US20160107779A1 - Device and Method for Unfolding Packaging Carton Sleeves - Google Patents

Device and Method for Unfolding Packaging Carton Sleeves Download PDF

Info

Publication number
US20160107779A1
US20160107779A1 US14/892,048 US201414892048A US2016107779A1 US 20160107779 A1 US20160107779 A1 US 20160107779A1 US 201414892048 A US201414892048 A US 201414892048A US 2016107779 A1 US2016107779 A1 US 2016107779A1
Authority
US
United States
Prior art keywords
carton
carton sleeves
conveyor belt
sleeves
suction members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/892,048
Other languages
English (en)
Inventor
Immo Weidner
Jurgen BLÜMEL
Thomas Vetten
Franco Zagar
Bernd VON BIRGELEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIG Combibloc Services AG
Original Assignee
SIG Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIG Technology AG filed Critical SIG Technology AG
Assigned to SIG TECHNOLOGY AG reassignment SIG TECHNOLOGY AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLUMEL, JURGEN, VON BIRGELEN, Bernd, ZAGAR, Franco, WEIDNER, Immo, VETTEN, THOMAS
Publication of US20160107779A1 publication Critical patent/US20160107779A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/26Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks
    • B65B43/28Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks by grippers co-operating with fixed supports
    • B65B43/285Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks by grippers co-operating with fixed supports specially adapted for boxes, cartons or carton blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/12Feeding flexible bags or carton blanks in flat or collapsed state; Feeding flat bags connected to form a series or chain
    • B65B43/14Feeding individual bags or carton blanks from piles or magazines
    • B65B43/16Feeding individual bags or carton blanks from piles or magazines by grippers
    • B65B43/18Feeding individual bags or carton blanks from piles or magazines by grippers by suction-operated grippers
    • B65B43/185Feeding individual bags or carton blanks from piles or magazines by grippers by suction-operated grippers specially adapted for carton blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/12Feeding flexible bags or carton blanks in flat or collapsed state; Feeding flat bags connected to form a series or chain
    • B65B43/14Feeding individual bags or carton blanks from piles or magazines
    • B65B43/20Feeding individual bags or carton blanks from piles or magazines by reciprocating or oscillating pushers
    • B65B43/205Feeding individual bags or carton blanks from piles or magazines by reciprocating or oscillating pushers specially adapted for carton blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/26Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks
    • B65B43/32Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks by external pressure diagonally applied
    • B65B43/325Opening or distending bags; Opening, erecting, or setting-up boxes, cartons, or carton blanks by external pressure diagonally applied to boxes, cartons or carton blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/42Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation
    • B65B43/52Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation using roller-ways or endless conveyors

Definitions

  • the invention relates to a device for unfolding packaging carton sleeves having a mechanism for providing the flat carton sleeves, a transfer unit, which can be rotated about a rotational axis and which has at least one suction member for adhering to the carton sleeves by suction, wherein the suction member is at a distance from the rotational axis, and a conveyor belt with at least one pocket for receiving the carton sleeves.
  • the invention also relates to a method for unfolding packaging carton sleeves comprising the following steps: provision of the carton sleeves by a mechanism, adhesion to the carton sleeves by suction and advancement of said carton sleeves by a transfer unit rotating about a rotational axis having at least one suction member, and unfolding of the carton sleeves by inserting said carton sleeves into a pocket attached to a conveyor belt.
  • An unfolding device of this type is known from EP 0 112 605 A2.
  • Suction members adhere to the flat carton sleeves by suction from both sides.
  • the opposing suction members are then moved apart from each other and consequently the opposing sides of the carton sleeve are pulled apart and the carton sleeve is unfolded.
  • the solution described in EP 0 112 605 A2 has the disadvantage that the design of the unfolding machine is highly complex since suction members are intended to adhere to the carton sleeve by suction from both sides, which suction members can be moved towards and away from each other.
  • a further option for unfolding flat carton sleeves is known from WO 96/23655 A1.
  • the carton sleeves are delivered into pockets on a conveyor in a flat state.
  • a rotatable arm with a suction member is attached to each pocket, which is intended to unfold the carton sleeve from the flat state into the tubular state.
  • This unfolding device also has the disadvantage of a complex design, since a rotatable arm with a suction element has to be provided at each pocket.
  • Separate unfolding devices can be dispensed with, however, if a relative speed, which occurs, for example, when transferring carton sleeves from a first station to a second station of a filling line, is used to unfold the carton sleeves.
  • a relative speed which occurs, for example, when transferring carton sleeves from a first station to a second station of a filling line, is used to unfold the carton sleeves.
  • the carton sleeve ‘abuts’ a component part of the second station in the line whilst said sleeve is still being fed from the first station in the line, which conveys the sleeve further, and is folded in this manner.
  • a device and method of this type for folding, filling and sealing cartons is known from U.S. Pat. No. 3,060,654.
  • the carton sleeves are unfolded by a rotating unit, which withdraws the flat cartons from a magazine and transfers them to a conveyor belt. This step is illustrated in particular in FIGS. 15 a to 15 f .
  • the carton sleeves are unfolded upon transfer from the rotating unit to the conveyor belt and clamped between a pair of L-shaped lugs which are attached to the conveyor belt.
  • One leg of the L-shaped lug is attached to the conveyor belt; the other leg extends beyond the conveyor belt and is intended to restrain the carton at the side.
  • a hook is provided at one end of the protruding leg, which is intended to hold the carton sleeve in its position between both lugs.
  • the rotating unit has arms with suction heads, which, in addition to a rotational movement, also perform a radial movement in the direction of the conveyor belt in order to transfer the carton sleeves to the conveyor belt. Insertion of the carton sleeves between both L-shaped lugs is made possible by inserting the carton sleeves at a point where the conveyor belt runs in a curved line and consequently the protruding legs of the L-shaped lug do not run parallel, but are spread apart.
  • the conveyor belt travels in a straight line again after the carton sleeves have been inserted, wherein the spread protruding legs of the lugs return to their usual position and the carton sleeve is clamped between the protruding legs of the lugs that now run parallel.
  • the invention is therefore based on the problem of refining and developing the device referred to at the start and presented in detail above, as well as the method also referred to at the start and presented in detail above, such that reliable unfolding and transfer of the carton sleeves to the conveyor belt is possible even with a simple design and a simple procedure.
  • the transfer unit can be designed in a particularly uncomplicated and cost-effective way.
  • the transfer unit may have a cylindrical drum as the main component. More particularly, it is not necessary to mount the suction members so that they are moveable in a radial direction. This facilitates the mounting and/or attachment of the suction members to the transfer unit considerably. Supplying the suction members with negative pressure is also facilitated as a result of the unchanging position of the suction members.
  • the transfer unit in a device according to the invention is characterised by particularly strong robustness since moving parts can largely be dispensed with.
  • the omission of moving parts also has advantages in terms of (food) hygiene since the lubrication of said parts is not applicable.
