings were combined and concentrated to give a deep yellow oily residue. The oily residue was taken into EtOAc (25 mL) and washed with saturated NaHCO3 solution (3×15 mL) and brine (10 mL). The organic phase was dried over MgSO4, filtered, evaporated and the residue chromatographed on silica eluting with EtOAc in isohexane. Fractions containing product were evaporated to give product (0.675 g, 67%).
  • LC-MS: (positive ES MH+ 274).
  • Procedure for synthesis of (4R,5S)-4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4S,5S)-4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A37) (Step 3)
  • Figure US20160264547A1-20160915-C00056
  • (5S)-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidine-2,4-dione (0.660 g, 2.42 mmol) was stirred in methanol (20 mL) and the solution was cooled to around −15° C. (ice-salt bath). Sodium borohydride (0.0933 g, 2.42 mmol) was added in a single portion and the reaction was allowed to warm to 15° C. over 1 h, and was then quenched by the careful addition of water (0.5 mL). After 5 minutes stirring the mixture was diluted further with water (40 mL). A white precipitate formed, which was filtered off, washed with water and dried under suction giving a white powder. The combined filtrate and washings were extracted with DCM (3×20 mL). The organic extracts were then combined, washed with brine (2×20 mL), dried over MgSO4, filtered and the filtrate concentrated giving a light grey gum, (0.367 g, 55%).
  • NMR and LC-MS consistant with example 13 (A19).
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Example 18 Preparation of (4R,5R)-4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one and (4S,5R)-4-hydroxy-1,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (A38)
  • Figure US20160264547A1-20160915-C00057
  • Method as for example 17 but using (2R)-2-(methylamino)propanoic acid (commercially available).
  • NMR and LC-MS consistant with example 13 (A19).
  • The diastereomeric ratio was found to vary according to conditions for product synthesis, purification and analysis. The stereochemistry of the chiral centre at the carbon containing the hydroxyl group was found to interconvert at room temperature.
  • Table 1 lists examples of compounds of the general formula (I)
  • Figure US20160264547A1-20160915-C00058
  • wherein Ra, Rb, Rc, Rd, R1, R2, R3 and X are as defined above.
  • These compounds were made by the general methods described.
  • TABLE 1
    1H NMR (measured in
    CDCl3 unless otherwise
    Compound STRUCTURE indicated) δ LC-MS
    A1
    Figure US20160264547A1-20160915-C00059
    8.52 (s, 1H), 8.39 (d, 1H), 7.15 (d, 1H), 5.68 (m, 1H), 4.94 (br s, 1H), 3.40 (m, 1H), 2.92 (s, 3H), 1.85 (m, 1H), 1.55 (m, 1H), 0.98 (t, 3H). positive ES MH+ 290
    A2
    Figure US20160264547A1-20160915-C00060
    8.47 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.72 (d, 1H), 4.81 (d, 1H), 4.71 (s, 1H), 3.54 (ddq, 2H), 3.00 (s, 3H), 1.65 (m, 2H), 0.96 (t, 3H). positive ES MH+ 320
    A3
    Figure US20160264547A1-20160915-C00061
    As for A8 As for A8
    A4
    Figure US20160264547A1-20160915-C00062
    As for A8 As for A8
    A5
    Figure US20160264547A1-20160915-C00063
    8.46 (s, 1H), 8.39 (d, 1H), 7.19 (d, 1H), 5.74 (d, 1H), 4.82 (d, 1H), 4.67 (s, 1H), 3.43 (s, 3H), 3.01 (s, 3H). positive ES MH+ 292
    A6
    Figure US20160264547A1-20160915-C00064
    8.46 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.73 (d, 1H), 4.82 (d, 1H), 4.71 (s, 1H), 3.66 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H). positive ES MH+ 306
    A7
    Figure US20160264547A1-20160915-C00065
    Major diastereoisomer: 8.35 (br.s, 1H), 8.32 (d, 1H), 7.12 (dd, 1H), 5.71 (d, 1H); 4.96 (m, 1H), 4.82 (m, 1H), 3.54 (d, 1H), 3.01 (s, 3H). Minor diastereoisomer: 8.47 (br.s, 1H), 8.38 (d, 1H), 7.19 (dd, 1H), 5.89 (d, 1H), 5.15 (m, 1H), 5.12 (m, 1H), 3.82 (d, 1H), 2.97 (s, 3H). positive ES MH+ 278
    A8
    Figure US20160264547A1-20160915-C00066
    Major diastereomer: 8.55 (s, 1H), 8.43 (dd, 1H), 7.25 (d, 1H), 5.55 (m, 1H), 5.04 (very br s, 1H), 3.90 (s, 3H), 3.71 (m, 1H), 1.45 (d, 3H). Minor diastereomer: 8.53 (s, 1H), 8.45 (dd, 1H), 7.24 (d, 1H), 5.87 (d, 1H), 4.60 (very br s, 1H), 3.93 (s, 3H), 3.80 (m, 1H), 1.50 (d, 3H). positive ES MH+ 292
    A9
    Figure US20160264547A1-20160915-C00067
    Major diastereomer: 8.72 (m, 1H), 8.67 (s, 1H), 8.42 (s, 1H), 7.78 (t, 1H), 7.45 (d, 1H), 7.35 (dd, 1H), 5.65 (s, 1H), 4.94 (s, 1H), 3.56 (m, 1H), 2.94 (s, 3H), 1.36 (d, 3H). Minor diastereomer: 8.72 (m, 1H), 8.67 (s, 1H), 8.44 (s, 1H), 7.78 (t, 1H), 7.45 (d, 1H), 7.35 (dd, 1H), 5.99 (d, 1H), 4.77 (s, 1H), 3.79 (pentet, 1H), 2.95 (s, 3H), 1.41 (d, 3H). positive ES MH+ 353
    A10
    Figure US20160264547A1-20160915-C00068
    8.36 (s, 1H), 8.03 (s, 1H), 5.66 (s, 1H), 4.80 (br s, 1H), 4.69 (s, 1H), 3.95 (s, 3H), 3.65 (m, 2H), 2.97 (s, 3H), 1.26 (t, 3H). positive ES MH+ 336
    A11
    Figure US20160264547A1-20160915-C00069
    Major diastereomer: 9.30 (s, 1H), 8.75 (s, 1H) 8.72 (s, 2H), 8.24 (s, 1H), 5.65 (m, 1H), 4.80 (m, 1H), 3.55 (m, 1H), 2.96 (s, 3H), 1.35 (d, 3H). Minor diastereomer: 9.30 (s, 1H), 8.75 (s, 1H) 8.72 (s, 2H), 8.24 (s, 1H), 6.00 (d, 1H), 4.65 (s, 1H), 3.85 (m, 1H), 2.92 (s, 3H), 1.42 (d, 3H). positive ES MH+ 354
    A12
    Figure US20160264547A1-20160915-C00070
    Major diastereomer: 8.45 (s, 1H), 8.03 (s, 1H), 5.53 (m, 1H), 4.90 (br s, 1H), 3.95 (s, 3H), 3.50 (m, 1H), 2.91 (s, 3H), 1.33 (d, 3H). Minor diastereomer: 8.44 (s, 1H), 8.05 (s, 1H), 5.88 (d, 1H), 4.75 (br s, 1H), 3.95 (s, 3H), 3.75 (m, 1H), 2.88 (s, 3H), 1.39 (d, 3H). positive ES MH+ 306
    A13
    Figure US20160264547A1-20160915-C00071
    8.56 (s, 1H), 8.23 (s, 1H), 7.44 (m, 3H), 7.32 (m, 2H), 5.77 (d, 1H), 4.81 (d, 1H), 4.74 (s, 1H), 3.66 (m, 2H), 3.03 (s, 3H), 1.28 (m, 3H). positive ES MH+ 382
    A14
    Figure US20160264547A1-20160915-C00072
    9.30 (s, 1H), 8.75 (s, 2H), 8.70 (s, 1H), 8.24 (s, 1H), 5.80 (d, 1H), 4.75 (s, 1H), 4.71 (d, 1H), 3.69 (m, 2H), 3.04 (s, 3H), 1.29 (t, 3H). positive ES MH+ 384
    A15
    Figure US20160264547A1-20160915-C00073
    9.30 (s, 1H), 8.75 (s, 2H), 8.70 (s, 1H), 8.25 (s, 1H), 5.81 (d, 1H), 4.71 (s, 1H), 4.70 (d, 1H), 3.46. (s, 3H), 3.05 (s, 3H). positive ES MH+ 370
    A16
    Figure US20160264547A1-20160915-C00074
    8.70 (s, 1H), 8.58 (s, 1H), 5.70 (d, 1H), 4.71 (s, 1H), 4.54 (d, 1H), 3.66 (m, 2H), 3.00 (s, 3H), 1.27 (t, 3H). positive ES MH+ 432
    A17
    Figure US20160264547A1-20160915-C00075
    8.81 (s, 1H), 8.62 (s, 1H), 5.65 (d, 1H), 4.84 (d, 1H), 4.81 (d, 1H), 2.91 (s, 3H). positive ES MH+ 404
    A18
    Figure US20160264547A1-20160915-C00076
    8.70 (s, 1H), 8.57 (s, 1H), 5.71 (d, 1H), 4.66 (s, 1H), 4.58 (d, 1H), 3.43 (s, 3H), 3.00 (s, 3H). positive ES MH+ 418
    A19
    Figure US20160264547A1-20160915-C00077
    Major diastereomer: 8.54 (s, 1H), 8.37 (d, 1H), 7.16 (d, 1H), 5.61 (m, 1H), 4.95 (br s, 1H), 3.53 (m, 1H), 2.93 (s, 3H), 1.34 (d, 3H). Minor diastereomer: 8.54 (s, 1H), 8.39 (m, 1H), 7.16 (d, 1H), 5.95 (d, 1H), 4.81 (br s, 1H), 3.76 (pentet, 1H), 2.89 (s, 3H), 1.40 (d, 3H). positive ES MH+ 276
    A20
    Figure US20160264547A1-20160915-C00078
    Major diastereomer: 8.70 (m, 1H), 8.48 (s, 1H), 8.25 (s, 1H), 8.20 (s, 1H), 7.18 (s, 1H), 5.62 (s, 1H), 4.92 (s, 1H), 3.90 (s, 3H), 3.55 (m, 1H), 2.94 (s, 3H), 1.36 (d, 3H). positive ES MH+ 383
    A21
    Figure US20160264547A1-20160915-C00079
    Major diastereomer: 8.65 (m, 1H), 8.20 (s, 1H), 8.12 (s, 1H), 7.55 (s, 1H), 6.82 (s, 1H), 5.62 (s, 1H), 4.85 (s, 1H), 3.90 (s, 3H), 3.55 (m, 1H), 2.95 (s, 3H), 1.35 (d, 3H). positive ES MH+ 383
    A22
    Figure US20160264547A1-20160915-C00080
    Major diastereomer: 8.72 (s, 1H), 8.50 (s, 2H), 8.20 (s, 1H), 5.62 (s, 1H), 4.83 (s, 1H), 4.08 (s, 3H), 3.55 (m, 1H), 2.94 (s, 3H), 1.35 (d, 3H). positive ES MH+ 384
    A23
    Figure US20160264547A1-20160915-C00081
    Major diastereomer: 8.68 (m, 1H), 8.55 (d, 1H), 8.28 (s, 1H), 8.15 (s, 1H), 6.89 (d, 1H), 5.62 (s, 1H), 4.95 (br s, 1H), 3.70 (s, 3H), 3.54 (m, 1H), 2.95 (s, 3H), 1.35 (d, 3H). positive ES MH+ 383
    A24
    Figure US20160264547A1-20160915-C00082
    Major diastereomer: 8.69 (s, 1H), 8.46 (s, 1H), 8.21 (m, 1H), 7.57 (dm, 1H), 7.25 (dm, 1H), 5.65 (m, 1H), 4.91 (br s, 1H), 3.56 (m, 1H), 2.95 (s, 3H), 2.64 (s, 3H), 1.36 (d, 3H). Minor diastereomer: 8.69 (s, 1H), 8.46 (s, 1H), 8.21 (m, 1H), 7.57 (dm, 1H), 7.25 (dm, 1H), 6.00 (d, 1H), 4.78 (br s, 1H), 3.79 (m, 1H), 2.92 (s, 3H), 2.64 (s, 3H), 1.42 (d, 3H). positive ES MH+ 367
    A25
    Figure US20160264547A1-20160915-C00083
    Major diastereomer: 8.69 (s, 1H), 8.64 (s, 1H), 5.56 (m, 1H), 4.65 (very br s, 1H), 3.53 (m, 1H), 2.93 (s, 3H), 1.33 (d, 3H). Minor diastereomer: 8.70 (s, 1H), 8.64 (s, 1H), 5.91 (d, 1H), 4.65 (very br s, 1H), 3.76 (m, 1H), 2.88 (s, 3H), 1.38 (d, 3H). positive ES MH+ 402
    A26
    Figure US20160264547A1-20160915-C00084
    Major diastereomer 8.32 (s, 1H), 8.16 (d, 1H), 7.86 (d, 1H), 6.43 (d, 1H), 5.58 (d, 1H), 3.37 (m, 1H), 2.80 (s, 3H), 1.18 (d, 3H). Minor diastereomer 8.32 (s, 1H), 8.17 (d, 1H), 7.86 (d, 1H), 6.18 (d, 1H), 5.91 (d, 1H), 3.39 (m, 1H), 2.72 (s, 3H), 1.18 (d, 3H). Positive ES MH+ 242
    A27
    Figure US20160264547A1-20160915-C00085
    Major diastereomer 8.48 (s, 1H), 8.15 (d, 1H), 7.05 (d, 1H), 5.79 (d, 1H), 3.65 (m, 1H), 2.97 (s, 3H), 2.5(s, 3H), 1.4 (d, 3H). Minor diastereomer 8.58 (s, 1H), 8.16 (d, 1H), 7.07 (d, 1H), 6.21 (d, 1H), 3.88 (m, 1H), 2.94 (s, 3H), 2.55(s, 3H), 1.45 (d, 3H). Positive ES MH+ 222
    A28
    Figure US20160264547A1-20160915-C00086
    Major diastereomer 8.55 (s, 1H), 8.43 (dd, 1H), 7.25 (d, 1H), 5.55 (d, 1H), 5.04 (very br s, 1H), 3.90 (s, 3H), 3.38 (d, 1H), 1.45 (d, 3H). Minor diastereomer 8.53 (s, 1H), 8.45 (dd, 1H), 7.24 (d, 1H), 5.87(d, 1H), 4.60 (very br s, 1H), 3.93 (s, 3H), 3.71 (m, 1H), 1.50 (d, 3H). positive ES MH+ 306
    A29
    Figure US20160264547A1-20160915-C00087
    8.46 (s, 1H), 8.38 (d, 1H), 7.18 (dd, 1H), 5.74 (d, 1H), 4.80 (d, 1H), 4.79 (s, 1H), 3.51-3.73 (m, 3H), 3.33 (m, 1H), 1.27 (t, 3H), 1.25 (t, 3H). positive ES MH+ 320
    A30
    Figure US20160264547A1-20160915-C00088
    Major diastereomer 8.17 (d, 1H), 8.04 (d, 1H), 6.91 (d, 1H), 5.50 (d, 1H), 3.41 (m, 1H), 2.84 (s, 3H), 1.31 (d, 3H), 1.24 (s, 9H). Minor diastereomers 8.17 (d, 1H), 8.05 (d, 1H), 6.92 (d, 1H), 5.85 (d, 1H), 3.63 (m, 1H), 2.80 (s, 3H), 1.31 (d, 3H), 1.27 (s, 9H). Positive ES MH+ 264
    A31
    Figure US20160264547A1-20160915-C00089
    Major diastereomer: 8.54 (s, 1H), 8.37 (d, 1H), 7.17 (m, 1H), 5.75 (ddd, 1H), 5.70 (d, 1H), 5.44 (m, 1H), 5.43 (m, 1H), 5.01 (br s, 1H), 3.89 (m, 1H), 2.89 (s, 3H). Minor diastereomer: 8.54 (s, 1H), 8.39 (m, 1H), 7.17 (m, 1H), 6.02 (m, 2H), 5.51 (m, 2H), 4.06 (m, 1H), 2.83 (s, 3H). positive ES MH+ 288
    A32
    Figure US20160264547A1-20160915-C00090
    Major diastereomer: 8.15 (s, 1H), 8.37 (d, 1H), 7.15 (dd, 1H), 5.75 (m, 1H), 5.70 (d, 1H), 5.23 (dd, 1H), 5.20 (dd, 1H), 4.90 (d, 1H), 3.54 (ddd, 1H), 2.96 (s, 3H), 2.55 (m, 1H), 2.53 (m, 1H). Minor diastereomer: 8.15 (s, 1H), 8.37 (d, 1H), 7.15 (dd, 1H), 5.98 (m, 1H), 5.70 (d, 1H), 5.26 (dd, 1H), 5.18 (d, 1H), 4.79 (br.s, 1H), 3.65 (ddd, 1H), 2.91 (s, 3H), 2.69 (m, 1H), 2.55 (m, 1H). positive ES MH+ 302
    A33
    Figure US20160264547A1-20160915-C00091
    8.48 (s, 1H), 8.42 (d, 1H), 7.25 (d, 1H), 6.02 (m, 1H), 5.01 (br s, 1H), 3.93 (m, 1H), 3.10 (s, 3H). positive ES MH+ 330
    A34
    Figure US20160264547A1-20160915-C00092
    As for A6 As for A6
    A35
    Figure US20160264547A1-20160915-C00093
    As for A6 As for A6
    A36
    Figure US20160264547A1-20160915-C00094
    8.54 (s, 1H), 8.45 (dd, 1H), 7.25 (d, 1H), 6.02 (m, 1H), 4.75 (very br s, 1H), 3.89 (s, 3H), 3.75 (m, 1H), 3.68 (m, 1H). positive ES MH+ 278
    A37
    Figure US20160264547A1-20160915-C00095
    As for A19 As for A19
    A38
    Figure US20160264547A1-20160915-C00096
    As for A19 As for A19
    A39
    Figure US20160264547A1-20160915-C00097
    8.44 (s, 1H), 8.40 (d, 1H), 7.22 (d, 1H), 5.77 (d, 1H), 4.86 (s, 1H), 4.85 (d, 1H), 3.99 (m, 2H), 3.03 (s, 3H). positive ES MH+ 360
    A40
    Figure US20160264547A1-20160915-C00098
    (DMSO-d6): 8.57 (d, 1H), 8.47 (s, 1H), 7.75 (s, 1H), 7.36 (d, 1H), 6.46 (d, 1H), 5.68 (d, 1H), 3.43 (q, 1H), 1.15 (d, 3H). positive ES MH+ 262
    A41
    Figure US20160264547A1-20160915-C00099
    8.46 (s, 1H), 8.38 (d, 1H), 7.19 (dd, 1H), 5.94 (m, 1H), 5.75 (d, 1H), 5.36 (dd, 1H), 5.26 (dd, 1H), 4.80 (d, 1H), 4.77 (s, 1H), 4.15 (m, 2H), 3.01 (s, 3H). positive ES MH+ 318
    A42
    Figure US20160264547A1-20160915-C00100
    8.50 (s, 1H), 8.37 (d, 1H), 7.16 (d, 1H), 5.89 (s, 1H), 4.90 (s, 1H), 4.37 (d, 1H), 3.57 (m, 1H), 3.49 (d, 6H), 3.04 (s, 3H). positive ES MH+ 336
    A43
    Figure US20160264547A1-20160915-C00101
    Major diastereomer: 8.50 (s, 1H), 8.37 (d, 1H), 7.16 (d, 1H), 5.89 (m, 1H), 5.03 (m, 1H), 3.91 (m, 1H), 3.82 (m, 1H), 3.51 (q, 1H), 2.96 (s, 3H), 2.36 (br m, 1H) Minor diastereomer: 8.55 (s, 1H), 8.37 (d, 1H), 7.18 (m, 1H), 5.89 (m, 1H), 5.46 (br s, 1H), 3.96 (m, 1H), 3.76 (m, 1H), 3.51 (q, 1H), 2.96 (s, 3H), 2.36 (br m, 1H) positive ES MH+ 292
    A44
    Figure US20160264547A1-20160915-C00102
    8.44 (s, 1H), 8.38 (d, 1H), 7.19 (dd, 1H), 5.82 (d, 1H), 4.92 (s, 1H), 4.79 (d, 1H), 4.32 (d, 2H), 3.03 (s, 3H), 2.54 (t, 1H) positive ES MH+ 316
    A45
    Figure US20160264547A1-20160915-C00103
    8.45 (s, 1H), 8.38 (d, 1H), 7.18 (d, 1H), 5.77 (d, 1H), 4.80 (s, 1H), 4.78 (d, 1H), 3.74 (q, 2H), 3.58 (t, 2H), 3.39 (s, 3H), 3.01 (s, 3H). positive ES MH+ 336
    A46
    Figure US20160264547A1-20160915-C00104
    8.62 (s, 1H), 8.42 (d, 1H), 7.20 (dd, 1H), 5.92 (t, 1H), 4.98 (d, 1H), 3.68-3.77 (m, 2H), 3.21-3.29 (m, 1H), 2.14-2.22 (m, 1H), 2.02-2.13 (m, 1H), 1.89- 2.02 (m, 1H), 1.36-1.49 (m, 1H). positive ES MH+ 288
    A47
    Figure US20160264547A1-20160915-C00105
    As for A46 As for A46
    A48
    Figure US20160264547A1-20160915-C00106
    8.46 (s, 1H), 8.37 (d, 1H), 7.17 (d, 1H), 5.66 (d, 1H), 4.80 (d, 1H), 4.71 (s, 1H), 3.93 (dt, 1H), 2.96 (s, 3H), 1.27 (dd, 6H). positive ES MH+ 320
    A49
    Figure US20160264547A1-20160915-C00107
    Major diastereomer: 8.64 (s, 1H), 8.33 (s, 1H), 5.56 (t, 1H), 4.63 (d, 1H), 3.52 (m, 1H), 2.93 (s, 3H), 1.34 (d, 3H). Minor diastereomer: 8.64 (s, 1H), 8.35 (s, 1H), 5.91 (dd, 1H), 4.46 (d, 1H), 3.76 (m, 1H), 2.89 (s, 3H), 1.39 (d, 3H). positive ES MH+ 310
    A50
    Figure US20160264547A1-20160915-C00108
    Major diastereomer: 8.64 (s, 1H), 8.38 (s, 1H), 5.51 (dd, 1H), 4.68 (d, 1H), 3.89 (s, 3H), 3.72 (m, 1H), 1.45 (d, 3H). Minor diastereomer: 8.62 (s, 1H), 8.40 (s, 1H), 5.83 (dd, 1H), 4.28 (d, 1H), 3.92 (s, 3H), 3.79 (m, 1H), 1.50 (d, 3H). positive ES MH+ 326
    A51
    Figure US20160264547A1-20160915-C00109
    Major diastereomer 8.48 (s, 1H), 8.15 (s, 1H), 5.56 (d, 1H), 4.98 (br s, 1H), 3.51 (dq, 1H), 2.92 (s, 3H), 2.40 (s, 3H), 1.33 (d, 3H). Minor diastereomer 8.47 (s, 1H), 8.17 (s, 1H), 5.91 (d, 1H), 4.83 (br s, 1H), 3.74 (pentet, 1H), 2.88 (s, 3H), 2.40 (s, 3H), 1.39 (d, 3H). positive ES MH+ 290
    A52
    Figure US20160264547A1-20160915-C00110
    8.41 (s, 1H), 8.17 (s, 1H), 5.70 (s, 1H), 4.70 (s, 1H), 3.64 (m, 2H), 3.00 (s, 3H), 2.40 (s, 3H), 1.27 (t, 3H). positive ES MH+ 320
    A53
    Figure US20160264547A1-20160915-C00111
    8.57 (s, 1H), 8.34 (s, 1H), 5.70 (d, 1H), 4.70 (s, 1H), 4.52 (d, 1H), 3.67 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H). positive ES MH+ 340
    A54
    Figure US20160264547A1-20160915-C00112
    8.55 (s, 1H), 8.39 (d, 1H), 7.17 (d, 1H), 5.82 (s, 1H), 3.58 (br s, 3H), 3.39 (s, 3H), 2.98 (s, 3H). positive ES MH+ 306
    A55
    Figure US20160264547A1-20160915-C00113
    Major diastereomer 8.63 (s, 1H), 8.54 (s, 1H), 5.83 (d, 1H), 4.30 (br s, 1H), 3.93 (s, 3H), 3.80 (m, 1H), 1.50 (d, 3H). Minor diastereomer 8.65 (s, 1H), 8.52 (s, 1H), 5.51 (d, 1H), 4.70 (br s, 1H), 3.90 (s, 3H), 3.72 (m, 1H), 1.45 (d, 3H). positive ES MH+ 370/372
    A56
    Figure US20160264547A1-20160915-C00114
    Major diastereomer 8.85 (s, 1H), 8.53 (s, 1H), 7.22 (br s, 1H), 5.60 (m, 1H), 4.84 (br s, 1H), 3.53 (m, 1H), 2.92 (s, 3H), 2.23 (s, 3H), 1.33 (d, 3H). Minor diastereomer 8.85 (s, 1H), 8.52 (s, 1H), 7.22 (br s, 1H), 5.93 (m, 1H), 4.70 (br s, 1H), 3.75 (m, 1H), 2.88 (s, 3H), 2.23 (s, 3H), 1.39 (d, 3H). positive ES MH+ 333
    A57
    Figure US20160264547A1-20160915-C00115
    Major diastereomer 8.95 (s, 1H), 8.53 (s, 1H), 7.48 (br s, 1H), 5.60 (m, 1H), 4.86 (m, 1H), 3.52 (m, 1H), 2.92 (s, 3H), 1.33 (d, 3H), 1.33 (s, 9H). Minor diastereomer 8.97 (s, 1H), 8.52 (s, 1H), 7.48 (br s, 1H), 5.94 (m, 1H), 4.71 (m, 1H), 3.75 (m, 1H), 2.88 (s, 3H), 1.39 (d, 3H), 1.33 (s, 9H). positive ES MH+ 375
    A58
    Figure US20160264547A1-20160915-C00116
    Major diastereomer 8.50 (s, 1H), 8.20 (s, 1H), 5.50 (m, 1H), 5.02 (m, 1H), 3.89 (s, 3H), 3.68 (m, 1H), 2.41 (s, 3H), 1.44 (d, 3H). Minor diastereomer 8.47 (s, 1H), 8.23 (s, 1H), 5.81 (m, 1H), 4.59 (m, 1H), 3.93 (s, 3H), 3.76 (quintet, 1H), 2.41 (s, 3H), 1.48 (d, 3H). positive ES MH+ 306
    A59
    Figure US20160264547A1-20160915-C00117
    8.28 (m, 2H), 7.10 (dd, 1H), 5.72 (d, 1H), 5.00 (d, 1H), 4.71(s, 1H), 3.66 (m, 2H), 2.99 (s, 3H), 1.91(t, 3H), 1.27(t, 3H). positive ES MH+ 302
    A60
    Figure US20160264547A1-20160915-C00118
    Major diastereomer: 8.36 (d, 1H), 8.30 (d, 1H), 7.09 (dd, 1H), 5.59 (m, 1H), 5.12 (d, 1H), 3.51 (m, 1H), 2.93 (s, 3H), 1.92 (t, 3H), 1.33 (d, 3H). Minor diastereomer: 8.36 (d, 1H), 8.30 (d, 1H), 7.09 (dd, 1H), 5.92 (m, 1H), 4.98 (d, 1H), 3.74 (m, 1H), 2.89 (s, 3H), 1.92 (t, 3H), 1.40 (d, 3H). positive ES MH+ 272
    A61
    Figure US20160264547A1-20160915-C00119
    8.21 (d, 1H), 8.06 (m, 1H), 7.07 (dd, 1H), 5.71 (s, 1H), 5.19 (s, 1H), 4.70(s, 1H), 3.65 (m, 2H), 2.98 (s, 3H), 1.70(d, 3H), 1.63(d, 3H), 1.27(t, 3H). positive ES MH+ 298
    A62
    Figure US20160264547A1-20160915-C00120
    Major diastereomer: 8.51 (s, 1H), 8.50 (s, 1H), 6.93 (m, 1H), 5.71 (d, 1H), 5.60 (m, 1H), 5.42 (d, 1H), 4.91 (m, 1H), 3.53 (m, 1H), 2.93 (s, 3H), 1.33 (d, 3H). Minor diastereomer: 8.51 (s, 1H), 8.50 (s, 1H), 6.93 (m, 1H), 5.94 (m, 1H), 5.71 (d, 1H), 5.42 (d, 1H), 4.76 (m, 1H), 3.76 (m, 1H), 2.88 (s, 3H), 1.39 (d, 3H). positive ES MH+ 302
    A63
    Figure US20160264547A1-20160915-C00121
    Major diastereomer 8.15 (d, 1H), 8.11 (m, 1H), 7.01 (dd, 1H), 5.54 (d, 1H), 3.46 (m, 1H), 2.88 (s, 3H), 1.66 (d, 3H), 1.60 (d, 3H), 1.28 (d, 3H). Minor diastereomer 8.15 (d, 1H), 8.11 (m, 1H), 7.01 (dd, 1H), 5.88 (d, 1H), 3.68 (m, 1H), 2.83 (s, 3H), 1.66 (d, 3H), 1.60 (d, 3H), 1.34 (d, 3H). positive ES MH+ 268
    A64
    Figure US20160264547A1-20160915-C00122
    Major diastereomer: 8.47 (s, 1H), 8.42 (d, 1H), 7.25 (m, 1H), 5.57 (d, 1H), 3.73 (m, 1H), 1.47 (d, 3H). Minor diastereomer: 8.44 (s, 1H), 8.35 (d, 1H), 7.27 (m, 1H), 5.94 (d, 1H), 3.86 (m, 1H), 1.48 (d, 3H). positive ES MH+ 278
    A65
    Figure US20160264547A1-20160915-C00123
    Major diastereomer: 8.58 (s, 1H), 8.46 (s, 1H), 5.63 (br.s., 1H), 4.77 (d, 1H), 4.12 (m, 1H), 3.54 (qd, 1H), 2.94 (s, 3H), 1.46 (s, 9H) 1.35 (d, 3H). Minor diastereomer: 8.58 (s, 1H), 8.46 (s, 1H), 5.95 (dd, 1H), 5.60 (t, 1H), 4.60 (d, 1H), 3.78 (t, 1H), 2.90 (s, 3H), 1.46 (s, 9H) 1.35 (d, 3H). positive ES MH+
    A66
    Figure US20160264547A1-20160915-C00124
    Major diastereomer: 8.65 (d, 1H), 8.26 (dd, 1H), 8.02 (t, 1H), 5.87 (br.s, 1H), 5.53 (d, 1H), 5.20 (br.s, 1H), 3.89 (s, 3H), 3.70 (m, 1H), 1.48 (s, 9H), 1.45 (d, 3H). Minor diastereomer: 8.67 (d, 1H), 8.24 (dd, 1H), 8.00 (t, 1H), 5.87 (br.s, 1H), 5.85 (d, 1H), 4.75 (br.s, 1H), 3.92 (s, 3H), 3.78 (m, 1H), 1.50 (d, 3H), 1.48 (s, 9H). positive ES MH+ 323
    A67
    Figure US20160264547A1-20160915-C00125
    Major diastereomer: 8.62 (d, 1H), 8.25 (d, 1H), 7.96 (dd, 1H), 5.84 (br.s, 1H), 5.59 (t, 1H), 5.11 (d, 1H), 3.51 (ddd, 1H), 2.92 (s, 3H), 1.48 (s, 9H), 1.34 (d, 3H). Minor diastereomer: 8.62 (d, 1H), 8.25 (d, 1H); 7.96 (dd, 1H), 5.94 (dd, 1H), 5.84 (br.s, 1H), 4.96 (d, 1H), 3.75 (m, 1H), 2.88 (s, 3H), 1.48 (s, 9H), 1.38 (d, 3H). positive ES MH+ 307
    A68
    Figure US20160264547A1-20160915-C00126
    Major diastereomer: 8.44 (d, 1H), 7.98 (s, 1H), 7.26 (dd, 1H), 5.81 (m, 1H), 5.12 (d, 1H), 4.13 (m, 1H), 3.18 (d, 3H), 2.65-2.36 (m, 2H). Minor diastereomer: 8.46 (d, 1H), 8.29 (s, 1H), 7.28 (dd, 1H), 5.72 (m, 1H), 5.40 (t, 1H), 4.00 (m, 1H), 3.18 (d, 3H), 2.65-2.36 (m, 2H). positive ES MH+ 344
    A69
    Figure US20160264547A1-20160915-C00127
    8.58 (s, 1H), 8.24 (s, 1H), 6.20 (brs, 1H), 5.71 (s, 1H), 4.79 (brs, 1H), 4.69 (s, 1H), 3.68 (m, 2H), 2.99 (s, 3H), 1.48 (s, 9H), 1.28 (t, 3H). positive ES MH+ 371
    A70
    Figure US20160264547A1-20160915-C00128
    Major diastereomer: 8.59 (s, 1H), 8.34 (s, 1H), 6.15 (s, 1H), 5.53 (d, 1H), 3.90 (s, 3H), 3.72 (m, 1H), 1.49 (s, 9H), 1.46 (d, 3H). Minor diastereomer: 8.59 (s, 1H), 8.34 (s, 1H), 6.15 (s, 1H), 5.85 (d, 1H), 3.93 (s, 3H), 3.79 (m, 1H), 1.49 (s, 9H), 1.46 (d, 3H). positive ES MH+ 357
    A71
    Figure US20160264547A1-20160915-C00129
    Major diastereomer: 8.52 (s, 1H), 8.27 (s, 1H), 6.28 (s, 1H), 5.56 (d, 1H), 4.98 (brs, 1H), 3.51 (m, 1H), 2.91 (s, 3H), 1.47 (s, 9H), 1.32 (d, 3H). Minor diastereomer: 8.52 (s, 1H), 8.27 (s, 1H), 6.28 (s, 1H), 5.91 (d, 1H), 4.80 (brs, 1H), 3.73 (m, 1H), 2.87 (s, 3H), 1.47 (s, 9H), 1.37 (d, 3H). positive ES MH+ 341
    A72
    Figure US20160264547A1-20160915-C00130
    Major diastereomer 8.37 (s, 1H), 8.30 (d, 1H), 7.11 (dd, 1H), 5.59 (d, 1H), 5.51 (brs, 1H), 3.53 (m, 1H), 2.93 (s, 3H), 1.33 (d, 3H). Minor diastereomer 8.37 (s, 1H), 8.30 (d, 1H), 7.11 (dd, 1H), 5.93 (d, 1H), 5.51 (brs, 1H), 3.73 (m, 1H), 2.89 (s, 3H), 1.40 (d, 3H). positive ES MH+ 326
    A73
    Figure US20160264547A1-20160915-C00131
    Major diastereomer: 8.57 (s, 1H), 8.46 (d, 1H), 7.26 (m, 1H), 5.58 (d, 1H), 5.03 (brs, 1H), 3.92 (s, 3H), 3.74 (m, 1H), 1.47 (d, 3H). Minor diastereomer: 8.55 (s, 1H), 8.47 (d, 1H), 7.26 (m, 1H), 5.89 (d, 1H), 5.03 (brs, 1H), 3.95 (s, 3H), 3.81 (m, 1H), 1.51 (d, 3H). positive ES MH+ 342
    A74
    Figure US20160264547A1-20160915-C00132
    Major diastereomer: 8.49 (m, 1H), 8.36 (d, 1H), 7.88 (dd, 1H), 5.60 (d, 1H), 4.94 (br.s, 1H), 3.53 (ddd, 1H), 2.93 (s, 3H), 1.34 (d, 3H). Minor diastereomer: 8.49 (m, 1H), 8.36 (d, 1H), 7.88 (dd, 1H), 5.96 (d, 1H), 4.78 (br.s, 1H), 3.77 (pent, 1H), 2.89 (s, 3H), 1.40 (d, 3H). positive ES MH+ 276
    A75
    Figure US20160264547A1-20160915-C00133
    8.49-8.61 (m, 1H), 8.45 (d, 1H), 7.21-7.28 (m, 1H), 5.86-5.94 (m, 1H), 4.88-4.93 (m, 1H), 4.78- 4.86 (m, 1H), 3.86-4.08 (m, 3H), 3.29-3.42 (m, 1H). positive ES MH+ 290
    A76
    Figure US20160264547A1-20160915-C00134
    Major diastereomer: 8.50 (s, 1H), 8.36-8.44 (m, 1H), 7.21 (d, 1H), 5.60-5.67 (m, 1H), 4.92-4.98 (m, 1H), 4.58-4.92 (m, 2H), 3.67-3.79 (m, 1H), 3.32- 3.39 (m, 3H), 1.34-1.41 (m, 3H). Minor diastereomer: 8.50 (s, 1H), 8.36-8.44 (m, 1H), 7.21 (d, 1H), 5.97 (dd, 1H), 4.92-4.98 (m, 1H), 4.58-4.92 (m, 2H), 3.94- 4.06 (m, 1H), 3.40-3.52 (m, 3H) 1.41-1.47 (m, 3H). positive ES MH+ 306
    A77
    Figure US20160264547A1-20160915-C00135
    8.54 (s, 1H) 8.38 (d, 1H) 7.12-7.19 (m, 1H) 5.81 (s, 1H) 4.96 (d, 1H) 3.58 (s, 3H) 3.40 (s, 3H) 2.99 (s, 3H). positive ES MH+ 306
    A78
    Figure US20160264547A1-20160915-C00136
    As for A77 As for A77
    A79
    Figure US20160264547A1-20160915-C00137
    Major diastereomer: 8.48 (s, 1H), 8.25 (s, 1H), 6.80 (d, 1H), 5.61 (dd, 1H), 3.76 (s, 3H), 3.61 (dq, 1H), 2.39 (s, 3H), 1.27 (d, 3H). Minor diastereomer: 8.49 (s, 1H), 8.33 (s, 1H), 6.56 (d, 1H), 5.92 (t, 1H), 3.77 (s, 3H), 3.70 (quin, 1H), 2.39 (s, 3H), 1.30 (d, 3H). positive ES MH+ 306
    A80
    Figure US20160264547A1-20160915-C00138
    Major diastereomer: 8.53 (m, 1H), 8.39 (d, 1H), 7.93 (dd, 1H), 5.55 (d, 1H), 5.00 (br.s, 1H), 3.90 (s, 3H), 3.72 (ddd, 1H), 1.45 (d, 3H). Minor diastereomer: 8.56 (m, 1H), 8.37 (d, 1H), 7.93 (dd, 1H), 5.87 (d, 1H), 4.56 (br.s, 1H), 3.93 (s, 3H), 3.80 (pent, 1H), 1.50 (d, 3H). positive ES MH+ 292
    A81
    Figure US20160264547A1-20160915-C00139
    8.49 (d, 1H), 8.28 (d, 1H), 7.89 (dd, 1H), 5.73 (d, 1H), 5.00 (d, 1H), 4.79 (d, 1H), 3.02 (s, 3H), 2.74 (d, 1H). positive ES MH+ 278
    A82
    Figure US20160264547A1-20160915-C00140
    8.47 (s, 1H), 8.40 (d, 1H), 7.18 (d, 1H), 5.74 (s, 1H), 4.85 (brs, 1H), 4.71 (s, 1H), 3.67 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H). positive ES MH+ 356
    A83
    Figure US20160264547A1-20160915-C00141
    8.50 (d, 1H), 8.30 (d, 1H), 7.89 (dd, 1H), 5.74 (d, 1H), 4.80 (d, 1H), 4.71 (s, 1H), 3.68 (m, 2H), 3.00 (s, 3H), 1.28 (t, 3H). positive ES MH+ 306
    A84
    Figure US20160264547A1-20160915-C00142
    Major diastereomer: 8.35 (s, 1H), 8.32 (d, 1H), 7.11 (d, 1H), 6.60 (t, 1H), 5.59 (d, 1H), 5.10 (br.s., 1H), 3.51 (dq, 1H), 2.92 (s, 3H), 1.33 (d, 3H). Minor diastereomer: 8.34 (s, 1H), 8.32 (d, 1H), 7.11 (d, 1H), 6.60 (t, 1H), 5.93 (d, 1H), 4.96 (br.s., 1H), 3.74 (pentet, 1H), 2.88 (s, 3H), 1.39 (d, 3H). positive ES MH+ 258
    A85
    Figure US20160264547A1-20160915-C00143
    Major diastereomer: 8.53 (d, 1H), 8.35 (d, 1H), 7.16 (dd, 1H), 5.59 (t, 1H), 4.97 (d, 1H), 3.53 (dq, 1H), 2.93 (s, 3H), 1.34 (d, 3H). Major diastereomer: 8.53 (d, 1H), 8.36 (d, 1H), 7.16 (dd, 1H), 5.94 (dd, 1H), 4.83 (d, 1H), 3.75 (t, 1H), 2.89 (s, 3H), 1.39 (d, 3H). positive ES MH+ 292
    A86
    Figure US20160264547A1-20160915-C00144
    Major diastereomer: 8.31 (s, 1H), 7.12 (s, 1H), 6.57 (t, 1H), 5.59 (t, 1H), 4.61 (d, 1H), 3.53 (dq, 1H), 2.92 (s, 3H), 1.33 (d, 3H). Major diastereomer: 8.31 (s, 1H), 7.12 (s, 1H), 6.57 (t, 1H), 5.94 (dd, 1H), 4.45 (d, 1H), 3.75 (pentet, 1H), 2.88 (s, 3H), 1.39 (d, 3H). positive ES MH+ 292
    A87
    Figure US20160264547A1-20160915-C00145
    Major diastereomer: 8.45- 8.61 (m, 1H), 8.23-8.44 (m, 1H), 7.07-7.22 (m, 1H), 5.64-5.62 (m, 1H), 4.97-4.99 (m, 1H), 4.42 (dd, 1H), 3.92 (dd, 1H), 3.67-3.84 (m, 1H), 2.15- 2.33 (m, 1H), 1.34-1.46 ppm (m, 3H). Minor diastereomer: 8.45- 8.61 (m, 1H), 8.23-8.44 (m, 1H), 7.07-7.22 (m, 1H), 5.85-6.03 (m, 1H), 4.74 (d, 1H), 4.57 (dd, 1H), 4.02 (quin, 1H), 3.67- 3.84 (m, 1H), 2.15-2.33 (m, 1H), 1.34-1.46 ppm (m, 3H). positive ES MH+ 300
    A88
    Figure US20160264547A1-20160915-C00146
    Major diastereomer: 8.55 (s, 1H), 8.39 (d, 1H), 7.16 (d, 1H), 5.94 (d, 1H), 3.92 (m, 1H), 3.62 (m, 1H), 3.19 (m, 1H), 1.39 (d,3H), 1.18 (t, 3H). Minor diastereomer: 8.55 (s, 1H), 8.39 (d, 1H), 7.16 (d, 1H), 5.57 (d, 1H), 3.62(m, 2H), 3.19 (m, 1H), 1.35 (d, 3H), 1.20 (t, 3H). positive ES MH+ 290
    A89
    Figure US20160264547A1-20160915-C00147
    Major diastereomer: 8.19 (m, 2H), 7.09 (d, 1H), 5.59 (d, 1H), 3.50 (m, 1H), 3.13 (s, 3H), 2.92 (s, 3H), 1.52 (s, 6H), 1.33 (d, 3H). Minor diastereomer: 8.19 (m, 2H), 7.09 (d, 1 H, 5.93 (d, 1H), 3.73 (m, 1H), 3.13 (s, 3H), 2.88(s, 3H), 1.52 (s, 6H), 1.40 (d, 3H). positive ES MH+ 280
    A90
    Figure US20160264547A1-20160915-C00148
    Major diastereomer: 8.54 (m, 1H), 8.39 (d, 1H), 7.26 (dd, 1H), 5.53 (dd, 1H), 5.03 (d, 1H), 3.90 (s, 3H), 3.71 (ddd, 1H), 1.45 (d, 3H). Minor diastereomer: 8.52 (m, 1H), 8.42 (d, 1H), 7.24 (dd, 1H), 5.85 (dd, 1H), 4.59 (d, 1H), 3.93 (s, 3H), 3.79 (pentet, 1H), 1.49 (d, 3H). positive ES MH+ 308
    A91
    Figure US20160264547A1-20160915-C00149
    Major diastereomer: 8.50 (s, 1H), 8.38 (d, 1H), 7.19 (dd, 1H), 5.86 (br s, 1H), 5.68 (m, 1H), 4.98 (d, 1H), 3.74 (m, 1H), 1.36 (d, 3H). Minor diastereomer: 8.46 (s, 1H), 8.36 (d, 1H) , 7.12 (dd, 1H), 5.99 (d, 1H), 5.71 (br s, 1H), 4.88 (d, 1H), 4.04 (pentet, 1H), 1.39 (d, 3H). positive ES MH+ 278
    A92
    Figure US20160264547A1-20160915-C00150
    Major diastereomer: 8.28 (d, 1H), 8.10 (d, 1H), 6.96 (dd, 1H), 5.55 (t, 1H), 5.07 (d, 1H), 3.49 (ddd, 1H), 2.91 (s, 3H), 1.32 (d, 3H). Minor diastereomer: 8.27 (d, 1H), 8.11 (d, 1H), 6.96 (dd, 1H), 5.89 (dd, 1H), 4.94 (d, 1H), 3.72 (m, 1H), 2.87 (s, 3H), 1.37 (d, 3H). positive ES MH+ 242
    A93
    Figure US20160264547A1-20160915-C00151
    Major diastereomer 8.36 (m, 2H), 7.18 (m, 1H), 5.52 (d, 1H), 4.47 (brs, 1H), 3.90 (s, 3H), 3.70 (m, 1H), 1.92 (t, 3H), 1.48 (d, 3H). Minor diastereomer 8.36 (m, 2H), 7.18 (m, 1H), 5.83 (d, 1H), 5.21 (brs, 1H), 3.93 (s, 3H), 3.77 (m, 1H), 1.92 (t, 3H), 1.49 (d, 3H). positive ES MH+ 288
    A94
    Figure US20160264547A1-20160915-C00152
    Major diastereomer 8.59 (s, 1H), 8.45 (d, 1H), 7.28 (dd, 1H), 5.97 (d, 1H), 5.39 (d, 1H), 5.03 (brs, 1H), 4.42 (m, 1H), 4.12 (m, 1H), 4.00 (m, 1H), 3.63 (m, 1H). Minor diastereomer 8.59 (s, 1H), 8.45 (d, 1H), 7.28 (dd, 1H), 6.17 (d, 1H), 5.39 (d, 1H), 5.24 (brs, 1H), 4.41 (m, 1H), 4.39 (m, 1H), 4.26 (m, 1H), 3.88 (m, 1H). positive ES MH+ 290
    A95
    Figure US20160264547A1-20160915-C00153
    8.55 (s, 1H), 8.39 (d, 1H), 7.17 (d, 1H), 6.07 (d, 1H), 5.0(br.s, 1H), 3.72 (m, 1H), 3.42 (m, 3H), 1.22 (t, 3H). positive ES MH+ 276
    A96
    Figure US20160264547A1-20160915-C00154
    8.57 (s, 1H), 8.40 (d, 1H), 7.17 (d, 1H), 6.90 (s, 1H), 4.62 (s, 1H), 3.87 (m, 1H), 3.64 (m, 1H), 2.99 (s, 3H), 2.07 (s, 3H), 1.27 (t, 3H). positive ES MH+ 348
    A97
    Figure US20160264547A1-20160915-C00155
    positive ES MH+ 482
    A98
    Figure US20160264547A1-20160915-C00156
    positive ES MH+ 496/498
    A99
    Figure US20160264547A1-20160915-C00157
    positive ES MH+ 494
    A100
    Figure US20160264547A1-20160915-C00158
    positive ES MH+ 404
    A101
    Figure US20160264547A1-20160915-C00159
    positive ES MH+ 396
    A102
    Figure US20160264547A1-20160915-C00160
    8.49 (s, 1H), 8.27 (d, 1H), 7.55 (d, 2H), 7.33-7.41 (m, 3H), 7.14 (dd, 1H), 7.10 (s, 1H), 4.70 (s, 1H), 3.92 (dq, 1H), 3.68 (dq, 1H), 3.39 (s, 3H), 3.00 (s, 3H), 1.30 (t, 3H). positive ES MH+ 522
    A103
    Figure US20160264547A1-20160915-C00161
    8.55 (s, 1H), 8.42 (d, 1H), 7.53 (d, 2H), 7.31-7.41 (m, 3H), 7.21 (dd, 1H), 7.11 (s, 1H), 4.51 (s, 1H), 3.91 (dq, 1H), 3.66 (dq, 1H), 3.46 (s, 3H), 2.92 (s, 3H), 1.30 (t, 3H). positive ES MH+ 522
    A104
    Figure US20160264547A1-20160915-C00162
    Major diastereomer: 8.50 (s, 1H), 8.40 (d, 1H), 7.28- 7.13 (m, 6H), 5.13 (d, 1H), 3.89 (s, 3H), 3.77-3.71 (m, 2H), 3.53 (d, 1H), 3.16 (br.s., 1H), 1.45 (d, 3H) Minor diastereomer: 8.57 (s, 1H), 8.40 (d, 1H), 7.28- 7.13 (m, 6H), 5.52 (d, 1H), 3.94 (s, 3H), 3.90-3.73 (m, 2H), 3.57 (d, 1H), 3.30 (very br.s., 1H), 1.53 (d, 3H). positive ES MH+ 381
    A105
    Figure US20160264547A1-20160915-C00163
    Major diastereomer: 8.53 (s, 1H), 8.46 (s, 1H), 5.59 (t, 1H), 4.97 (t, 1H), 4.57 (s, 2H), 3.52 (m, 1H), 3.45 (s, 3H), 2.92 (d, 3H), 1.33 (dd, 3H). Minor diastereomer: 8.53 (s, 1H), 8.47 (s, 1H), 5.94 (dd, 1H), 4.82 (t, 1H), 4.57 (s, 2H), 3.75 (m, 1H), 3.45 (s, 3H), 2.88 (d, 3H), 1.39 (dd, 3H). positive ES MH+ 320
    A106
    Figure US20160264547A1-20160915-C00164
    Major diastereomer: 8.30- 8.56 (m, 2H), 7.27-7.32 (m, 1H), 6.80-7.23 (m, 1H), 5.59-5.75 (m, 1H), 4.80-4.97 (m, 1H), 3.83- 4.10 (m, 1H), 1.40-1.53 (m, 3H). Minor diastereomer: 8.30- 8.56 (m, 2H), 7.27-7.32 (m, 1H), 6.80-7.23 (m, 1H), 5.87-6.09 (m, 1H), 4.69-4.80 (m, 1H), 4.10- 4.35 (m, 1H), 1.53-1.60 (m, 3H). positive ES MH+ 312
    A107
    Figure US20160264547A1-20160915-C00165
    Major diastereomer: 8.53 (s, 1H), 8.29-8.44 (m, 1H), 7.07-7.23 (m, 1H), 5.73- 5.89 (m, 1H), 5.62 (t, 1H), 5.17-5.36 (m, 2H), 4.92 (d, 1H), 4.15-4.33 (m, 1H), 3.51-3.77 (m, 2H), 1.24-1.34 (m, 3H). Minor diastereomer: 8.53 (s, 1H), 8.29-8.44 (m, 1H), 7.07-7.23 (m, 1H), 5.94 (dd, 1H), 5.73-5.89 (m, 1H), 5.17-5.36 (m, 2H), 4.80 (d, 1H), 4.15-4.33 (m, 1H), 3.89 (quin, 1H), 3.51-3.77 (m, 1H), 1.36 (d, 3H). positive ES MH+ 302
    A108
    Figure US20160264547A1-20160915-C00166
    Major diastereomer: 8.52 (s, 1H), 8.51 (s, 1H), 5.58 (t, 1H), 4.96 (br t, 1H), 4.69 (s, 2H), 3.69 (m, 2H), 3.60 (m, 2H), 3.52 (dq, 1H), 3.40 (d, 3H), 2.92 (d, 3H), 1.33 (dd, 3H). Minor diastereomer: 8.52 (s, 1H), 8.51 (s, 1H), 5.93 (dd, 1H), 4.81 (dd, 1H), 4.69 (s, 2H), 3.75 (m, 1H), 3.69 (m, 2H), 3.60 (m, 2H), 3.40 (d, 3H), 2.88 (d, 3H), 1.38 (dd, 3H). positive ES MH+ 364
    A109
    Figure US20160264547A1-20160915-C00167
    8.27 (d, 1H), 8.13 (s, 1H), 7.04 (d, 1H), 5.75 (s, 1H), 4.62 (s, 1H), 3.58 (m, 2H), 3.02 (s, 3H), 2.85 (s, 3H), 1.42 (s, 6H), 1.15 (t, 3H). positive ES MH+ 310
    A110
    Figure US20160264547A1-20160915-C00168
    Major diastereomer: 8.53 (s, 1H), 8.35-8.38 (m, 1H), 7.12-7.18 (m, 1H), 5.59- 5.65 (m, 1H), 4.96 (br.s., 1H), 3.54-3.63 (m, 2H), 3.02-3.17 (m, 1H), 1.45- 1.77 (m, 2H), 1.32 (d, 2H), 0.90-1.02 (m, 3H). Minor diastereomer: 8.53 (s, 1H), 8.35-8.38 (m, 1H), 7.12-7.18 (m, 1H), 5.94 (d, 1H), 4.84 (br.s., 1H), 3.85-3.95 (m, 1H), 3.02- 3.17 (m, 1H), 1.45-1.77 (m, 2H), 1.38 (d, 1H), 0.90-1.02 (m, 3H). positive ES MH+ 304
    A111
    Figure US20160264547A1-20160915-C00169
    Major diastereomer: 8.50 (s, 1H), 8.42 (d, 1H), 7.17- 7.25 (m, 1H), 5.66-5.71 (m, 1H), 4.92 (br.s., 1H), 4.16-4.38 (m, 1H), 3.79 (qd, 1H), 3.53-3.74 (m, 1H), 1.38 (d, 3H). Minor diasteromer: 8.48 (s, 1H), 8.42 (d, 1H), 7.17- 7.25 (m, 1H), 6.00 (d, 1H), 4.80 (br.s., 1H), 4.16- 4.38 (m, 1H), 3.99-4.08 (m, 1H), 3.53-3.74 (m, 1H), 1.41-1.47 (m, 3H). positive ES MH+ 344
    A112
    Figure US20160264547A1-20160915-C00170
    Major diastereomer: 8.47 (s, 1H), 8.36-8.43 (m, 1H), 7.20 (d, 1H), 5.79-6.15 (m, 1H), 5.61-5.69 (m, 1H), 4.92 (br.s., 1H), 3.95-4.07 (m, 1H), 3.67- 3.78 (m, 1H), 3.38-3.56 (m, 1H), 1.36 (d, 3H). Minor diastereomer: 8.47 (s, 1H), 8.36-8.43 (m, 1H), 7.20 (d, 1H), 5.79-6.15 (m, 2H), 4.69-4.82 (m, 1H), 3.95-4.07 (m, 1H), 3.78-3.94 (m, 1H), 3.38- 3.56 (m, 1H), 1.39-1.44 (m, 3H). positive ES MH+ 326
    A113
    Figure US20160264547A1-20160915-C00171
    Major diastereomer: 8.44- 8.59 (m, 1H), 8.31-8.42 (m, 1H), 7.16 (d, 1H), 5.94 (d, 1H), 4.83 (br.s., 1H), 3.83-3.96 (m, 1H), 3.17- 3.33 (m, 1H), 3.02 (dd, 1H), 1.83-2.13 (m, 1H), 1.38 (d, 3H), 0.87-1.05 (m, 6H) - Minor diastereomer: 8.44- 8.59 (m, 1H), 8.31-8.42 (m, 1H), 7.16 (d, 1H), 5.61 (s, 1H), 4.87-5.00 (m, 1H), 3.52-3.69 (m, 1H), 3.33- 3.47 (m, 1H), 2.90 (dd, 1H), 1.83-2.13 (m, 1H), 1.31 (d, 3H), 0.87-1.05 (m, 6H). positive ES MH+ 318
    A114
    Figure US20160264547A1-20160915-C00172
    Major diastereomer: 8.36- 8.49 (m, 2H), 7.25 (d, 1H), 5.69 (d, 1H), 4.32-4.47 (m, 1H), 4.16-4.28 (m, 1H), 3.66-3.84 (m, 1H), 1.40-1.50 (m, 3H). Minor diastereomer: 8.36- 8.49 (m, 2H), 7.25 (d, 1H), 6.02 (d, 1H), 4.56-4.70 (m, 1H), 3.89-4.03 (m, 1H), 3.66-3.84 (m, 1H), 1.40-1.50 (m, 3H). positive ES MH+ 301
    A115
    Figure US20160264547A1-20160915-C00173
    Major diastereomer: 8.48- 8.60 (m, 1H), 8.29-8.44 (m, 1H), 7.06-7.21 (m, 1H), 5.51-5.65 (m, 1H), 4.82 (br.s., 1H), 3.48- 3.57 (m, 1H), 2.48-2.58 (m, 1H), 1.33-1.41 (m, 3H), 0.59-1.06 (m, 4H). Minor diastereomer 8.48- 8.60 (m, 1H), 8.29-8.44 (m, 1H), 7.06-7.21 (m, 1H), 5.89 (d, 1H), 4.88- 4.99 (m, 1H), 3.76-3.88 (m, 1H), 2.36-2.47 (m, 1H), 1.42-1.50 (m, 3H), 0.59-1.06 (m, 4H). positive ES MH+ 302
    A116
    Figure US20160264547A1-20160915-C00174
    Major diastereomer 8.59 (s, 1H), 8.49 (d, 1H), 7.32 (d, 1H), 6.05 (s, 1H), 4.84 (brs, 1H), 4.18 (m, 1H), 3.98 (m, 1H), 3.91 (m, 1H), 2.68 (m, 1H), 2.13 (m, 1H). Minor diastereomer 8.59 (s, 1H), 8.46 (d, 1H), 7.32 (d, 1H), 6.15 (d, 1H), 5.39 (brs, 1H), 4.23 (m, 1H), 3.98 (m, 1H), 3.91 (m, 1H), 2.80 (m, 1H), 2.35 (m, 1H). positive ES MH+ 290
  • Example 19 Preparation of 1,1,3-trimethoxy-N-methyl-propan-2-amine as used for synthesis of examples of the type A54, A77 and A78 (chiral preparative HPLC of racemic product A54 gave separated enantiomers A77 and A78)
  • Figure US20160264547A1-20160915-C00175
  • Procedure for synthesis of 1,1,3-trimethoxy-N-methyl-propan-2-amine (Step 1)
  • Figure US20160264547A1-20160915-C00176
  • A solution of 2-bromo-1,1,3-trimethoxy-propane (commercially available) (7 g, 32.85 mmol) in methylamine (40% aqueous solution) (105 mL, 210 mmol) was divided into seven equal portions and these were heated at 130° C. for 1 h in a microwave. The combined reaction mixtures were then concentrated and the residue obtained was treated with toluene and evaporated again. The residue was then stirred with DCM, filtered and evaporated to give the crude product that was taken to next step without further purification.
  • Example 20 Preparation of 2-chloro-4-(1-fluoro-1-methyl-ethyl)pyridine as used for synthesis of examples of the type A63
  • Figure US20160264547A1-20160915-C00177
  • Procedure for synthesis of 2-chloro-4-(1-fluoro-1-methyl-ethyl)pyridine (Step 1)
  • Figure US20160264547A1-20160915-C00178
  • 2-(2-chloro-4-pyridyl)propan-2-ol (commercially available)(180 mg, 1.0 mmol) was dissolved in DCM and the resultant mixture was cooled to 0° C. Diethylaminosulfur trifluoride (2.5 equiv., 5.2 mmol) was added dropwise such that the temperature did not exceed 5° C. After the addition the reaction was allowed to warm to room temperature and was then added portionwise with stirring to a mixture of ice (100 ml) and NaHCO3 in a beaker (some effervescence), making sure that the pH of the solution was >7 at all times. After ˜30 mins, the mixture was diluted with DCM (30 mL) and water (20 mL) and transferred to a sep funnel. The organic phase was separated. The aqueous phase was further extracted with DCM (2×20 mL), the organic extracts were then combined, washed with water (15 mL), dried over MgSO4, filtered and the filtrate evaporated giving a yellow-brown liquid. This was chromatographed on silica. Fractions containing product were evaporated to give the desired product, which was used without further purification.
  • LC-MS: (positive ES MH+ 174).
  • Example 21 Preparation of 4-(1,1,2,2,2-pentafluoroethyl)pyridin-2-amine as used for synthesis of examples of the type A72, A73
  • Figure US20160264547A1-20160915-C00179
  • Procedure for synthesis of 4-(1,1,2,2,2-pentafluoroethyl)pyridin-2-amine (Step 1)
  • Figure US20160264547A1-20160915-C00180
  • Prepared by analogy to the synthesis of 4-(trifluoromethyl)pyridin-2-amine (as described in EP2228366) using (E)-5-ethoxy-3-hydroxy-3-(1,1,2,2,2-pentafluoroethyl)pent-4-enenitrile (for a synthesis see Martins et al, ARKIVOC Issue 13, pages 187-194) as starting material. This synthesis can be applied to the synthesis of a range of related pyridine intermediates.
  • Example 22 Preparation of 2-chloro-4-[chloro(difluoro)methyl]pyridine as used for synthesis of examples of the type A90, A91
  • Figure US20160264547A1-20160915-C00181
  • Procedure for synthesis of 2-chloro-4-[chloro(difluoro)methyl]pyridine (Step 1)
  • Figure US20160264547A1-20160915-C00182
  • 2-chloro-4-(difluoromethyl)pyridine (commercially available) (0.950 g, 5.81 mmol) was suspended in CCl4 (3.3 ml), then 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione (675 mg, 0.5 equiv.) and benzoyl benzenecarboperoxoate (70 mg, 0.05 equiv.) were added and the mixture was microwaved to 160° C. for 30 mins. Further benzoyl benzenecarboperoxoate (70 mg, 0.05 equiv.) was added and the mixture was further microwaved to 180° C. for 20 mins. Even further benzoyl benzenecarboperoxoate (70 mg, 0.05 equiv.) was added and the mixture was further microwaved at 180° C. for 20 mins. The mixture was filtered through celite, washed through with DCM then chromatographed eluting with 0-7% ethyl acetate in isohexane. Fractions contained product were combined and evaporated to give product as a colourless oil (700 mg, 61% yield).
  • 1H NMR: 8.58 (dd, 1H), 7.57 (d, 1H), 7.45 (dd, 1H).
  • Example 23 Preparation of 2-chloro-4-(1-methoxy-1-methyl-ethyl)pyridine as used for synthesis of examples of the type A89
  • Figure US20160264547A1-20160915-C00183
  • Procedure for synthesis of 2-chloro-4-[chloro(difluoro)methyl]pyridine (Step 1)
  • Figure US20160264547A1-20160915-C00184
  • A mixture of 2-(2-chloro-4-pyridyl)propan-2-ol (commercially available) (2.4 g, 14 mmol) in THF (120 mL) and methyl iodide (1.8 mL, 28 mmol) was treated with sodium hydride (0.71 g, 28 mmol). The mixture was stirred for 16 h at rt. and then the reaction mix was poured into water (500 mL), and extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and chromatographed. Fractions contained product were combined and evaporated to give product as a colourless oil (2.31 g, 89% yield).
  • LC-MS: (positive ES MH+ 186).
  • Example 24 Preparation of N-[6-chloro-4-(trifluoromethyl)-3-pyridyl]-2,2-dimethyl-propanamideas used for synthesis of examples of the type A57
  • Figure US20160264547A1-20160915-C00185
  • Procedure for synthesis of N-[6-chloro-4-(trifluoromethyl)-3-pyridyl]-2,2-dimethyl-propanamide (Step 1)
  • Figure US20160264547A1-20160915-C00186
  • A mixture of 5-bromo-2-chloro-4-(trifluoromethyl)pyridine (commercially available) (75 mg, 0.288 mmol), 2,2-dimethylpropanamide (32 mg, 0.317 mmol), XantPhos Pd G3 precatalyst (13 mg, 0.014 mmol), K2CO3 (79 mg, 0.57 mmol) in 1,4-Dioxane (0.5 mL) was heated at 90° C. for 0.5 h and then 110° C. for 2 h. Purification by reverse phase HPLC delivered product (14 mg, 15%).
  • LC-MS: (positive ES MH+ 281).
  • Example 25 Preparation of N-tert-butyl-6-chloro-4-(trifluoromethyl)pyridine-3-carboxamide as used for synthesis of examples of the type A65
  • Figure US20160264547A1-20160915-C00187
  • Procedure for synthesis of N-tert-butyl-6-chloro-4-(trifluoromethyl)pyridine-3-carboxamide (Step 1)
  • Figure US20160264547A1-20160915-C00188
  • To a stirred solution of 6-chloro-4-(trifluoromethyl)pyridine-3-carboxylic acid (for a synthesis see Tetrahedron, 2004, 60(51), pages 11869-11874) (3.87 g, 17.2 mmol) in DCM (8 mL) was added tert-butylamine (3.61 mL, 34.3 mmol) followed by DIPEA (3.59 mL, 20.6 mmol). The reaction mixture was cooled to 0° C. before the addition of HATU (4.84 g, 20.6 mmol). The reaction was stirred for 10 mins at 0° C., followed by stirring for 30 mins at room temperature. The reaction was then quenched with water. The aqueous layer was extracted with DCM, and the combined organic phases, dried (MgSO4) and evaporated. Crude product was chromatographed eluting with 3:1, iso-hexane/EtOAc, followed by recrystallisation (Et2O/i-hexane) provided product (3.44 g, 12.3 mmol, 71% yield).
  • LC-MS: (positive ES MH+ 281).
  • Example 26 Preparation of 2-chloro-5-(methoxymethyl)-4-(trifluoromethyl)pyridine as used for synthesis of examples of the type A105
  • Figure US20160264547A1-20160915-C00189
  • Procedure for synthesis of [6-chloro-4-(trifluoromethyl)-3-pyridyl]methanol (Step 1)
  • Figure US20160264547A1-20160915-C00190
  • Methyl 6-chloro-4-(trifluoromethyl)pyridine-3-carboxylate (commercially available) (1.00 g) was dissolved in dry THF (12 mL) under a N2 atmosphere and the reaction was cooled to −60° C. then LiAlH4 (163 mg) was added over 10 mins. The reaction was stirred at −60° C. for 25 mins and was then treated with saturated NH4Cl (aq) (5 mL) and then EtOAc (60 mL). Filtration through celite and then evaporation gave a crude oil which was dissolved in MeOH (5 mL), cooled to 0° C. then NaBH4 (53 mg) was added portionwise and the reaction was stirred at 0° C. The reaction was then concentrated, treated with EtOAc (10 mL) and washed with 10% citric acid and then saturated brine and finally the organic layer was dried Na2SO4 and evaporated to give the desired product.
  • 1H NMR: (400 MHz, Chloroform) δ 8.78 (s, 1H), 7.56 (s, 1H), 4.93 (s, 2H), 1.91 (very br s, 1H).
  • Procedure for synthesis of 2-chloro-5-(methoxymethyl)-4-(trifluoromethyl)pyridine (Step 2)
  • Figure US20160264547A1-20160915-C00191
  • [6-chloro-4-(trifluoromethyl)-3-pyridyl]methanol (655 mg) was dissolved in dry THF (2 mL), cooled to 5° C. under N2 then KOtBu (1.65M in THF) (2.07 mL) was added over 1 min. Then Mel (236 μL) was added. The reaction was stirred for 3 minutes, then EtOAc (10 mL) and saturated brine (aqueous), was added and the aqueous layer was extracted with further EtOAc (2×20 mL). The combined organic layers were dried (Na2SO4), filtered and evaporated to give amber oil, which was chromatographed, eluting with 0-30% EtOAc in isohexane. Fractions containing product were evaporated to give product as an amber oil (332 mg, 48%).
  • 1H NMR: (400 MHz, Chloroform) δ 8.70 (s, 1H), 7.56 (s, 1H), 4.63 (s, 2H), 3.48 (s, 3H).
  • LC-MS: (positive ES MH+ 226).
  • Example 27 Herbicidal Action Example 27a Pre-Emergence Herbicidal Activity
  • Seeds of a variety of test species were sown in standard soil in pots. After cultivation for one day (pre-emergence) under controlled conditions in a glasshouse (at 24/16° C., day/night; 14 hours light; 65% humidity), the plants were sprayed with an aqueous spray solution derived from the formulation of the technical active ingredient in acetone/water (50:50) solution containing 0.5% Tween 20 (polyoxyethelyene sorbitan monolaurate, CAS RN 9005-64-5). The test plants were then grown in a glasshouse under controlled conditions (at 24/16° C., day/night; 14 hours light; 65% humidity) and watered twice daily. After 13 days, the test was evaluated (5=total damage to plant; 0=no damage to plant). Results are shown in Table 2.
  • TABLE 2
    Application pre-emergence
    Compound Rate
    number (g/Ha) AMARE ABUTH ECHCG SETFA ALOMY ZEAMX
    A1 1000 5 5 5 5 4 3
    A2 1000 5 5 4 3 2 1
    A3 1000 5 4 5 5 3 3
    A4 1000 5 5 5 5 4 3
    A5 1000 5 5 4 4 3 2
    A6 1000 5 5 4 5 4 2
    A7 1000 5 5 3 4 4 1
    A8 1000 5 5 4 5 4 3
    A9 1000 5 5 5 5 4 3
    A10 1000 5 5 5 5 4 3
    A11 1000 5 5 4 5 4 3
    A12 1000 5 5 5 5 4 3
    A13 1000 5 5 3 3 3 1
    A14 1000 5 5 5 4
    A15 1000 5 3 4 3
    A16 1000 5 5 4 4
    A17 1000 5 4 3 3
    A18 1000 5 5 4 4
    A19 1000 5 5 5 5 4 3
    A20 1000 5 5 4 5 4 5
    A21 1000 5 5 5 5 3 2
    A22 1000 5 5 5 5 4 3
    A23 1000 5 2 2 3 3 1
    A24 1000 5 5 5 4 4 3
    A25 1000 5 5 5 4 4 2
    A26 1000 3 4 4 4 2 2
    A27 1000 5 4 4 4 3 3
    A28 1000 5 3 4 5 4 2
    A29 1000 5 5 1 2 1 1
    A30 1000 5 5 5 5 4 2
    A31 1000 5 5 5 5 2
    A32 1000 5 5 5 4 4 2
    A33 1000 5 4 2 3 3 0
    A34 1000 5 5 5 5 3
    A35 1000 5 4 4 4 2
    A36 1000 5 1 4 2 2 0
    A37 1000 5 5 5 4 4 3
    A38 1000 5 5 5 5 3
    A39 1000 5 5 3 2 4 1
    A40 1000 5 4 3 2 2 2
    A41 1000 5 5 2 2 1 1
    A42 1000 4 1 0 3 0 0
    A43 1000 2 5 1 2 1 0
    A44 1000 5 5 5 4 4 2
    A45 1000 5 5 3 3 2 1
    A46 1000 5 5 4 2 4 3
    A47 1000 5 5 5 4 4 2
    A48 1000 5 5 1 3 4 1
    A49 1000 5 5 4 4 4 3
    A50 1000 5 5 5 4 4 2
    A51 1000 5 5 5 4 4 3
    A52 1000 5 5 5 4 4 2
    A53 1000 5 5 4 4 4 2
    A54 1000 5 5 2 2 3 0
    A55 1000 5 5 4 4 4 2
    A56 1000 5 5 1 1 2 0
    A57 1000 5 5 3 3 4 1
    A58 1000 5 5 3 3 4 4
    A59 1000 5 5 3 3 4 1
    A60 1000 5 5 1 1 1 0
    A61 1000 5 5 4 1 4 1
    A62 1000 5 4 4 3 2
    A64 1000 5 2 4 3 2
    A65 1000 5 5 5 5 3
    A66 1000 5 5 5 4 2
    A67 1000 5 5 5 5 3
    A68 1000 0 0 0 0 0
    A69 1000 5 5 5 5 2
    A70 1000 5 5 5 5 3
    A71 1000 5 5 5 0 3
    A72 1000 5 5 5 5 2
    A73 1000 5 5 4 5 3
    A74 1000 5 5 4 4 3
    A75 1000 5 5 4 4 2
    A76 1000 5 5 3 4 2
    A77 1000 5 5 5 5 3
    A78 1000 5 5 4 3 1
    A79 1000 5 5 5 5 2
    A80 1000 5 5 5 4 2
    A81 1000 3 2 0 2 0
    A82 1000 5 5 3 3 2
    A83 1000 5 5 4 4 1
    A84 1000 5 5 5 5 3
    A85 1000 5 5 5 5 3
    A86 1000 5 5 5 5 3
    A87 1000 5 5 4 4 3
    A88 1000 5 5 4 4 2
    A89 1000 5 5 4 4 2
    A90 1000 5 3 4 4 2
    A91 1000 5 5 4 4 2
    A92 1000 5 5 5 4 3
    A93 1000 5 5 5 5 3
    A94 1000 5 5 5 5 4
    A95 1000 5 5 5 5 1
    A96 1000 5 5 4 4 4 1
    A97 1000 5 5 4 4 4 3
    A98 1000 0 0 0 0 0 0
    A99 1000 5 1 0 0 0 0
    A100 1000 5 5 3 3 4 1
    A101 1000 5 5 4 4 4 0
    A102 1000 5 5 4 3 1
    A103 1000 2 1 1 4 1
    A104 1000 5 4 5 5 3
    A105 1000 5 5 5 5 4
    A106 1000 5 5 4 3 2
    A107 1000 5 5 5 4 2
    A108 1000 5 5 5 4 2
  • Example 27b Post-Emergence Herbicidal Activity
  • Seeds of a variety of test species were sown in standard soil in pots. After 8 days cultivation (post-emergence) under controlled conditions in a glasshouse (at 24/16° C., day/night; 14 hours light; 65% humidity), the plants were sprayed with an aqueous spray solution derived from the formulation of the technical active ingredient in acetone/water (50:50) solution containing 0.5% Tween 20 (polyoxyethelyene sorbitan monolaurate, CAS RN 9005-64-5). The test plants were then grown in a glasshouse under controlled conditions (at 24/16° C., day/night; 14 hours light; 65% humidity) and watered twice daily. After 13 days, the test was evaluated (5=total damage to plant; 0=no damage to plant). Results are shown in Table 3.
  • TABLE 3
    Application post-emergence
    Compound Rate
    number (g/Ha) ECHCG SETFA AMARE ABUTH ALOMY ZEAMX
    A1 1000 5 5 5 5 5 3
    A2 1000 5 5 5 5 4 2
    A3 1000 5 5 5 5 5 5
    A4 1000 5 5 5 5 5 5
    A5 1000 4 4 5 5 4 2
    A6 1000 5 5 5 5 5 2
    A7 1000 5 5 5 5 4 4
    A8 1000 5 5 5 5 5 4
    A9 1000 5 5 5 5 5 4
    A10 1000 5 5 5 5 5 4
    A11 1000 5 5 5 5 4 4
    A12 1000 5 5 5 5 5 5
    A13 1000 5 5 5 5 4 0
    A14 1000 5 5 5 5 4 3
    A15 1000 4 4 5 5 4 0
    A16 1000 5 5 5 5 5 2
    A17 1000 5 5 5 5 5 4
    A18 1000 5 5 5 5 5 3
    A19 1000 5 5 5 5 5 4
    A20 1000 5 5 5 5 5 4
    A21 1000 5 5 5 5 5 3
    A22 1000 5 5 5 5 5 5
    A23 1000 2 4 5 5 4 2
    A24 1000 5 5 5 5 5 4
    A25 1000 5 5 5 5 5 5
    A26 1000 1 1 3 4 1 1
    A27 1000 3 3 5 5 3 3
    A28 1000 5 5 4 4 5 2
    A29 1000 4 3 5 5 4 2
    A30 1000 5 5 5 5 5 3
    A31 1000 5 5 5 5 4
    A32 1000 5 5 5 5 5 2
    A33 1000 1 2 3 5 4 1
    A34 1000 5 5 5 5 4
    A35 1000 3 3 5 0 1
    A36 1000 5 3 5 1 4 2
    A37 1000 5 5 5 5 5 4
    A38 1000 5 5 5 5 4
    A39 1000 5 5 5 5 5 1
    A40 1000 4 3 5 5 4 1
    A41 1000 2 4 5 5 4 2
    A42 1000 0 2 4 4 2 1
    A43 1000 5 0 1 5 1 2
    A44 1000 5 5 5 5 4 4
    A45 1000 3 3 5 5 2 1
    A46 1000 5 5 5 5 5 3
    A47 1000 5 5 5 5 5 4
    A48 1000 4 4 5 5 4 1
    A49 1000 5 5 5 5 5 4
    A50 1000 5 5 5 5 5 5
    A51 1000 5 5 5 5 5 5
    A52 1000 5 5 5 5 5 5
    A53 1000 5 5 5 5 5 3
    A54 1000 5 5 5 5 5 4
    A55 1000 5 5 5 5 5 4
    A56 1000 3 2 5 5 4 1
    A57 1000 5 5 5 5 5 4
    A58 1000 5 5 5 5 4 4
    A59 1000 5 5 5 5 5 4
    A60 1000 4 3 5 5 4 3
    A61 1000 5 5 5 5 5 3
    A62 1000 5 5 5 5 2
    A64 1000 5 4 5 4 1
    A65 1000 5 5 5 5 5
    A66 1000 5 5 5 5 5
    A67 1000 5 5 5 5 4
    A68 1000 0 0 0 0 0
    A69 1000 5 4 4 5 3
    A70 1000 5 5 5 5 5
    A71 1000 5 5 5 5 4
    A72 1000 5 5 5 5 2
    A73 1000 5 5 5 5 3
    A74 1000 4 5 5 5 3
    A75 1000 5 5 5 5 2
    A76 1000 4 4 5 5 1
    A77 1000 5 5 5 5 5
    A78 1000 5 3 5 5 0
    A79 1000 5 5 5 5 4
    A80 1000 5 5 5 5 4
    A81 1000 2 2 4 4 0
    A82 1000 4 4 5 5 2
    A83 1000 1 4 5 5 1
    A84 1000 5 5 5 5 4
    A85 1000 5 5 5 5 4
    A86 1000 5 5 5 5 2
    A87 1000 5 5 5 5 4
    A88 1000 5 5 5 5 3
    A89 1000 5 5 5 5 3
    A90 1000 5 5 5 5 5
    A91 1000 5 4 5 5 3
    A92 1000 5 5 5 5 4
    A93 1000 5 5 5 5 4
    A94 1000 5 5 5 5 5
    A95 1000 5 5 5 5 2
    A96 1000 5 5 5 5 5 3
    A97 1000 5 5 5 5 5 3
    A98 1000 0 0 4 0 0 1
    A99 1000 3 0 5 1 0 1
    A100 1000 5 5 5 5 5 4
    A101 1000 5 5 5 5 5 3
    A102 1000 2 1 5 5 1
    A103 1000 0 1 2 0 1
    A104 1000 5 5 5 5 5
    A105 1000 5 5 5 5 5
    A106 1000 4 4 5 5 1
    A107 1000 5 5 5 5 3
    A108 1000 5 5 5 5 5
    ABUTH = Abutilon theophrasti;
    AMARE = Amaranthus retroflexus;
    SETFA = Setaria faberi;
    ALOMY = Alopecurus myosuroides;
    ECHCG = Echinochloa crus-galli;
    ZEAMX = Zea mays.

Claims (29)

1. A herbicidal compound of formula (I)
Figure US20160264547A1-20160915-C00192
wherein
X is selected from S and O;
Ra is selected from hydrogen and halogen;
Rb is selected from hydrogen, halogen, C1-C4 alkyl, C2-C4 alkenyl C1-C4 haloalkyl, C1-C6 alkoxy, C2-C4 alkenyloxy, C2-C4 alkynyloxy, C1-C4 alkoxy-C1-C4 alkyl, C1-C4 haloalkoxy, C1-C3 alkoxy-C1-C3 alkoxy, C1-C4 alkylthio, C1-C4 alkylsulfinyl, C1-C4 alkylsulfonyl, a group R5R6N—, a group R5C(O)N(R6)—, a group R5S(O2)N(R6)—, a group R5R6NSO2—, a group R5R6NC(O)—, aryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy, aryloxy optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy and heteroaryl optionally substituted by one or more groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy;
Rc is selected from hydrogen, halogen, C1-C8 alkyl, C1-C6 haloalkyl, C2-C8 alkenyl, C1-C6 cyanoalkyl, C1-C6 alkoxy, C1-C4 alkoxy-C1-C4 alkyl, C1-C6 hydroxyalkyl, C2-C6 alkenyloxy C1-C6 alkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, C1-C3 alkyl and C1-C3 alkoxy;
Rd is selected from hydrogen, halogen, cyano, C1-C6 alkyl and C1-C6 haloalkyl;
R1 is selected from hydrogen, hydroxyl, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1-C4 cyanoalkyl, C3-C6 cycloalkyl, C1-C4 alkoxy, C1-C4 alkoxy-C1-C4 alkyl and C1-C4 haloalkyl and R2 is selected from hydrogen, hydroxyl, C1-C4 alkyl, C2-C4 alkenyl, C1-C4 alkoxy, C2-C4 alkenyloxy, C2-C4 alkynyloxy, C1-C4 alkoxy-C1-C4 alkyl, C1-C4 alkoxy-C1-C4 alkoxy, C1-C4 hydroxyalkyl, C1-C4 haloalkyl, C1-C3 haloalkoxy and C1-C4 cyanoalkyl, with the proviso that when R1 is methyl, R2 is not H;
or R1 and R2 together with the nitrogen and carbon atoms to which they are attached form a 3-7 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from hydroxyl, ═O, C1-C6 alkyl and C1-C6 haloalkyl.
R3 is selected from halogen, hydroxyl, —NR14R15, or any one of the following groups
Figure US20160264547A1-20160915-C00193
R5 and R6 are independently selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 cyanoalkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy and C1-C6 alkoxy-C1-C6 alkyl, or R5 and R6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C1-C6 alkyl;
R7 and R8 are independently selected from hydrogen, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, a C3-C6 cycloalkyl group optionally substituted with 1 to 3 groups independently selected from C1-C3 alkyl, C2-C4 alkenyl, C1-C3 haloalkyl and C2-C4 haloalkenyl, a C5-C10 heterocyclyl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C1-C3 alkyl, C1-C3 haloalkyl and C1-C3 alkoxy, a C5-C10 heteroaryl group which can be mono- or bicyclic comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with 1 to 3 groups independently selected from halogen, C1-C3 alkyl, C1-C3 haloalkyl and C1-C3 alkoxy, a C6-C10 aryl group optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy, a C6-C10 arylalkyl group optionally substituted with 1 to 3 groups independently selected from C1-C4 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and the group —OC(O)—C1-C4 alkyl, or R7 and R8 together with the atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C1-C6 alkyl;
R9 is selected from C1-C6 alkyl and benzyl optionally substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy;
R14 and R15 are independently selected from hydrogen, C1-C20 alkyl, C1-C20 haloalkyl, C1-C20 alkoxy, C1-C20 alkoxy-C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl and benzyl, or R14 and R15 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and C1-C6 alkyl;
or an N-oxide or salt form thereof.
2. The compound of claim 1, wherein X is O.
3. The compound of claim, wherein Ra is hydrogen.
4. The compound of claim 1, wherein Rd is hydrogen.
5. The compound of claim 1, wherein R1 is selected from C1-C4 alkyl, C1-C4 alkoxy and C1-C4 haloalkyl.
6. (canceled)
7. (canceled)
8. The compound of claim 1, wherein R2 is selected from C1-C3 alkyl, C1-C3 alkoxy and C1-C3 alkoxy-C1-C3 alkyl.
9. (canceled)
10. The compound of claim 1, wherein R3 is selected from hydroxyl, halogen, C1-C6 alkylcarbonyloxy, C1-C6 alkoxycarbonyloxy and aryloxycarbonyloxy wherein the aryl group may be substituted with 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy.
11. (canceled)
12. (canceled)
13. The compound of claim 1, wherein Rb is selected from hydrogen, halogen, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 alkoxy-C1-C3 alkyl, heteroaryl substituted by halogen or methoxy and aryl substituted by halogen or methoxy.
14. (canceled)
15. (canceled)
16. The compound of claim 1, wherein Rc is selected from C1-C8 alkyl, C1-C6 haloalkyl, C2-C8 alkenyl, C1-C6 cyanoalkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and C1-C3 alkyl.
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. The compound of claim 1 wherein Rb is selected from R5R6NC(O)— and R5C(O)N(R6)— and Rc is selected from hydrogen, halo, C1-C4 alkyl and C1-C4 haloalkyl.
22. (canceled)
23. The compound of claim 1, wherein Rb is selected from halo and C1-C4 alkyl and Rc is C1-C3 haloalkyl.
24. (canceled)
25. A herbicidal composition comprising a compound of formula I as defined in claim 1 together with at least one agriculturally acceptable adjuvant or diluent.
26. A composition according to claim 25 which comprises a further herbicide in addition to the compound of formula I.
27. A composition according to claim 24 which comprises a safener.
28. (canceled)
29. A method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful plants or to the locus of said useful plants, a compound of formula I as defined in claim 1.
US15/027,768 2013-10-07 2014-10-02 Herbicidal Compounds Abandoned US20160264547A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN2977/DEL/2013 2013-10-07
PCT/EP2014/071167 WO2015052076A1 (en) 2013-10-07 2014-10-02 Herbicidal compounds
IN2977DE2013 IN2013DE02977A (en) 2013-10-07 2014-10-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/071167 A-371-Of-International WO2015052076A1 (en) 2013-10-07 2014-10-02 Herbicidal compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/222,900 Continuation US11608323B2 (en) 2013-10-07 2018-12-17 Herbicidal compounds

Publications (1)

Publication Number Publication Date
US20160264547A1 true US20160264547A1 (en) 2016-09-15

Family

ID=51659651

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/027,768 Abandoned US20160264547A1 (en) 2013-10-07 2014-10-02 Herbicidal Compounds
US16/222,900 Active 2035-09-08 US11608323B2 (en) 2013-10-07 2018-12-17 Herbicidal compounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/222,900 Active 2035-09-08 US11608323B2 (en) 2013-10-07 2018-12-17 Herbicidal compounds

Country Status (17)

Country Link
US (2) US20160264547A1 (en)
EP (1) EP3054773B1 (en)
JP (1) JP6419171B2 (en)
KR (1) KR20160067950A (en)
CN (2) CN105636439A (en)
AR (1) AR097936A1 (en)
AU (1) AU2014333967B2 (en)
BR (1) BR112016007356B1 (en)
CA (1) CA2924243C (en)
EA (1) EA032393B1 (en)
ES (1) ES2910437T3 (en)
HK (1) HK1222980A1 (en)
IN (1) IN2013DE02977A (en)
UA (1) UA118035C2 (en)
UY (1) UY35769A (en)
WO (1) WO2015052076A1 (en)
ZA (1) ZA201601788B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006358A1 (en) * 2017-06-30 2019-01-03 Syngenta Participations Ag Herbicidal composition and method of use thereof
US20220159956A1 (en) * 2019-02-15 2022-05-26 Syngenta Crop Protection Ag Herbicidal compositions

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201505852D0 (en) * 2015-04-07 2015-05-20 Syngenta Participations Ag Herbicidal mixtures
JP2019514847A (en) * 2016-03-23 2019-06-06 シンジェンタ パーティシペーションズ アーゲー Herbicide
GB201604970D0 (en) * 2016-03-23 2016-05-04 Syngenta Participations Ag Improvements in or relating to organic compounds
GB201604969D0 (en) * 2016-03-23 2016-05-04 Syngenta Participations Ag Improvements in or relating to organic compounds
AR108107A1 (en) * 2016-04-29 2018-07-18 Syngenta Participations Ag PROCESS TO PREPARE HERBICIDE COMPOUNDS
BR112018071748A2 (en) * 2016-04-29 2019-02-19 Syngenta Participations Ag process for the preparation of herbicidal compounds
WO2017214442A1 (en) 2016-06-08 2017-12-14 President And Fellows Of Harvard College Methods and compositions for reducing tactile dysfunction and anxiety associated with autism spectrum disorder, rett syndrome, and fragile x syndrome
GB201612748D0 (en) 2016-07-22 2016-09-07 Syngenta Participations Ag Method of controlling plants
JP2019526547A (en) 2016-08-11 2019-09-19 バイエル・クロップサイエンス・アクチェンゲゼルシャフト Substituted pyrazolinyl derivatives, methods of making them, and their use as herbicides and / or plant growth regulators
GB201617050D0 (en) * 2016-10-07 2016-11-23 Syngenta Participations Ag Herbicidal mixtures
GB201617062D0 (en) * 2016-10-07 2016-11-23 Syngenta Participations Ag Herbicidal mixtures
GB201715324D0 (en) 2017-09-22 2017-11-08 Syngenta Participations Ag Improvements in or relating to organic compounds
US11434244B2 (en) 2018-05-29 2022-09-06 President And Fellows Of Harvard College Compositions and methods for reducing tactile dysfunction, anxiety, and social impairment
GB201818117D0 (en) 2018-11-06 2018-12-19 Syngenta Participations Ag Enantioselective process
GB201901559D0 (en) * 2019-02-05 2019-03-27 Syngenta Crop Protection Ag Herbicidal compositions
CN113045548B (en) * 2020-07-15 2022-01-28 周银平 Compound, weeding composition and application thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2194369B1 (en) * 1972-08-04 1980-04-25 Roussel Uclaf
CA1031349A (en) * 1973-12-26 1978-05-16 John Krenzer Thiadiazolylimidazolidinones
US4130714A (en) * 1977-05-23 1978-12-19 Pfizer Inc. Hydantoin therapeutic agents
US4426527A (en) * 1982-02-12 1984-01-17 Ppg Industries, Inc. 3-[5- Or 3-substituted-1,2,4-oxadiazol-3- or -5-yl]-1-substituted-4-substituted-5-substituted or unsubstituted-2-imidazolidinones
JPS608290A (en) * 1983-06-27 1985-01-17 ピーピージー・インダストリィズ・インコーポレイテッド 3-(5- or 3-substituted-1,2,4-oxadiazol-3-or -5-yl)-1-substituted-4-substituted-5-substituted or nonsubstituted-2-imidazolidinone
EP0133310B1 (en) * 1983-08-02 1988-09-14 American Cyanamid Company Imidazolidinones, and imidazolidinethiones, process for the preparation thereof, and use of said compounds as herbicidal agents
EP0169050A3 (en) * 1984-07-17 1986-12-10 Eli Lilly And Company Pyridazinylimidazolidinone compounds
US4604127A (en) * 1984-07-17 1986-08-05 Eli Lilly And Company Herbicidal pyridazinylimidazolidinone compounds
US4600430A (en) * 1985-02-22 1986-07-15 Eli Lilly And Company Pyridinylimidazolidinone compounds
DE3604042A1 (en) * 1986-02-08 1987-08-13 Hoechst Ag IMIDAZOLIDIN (THI) ON DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN PLANT PROTECTION
FI90869C (en) * 1986-11-14 1994-04-11 Tanabe Seiyaku Co Process for the preparation of imidazolidinone derivatives useful as a medicament
BR9510107A (en) * 1994-12-27 1997-11-25 Sagami Chem Res Hydantoin derivatives, processes for preparing them and herbicides containing said derivatives as an active ingredient
EP1966201A1 (en) * 2005-11-28 2008-09-10 Mallinckrodt, Inc. Improved method of preparation for imidazolepyridines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Beckie et al., Weed Technology (2009), pp. 363-370. *
Davies, Pesticide Outlook (2001), pp. 10-15. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006358A1 (en) * 2017-06-30 2019-01-03 Syngenta Participations Ag Herbicidal composition and method of use thereof
US20220159956A1 (en) * 2019-02-15 2022-05-26 Syngenta Crop Protection Ag Herbicidal compositions

Also Published As

Publication number Publication date
BR112016007356B1 (en) 2021-01-05
CN111961033A (en) 2020-11-20
ES2910437T3 (en) 2022-05-12
BR112016007356A2 (en) 2017-09-12
CA2924243A1 (en) 2015-04-16
US11608323B2 (en) 2023-03-21
EP3054773B1 (en) 2022-01-26
WO2015052076A1 (en) 2015-04-16
EP3054773A1 (en) 2016-08-17
AR097936A1 (en) 2016-04-20
IN2013DE02977A (en) 2015-04-10
AU2014333967B2 (en) 2018-06-21
UY35769A (en) 2015-05-29
JP2016534037A (en) 2016-11-04
AU2014333967A1 (en) 2016-03-31
ZA201601788B (en) 2020-09-30
UA118035C2 (en) 2018-11-12
US20190112288A1 (en) 2019-04-18
JP6419171B2 (en) 2018-11-07
EA032393B1 (en) 2019-05-31
KR20160067950A (en) 2016-06-14
CN105636439A (en) 2016-06-01
EA201600317A1 (en) 2016-09-30
CA2924243C (en) 2023-01-17
HK1222980A1 (en) 2017-07-21

Similar Documents

Publication Publication Date Title
US11608323B2 (en) Herbicidal compounds
EP3060558B1 (en) Pyridinylimidazolones as herbicides
US9751865B2 (en) Dihydro-hydantoin derivatives with herbicidal activity
US10499640B2 (en) Herbicidal compounds
EP3154965B1 (en) Herbicidal compounds
US9936701B2 (en) Herbicidal compounds
US10098351B2 (en) Herbicidal compounds
WO2016071360A1 (en) Herbicidal pyrrolone derivatives
US20160168126A1 (en) Chemical compounds
US20170339954A1 (en) Herbicidal compounds
EP3036232B1 (en) Herbicidal compounds
US9723840B2 (en) 1-(pyridazin-3-yl)-imidazolidin-2-one derivatives as herbicides
AU2014345555A1 (en) 1 -(pyridazin-3-yl)-imidazolidin-2-one derivatives as herbicides

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNGENTA LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORRIS, JAMES ALAN;BOEHMER, JUTTA ELISABETH;SONAWANE, RAVINDRA;AND OTHERS;REEL/FRAME:039725/0135

Effective date: 20141107

AS Assignment

Owner name: SYNGENTA PARTICIPATIONS AG, SWITZERLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 039725 FRAME: 0135. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MORRIS, JAMES ALAN;BOEHMER, JUTTA ELISABETH;SONAWANE, RAVINDRA;AND OTHERS;REEL/FRAME:044205/0033

Effective date: 20141107

Owner name: SYNGENTA LIMITED, UNITED KINGDOM

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED AT REEL: 039725 FRAME: 0135. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MORRIS, JAMES ALAN;BOEHMER, JUTTA ELISABETH;SONAWANE, RAVINDRA;AND OTHERS;REEL/FRAME:044205/0033

Effective date: 20141107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION