US20140200625A1 - Neurostimulation system - Google Patents

Neurostimulation system Download PDF

Info

Publication number
US20140200625A1
US20140200625A1 US14/216,805 US201414216805A US2014200625A1 US 20140200625 A1 US20140200625 A1 US 20140200625A1 US 201414216805 A US201414216805 A US 201414216805A US 2014200625 A1 US2014200625 A1 US 2014200625A1
Authority
US
United States
Prior art keywords
electrode
stimulation
system
movement disorder
drg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/216,805
Inventor
Daniel H. Kim
Mir A. Imran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical Luxembourg Holding SMI SARL
Leland Stanford Junior University
Original Assignee
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US60835704P priority Critical
Priority to US11/221,576 priority patent/US20060052836A1/en
Priority to US12/051,770 priority patent/US8712546B2/en
Application filed by Leland Stanford Junior University filed Critical Leland Stanford Junior University
Priority to US14/216,805 priority patent/US20140200625A1/en
Publication of US20140200625A1 publication Critical patent/US20140200625A1/en
Assigned to SPINAL MODULATION, INC. reassignment SPINAL MODULATION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMRAN, MIR A., KIM, DANIEL H.
Assigned to DANIEL H. KIM reassignment DANIEL H. KIM ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPINAL MODULATION, INC.
Assigned to THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY reassignment THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, DANIEL H.
Assigned to SPINAL MODULATION LLC reassignment SPINAL MODULATION LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SPINAL MODULATION, INC.
Assigned to ST. JUDE MEDICAL LUXEMBOURG HOLDINGS SMI S.A.R.L. ("SJM LUX SMI") reassignment ST. JUDE MEDICAL LUXEMBOURG HOLDINGS SMI S.A.R.L. ("SJM LUX SMI") ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPINAL MODULATION LLC
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0558Anchoring or fixation means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36067Movement disorders, e.g. tremor or Parkinson disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/36167Timing, e.g. stimulation onset
    • A61N1/36171Frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1003Spinal column
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/0565Electrode heads
    • A61N1/0568Electrode heads with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain

Abstract

Some embodiments of the present invention provide neurostimulation systems and components for selective stimulation and/or neuromodulation of one or more dorsal root ganglia through implantation of an electrode on, in or around a dorsal root ganglia. Some other embodiments of the present invention provide neurostimulation systems adapted for selective neurostimulation of one or more nerve root ganglia as well as techniques for applying neurostimulation to the spinal cord. Still other embodiments of the present invention provide stimulation systems and components for selective stimulation and/or neuromodulation of one or more dorsal root ganglia through implantation of an electrode on, in or around a dorsal root ganglia in combination with a pharmacological agent.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/051,770, filed Mar. 19, 2008, Publication No. US-2008-0167698-A1, which is a continuation of U.S. patent application Ser. No. 11/221,576 filed Sep. 7, 2005, Publication No. US-2006-0052836-A1, now abandoned, which claims the benefit of U.S. Provisional Application No. 60/608,357 filed Sep. 8, 2004, each of which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to neurostimulation methods and systems that enable more precise stimulation of the nervous system. In particular, embodiments of the present invention provide for the controlled stimulation of spinal and paraspinal nerve root ganglion. In one embodiment, the ganglion is a dorsal root ganglion (DRG) and in another embodiment the ganglion is part of the sympathetic nervous system.
  • BACKGROUND OF THE INVENTION
  • Application of specific electrical energy to the spinal cord for the purpose of managing pain has been actively practiced since the 1960s. While a precise understanding of the interaction between the applied electrical energy and the nervous tissue is not fully appreciated, it is known that application of an electrical field to spinal nervous tissue can effectively mask certain types of pain transmitted from regions of the body associated with the stimulated nervous tissue. More specifically, applying particularized electrical pulses to the spinal cord associated with regions of the body afflicted with chronic pain can induce paresthesia, or a subjective sensation of numbness or tingling, in the afflicted bodily regions. This paresthesia can effectively inhibit the transmission of non-acute pain sensations to the brain.
  • Electrical energy, similar to that used to inhibit pain perception, may also be used to manage the symptoms of various motor disorders, for example, tremor, dystonia, spasticity, and the like. Motor spinal nervous tissue, or nervous tissue from ventral nerve roots, transmits muscle/motor control signals. Sensory spinal nervous tissue, or nervous tissue from dorsal nerve roots, transmit pain signals. Corresponding dorsal and ventral nerve roots depart the spinal cord “separately”; however, immediately thereafter, the nervous tissue of the dorsal and ventral nerve roots are mixed, or intertwined. Accordingly, electrical stimulation intended to manage/control one condition (for example, pain) often results in the inadvertent interference with nerve transmission pathways in adjacent nervous tissue (for example, motor nerves).
  • As illustrated in FIG. 1, prior art spinal column or spinal cord stimulators (SCS) commonly deliver electrical energy to the spinal cord through an elongate paddle 5 or epidural electrode array containing electrodes 6 positioned external to the spinal cord dura layer 32. The spinal cord dura layer 32 surrounds the spinal cord 13 and is filled with cerebral spinal fluid (CSF). The spinal cord 13 is a continuous body and three spinal levels 14 of the spinal cord 13 are illustrated. For purposes of illustration, spinal levels 14 are sub-sections of the spinal cord 13 depicting that portion where the dorsal and ventral roots join the spinal cord 13. The peripheral nerve 44 divides into the dorsal root 42 and dorsal root ganglion 40 and the ventral nerve root 41 each of which feed into the spinal cord 13. An ascending pathway 92 is illustrated between level 2 and level 1 and a descending pathway 94 is illustrated from level 2 to level 3. Spinal levels 14 can correspond to the vertebral levels of the spine commonly used to describe the vertebral bodies of the spine. For simplicity, each level illustrates the nerves of only one side and a normal anatomical configuration would have similar nerves illustrated in the side of the spinal cord 13 directly adjacent the paddle 5.
  • Typically, SCS are placed in the spinal epidural space. Conventional SCS systems are described in numerous patents. Additional details of the placement and use of SCS can be found, for example, in U.S. Pat. No. 6,319,241 which is incorporated herein by reference in its entirety. In general, the paddle 5 is about 8 mm wide and from 24 to 60 mm long depending upon how many spinal levels are stimulated. The illustrated electrode paddle 5 is adapted to conventionally stimulate all three spinal levels 14. These exemplary levels 1, 2 and 3 could be anywhere along the spinal cord 13. Positioning a stimulation paddle 5 in this manner results in the electrodes 6 spanning a plurality of nerves, here the dorsal root ganglion 40, the ventral root 41 and peripheral nerve 41 on multiple spinal levels.
  • Because the paddle 5 spans several levels the generated stimulation energy 8 stimulates or is applied to more than one type of nerve tissue on more than one level. Moreover, these and other conventional, non-specific stimulation systems also apply stimulation energy to the spinal cord and to other neural tissue beyond the intended stimulation targets. As used herein, non-specific stimulation refers to the fact that the stimulation energy is provided to all spinal levels including the nerves and the spinal cord generally and indiscriminately. Even if the epidural electrode is reduced in size to simply stimulate only one level, that electrode will apply stimulation energy indiscriminately to everything (i.e., all nerve fibers and other tissues) within the range of the applied energy 8. Moreover, larger epidural electrode arrays may alter cerebral spinal fluid (CSF) flow thus further altering local neural excitability states.
  • Another challenge confronting conventional neurostimulation systems is that since epidural electrodes must apply energy across a wide variety of tissues and fluids (i.e., CSF fluid amount varies along the spine as does pia matter thickness) the amount of stimulation energy needed to provide the desired amount of neurostimulation is difficult to precisely control. As such, increasing amounts of energy may be required to ensure sufficient stimulation energy reaches the desired stimulation area. However, as applied stimulation energy increases so too increases the likelihood of deleterious damage or stimulation of surrounding tissue, structures or neural pathways.
  • To achieve stimulation the targeted tissue, the applied electrical energy should be properly defined and undesired energy application to non-targeted tissue be reduced or avoided. An improperly defined electric field may not only be ineffective in controlling/managing the desired condition(s) but may also inadvertently interfere with the proper neural pathways of adjacent spinal nervous tissue. Accordingly, a need exists for stimulation methods and systems that enable more precise delivery of stimulation energy.
  • SUMMARY OF THE INVENTION
  • In one embodiment, there is provided a method of stimulating a dorsal root ganglion by implanting an electrode in proximity to the dorsal root ganglion; and activating the electrode to stimulate a portion of the dorsal root ganglion, or activating the electrode to stimulate substantially only the dorsal root ganglion.
  • In another embodiment, there is provided a method of stimulating a nerve root ganglion by implanting an electrode into the nerve root ganglion; and activating the electrode to stimulate the nerve root ganglion.
  • In another embodiment, there is provided, a method of stimulating the spinal cord by implanting an electrode into the spinal cord; and providing stimulation energy to spinal cord fibers using the electrode.
  • In another embodiment, there is provided a method of modulating nervous tissue within a dorsal root ganglion by implanting an electrode within a dorsal root ganglion; and providing electrical stimulation from the electrode to stimulate neural tissue within the dorsal root ganglion.
  • In another embodiment, there is provided a method of modulating a neural pathway in the sympathetic nervous system by stimulating a spinal dorsal root ganglion upstream of at least one ganglion of the sympathetic nerve chain to influence a condition associated with the at least one ganglion of the sympathetic nerve chain.
  • In yet another embodiment, there is provided a neurostimulation system having an electrode adapted for stimulation of only a nerve root ganglion; a signal generator coupled to the electrode; and a controller to control the output of the signal generator.
  • In yet another embodiment, there is provided a method of stimulating the spinal cord by piercing the spinal dura matter; and placing an electrode into contact with a portion of the intra-madullary of the spinal cord.
  • In yet another embodiment, there is a method of stimulating the nervous system by implanting an electrode such that when the electrode is activated, the electrode stimulates only a nerve root ganglion.
  • In yet another embodiment, there is provided a method of stimulating neural tissue to treat a condition including stimulating an electrode implanted to stimulate only a dorsal root ganglion on a spinal level wherein the stimulation treats the condition.
  • In yet another embodiment, there is provided a pulse generator, comprising at least one switch connected to at least one implantable electrode having an impedance greater than 2,500 ohms; a DC-DC converter adapted to provide a stimulation signal to the at least one implantable electrode; and a controller configured to control the output of the DC-DC converter.
  • In yet another embodiment, there is provided a stimulation component, comprising a proximal connector; a distal electrode configured to be implanted within the body at a stimulation site; an electrical lead connected to the proximal connector and the distal electrode; a strain relief mechanism in proximity to the stimulation site; and a fixation element adapted to reduce the amount of movement of the electrical lead proximal to a fixation point in an anatomical structure proximal to the stimulation site.
  • In another embodiment, there is provided a stimulation component, comprising a proximal connector; a distal electrode configured to be implanted within the body at a stimulation site; an electrical lead connected to the proximal connector and the distal electrode; a strain relief mechanism in proximity to the stimulation site; and a fixation element adapted to reduce the amount of movement of the electrical lead proximal to a fixation point in an anatomical structure proximal to the stimulation site.
  • In another embodiment, there is provided a stimulation system, comprising a pulse generator; an electrode connector having a flexible, elongate body with a proximal end electrically connected to the pulse generator and a distal end adapted to connect to a microelectrode lead, wherein the microelectrode lead connects proximally to the electrode connector distal end and has a distal microelectrode electrically connected to the pulse generator.
  • In yet another embodiment, there is provided a stimulation system, comprising a battery; a pulse generator separate from the battery; an electrical connection between the battery and the pulse generator; a microelectrode lead connected proximally to the pulse generator and distally to a microelectrode.
  • In yet another embodiment, there is provided a neurostimulation component, comprising a body having a distal end and a proximal end and a length selected to implant the body within a targeted neural tissue; a tip on the distal end of the body adapted to pierce through the targeted neural tissue; and an electrode structure positioned on the body adapted to neurostimulate only the targeted neural tissue.
  • In yet another embodiment, there is provided a method of neurostimulating targeted neural tissue, comprising implanting an electrode in a position adapted to neurostimulate only targeted neural tissue; and providing a controlled stimulation signal from a signal generator coupled to the electrode.
  • In another embodiment, the neurostimulation system comprises an electrode adapted for stimulation of only a nerve root ganglion, a signal generator coupled to the electrode, and a controller to control the output of the signal generator. In some embodiments, the electrode has an active electrode area of less than 10 mm2. In other embodiments, the electrode has an active electrode area of less than 5 mm2. And in still other embodiments, the electrode has an active electrode area of less than 1 mm2.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A better understanding of the features and advantages of the various embodiments of the present invention will be obtained by reference to the following detailed description and the accompanying drawings of which:
  • FIG. 1 illustrates a conventional epidural electrode array positioned external to and stimulating a portion of the spinal cord;
  • FIG. 2A illustrates an embodiment an electrode implanted into a spinal dorsal root ganglion;
  • FIG. 2B illustrates how selective stimulation techniques of FIG. 2A may raise a response threshold;
  • FIG. 3A illustrates a stimulation system with an electrode embodiment of the present invention implanted into a dorsal root ganglion (DRG) of a spinal level;
  • FIG. 3B relates the spinal nerve roots to their respective vertebral spinal levels;
  • FIG. 3C illustrates the various dermatomes of the body related to their respective nerve roots in FIG. 3B;
  • FIG. 4A illustrates a single electrode, single level activation pattern and FIG. 4B illustrates an exemplary corresponding dermatome to the stimulation pattern of FIG. 4A;
  • FIG. 5A illustrates a single electrode per level, two level activation pattern and FIG. 5B illustrates an exemplary corresponding dermatome to the stimulation pattern of FIG. 5A;
  • FIG. 6A illustrates a two electrode, single level activation pattern and
  • FIG. 6B illustrates an exemplary corresponding dermatome to the stimulation pattern of FIG. 6A;
  • FIG. 7A illustrates a single electrode level and a two electrode level activation pattern and FIG. 7B illustrates an exemplary corresponding dermatome to the stimulation pattern of FIG. 7A;
  • FIG. 8A is a section view of a spinal level with an electrode being implanted into a dorsal root ganglia and FIG. 8B is the view of FIG. 8A with the delivery catheter being withdrawn and the electrode implanted into the dorsal root ganglia;
  • FIG. 9A is a section view of a spinal level with an electrode being implanted into a dorsal root ganglia using an approach that crosses a medial line of the level of interest and
  • FIG. 9B is an enlarged view of the DRG in FIG. 9A with an implanted electrode;
  • FIG. 10A is a section view of a spinal level with an electrode being implanted onto or in the nerve root epinurium using an approach that crosses a medial line of the level of interest and FIG. 10B is an enlarged view of the implanted electrode in FIG. 10A;
  • FIG. 11 is a illustrates an alternative DRG implantation technique using an approach along the peripheral nerve;
  • FIG. 12A illustrates an implantation technique using an electrode and anchor design illustrated in FIG. 12B;
  • FIG. 12C illustrates an alternative anchoring technique using the surrounding vertebral bone;
  • FIG. 13A illustrates the monopolar stimulation component embodiment illustrated in FIG. 13B implanted in a DRG;
  • FIG. 14A illustrates the bi-po