  • the conveyor belt runs in a straight line in the region of the device. Insertion of the carton sleeves into the pockets attached to the conveyor belt is facilitated by the conveyor belt running in a straight line as the pockets are located sufficiently close to the transfer unit for a longer section than when the belt runs in a curved line. In addition, there are no centrifugal forces when the belt runs in a straight line which is particularly advantageous at high operating speeds. However, when the conveyor belt leaves the region of the device, it is no longer necessary for the conveyor belt to run in a straight line; the conveyor belt can also be diverted in this region. Alternatively, provision can be made for the conveyor belt to run in a curved direction in the region of the device.
  • the conveyor belt may run along a circular track in the region of the device.
  • the arrangement of the device in a curved or circular section of the conveyor belt has the advantage that those regions into which the conveyor belt is diverted can also be used. This makes a particularly compact design of a system for unfolding, filling and sealing carton sleeves possible.
  • a further design of the invention makes provision that the mechanism has at least one movably mounted finger with a lug for separating the flat carton sleeves.
  • the height of said lug preferably corresponds to the height of a flat folded carton.
  • the finger can be moved forwards and backwards. This linear movement in a longitudinal direction can be intersected by a movement in a transverse direction and consequently overall, the finger moves along an approximately oval trajectory.
  • This design means that that the finger engages with precisely one carton sleeve in each movement cycle with the lug and pushes said carton sleeve away from the stack.
  • the finger can have a precisely defined travel and consequently the carton sleeve removed from the stack can be advanced into a desired position where it can be adhered by suction by the suction members.
  • the place where the suction members engage with the carton sleeves can be changed by varying the travel.
  • the travel can be in the region of between 1 cm and 4 cm, more particularly between 2 cm and 3 cm.
  • the mechanism has a hopper for channelling the carton sleeves, the central plane of which has an offset in relation to the rotational axis of the transfer unit.
  • the length of the offset may be in the region of between 1 cm and 6 cm, for example, more particularly between 2 cm and 4 cm.
  • the offset means that the suction members do not adhere to the carton sleeves by suction centrally, but on their edge regions. This facilitates the insertion of the carton sleeves into the pockets since the carton sleeves protrude particularly far from the suction members when they are adhered by suction on the edge regions thereof.
  • the transfer unit may have more than one suction member. If several suction members are present on the transfer unit, it is advantageous to arrange all suction members at the same radial distance from the rotational axis of the transfer unit in order to be able to adhere to the carton sleeves by suction reliably.
  • the suction members may be arranged in a row such that each carton sleeve is adhered to by suction by a plurality of suction members at the same time.
  • a plurality of rows of suction members may also be provided on the transfer unit. In this manner, a plurality of carton sleeves can be adhered to by suction and unfolded with each rotation of the transfer unit.
  • the rows of suction members are uniformly arranged over the area of the transfer unit at identical distances from each other.
  • the suction members are inclined at an angle to a tangential plane touching the circular track.
  • the angle may be in the region of between 1° and 10°, for example, more particularly between 3° and 6°.
  • the suction members are inclined towards the rotational direction of the transfer unit. This inclination has the advantage that the suction members do not remain hanging on the carton sleeves stored in the magazine.
  • the pockets have two rigid side walls.
  • a rigid back wall can also be provided.
  • a rigid wall is understood as being a wall, which is resistant to bending and more particularly, cannot be tilted or folded down. Rigid side walls offer a better stop point for the carton sleeves than flexible or expandable side walls, which facilitates the unfolding of the carton sleeves.
  • a rigid back wall provides a good attachment option for the side walls.
  • the side walls of the pockets protrude vertically from the back wall and/or the conveyor belt.
  • the unfolding of the carton sleeves is supported by the vertical line of the side walls as the carton sleeves are also intended to be at a 90° angle in the unfolded state.
  • a further teaching of the invention makes the provision that the pockets have at least one spring member for clamping the carton sleeve in a pocket.
  • the flexible spring member allows particularly reliable securing of the carton sleeve inside the pocket.
  • the spring member can be pushed back by the carton sleeve or bent to the side in order to insert a carton sleeve into the pockets.
  • the spring member ensures the secure retention of the carton sleeves as rigid pockets themselves do not have a strong clamping effect. In rigid pockets without a spring member, the clamping effect therefore has to be applied solely through the elasticity of the carton sleeve which has proven less reliable than the use of spring members, especially at high operating speeds.
  • the end of the spring member is configured in the shape of a hook.
  • the hook shape enables particularly good engagement behind the carton sleeves and reliable retention inside the pocket.
  • the minimum distance between the circular track of the suction members and the back wall of the pocket is shorter than the length of the side walls of the pockets.
  • This arrangement means that the suction members are directed very close to the side walls of a pocket and even ‘dip into’ a pocket in the region between both side walls. This ensures complete unfolding of the carton sleeves as said sleeves are pressed deep into the pockets and the forces required for unfolding are introduced to the carton sleeves solely by the suction members and the pocket.
  • the depth to which the suction members ‘dip into’ the pockets may be in the region of between 1 mm and 10 mm depending on the carton sleeve format.
  • the problem described above is solved in a method according to the preamble of claim 14 in that the transfer unit channels the carton sleeves along a circular track at a constant distance between the suction members and the rotational axis.
  • guiding or channeling the carton sleeves along a circular track has the advantage of being a particularly simple procedure. More particularly there is no need for the carton sleeves to be moved in a radial direction.
  • the transfer unit rotates at an angular velocity that is always greater than zero.
  • the transfer unit should therefore not be stopped at any time as would be the case in intermittent operation.
  • the angular velocity may fluctuate around an average value, for example, wherein the characteristics of the angular velocity are repeated in the same manner for each carton sleeve.
  • a cyclical variation of the angular velocity enables optimisation of the insertion of the carton sleeves into the pockets.
  • the transfer unit can also rotate at a constant angular velocity.
  • a constant angular velocity has the advantage of a particularly efficient process. More particularly, no additional energy needs to be used to speed up and slow down the transfer unit.
  • a constant angular velocity also has a positive effect on the useful life of the machine, whereas operation at variable angular velocity or even intermittent operation generally shortens useful life.
  • the conveyor belt moves at a speed which is always greater than zero.
  • the conveyor belt should not be stopped at any time either.
  • a cyclical variation of the speed for example a fluctuation around an average value, is possible.
  • the characteristics of the speed must also be repeated here in the same manner for each carton sleeve.
  • the conveyor belt can also move at a constant speed. Both the amount and the direction of speed of the conveyor belt may be constant.
  • the speed of the conveyor belt corresponds more or less to the track speed at which the suction members are guided along the circular track.
  • the carton sleeves are separated in the mechanism by a movably mounted finger, which has a travel in the range of between 1 cm and 4 cm.
  • the travel in the direction of a carton sleeve corresponds to the distance which an unstacked carton sleeve is advanced.
  • the engagement position of the suction members in relation to the carton sleeves can be changed by varying the travel.
  • the angle of rotation ⁇ starts at 0° in the region of the magazine and increases during the course of rotation of the transfer unit. Negative pressure can therefore be built up to 10° prior to reaching the magazine.
  • the angle of rotation is preferably approx. 180°.
  • Provision is made in a further embodiment of the method that the suction members dissipate the negative pressure in an angular range of 125° ⁇ 145°. Provision can be made in particular that the suction members dissipate the negative pressure again in an angular range of approx. ⁇ 135°.
  • the negative pressure should be dissipated in order to release the carton sleeve. This occurs, for example, by ending the suction process.
  • the negative pressure should be dissipated after the carton sleeve has contact with the pocket, however, before the suction members have reached their minimum distance from the conveyor belt.
  • the negative pressure should therefore be dissipated again in the region of between 125° (i.e. 55° prior to reaching the minimum distance from the conveyor belt) and 145° (i.e. 35° prior to reaching the minimum distance from the conveyor belt).
  • a different rotational angular range is produced in a corresponding manner for dissipating the negative pressure.
  • the suction members adhere to the carton sleeves by suction at a distance from their centre, which is in the range between 0 cm and 6 cm, in particular between 1 cm and 3 cm.
  • the distance to the centre may be between 10% and 40% of the width of the carton sleeves.
  • FIG. 1A shows a blank for folding a carton sleeve known from the prior art
  • FIG. 1B shows a carton sleeve in a flat folded state known from the prior art, which is formed from the blank shown in FIG. 1A ,
  • FIG. 1C shows the carton sleeve from FIG. 1B in an unfolded state
  • FIG. 2 shows a top view of a device according to the invention for unfolding carton sleeves
  • FIG. 3 shows a system known from the prior art for filling packagings with foodstuffs.
  • FIG. 1A shows a blank 1 known from the prior art from which a carton sleeve can be formed.
  • the blank 1 may comprise several layers of different materials, for example, paper, cardboard, plastic or metal, more particularly aluminium.
  • the blank 1 has a plurality of folding lines 2 which are intended to facilitate the folding of blank 1 and divide the blank 1 into several panels.
  • the blank 1 can be divided into a first side panel 3 , a second side panel 4 , a front panel 5 , a rear panel 6 , a sealing panel 7 , four base panels 8 and four gable panels 9 .
  • a carton sleeve can be formed from the blank 1 by folding the blank 1 such that the sealing panel 7 can be attached to the front panel 5 , more particularly fused.
  • FIG. 1B shows a carton sleeve 10 in a flat folded state known from the prior art.
  • the features already described in connection with FIG. 1A are provided with corresponding reference signs in FIG. 1B .
  • the carton sleeve 10 is formed from the blank 1 shown in FIG. 1A .
  • the blank 1 has been folded for this purpose such that the sealing panel 7 and the front panel 5 are overlapping and consequently both panels can be fused together flat. This results in a longitudinal seam 11 .
  • the carton sleeve 10 is shown in a flat folded state in FIG. 1B . In said state, a side panel 4 (hidden in FIG. 1B ) lies underneath the front panel 5 whereas the other side panel 3 lies on top of the rear panel 6 (hidden in FIG. 1B ).
  • a plurality of carton sleeves 10 can be stacked in the flat folded state in a particularly space saving manner.
  • the carton sleeves 10 are therefore often stacked at the place where they are produced and transported stack by stack to the place where they are filled.
  • the carton sleeves are not unstacked and unfolded in order to be filled with content, for example foodstuffs, until they arrive here.
  • FIG. 1C shows the carton sleeve 10 from FIG. 1B in an unfolded state.
  • the unfolded state is understood as a configuration where an angle of approx. 90° is formed between both respectively adjacent panels 3 , 4 , 5 , 6 , and consequently the carton sleeve 10 has a square or rectangular cross-section depending on the shape of said panels. Accordingly, the opposite side panels, 3 , 4 , are arranged parallel to each other. The same applies to the front panel 5 and the rear panel 6 .
  • the carton sleeve 10 used may have different dimensions (‘formats’).
  • the width of the side panels 3 , 4 may be in the region of between 30 mm and 80 mm.
  • the width of the front panel 5 and the rear panel 6 may be in the region of between 40 mm and 120 mm.
  • Flat folded carton sleeves 10 therefore have a width in the region of between 70 mm (30 mm+40 mm) and 200 mm (80 mm+120 mm).
  • the height of the side panels 3 , 4 and the front and rear panels 5 , 6 may be in the region of between 50 mm and 250 mm.
  • a filled and sealed carton sleeve with a filling volume of 80 ml will have external dimensions of 47 mm ⁇ 32.5 mm 55 mm.
  • a carton with a filling volume of 2000 ml will have external dimensions of 114 mm ⁇ 74 mm ⁇ 245 mm.
  • FIG. 2 shows a top view of a device 12 according to the invention for unfolding carton sleeves 10 .
  • the device 12 comprises a mechanism 13 for providing, in particular for separating flat carton sleeves 10 , a transfer unit 14 and a conveyor belt 15 .
  • the mechanism 13 which is also described as ‘magazine’, has a housing 16 with a hopper 17 , into which a stack of flat carton sleeves 10 can be placed.
  • the hopper 17 has a central plane 18 , which runs centrally through the carton sleeves 10 placed into said hopper 17 .
  • the central plane 18 may be aligned vertically in relation to the conveyor belt 15 .
  • the central plane 18 may also be inclined in relation to said vertical.
  • the mechanism 13 also has a plurality of fingers 19 arranged in a row one behind the other, each of which has a lug 20 . The height of the lug 20 more or less corresponds to the height of a flat folded carton sleeve 10 .
  • the fingers 19 perform a cyclical movement to unstack the carton sleeves 10 , the travel 21 of which movement is shown by an arrow in FIG. 2 .
  • the backwards and forwards movement of the fingers 19 cause the fingers 19 to push with their lugs 20 a carton sleeve 10 out of the mechanism 13 in each movement cycle through an opening 22 from where said carton sleeves can be transferred to the transfer unit 14 .
  • the remaining carton sleeves 10 are fed constantly by a force F directed towards the fingers 19 and consequently continuous unstacking and separation of the carton sleeves 10 is ensured.
  • the transfer unit 14 comprises a drum 23 onto which a plurality of suction members 24 are attached.
  • the drum 23 shown in FIG. 2 and preferred in this respect has a cylindrical shape and thus a circular cross-sectional area.
  • the four rows of suction members 24 are arranged on a circular track 25 at a constant distance 26 or radius respectively, wherein the circular track 25 runs through the central points of the suction members 24 .
  • the suction members 24 are fixed in position and consequently all suction members 24 are always at the same, constant distance from a rotational axis 27 about which the drum 23 rotates at an angular velocity w and an angle of rotation cp.
  • the mechanism 13 and the transfer unit 14 are arranged such that an offset 28 is created between the rotational axis 27 of the transfer unit 14 and the central plane 18 of the mechanism 13 .
  • the travel 21 of the fingers 19 and the offset 28 causes the suction members 24 not to adhere to the carton sleeves 10 by suction centrally, but on the edges thereof.
  • the suction members 24 are preferably slightly inclined and consequently the edges of the suction members 24 lie on a plane 29 , which is inclined at an angle a in relation to the tangential plane 30 of the circular track 25 . In this manner the suction members 24 are inclined slightly towards the direction of rotation of the drum 23 and are in a better position to adhere to the carton sleeves 10 by suction.
  • the conveyor belt 15 runs in a straight line in the section shown in FIG. 2 and has a speed v.
  • the conveyor belt 15 may be a belt or a chain.
  • Several pockets 31 are attached to the conveyor belt 15 which serve to receive the carton sleeves 10 .
  • the pockets 31 comprise a back wall 32 and two side walls 33 .
  • the back wall 32 runs parallel to the conveyor belt 15 and is connected thereto. Both side walls 33 protrude vertically from the back wall 32 ; they are therefore arranged parallel to one another.
  • the rear wall 32 and both side walls 33 are made of metal and have no hinges or similar and consequently a rigid pocket 31 is involved here.
  • the pockets 31 have two spring members 34 , wherein a spring member 34 is arranged preferably on each side wall 33 .
  • the spring members 34 are made of an elastic material, for example spring steel or flexible plastic, and have a protruding end 35 which is configured in the shape of a hook.
  • the hook shape allows the spring members 34 to retain or firmly clamp the carton sleeves 10 in place in the pockets 31 .
  • the pockets 31 are arranged at a constant distance from each other, which is also described as ‘pass’.
  • Said distance 36 corresponds approximately to the length of an arc segment which runs along the circular track 25 between two adjacent suction members; in the case of four suction members 24 , the distance 36 corresponds to approx. one quarter of the circumference of the circular track 25 .
  • the transfer unit 14 is arranged opposite the conveyor belt 15 such that there is a minimum distance 37 between the circular track 25 of the suction members 24 and the back wall 32 of the pockets 31 , which is slightly shorter than the length of the side walls 33 of the pockets 31 , and consequently the suction members 24 ‘dip into’ the pockets in the region between both side walls 33 of the pocket to a depth 37 ′. Collisions can be prevented in that recesses are provided in the side walls 33 of the pockets 31 and in the spring members 34 through which the suction members 24 can be guided.
  • the transfer unit 14 and the conveyor belt 15 are arranged relative to each other such that an edge 38 of the carton sleeve 10 , lying in the direction of rotation as seen from the front, abuts the pocket 31 first.
  • a corner between the back wall 32 and one of the side walls 33 of the pocket 31 serves as a stop for the edge 38 .
  • forces are only introduced to the carton sleeve 10 in two places: firstly, in the region of the suction member 24 , which channels the carton sleeve 10 , and secondly, on the front edge 38 of the carton sleeve 10 . Both these places are spaced at a distance 39 apart.
  • a specific arrangement of the transfer unit 14 relative to the conveyor belt 15 and specific movement speeds and movement directions of transfer unit 14 and conveyor belt 15 achieves the result that the distance 39 is continuously reduced during the insertion of the carton sleeve 10 into the pocket 31 .
  • two reciprocally aligned forces 40 , 41 are introduced to the carton sleeve 10 , which lead to the unfolding of the carton sleeve 10 .
  • the carton sleeves 10 are unfolded solely as a result of the effect of the suction members 24 and the pocket 31 on the carton sleeve 10 ; separate devices for unfolding are not, however, required.
  • FIG. 3 shows a system 43 for filling cartons with foodstuffs known from the prior art (EP 0 112 605 A2).
  • the individual stations of the system 43 are only shown schematically in FIG. 3 as FIG. 3 is only intended to serve as an illustration of a potential area of application for a device 12 according to the invention for unfolding carton sleeves 10 .
  • the carton sleeves 10 (not shown in FIG. 3 ) are unfolded by a station 44 and transferred to the pockets 31 on the conveyor belt 15 .
  • the station 44 can be replaced by the device 12 according to the invention.
  • the system 43 comprises a first carousel 45 in which the gable panels 9 of the carton sleeves 10 are pre-folded.
  • the carton sleeves 10 then pass through a station 46 in which the base panels 8 of the carton sleeves 10 are pre-folded. After pre-folding, the base panels 8 of the carton sleeves 10 are folded together and sealed at a station 47 .
  • the conveyor belt 15 is then guided around a second carousel 48 in which the carton sleeves 10 sealed on the bottom side are filled with foodstuffs.
  • the gable panels 9 of the carton sleeves 10 are folded together and sealed.
  • the now filled and sealed carton sleeves 10 are then removed from the pockets 31 of the conveyor belt 15 at a further station 50 and discharged from the system 43 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
US14/892,048 2013-05-23 2014-03-25 Device and Method for Unfolding Packaging Carton Sleeves Abandoned US20160107779A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013105260.6A DE102013105260A1 (de) 2013-05-23 2013-05-23 Vorrichtung und Verfahren zum Auffalten von Packungsmänteln
DE102013105260.6 2013-05-23
PCT/EP2014/055922 WO2014187592A1 (de) 2013-05-23 2014-03-25 Vorrichtung und verfahren zum auffalten von packungsmänteln

Publications (1)

Publication Number Publication Date
US20160107779A1 true US20160107779A1 (en) 2016-04-21

Family

ID=50346026

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/892,048 Abandoned US20160107779A1 (en) 2013-05-23 2014-03-25 Device and Method for Unfolding Packaging Carton Sleeves

Country Status (12)

Country Link
US (1) US20160107779A1 (es)
EP (1) EP2999632A1 (es)
JP (1) JP2016522124A (es)
CN (1) CN105246784A (es)
AU (1) AU2014270728A1 (es)
BR (1) BR112015029244A2 (es)
DE (1) DE102013105260A1 (es)
MX (1) MX2015015631A (es)
RU (1) RU2015155246A (es)
TW (1) TW201446595A (es)
WO (1) WO2014187592A1 (es)
ZA (1) ZA201508205B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919251B2 (en) * 2015-10-16 2021-02-16 I.M.A. Industria Macchine Automatiche S.P.A. Operating group for a cartoning machine, cartoning machine and method for forming a carton

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20152064A1 (it) * 2015-07-10 2017-01-10 Gd Spa Pacchetto rigido con coperchio incernierato e contenente un gruppo di articoli da fumo di dimensione ridotta e corrispondente metodo di incarto.
ITUB20152093A1 (it) * 2015-07-10 2017-01-10 Gd Spa Pacchetto soffice o semirigido contenente un gruppo di articoli da fumo di dimensione ridotta e corrispondente metodo di incarto.
CN109760881B (zh) * 2019-03-26 2024-01-26 东莞天赋传奇自动化科技有限公司 一种新型气雾罐装箱机
JP7161772B2 (ja) * 2019-10-28 2022-10-27 大森機械工業株式会社 カートン搬送装置
CN113978027B (zh) * 2021-10-07 2024-01-12 天津树达科技发展有限公司 一种距离可调节的纸盒用传送设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102385A (en) * 1991-03-05 1992-04-07 The Mead Corporation Feeder mechanism for sleeve type cartons
US20030230057A1 (en) * 2002-03-15 2003-12-18 T Freemantle Ltd. Packaging apparatus
US20120094817A1 (en) * 2010-10-14 2012-04-19 Marchesini Group S.P.A. System For Transferring Tubular Blanks In An Open Configuration To A Supply Line Of A Packing Machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736998A (en) * 1950-08-17 1956-03-06 Lever Brothers Ltd Packaging machines
CH299892A (de) * 1951-03-06 1954-06-30 Jagenberg Werke Ag Vorrichtung zum Vereinzeln, Öffnen und Weiterbefördern von schlauchförmigen Zuschnitten.
US2671385A (en) * 1952-02-13 1954-03-09 Jagenberg Werke Ag Method and mechanism for unfolding, refolding, setting up, and transporting tubular cartons in spaced relationship
US3060654A (en) 1959-08-24 1962-10-30 Fibreboard Paper Products Corp Carton setting-up machine and method
US3996843A (en) * 1974-10-04 1976-12-14 Redington, Incorporated Method of expanding a carton
JPS59187524A (ja) 1982-08-09 1984-10-24 リクイパツク・インタ−ナシヨナル・ベ−ヴエ− 多角形断面のスリ−ブを開く方法および装置
DE3439908A1 (de) * 1984-10-31 1986-04-30 Max Kettner Verpackungsmaschinenfabrik GmbH & Co KG, 8000 München Maschinen zum auffalten von kartons aus ebenen zuschnitten
GB9502125D0 (en) 1995-02-03 1995-03-22 Tetra Laval Holdings & Finance Methods and apparatus for erecting tubular carton blanks
SE507722C2 (sv) * 1996-07-31 1998-07-06 Tetra Laval Holdings & Finance Sätt och anordning för att resa flatlagda förpackningsbehållarämnen
DE19845384B4 (de) * 1998-10-02 2008-08-21 Robert Bosch Gmbh Vorrichtung zum Überführen flachliegender Gegenstände, insbesondere Faltschachteln
JP2005271970A (ja) * 2004-03-25 2005-10-06 O M Ltd カートン取出供給装置
US7695421B2 (en) * 2006-02-01 2010-04-13 Graphic Packaging International, Inc. Rotary carton feeder
DE102011054327A1 (de) * 2011-10-10 2013-04-11 Elopak Systems Ag Füllmaschine zum Abfüllen von Produkten in Packungsbehälter sowie Verfahren hierzu

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102385A (en) * 1991-03-05 1992-04-07 The Mead Corporation Feeder mechanism for sleeve type cartons
US20030230057A1 (en) * 2002-03-15 2003-12-18 T Freemantle Ltd. Packaging apparatus
US20120094817A1 (en) * 2010-10-14 2012-04-19 Marchesini Group S.P.A. System For Transferring Tubular Blanks In An Open Configuration To A Supply Line Of A Packing Machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919251B2 (en) * 2015-10-16 2021-02-16 I.M.A. Industria Macchine Automatiche S.P.A. Operating group for a cartoning machine, cartoning machine and method for forming a carton

Also Published As

Publication number Publication date
BR112015029244A2 (pt) 2017-07-25
JP2016522124A (ja) 2016-07-28
ZA201508205B (en) 2017-11-29
EP2999632A1 (de) 2016-03-30
CN105246784A (zh) 2016-01-13
TW201446595A (zh) 2014-12-16
WO2014187592A1 (de) 2014-11-27
DE102013105260A1 (de) 2014-11-27
AU2014270728A1 (en) 2015-11-26
MX2015015631A (es) 2016-03-11
RU2015155246A (ru) 2017-06-28

Similar Documents

Publication Publication Date Title
US20160107779A1 (en) Device and Method for Unfolding Packaging Carton Sleeves
US3423900A (en) Collating-inserting machine
US10137656B2 (en) Carton feeder system and method for simultaneously feeding a plurality of cartons to a conveyor track using a plurality of pick-up heads
US4034658A (en) Tray feeder system
SE443550B (sv) Anordning for vikning av emnen av arkmaterial for forpackning av cigaretter i lockforsedda askar
EP1854725B1 (en) Method and machine for packing groups of cigarettes
US20130121799A1 (en) Carton feeder device and method for feeding a carton to a conveyor track
CN1330550C (zh) 多张纸的输送设备和堆放多张纸的方法以及纸张加工机
JPH0210007B2 (es)
TW307730B (es)
CN108472910B (zh) 装盒机的操作组,装盒机以及形成纸盒的方法
CN105829207A (zh) 用于从介质盒进给箱盒坯件到搬运器的装置和方法
CN112585000A (zh) 用于将折叠的箱竖起的装置
US7475525B2 (en) Method and device for producing packs from at least two partial packs
JPS58171324A (ja) ラベルを煙草の包に貼着する装置
JP2010516586A (ja) 重なりフローを統合するための方法および装置
EP2676890A1 (en) Method and apparatus for filling containers with rod-shaped articles
US20020056258A1 (en) Method of and apparatus for manipulating coupons and the like in cigarette packing machines
US7870944B2 (en) Device and method for a cartoning machine
US6663104B2 (en) Method and system for aligning moving sheets
CN110914162B (zh) 用于施加包装辅助件的方法和设备
CN108349671B (zh) 用于使容纳多个坯件的料盒中的坯件对齐的装置和方法以及用于从容纳多个坯件的料盒中取出坯件的设备和方法
EP3434609B1 (en) Folding method and device
CN111038812A (zh) 一种电池自动化包装生产线
CN218806983U (zh) 叠纸盒装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIG TECHNOLOGY AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEIDNER, IMMO;BLUMEL, JURGEN;VETTEN, THOMAS;AND OTHERS;SIGNING DATES FROM 20151103 TO 20151117;REEL/FRAME:037071/0481

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION