US20160024417A1 - Lubricating-oil composition - Google Patents

Lubricating-oil composition Download PDF

Info

Publication number
US20160024417A1
US20160024417A1 US14/773,609 US201414773609A US2016024417A1 US 20160024417 A1 US20160024417 A1 US 20160024417A1 US 201414773609 A US201414773609 A US 201414773609A US 2016024417 A1 US2016024417 A1 US 2016024417A1
Authority
US
United States
Prior art keywords
mass
lubricating oil
component
oil composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/773,609
Other languages
English (en)
Inventor
Hideki Kamano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Assigned to IDEMITSU KOSAN CO., LTD. reassignment IDEMITSU KOSAN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAMANO, HIDEKI
Publication of US20160024417A1 publication Critical patent/US20160024417A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/066Organic compounds derived from inorganic acids or metal salts derived from Mo or W
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil composition for use in internal combustion engines such as diesel engines, gasoline engines, gas engines, and hybrid vehicle engines.
  • cast iron pistons could secure higher durability and, in addition, graphite contained in cast iron has self-lubricity, and therefore cast iron pistons could have good seizure resistance.
  • the cast iron pistons readily cause engine performance degradation, since they may have a high temperature in the vicinity of the top dead center to cause significant abrasion and poor detergency as compared with that of aluminum alloy pistons.
  • an object of the present invention is to provide a lubricating oil composition which, even when used in automobile internal combustion engines capable of increasing the thermal and mechanical durability temperature thereof more than before and capable of realizing power increase and fuel efficiency, can prevent engine performance degradation and therefore can satisfy both the requirements of engine performance and engine durability.
  • the inventors of the present invention conducted intensive studies and, as a result, found that the problem can be overcome by a lubricating oil composition containing a base oil, a dispersant and a metallic detergent in which these components are blended under a specific condition, and accomplished the present invention.
  • the lubricating oil composition of the present invention comprises a base oil that contains at least one selected from the group consisting of a mineral oil and a synthetic oil, has a viscosity index of 120 or more, and has a paraffin content by ring analysis of 70% or more; a dispersant (A) containing one or more compounds selected from the group consisting of an alkenylsuccinimide, a boronated alkenylsuccinimide, an alkylsuccinimide and a boronated alkylsuccinimide; and a metallic detergent (B) containing one or more compounds selected from the group consisting of an alkali metal sulfonate, an alkali metal phenate, an alkali metal salicylate, an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate; wherein the component (A) is contained in an amount of from 0.01% by mass to 0.10% by mass in terms
  • a production method for the lubricating oil composition of the present invention is a production method for a lubricating oil composition for producing a lubricating oil composition by blending, with a base oil that contains at least one selected from the group consisting of a mineral oil and a synthetic oil, has a viscosity index of 120 or more, and has a paraffin content by ring analysis of 70% or more, a dispersant (A) containing one or more compounds selected from the group consisting of an alkenylsuccinimide, a boronated alkenylsuccinimide, an alkylsuccinimide and a boronated alkylsuccinimide, and a metallic detergent (B) containing one or more compounds selected from the group consisting of an alkali metal sulfonate, an alkali metal phenate, an alkali metal salicylate, an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal sal
  • a lubricating oil composition which, even when used in automobile internal combustion engines capable of increasing the thermal and mechanical durability temperature thereof more than heretofore and then capable of realizing power increase and fuel efficiency, can prevent engine performance degradation and therefore can satisfy both the requirements of engine performance and engine durability.
  • the lubricating oil composition of the present invention comprises a base oil that contains at least one selected from the group consisting of a mineral oil and a synthetic oil, has a viscosity index of 120 or more, and has a paraffin content by ring analysis of 70% or more; a dispersant (A) containing one or more compounds selected from the group consisting of an alkenylsuccinimide, a boronated alkenylsuccinimide, an alkylsuccinimide and a boronated alkylsuccinimide; and a metallic detergent (B) containing one or more compounds selected from the group consisting of an alkali metal sulfonate, an alkali metal phenate, an alkali metal salicylate, an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate.
  • a base oil that contains at least one selected from the group consisting of a mineral oil and a synthetic oil, has
  • the component (A) is contained in an amount of from 0.01% by mass to 0.10% by mass in terms of the nitrogen content thereof based on the total amount of the composition
  • the component (B) is contained in an amount of from 0.01% by mass to 0.3% by mass in terms of the metal content thereof based on the total amount of the composition.
  • One or more compounds selected from the group consisting of a boronated alkenylsuccinimide and a boronated alkylsuccinimide in the component (A) are contained, and the ratio by mass of boron to nitrogen B/N in the component (A) is 0.5 or more.
  • the phosphorus content based on the total amount of the composition is from 100 ppm by mass to 1200 ppm by mass, and the sulfated ash content based on the total amount of the composition is 1. 1% by mass or less.
  • the lubricating oil composition of the present invention may be hereinafter referred to simply as “the present composition”.
  • the base oil in the present composition may be mineral oil or synthetic oil.
  • the type of the mineral oil and the synthetic oil is not specifically limited, and for use herein, any one may be suitably selected from a mineral oil and a synthetic oil heretofore used as the base oil in lubricating oil compositions.
  • Examples of the mineral oil include a mineral oil refined by subjecting a lubricating oil distillate that is obtained by distilling under a reduced pressure the atmospheric residue given by atmospheric distillation of crude oil, to one or more treatments selected from solvent deasphalting, solvent extraction, hydro-cracking, solvent dewaxing, catalytic dewaxing, hydrorefining and the like, and a mineral oil produced by isomerization of wax or GTL WAX and the like.
  • Examples of the synthetic oil include polybutene, polyolefins [ ⁇ -olefin homopolymers and copolymers (e.g., ethylene- ⁇ -olefin copolymers)], various kinds of esters (for example, polyol esters, dibasic acid esters, phosphate esters), various kinds of ethers (for example, polyphenyl ethers), polyglycols, alkylbenzenes, alkylnaphthalenes, etc.
  • polyolefins and polyol esters are particularly preferred from the viewpoint of the viscosity characteristics thereof, the solubility of additives therein, and the compatibility thereof to seal rubber.
  • the above mineral oils may be used alone or in combination of two or more thereof.
  • the above synthetic oils may be used alone or in combination of two or more thereof.
  • one or more of the mineral oils and one or more of the synthetic oils may be used in combination thereof.
  • the viscosity of the base oil may be selected in accordance with the use of the lubricating oil composition.
  • the kinematic viscosity thereof at 100° C. is generally from 2 mm 2 /s to 30 mm 2 /s, preferably from 3 mm 2 /s to 15 mm 2 /s, more preferably from 4 mm 2 /s to 10 mm 2 /s.
  • the kinematic viscosity at 100° C. is 2 mm 2 /s or more, the evaporation loss is small, and when the kinematic viscosity at 100° C. is 30 mm 2 /s or less, the power loss owing to viscosity resistance could be prevented therefore realizing an effect of fuel efficiency improvement.
  • the paraffin content by ring analysis (hereinafter this may be referred to as % C P ) of the base oil is 70% or more.
  • % C P is less than 70%, then the oxidation stability of the composition is poor and the acid value thereof may increase and sludge may form in the composition. From the above-mentioned viewpoints, % C P is preferably 80% or more.
  • the viscosity index of the base oil is 120 or more, and is preferably 125 or more, more preferably 130 or more.
  • the base oil of which the viscosity index is less than 120 undergoes great viscosity change owing to temperature change therefore reducing the effect of fuel efficiency improvement at low temperatures.
  • the component (A) is a dispersant that contains one or more compounds selected from the group consisting of an alkenylsuccinimide, a boronated alkenylsuccinimide, an alkylsuccinimide and a boronated alkylsuccinimide.
  • an alkenylsuccinimide a boronated alkenylsuccinimide, an alkylsuccinimide and a boronated alkylsuccinimide for the component (A)
  • either the boronated alkenylsuccinimides or the boronated alkylsuccinimides is essential.
  • the component (A) contains the boronated alkenylsuccinimide or the boronated alkylsuccinimide, the high-temperature detergency of the composition can be improved.
  • the succinimide includes a monoimide structure and a bisimide structure.
  • the monoimide structure includes both a structure based on an alkenyl or alkylsuccinic monoimide alone and a structure based on a boronated alkenyl or alkylsuccinic monoimide.
  • the alkenyl or alkylsuccinic monoimide includes, for example, an alkenyl or alkylsuccinic monoimide represented by the following formula (1).
  • the bisimide structure includes both a structure based on an alkenyl or alkylsuccinic bisimide alone and a structure based on a boronated alkenyl or alkylsuccinic bisimide.
  • the alkenyl or alkylsuccinic bisimide includes, for example, an alkenyl or alkylsuccinic bisimide represented by the following formula (2).
  • R 1 , R 3 and R 4 each represent an alkenyl group or an alkyl group, and the mass-average molecular weight of the group is preferably from 500 to 3,000, more preferably from 1,000 to 3,000, respectively.
  • R 3 and R 4 When the mass-average molecular weight of R 1 , R 3 and R 4 is 500 or more, the solubility in the base oil is high and when 3,000 or less, the detergent effect can be expected. R 3 and R 4 may be the same or different.
  • R 2 , R 5 and R 6 each represent an alkylene group having from 2 to 5 carbon atoms, and R 5 and R 6 may be the same or different.
  • m indicates an integer of from 1 to 10
  • n indicates 0 or an integer of from 1 to 10.
  • m is preferably from 2 to 5, more preferably from 3 to 4.
  • the composition can realize further better high-temperature detergency, and when m is 5 or less, the solubility in the base oil can be further better.
  • n is preferably from 1 to 4, more preferably from 2 to 3. Different from that in the case of monoimide, when n is 1 or more, the high-temperature detergency of the composition is further better, and when n is 4 or less, the solubility in the base oil can be further better.
  • the alkenyl group includes, for example, a polybutenyl group, a polyisobutenyl group, and an ethylene-propylene copolymer.
  • the alkyl group includes ones derived from hydrogenation of those groups.
  • a preferred alkenyl group there is mentioned a polybutenyl group or a polyisobutenyl group.
  • the polybutenyl group is favorably obtained as one produced from a mixture of 1-butene and isobutene or through polymerization of high-purity isobutene.
  • Specific examples of a preferred alkyl group include those prepared though hydrogenation of a polybutenyl group or a polyisobutenyl group.
  • the above alkenyl or alkylsuccinimide may be produced generally through reaction of an alkenylsuccinic anhydride, which is obtained through reaction of a polyolefin and a maleic anhydride or an alkylsuccinic anhydride which is obtained through hydrogenation of the alkenylsuccinic anhydride, with a polyamine.
  • the above succinic monoimide and succinic bisimide maybe produced by varying the reaction ratio of the alkenylsuccinic anhydride or the alkylsuccinic anhydride and the polyamine.
  • olefin monomer to form the above polyolefin usable is/are one alone or two or more of ⁇ -olefins having from 2 to 8 carbon atoms, either singly or as combined. Preferred is use of a mixture of isobutene and 1-butene.
  • the polyamine includes a simple diamine such as ethylenediamine, propylenediamine, butylenediamine, and pentylenediamine; a polyalkylenepolyamine such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di(methylethylene)triamine, dibutylenetriamine, tributylenetetramine, and pentapenthylenehexamine; a piperazine derivative such as aminoethylpiperazine.
  • a simple diamine such as ethylenediamine, propylenediamine, butylenediamine, and pentylenediamine
  • a polyalkylenepolyamine such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di(methylethylene)triamine, dibutylenetriamine, tributylenetetramine, and pentapenthylenehexamine
  • the boronated alkenyl or alkyl succinimide may be one produced according to a conventional method.
  • the above polyolefin is reacted with a maleic anhydride to prepare an alkenylsuccinic anhydride, and then further reacted for imidization with an intermediate that is obtained through reaction of the above polyamine and a boron compound such as boron oxide, boron halide, boric acid, boric anhydride, borate, ammonium borate.
  • a boron compound such as boron oxide, boron halide, boric acid, boric anhydride, borate, ammonium borate.
  • the ratio by mass of the monoimide structure-derived nitrogen to the bisimide structure-derived nitrogen is 0.5 or less, preferably 0.4 or less.
  • the ratio by mass (Nm/Nb) of 0.5 or less could improve engine durability.
  • One or more compounds selected from the group consisting of an alkenylsuccinimide, a boronated alkenylsuccinimide, an alkylsuccinimide and a boronated alkylsuccinimide in the component (A) are contained in an amount of from 0.01% by mass to 0.10% by mass in terms of the nitrogen content thereof based on the total amount of the composition. More preferably, the content is from 0.02% by mass to 0.09% by mass, and even more preferably from 0.03% by mass to 0.08% by mass. When the content of the compounds is less than 0.01% by mass in terms of the nitrogen content thereof, the high-temperature detergency of the composition would be poor, but when more than 0.10% by mass, the oxidation stability would worsen.
  • the ratio by mass of boron to nitrogen (B/N ratio) in the boronated alkenyl or alkylsuccinimide in the component (A) is 0.5 or more, preferably 0.6 or more, more preferably 0.8 or more.
  • the B/N ratio of 0.5 or more could greatly improve the high-temperature detergency of the composition.
  • Presence of at least a predetermined amount of the boron content derived from the boronated alkenyl or alkylsuccinimide in the component (A) makes the composition exhibit high-temperature detergency.
  • the boron content derived from the boronated alkenyl or alkylsuccinimide in the component (A) is from 0.01% by mass to 0.06% by mass based on the total amount of the composition, the composition can realizes sufficient high-temperature detergency.
  • the boron content is from 0.02% by mass to 0.05% by mass.
  • the component (B) in the lubricant oil composition of the present invention is a metallic detergent that contains one or more compounds selected from the group consisting of an alkali metal sulfonate, an alkali metal phenate, an alkali metal salicylate, an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate.
  • a metallic detergent that contains one or more compounds selected from the group consisting of an alkali metal sulfonate, an alkali metal phenate, an alkali metal salicylate, an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate.
  • preferred is at least either alkali metal sulfonates or alkaline earth metal sulfonates.
  • the alkaline earth metal sulfonate includes an alkaline earth metal salt of an alkylaromatic sulfonic acid which is obtained through sulfonation of an alkylaromatic compound having a molecular weight of from 300 to 1,500, preferably from 400 to 700.
  • an alkaline earth metal salt of an alkylaromatic sulfonic acid which is obtained through sulfonation of an alkylaromatic compound having a molecular weight of from 300 to 1,500, preferably from 400 to 700.
  • magnesium salts, calcium salts and the like and above all, preferred is use of calcium salts.
  • the alkaline earth metal phenate includes an alkaline earth metal salt of an alkylphenol, an alkylphenol sulfide, or a Mannich reaction product of an alkylphenol, especially a magnesium salt, a calcium salt or the like thereof; and above all, preferred is use of the calcium salts.
  • the alkaline earth metal salicylate includes an alkaline earth metal salts, especially a magnesium salt, a calcium salt or the like of an alkylsalicylic acid; and above all, preferred is use of the calcium salts.
  • the alkyl group constituting the alkaline earth metal detergent is preferably one having from 4 to 30 carbon atoms, and is more preferably an alkyl group having from 6 to 18 carbon atoms.
  • the alkyl group may be either linear or branched.
  • the group may be a primary alkyl group, a secondary alkyl group or a tertiary alkyl group.
  • the alkaline earth metal sulfonates, the alkaline earth metal phenates and the alkaline earth metal salicylates include neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates and neutral alkaline earth metal salicylates that are obtained through direction reaction of the above alkylaromatic sulfonic acid, alkylphenol, alkylphenol sulfide, a Mannich reaction product of an alkylphenol, alkylsalicylic acid or the like with an alkaline earth metal base such as an oxide and a hydroxide of one or more alkaline earth metals selected from magnesium and calcium.
  • alkaline earth metal sulfonates, the alkaline earth metal phenates and the alkaline earth metal salicylates also include neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates and neutral alkaline earth metal salicylates that are obtained through conversion of the above alkylaromatic sulfonic acid, alkylphenol, alkylphenol sulfide, a Mannich reaction product of an alkylphenol, alkylsalicylic acid or the like into alkaline metal salts such a sodium salts and potassium salts thereof followed by substitution thereof with an alkaline earth metal salt to give the intended salts.
  • the alkaline earth metal sulfonates, the alkaline earth metal phenates and the alkaline earth metal salicylates include basic alkaline earth metal sulfonates, basic alkaline earth metal phenates and basic alkaline earth metal salicylates that are obtained by heating the neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates and neutral alkaline earth metal salicylates along with an excessive alkaline earth metal salt or alkaline earth metal base in the presence of water.
  • the alkaline earth metal sulfonates, the alkaline earth metal phenates and the alkaline earth metal salicylates include overbased alkaline earth metal sulfonates, overbased alkaline earth metal phenates and overbased alkaline earth metal salicylates that are obtained through reaction of the neutral alkaline earth metal sulfonates, neutral alkaline earth metal phenates and neutral alkaline earth metal salicylates with carbonate or borate of an alkaline earth metal in the presence of carbon dioxide.
  • alkaline earth metal sulfonates alkaline earth metal phenates and the alkaline earth metal salicylates may be used here either alone or as combined.
  • the above neutral salt, basic salt, overbased salt or a mixture thereof may be used, and in particular, a mixture of one or more of an overbased salicylate, an overbased phenate and an overbased sulfonate, and a neutral sulfonate is preferred, from the viewpoints of detergency for engine inside parts and in abrasion resistance.
  • the metallic detergent is commercially sold generally in the form of being diluted with a light lubricant base oil or the like and is available as such.
  • the metal content of the metallic detergent for use herein is from 1.0% by mass to 20% by mass, more preferably from 2.0% by mass to 16% by mass.
  • the base number of the component (B) is preferably from 10 mg KOH/g to 600 mg KOH/g, more preferably from 20 mg KOH/g to 500 mg KOH/g.
  • the total base number as referred to herein means the total base number according to potentiometric titration (base number—perchloric acid method) to be measured according to 7. “Petroleum Products and Lubricants—Neutralization Number Test Method” in JIS K 2501.
  • the metal ratio in the component (B) is not specifically limited. In general, one or more metallic detergents having a metal ratio of 20 or less may be used. It is especially desirable that a metallic detergent having a metal ratio of 3 or less, more preferably 1.5 or less, even more preferably 1.2 or less is used as the essential component from the viewpoint of being more excellent in oxidation stability, base number retention and high-temperature detergency and the like.
  • the metal ratio as referred to herein is represented by (number of valences of metal element in metallic detergent) ⁇ (metal element content (mol %))/(soap group content (mol %)).
  • the metal element means calcium, magnesium, etc.; and the soap group means a sulfonic acid group, a phenol group, a salicylic acid group, etc.
  • the amount of the component (B) is preferably 0.3% by mass or less in order that the sulfated ash content therein could be reduced to 1.1% by mass or less.
  • the blending amount of the component (B) is from 0.01% by mass to 0.3% by mass in terms of the metal content thereof based on the total amount of the composition.
  • the component (B) contains sodium sulfonate in an amount of 0.05% by mass or less as the metal amount thereof based on the total amount of the lubricating oil composition, for the purpose of reducing the sulfated ash content in the lubricating oil composition to 1.1% by mass or less.
  • magnesium sulfonate is contained in an amount of 0.05% by mass or less as the metal amount thereof based on the total amount of the lubricating oil composition.
  • the sulfur content is preferably 0.3% by mass or less based on the total amount of the composition, more preferably 0.2% by mass or less, even more preferably 0.1% by mass or less based on the total amount of the composition.
  • the sulfur content of 0.3% by mass or less is preferred as capable of effectively preventing the exhaust gas purification catalyst performance from degrading.
  • a zinc dialkyldithiophosphate (hereinafter this may be referred to as “ZnDTP”) is further blended with the present composition as a component (C).
  • the component (C) includes, for example, ZnDTP represented by the following formula (3).
  • R 11 , R 12 , R 13 and R 14 each represent a substituent selected from a primary or secondary alkyl group having from 3 to 22 carbon atoms or an alkylaryl group substituted with an alkyl group having from 3 to 18 carbon atoms, and they may be the same or different each other.
  • one alone or two or more types of those ZnDTPs may be used either singly or as combined.
  • ZnDTP include zinc dipropyldithiophosphate, zinc dibutyldithiophosphate, zinc dipentyldithiophosphate, zinc dihexyldithiophosphate, zinc diisopentyldithiophosphate, zinc diethylhexyldithiophosphate, zinc dioctyldithiophosphate, zinc dinonyldithiophosphate, zinc didecyldithiophosphate, zinc didodecyldithiophosphate, zinc dipropylphenyldithiophosphate, zinc dipentylphenyldithiophosphate, zinc dipropylmethylphenyldithiophophate, zinc dinonylphenyldithiophosphate, zinc didodecylphenyldithiophosphate, zinc didodecylphenyldithiophosphate, etc.
  • an antioxidant a viscosity index improver, a pour-point depressant, a rust inhibitor, a metal deactivator, a defoaming agent, an anti-wear agent, an extreme-pressure agent and any other additives may be added to the lubricating oil composition of the present invention within a range not to impair the effects of the present invention.
  • antioxidants such as phenol-based or amine-based may be used.
  • the phenol-based antioxidant includes, for example, octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate; 4,4′-methylenebis(2,6-di-t-butylphenol); 4,4′-bis(2,6-di-t-butylphenol); 4,4′-bis(2-methyl-6-t-butylphenol): 2,2′-methylenebis(4-ethyl-6-t-butylphenol); 2,2′-methylenebis(4-methyl-6-t-butylphenol); 4,4′-butylidenebis(3-methyl-6-t-butylphenol); 4,4′-isopropylidenebis(2,6-di-t-butylphenol); 2,2′-methylenebis(4-methyl-6-nonylphenol); 2,2′-isobutylidenebis(4,6-dimethylphenol); 2,2′-methylenebis(4-methyl-6-cyclohexylphenol
  • the amine-based antioxidant includes, for example, monoalkyldiphenylamines such as monooctyldiphenylamine and monononyldiphenylamine; dialkyldiphenylamines such as 4,4′-dibutyldiphenylamine, 4,4′-dipentyldiphenylamine, 4,4′-dihexyldiphenylamine, 4,4′-diheptyldiphenylamine, 4,4′-dioctyldiphenylamine and 4,4′-dinonyldiphenylamine; polyalkyldiphenylamines such as tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine and tetranonyldiphenylamine; as well as naphtylamine-based antioxidants, in particular, ⁇ -naphtylamine, phenyl- ⁇ -na
  • a molybdenumamine-based antioxidant may be further added.
  • the molybdenumamine-based antioxidant usable here includes those prepared by the reaction of a hexavalent molybdenum compound, specifically molybdenum trioxide and/or molybdic acid, with an amine compound, for example, the compounds obtained according to the production method described in JP-A 2003-252887.
  • the amine compound to be reacted with a hexavalent molybdenum compound is not specifically limited.
  • monoamines, diamine, polyamines and alkanolamines More particularly, there are exemplified alkylamines having an alkyl group with from 1 to 30 carbon atoms (in which the alkyl group may be linear or branched) such as methylamine, ethylamine, dimethylamine, diethylamine, methylethylamine and methylpropylamine; alkenylamines having an alkenyl group with from 2 to 30 carbon atoms (in which the alkenyl group may be linear or branched) such as ethenylamine, propenylamine, butenylamine, octenylamine and oleylamine; alkanolamines having an alkanol group with from 1 to 30 carbon atoms (in which the alkanol group may be linear or branched) such as methanol
  • the blending amount of the above antioxidant is preferably from 0.3% by mass to 3% by mass based on the total amount of the composition, from the viewpoint of the miscibility thereof with the base oil. More preferably, the amount of the above antioxidant is from 0.4% by mass to 3% by mass, even more preferably from 0.4% by mass to 2% by mass, still more preferably from 0.5% by mass to 2% by mass.
  • the content of the antioxidant is 0.3% by mass or more based on the total amount of the composition, then the acid value of the composition can be prevented from increasing, and when 3% by mass or less, the solubility in the lubricant base oil can be secured.
  • the viscosity index improver includes, for example, polymethacrylates, dispersant-type polymethacrylates, olefinic copolymers (for example, ethylene-propylene copolymers), dispersant-type olefinic copolymers, styrenic copolymers (for example, styrene-diene copolymers, styrene-isoprene copolymers), etc.
  • the blending amount of the viscosity index improver may be from 0.5% by mass to 15% by mass, preferably from 1% by mass to 10% by mass based on the total amount of the composition, from the viewpoint of the blending effect.
  • the pour-point depressant includes ethylene-vinyl acetate copolymers, condensates of chlorinated paraffin and naphthalene, condensates of chlorinated paraffin and phenol, polymethacrylates, polyalkylstyrenes, etc.
  • polymethacrylates having a mass-average molecular weight of from 5,000 to 50,000.
  • the pour-point depressant may be used in a ratio of from 0.1% by mass to 5% by mass based on the total amount of the composition.
  • the rust inhibitor includes petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalene sulfonates, alkenylsuccinates, polyalcohol esters, etc.
  • the blending amount of the rust inhibitor may be from 0.01% by mass to 1% by mass, preferably from 0.05% by mass to 0.5% by mass based on the total amount of the composition, from the viewpoint of the blending effect.
  • the metal deactivator includes, for example, benzotriazole compounds, tolyltriazole compounds, thiadiazole compounds, imidazole compounds, pyrimidine compounds, etc. Among them, preferred are benzotriazole compounds. Incorporating the metal deactivator can protect engine parts from metal corrosion and oxidative degradation.
  • the blending amount of the metal deactivator is preferably from 0.01% by mass to 0.1% by mass, more preferably from 0.03% by mass to 0.05% by mass based on the total amount of the composition, from the viewpoint of the blending effect.
  • the defoaming agent includes silicone oil, fluorosilicone oil, fluoroalkyl ether, etc. From the viewpoint of the balance of the defoaming effect and the economic performance, the agent is blended preferably in an amount of from 0.005% by mass to 0.1% by mass based on the total amount of the composition.
  • the anti-wear agent or the extreme-pressure agent includes sulfur-containing compounds such as zinc dithiophosphate, zinc phosphate, zinc dithiocarbamate, molybdenum dithiocarbamate, molybdenum dithiophosphate, disulfides, olefin sulfides, sulfurized oils and fats, sulfurized esters, thiocarbonates, thiocarbamates and polysulfides; phosphorus-containing compounds such as phosphites, phosphates, phosphonates, and amine salts or metal salt of those compounds; sulfur and phosphorus-containing anti-wear agents such as thiophosphites, thiophosphates, thiophosphonates, and amine salts or metal salts of those compounds.
  • sulfur-containing compounds such as zinc dithiophosphate, zinc phosphate, zinc dithiocarbamate, molybdenum dithiocarbamate, molybdenum dithiophosphate, disulfides, olefin
  • the amount of the additional anti-wear agent or extreme-pressure agent to be blended may be 600 ppm by mass or less in terms of the element of zinc and based on the total amount of the lubricating oil composition.
  • the amount is from 0 ppm by mass to 500 ppm by mass, more preferably from 0 ppm by mass to 400 ppm by mass.
  • the amount of the additional anti-wear agent or extreme-pressure agent to be blended is 500 ppm by mass or less in terms of the element of phosphorus and based on the total amount of the lubricating oil composition.
  • the amount is from 0 ppm by mass to 400 ppm by mass, more preferably from 0 ppm by mass to 300 ppm by mass.
  • the zinc amount is 600 ppm by mass or less and the phosphorus amount is 500 ppm by mass or less, a problem of extremely shortening the period for oil change owing to consumption of the basic compound in the lubricating oil composition, for example, in the engine oil could be evaded.
  • the phosphorus content based on the total amount of the composition is from 100 ppm by mass to 1200 ppm by mass.
  • the wear resistance would be insufficient.
  • the phosphorus content is more than 1200 ppm by mass, purification catalyst poisoning by exhaust gas could not be sufficiently prevented.
  • the phosphorus content is preferably from 200 ppm by mass to 1100 ppm by mass, more preferably from 300 ppm by mass to 1000 ppm by mass, even more preferably from 400 ppm by mass to 900 ppm by mass.
  • the sulfated ash content is 1.1% by mass or less based on the total amount of the composition.
  • the amount of ash to deposit on the DPF filter in a diesel engine would increase whereby the DPF filter would be readily clogged by ash and the life of the DPF filter would be thereby shortened.
  • the sulfated ash content is more preferably 0.2% by mass or more, even more preferably 0.3% by mass or more. Falling within the range, the composition can maintain the base number and the high-temperature detergency for a longer period of time.
  • the sulfated ash content means the ash content which is determined by firing a sample of the composition, then adding sulfuric acid to the resultant carbonized residue and heating it to have a constant weight.
  • the sulfated ash content is used for identifying a rough amount of a metal additive in a lubricant oil composition. Specifically, it is determined according to the method prescribed in JIS K 2272 “5. Sulfated Ash Content Test Method”.
  • the lubricating oil composition of the present invention is not only excellent in high-temperature detergency but also has good compatibility with fluoro-rubber seal much used inside engines, and therefore can be favorably used in internal combustion engines such as gasoline engines, diesel engines, gas engines and hybrid vehicle engines.
  • internal combustion engines there are mentioned ordinary internal combustion engines that are produced using various materials such as aluminum alloy materials, nickel chromium alloy materials, carbon steel materials and chromium molybdenum steel materials.
  • the lubricating oil composition of the present invention is especially favorable for use for lubricating internal combustion engines in which at least the piston head is formed of a cast iron material.
  • the production method for a lubricating oil composition of this embodiment of the present invention is a production method for a lubricating oil composition, which comprises blending, with a base oil that contains at least one selected from the group consisting of a mineral oil and a synthetic oil, has a viscosity index of 120 or more, and has a paraffin content by ring analysis of 70% or more, a dispersant (A) containing one or more compounds selected from the group consisting of an alkenylsuccinimide, a boronated alkenylsuccinimide, an alkylsuccinimide and a boronated alkylsuccinimide, and a metallic detergent (B) containing one or more compounds selected from the group consisting of an alkali metal sulfonate, an alkali metal phenate, an alkali metal salicylate, an alkaline earth metal sulfonate, an alkaline earth metal phenate, and an alkaline earth metal salicylate, so
  • the production method for a lubricating oil composition of this embodiment of the present invention may further comprise blending, if desired, with the above base oil, any of an antioxidant, a viscosity index improver, a pour point depressant, a rust inhibitor, a metal deactivator, a defoaming agent, an anti-wear agent, an extreme-pressure agent and any other additive.
  • the lubricating oil composition produced by blending, with the base oil, the component (A) and the component (B) and, if desired, any of an antioxidant, a viscosity index improver, a pour point depressant, a rust inhibitor, a metal deactivator, a defoaming agent, an anti-wear agent, an extreme-pressure agent and any other additive contains those various additives blended thereinto.
  • at least a part of those various additives blended therein may react with each other to form any other compound therein in some cases.
  • Base oil hydrorefined oil, kinematic viscosity at 40° C.; 21 mm 2 /s, kinematic viscosity at 100° C.; 4.5 mm 2 /s, viscosity index; 127, % C P ; 83, % C A ; 0.0, sulfur content; less than 10 ppm by mass, NOACK value; 13.3% by mass.
  • Viscosity index improver A polymethacrylate, weight-average molecular weight 420,000, resin amount 39% by mass.
  • Phenol-based antioxidant octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate
  • Amine-based antioxidant dialkyldiphenylamines, nitrogen content 4.62% by mass.
  • Zinc dithiophosphate Zn content 9.0% by mass, phosphorus content 8.2% by mass, sulfur content 17.1% by mass, alkyl group; mixture of secondary butyl group and secondary hexyl group.
  • Metallic detergent A neutral calcium sulfonate, base number (perchloric acid method) 20 mg KOH/g, calcium content 1.8% by mass, sulfur content 1.8% by mass.
  • Metallic detergent B neutral calcium sulfonate, base number (perchloric acid method) 22 mg KOH/g, calcium content 2.4% by mass, sulfur content 3.0% by mass.
  • Metallic detergent C overbased calcium sulfonate, base number (perchloric acid method) 308 mg KOH/g, calcium content 12% by mass, sulfur content 1.1% by mass.
  • Metallic detergent D overbased calcium sulfonate, base number (perchloric acid method) 320 mg KOH/g, calcium content 13% by mass, sulfur content 2.4% by mass.
  • Metallic detergent E overbased calcium sulfonate, base number (perchloric acid method) 450 mg KOH/g, calcium content 15% by mass, sulfur content 1.2% by mass.
  • Metallic detergent F overbased calcium sulfonate, base number (perchloric acid method) 500 mg KOH/g, calcium content 18.5% by mass.
  • Metallic detergent G overbased calcium phenate, base number (perchloric acid method) 200 mg KOH/g, calcium content 7.2% by mass, sulfur content 2.0% by mass.
  • Metallic detergent H overbased calcium phenate, base number (perchloric acid method) 255 mg KOH/g, calcium content 9.2% by mass, sulfur content 3.3% by mass.
  • Metallic detergent I overbased calcium phenate, base number (perchloric acid method) 400 mg KOH/g, calcium content 14% by mass, sulfur content 2% by mass.
  • Metallic detergent J neutral calcium salicylate, base number (perchloric acid method) 64 mg KOH/g, calcium content 2.3% by mass.
  • Metallic detergent K overbased sodium sulfonate, base number (perchloric acid method) 450 mg KOH/g, sodium content 19.5% by mass, sulfur content 1.2% by mass.
  • Metallic detergent L overbased magnesium sulfonate, base number (perchloric acid method) 410 mg KOH/g, magnesium content 9.4% by mass, sulfur content 2.0% by mass.
  • Metallic detergent M overbased calcium salicylate, base number (perchloric acid method) 230 mg KOH/g, calcium content 7.9% by mass.
  • Metallic detergent N overbased calcium salicylate, base number (perchloric acid method) 290 mg KOH/g, calcium content 7.8% by mass.
  • Ashless dispersant A boron derivative of alkenylsuccinimide, number-average molecular weight of polybutenyl group 1000, nitrogen content 1.8% by mass, boron content 2.0% by mass.
  • Ashless dispersant B alkenylsuccinimide, number-average molecular weight of polybutenyl group 2000, nitrogen content 1.0% by mass.
  • Methylbenzotriazole derivative 1-[N,N-bis (2-ethylhexyl)aminomethyl]methylbenzotriazole
  • the proportion (percentage) of the aromatic component is calculated through n-d-M ring analysis.
  • the proportion (percentage) of the paraffin component is calculated through n-d-M ring analysis.
  • the high-temperature detergency was evaluated in a hot tube test according to JPI-5S-55-99. Specifically, a sample oil and an air were introduced into a glass tube having an inner diameter of 2 mm, at flow rates of 0.31 mL/h and 10 mL/min, respectively, for 16 hours. The glass tube was kept at 280° C. Subsequently, the mass of the deposit adhering to the glass tube was measured. The samples were evaluated in 10 ranks. The higher rank means that the mass of the deposit was small and the sample is excellent in high-temperature detergency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
US14/773,609 2013-03-08 2014-03-07 Lubricating-oil composition Abandoned US20160024417A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-047399 2013-03-08
JP2013047399 2013-03-08
PCT/JP2014/056068 WO2014136970A1 (ja) 2013-03-08 2014-03-07 潤滑油組成物

Publications (1)

Publication Number Publication Date
US20160024417A1 true US20160024417A1 (en) 2016-01-28

Family

ID=51491477

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/773,609 Abandoned US20160024417A1 (en) 2013-03-08 2014-03-07 Lubricating-oil composition

Country Status (5)

Country Link
US (1) US20160024417A1 (ja)
EP (1) EP2966155A4 (ja)
JP (2) JP6507455B2 (ja)
CN (2) CN105189720A (ja)
WO (1) WO2014136970A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180072961A1 (en) * 2015-03-24 2018-03-15 Idemitsu Kosan Co., Ltd. Lubricant oil composition for spark ignition type internal combustion engine, method for producing lubricant oil composition, spark ignition type internal combustion engine using lubricant oil composition, and method for lubricating internal combustion engine
US20180100115A1 (en) * 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company High conductivity lubricating oils for electric and hybrid vehicles
CN113136258A (zh) * 2021-04-23 2021-07-20 中国石油化工股份有限公司 一种工业闭式齿轮润滑油及其制备方法
US20230167380A1 (en) * 2020-05-05 2023-06-01 Totalenergies Onetech Lubricating composition for electric vehicles
US20230242832A1 (en) * 2020-07-21 2023-08-03 Chevron Japan Ltd. Magnesium and boron containing lubricating oil composition for hybrid vehicles
US11732207B2 (en) 2020-08-31 2023-08-22 Eneos Corporation Lubricating oil composition for internal combustion engine
US11987766B2 (en) 2020-08-31 2024-05-21 Eneos Corporation Lubricating oil composition for internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281321B2 (ja) * 2019-03-29 2023-05-25 出光興産株式会社 潤滑油組成物
CN115279871A (zh) * 2020-03-31 2022-11-01 出光兴产株式会社 润滑油组合物
JP7445497B2 (ja) * 2020-03-31 2024-03-07 出光興産株式会社 潤滑油組成物
CN116710541A (zh) * 2020-11-25 2023-09-05 雪佛龙日本有限公司 润滑油组合物

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010003734A1 (en) * 1998-01-09 2001-06-14 Infineum Usa L.P. Lubricant compositions
US20070179070A1 (en) * 2004-03-19 2007-08-02 Isao Kurihara Lubricating oil composition for diesel engine
US7421782B2 (en) * 2004-06-28 2008-09-09 Riken Forge Co., Ltd. Method for manufacturing internal combustion engine piston
US7612025B2 (en) * 2004-02-04 2009-11-03 Nippon Oil Corporation Lubricating oil composition
US20100113313A1 (en) * 2007-03-28 2010-05-06 Idemitsu Kosan Co., Ltd. Lubricant composition
US20100218740A1 (en) * 2007-10-22 2010-09-02 Idemitsu Kosan Co., Ltd. Lubricant composition
US20110212863A1 (en) * 2008-08-29 2011-09-01 Kazuhiro Yagishita Lubricating oil composition in contact with silver-containing material
US8030255B2 (en) * 2006-06-08 2011-10-04 Nippon Oil Corporation Lubricating oil composition
US8258087B2 (en) * 2006-12-08 2012-09-04 Nippon Oil Corporation Lubricating oil composition for internal combustion engine
US8338342B2 (en) * 2007-03-30 2012-12-25 Idemitsu Kosan Co., Ltd. Lubricant composition
US8921287B2 (en) * 2005-11-02 2014-12-30 Nippon Oil Corporation Lubricating oil composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370246A (en) 1981-04-27 1983-01-25 Chevron Research Company Antioxidant combinations of molybdenum complexes and aromatic amine compounds
JPH06299276A (ja) * 1993-04-09 1994-10-25 Daido Steel Co Ltd Ti−Al合金製部品
JP4931299B2 (ja) * 2001-07-31 2012-05-16 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP2003252887A (ja) 2002-03-04 2003-09-10 Asahi Denka Kogyo Kk モリブデンアミン化合物の製造方法
US6962896B2 (en) 2002-05-31 2005-11-08 Chevron Oronite Company Llc Reduced color molybdenum-containing composition and a method of making same
JP4663288B2 (ja) * 2004-10-19 2011-04-06 Jx日鉱日石エネルギー株式会社 鉛含有金属材料と接触する潤滑油組成物
JP5806794B2 (ja) * 2008-03-25 2015-11-10 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
JP5348951B2 (ja) 2008-06-30 2013-11-20 古河電池株式会社 二重蓋を有する蓄電池の排気構造
JP5756337B2 (ja) * 2011-05-06 2015-07-29 Jx日鉱日石エネルギー株式会社 潤滑油組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010003734A1 (en) * 1998-01-09 2001-06-14 Infineum Usa L.P. Lubricant compositions
US7612025B2 (en) * 2004-02-04 2009-11-03 Nippon Oil Corporation Lubricating oil composition
US20070179070A1 (en) * 2004-03-19 2007-08-02 Isao Kurihara Lubricating oil composition for diesel engine
US7421782B2 (en) * 2004-06-28 2008-09-09 Riken Forge Co., Ltd. Method for manufacturing internal combustion engine piston
US8921287B2 (en) * 2005-11-02 2014-12-30 Nippon Oil Corporation Lubricating oil composition
US8030255B2 (en) * 2006-06-08 2011-10-04 Nippon Oil Corporation Lubricating oil composition
US8258087B2 (en) * 2006-12-08 2012-09-04 Nippon Oil Corporation Lubricating oil composition for internal combustion engine
US20100113313A1 (en) * 2007-03-28 2010-05-06 Idemitsu Kosan Co., Ltd. Lubricant composition
US8338342B2 (en) * 2007-03-30 2012-12-25 Idemitsu Kosan Co., Ltd. Lubricant composition
US20100218740A1 (en) * 2007-10-22 2010-09-02 Idemitsu Kosan Co., Ltd. Lubricant composition
US20110212863A1 (en) * 2008-08-29 2011-09-01 Kazuhiro Yagishita Lubricating oil composition in contact with silver-containing material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180072961A1 (en) * 2015-03-24 2018-03-15 Idemitsu Kosan Co., Ltd. Lubricant oil composition for spark ignition type internal combustion engine, method for producing lubricant oil composition, spark ignition type internal combustion engine using lubricant oil composition, and method for lubricating internal combustion engine
US20180100115A1 (en) * 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company High conductivity lubricating oils for electric and hybrid vehicles
US20180100114A1 (en) * 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Low conductivity lubricating oils for electric and hybrid vehicles
US20230167380A1 (en) * 2020-05-05 2023-06-01 Totalenergies Onetech Lubricating composition for electric vehicles
US20230242832A1 (en) * 2020-07-21 2023-08-03 Chevron Japan Ltd. Magnesium and boron containing lubricating oil composition for hybrid vehicles
US11732207B2 (en) 2020-08-31 2023-08-22 Eneos Corporation Lubricating oil composition for internal combustion engine
US11987766B2 (en) 2020-08-31 2024-05-21 Eneos Corporation Lubricating oil composition for internal combustion engine
CN113136258A (zh) * 2021-04-23 2021-07-20 中国石油化工股份有限公司 一种工业闭式齿轮润滑油及其制备方法

Also Published As

Publication number Publication date
JP6676868B2 (ja) 2020-04-08
EP2966155A1 (en) 2016-01-13
CN105189720A (zh) 2015-12-23
CN109439401A (zh) 2019-03-08
JP6507455B2 (ja) 2019-05-08
JPWO2014136970A1 (ja) 2017-02-16
WO2014136970A1 (ja) 2014-09-12
JP2018199836A (ja) 2018-12-20
EP2966155A4 (en) 2016-11-23

Similar Documents

Publication Publication Date Title
EP2966153B1 (en) Use of a lubricating-oil composition
JP6676868B2 (ja) 潤滑油組成物
EP2546324B1 (en) Lubricant composition
US8309499B2 (en) Lubricant composition for internal combustion engine
US9222054B2 (en) Cylinder lubricating oil composition for crosshead-type diesel engine
JP5952846B2 (ja) 潤滑油組成物
US8722595B2 (en) Lubricating oil compositions
JP4597223B2 (ja) 内燃機関用潤滑油組成物
US11034908B2 (en) Lubricant composition
US8557751B2 (en) Lubricant composition
US20160083669A1 (en) Fuel-efficient engine oil composition
JP4528286B2 (ja) 潤滑油組成物
JP2015034205A (ja) 再生処理用潤滑油組成物、及び潤滑油基油の製造方法
JP5784183B2 (ja) 潤滑油組成物
JP6247820B2 (ja) アルミ合金製エンジン用潤滑油組成物及び潤滑方法
JP6247822B2 (ja) アルミ合金製エンジン用潤滑油組成物及び潤滑方法
JP6247821B2 (ja) アルミ合金製エンジン用潤滑油組成物及び潤滑方法
WO2005095559A1 (ja) クロスヘッド型ディーゼル機関用シリンダー潤滑油組成物

Legal Events

Date Code Title Description
AS Assignment

Owner name: IDEMITSU KOSAN CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAMANO, HIDEKI;REEL/FRAME:036511/0866

Effective date: 20150709

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION