US20120277839A1 - Selective stimulation to modulate the sympathetic nervous system - Google Patents

Selective stimulation to modulate the sympathetic nervous system Download PDF

Info

Publication number
US20120277839A1
US20120277839A1 US13458697 US201213458697A US2012277839A1 US 20120277839 A1 US20120277839 A1 US 20120277839A1 US 13458697 US13458697 US 13458697 US 201213458697 A US201213458697 A US 201213458697A US 2012277839 A1 US2012277839 A1 US 2012277839A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
sympathetic
ganglion
root
stimulation
dorsal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13458697
Inventor
Jeffery M. Kramer
Daniel H. Kim
Mir A. Imran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical Luxembourg Holding SMI SARL
Leland Stanford Junior University
Original Assignee
Leland Stanford Junior University
Spinal Modulation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36057Implantable neurostimulators for stimulating central or peripheral nerve system adapted for stimulating afferent nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters

Abstract

Systems, methods and devices are provided for the targeted treatment of a variety of medical conditions by directly neuromodulating a target anatomy associated with the condition while minimizing or excluding undesired neuromodulation of other anatomies. Typically, the target anatomy includes one or more dorsal root ganglia, dorsal roots, dorsal root entry zones, or portions thereof. Such target stimulation areas are utilized due in part to their effect on the sympathetic nervous system.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/480,958, entitled “Selective Stimulation of Dorsal Root Ganglion to Modulate the Sympathetic Nervous System”, filed on Apr. 29, 2011, which is incorporated by reference in its entirety. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/369,706, entitled “Methods of Stimulating a Dorsal Root Ganglion”, filed on Feb. 11, 2009, now U.S. Publication No. US-2009-0210041-A1, which is a divisional of U.S. patent application Ser. No. 11/222,516, entitled “Methods for Stimulating a Dorsal Root Ganglion”, filed on Sep. 7, 2005, now U.S. Pat. No. 7,502,651, which claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 60/608,357, entitled “Neurostimulation Systems and Methods”, filed on Sep. 8, 2004, all of which are incorporated herein by reference in their entirety.
  • STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
  • [0002]
    NOT APPLICABLE
  • REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK
  • [0003]
    NOT APPLICABLE
  • BACKGROUND
  • [0004]
    A variety of diseases and medical conditions plague the population causing pain, dysfunction, distress, social problems, and ultimately death. These may be caused by external factors, such as infectious disease, or caused by internal dysfunctions, such as autoimmune diseases. Such conditions usually affect people not only physically but also emotionally.
  • [0005]
    Consequently, a vast array of medical treatments and therapies have been generated in an attempt to prevent, improve, palliatively treat or cure these medical conditions. Examples of such treatments have included the development of drugs, medical devices, gene therapy, hormone therapy, biotherapy, virotherapy, bacteriophage therapy, ozonotherapy, hydrotherapy, neuromodulation, phototherapy, and radiation, to name a few.
  • [0006]
    However, many of these treatments cause adverse effects in addition to or in place of the intended therapeutic effect. Common adverse effects include alteration in body weight, change in enzyme levels, loss of function, development of pain, or pathological changes detected at the microscopic, macroscopic or physiological level, to name a few. The severity of adverse effects can range from nausea to death.
  • [0007]
    Therefore, there remains a need for the further development of devices, systems and methods of treating various medical conditions while reducing or eliminating adverse effects. Such devices, systems and methods should be targeted with minimal deleterious effects on unaffected body regions. At least some of these objectives will be met by the present invention.
  • SUMMARY OF THE DISCLOSURE
  • [0008]
    The present invention provides targeted treatment of a variety of medical conditions by directly neuromodulating a target anatomy associated with the condition while minimizing or excluding undesired neuromodulation of other anatomies. In preferred embodiments, the target anatomy includes one or more dorsal root ganglia, dorsal roots, dorsal root entry zones, or portions thereof. Such target stimulation areas are utilized due in part to their effect on the sympathetic nervous system. In particular, many of these target anatomies house sensory fibers that are isolated from motor fibers. Sensory fibers are involved in a variety of reflexes and feed-forward physiologic processes that control the sympathetic nervous system and these reflexes and processes can be utilized in the treatment of various disorders. In addition, in some embodiments, such targeted neuromodulation reduces or eliminates undesired side effects, such as painful tingling or unwanted movements caused by direct stimulation of motor nerves, such as within the ventral root. Further, such targeted therapy minimizes or eliminates global activation or inactivation of the sympathetic nervous system and the complications that arise from such activation or inactivation.
  • [0009]
    In a first aspect of the present invention, a method is provided of modulating a neural pathway in the sympathetic nervous system. In some embodiments, the method comprises positioning at least one electrode of a lead in close proximity to a dorsal root ganglion upstream of at least one ganglion of the sympathetic nerve chain, and providing energy to the at least one electrode so as to neuromodulate the dorsal root ganglion in a manner that influences a condition associated with the at least one ganglion of the sympathetic nerve chain while excluding neuromodulation of an associated ventral root.
  • [0010]
    In some embodiments, neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional activation of a bodily system associated with the at least one ganglion along the sympathetic nerve chain. In other embodiments, the neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional activation of an organ associated with the at least one ganglion along the sympathetic nerve chain.
  • [0011]
    In some embodiments, neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional inhibition of a bodily system associated with the at least one ganglion along the sympathetic nerve chain. Further, in some embodiments, neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional inhibition of an organ associated with the at least one ganglion along the sympathetic nerve chain.
  • [0012]
    In some embodiments, neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that lessens vascular resistance of a blood vessel associated with the at least one ganglion along the sympathetic nerve chain. In other embodiments, neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that improves vascular perfusion to an ischemic body region or tissue.
  • [0013]
    It may be appreciated that in some embodiments the condition comprises an ischemic disorder, diabetes, peripheral vascular disease, stroke, erectile dysfunction, a sympathetically maintained or mediate pain condition, Raynaud's disease, heart disease, angina pectoris, vascular disease, a skin ulceration, a wound healing disorder, asthma, hypertension, an immune system disorder or a renal disorder, but is not so limited. It may also be appreciated that in some embodiments the at least one ganglion of the sympathetic nerve chain is a cervical ganglion, a thoracic ganglion or a lumbar ganglion.
  • [0014]
    In some embodiments, the positioning step comprises positioning the at least one electrode on the dorsal root ganglion epinurium.
  • [0015]
    In other embodiments, the method further comprises directly applying stimulation to the at least one ganglion along the sympathetic nerve chain. In some instances, the directly applying stimulation step for the at least one ganglion along the sympathetic nerve chain is performed using an electrode exposed to the at least one ganglion along the sympathetic nerve chain.
  • [0016]
    In a second aspect of the present invention, another method is provided of modulating a portion of a neural pathway in the sympathetic nervous system. In some embodiments, the method includes positioning at least one electrode of a lead in close proximity to a target dorsal root ganglion associated with the portion of the neural pathway, and energizing the at least one electrode so that the portion of the neural pathway is altered and energy provided by the at least one electrode dissipates within the target dorsal root ganglion while excluding an associated ventral root.
  • [0017]
    In some embodiments, the energy provided by the at least one electrode selectively stimulates a soma and/or one of the ascending or descending axons within the target dorsal root ganglion which activates a premotor neuron. In some instances, the activation of the premotor neuron acts upon a sympathetic motor neuron causing inhibition of the release of norephinephrine by the sympathetic motor neuron. In some instances, the activation of the premotor neuron acts upon a sympathetic motor neuron causing inhibition of vascular resistance in a blood vessel influenced by the sympathetic motor neuron.
  • [0018]
    In some embodiments, altering of the portion of the neural pathway increases perfusion to a region of the body associated with the portion of the neural pathway. In some instances, the region of the body comprises a brain. In other instances, the region of the body comprises an ischemic limb. In some embodiments, altering of the portion of the neural pathway increases perfusion to a portion of a peripheral vascular system affected by a peripheral vascular disease. And in some embodiments, altering of the portion of the neural pathway alleviates sympathetically mediated pain or sympathetically maintained pain.
  • [0019]
    Other objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0020]
    FIG. 1 illustrates an embodiment of an implantable stimulation system.
  • [0021]
    FIG. 2 illustrates example placement of the leads of the embodiment of FIG. 1 within a patient anatomy.
  • [0022]
    FIG. 3 illustrates an example cross-sectional view of an individual spinal level showing a lead positioned on, near or about a target dorsal root ganglion.
  • [0023]
    FIG. 4 illustrates a lead positioned near a dorsal root ganglion so as to influence the sympathetic nervous system in the treatment of a condition or disorder.
  • [0024]
    FIG. 5 is a schematic illustration of a portion the sympathetic nervous system.
  • [0025]
    FIG. 6 is an illustration of a portion of sympathetic nervous system neuromodulated by an embodiment of the present invention.
  • [0026]
    FIG. 7 is an illustration of embodiments of the present invention implanted for the direct stimulation of a single sympathetic nerve ganglion and a single dorsal root ganglion on the same spinal level.
  • DETAILED DESCRIPTION
  • [0027]
    The sympathetic system is responsible for mobilizing the body's responses under stressful situations, also known as the ‘flight or fight’ response. The sympathetic system acts on many different organs of the body including the eyes (contraction and dilation of the pupils), heart (increase in heart rate, blood flow, blood pressure), lungs (dilation of bronchioles), digestive system (inhibiting movement of food), kidney (increase secretion of rennin), and penis (promote ejaculation). The sympathetic system is also active at a basal level on these and many organs so as to maintain a state of homeostasis in the body.
  • [0028]
    Given the unique role of the sympathetic system in the body and the ability of the sympathetic system to affect a wide array of internal organs, the sympathetic system may be utilized to treat a variety of conditions throughout the body. Such conditions include, but are not limited to, ischemic disorders, diabetes, peripheral vascular disease, stroke, erectile dysfunction, sympathetically maintained or mediate pain conditions, Raynaud's disease, heart disease, angina pectoris, vascular disease, skin ulcerations, wound healing disorders, asthma, hypertension, immune system disorders, and renal disorders, to name a few.
  • [0029]
    Many of these conditions involve ischemia or impaired blood flow to a particular region of the body. Although such impairment of blood flow is caused by a myriad of factors depending on the condition suffered by the patient, increase in blood flow to these areas can assist in treating these conditions and can be achieved by affecting the sympathetic nervous system.
  • [0030]
    Blood flow and pressure is continuously regulated by nerves. At specific locations in the walls of blood vessels, including the aortic arch and carotid sinus, blood pressure is sensed based on the amount of stretch in the walls. When blood pressure increases for any reason, nerve signals are sent to the blood pressure regulating centers located in the brainstem and suprabulbar regions. In response to the nerve signals, the blood pressure regulating centers send out nerve signals that slow the heart and dilate the blood vessels resulting in lowering of the blood pressure back toward its normal basal level. The basal level can be considered vascular tone. In general, vascular tone refers to the degree of constriction experienced by a blood vessel relative to its maximally dilated state. All arterial and venous vessels under basal conditions exhibit some degree of smooth muscle contraction that determines the diameter, and hence tone, of the vessel. Basal vascular tone differs among organs. Those organs having a large vasodilatory capacity (e.g., myocardium, skeletal muscle, skin, splanchnic circulation) have high vascular tone, whereas organs having relatively low vasodilatory capacity (e.g., cerebral and renal circulations) have low vascular tone.
  • [0031]
    Vascular tone is determined by many different competing vasoconstrictor and vasodilator influences acting on the blood vessel. These influences can be separated into extrinsic factors that originate from outside of the organ or tissue in which the blood vessel is located, and intrinsic factors that originate from the vessel itself or the surrounding tissue. The primary function of extrinsic factors is to regulate arterial blood pressure by altering systemic vascular resistance, whereas intrinsic mechanisms are important for local blood flow regulation within an organ. Vascular tone at any given time is determined by the balance of competing vasoconstrictor and vasodilator influences.
  • [0032]
    In general, activation of extrinsic factors and control mechanisms can either increase or decrease vascular tone (i.e., cause vasoconstriction). In one such example, increasing sympathetic nerve activity can increase vascular tone, thus causing an increase in vasoconstriction. Therefore, inhibition of the sympathetic nervous system causes arterial vasodilation and improved blood flow to areas that suffer from restricted blood flow. Thus, treatment of a condition involving ischemia or impaired blood flow to a particular region of the body may be treated by inhibition of portions of the sympathetic nervous system. However, it may be appreciated that in some instances, treatment of a condition (including conditions involving ischemia or impaired blood flow) may be treated by activation of portions of the sympathetic nervous system. The present invention provides for such types of treatment, in addition to other utilizations of the sympathetic nervous system to treat a variety of conditions.
  • [0033]
    The present invention provides for targeted treatment of such conditions with minimal deleterious side effects, such as undesired motor responses, undesired stimulation of unaffected body regions, global activation or inactivation of the sympathetic nervous system and the complications that arise from such activation or inactivation. This is achieved by directly neuromodulating a target anatomy associated with the condition while minimizing or excluding undesired neuromodulation of other anatomies. In most embodiments, neuromodulation comprises stimulation, however it may be appreciated that neuromodulation may include a variety of forms of altering or modulating nerve activity by delivering electrical or pharmaceutical agents directly to a target area. For illustrative purposes, descriptions herein will be provided in terms of stimulation and stimulation parameters, however, it may be appreciated that such descriptions are not so limited and may include any form of neuromodulation and neuromodulation parameters.
  • [0034]
    Typically, the systems and devices are used to neuromodulate portions of neural tissue of the central nervous system, wherein the central nervous system includes the spinal cord and the pairs of nerves along the spinal cord which are known as spinal nerves. The spinal nerves include both dorsal and ventral roots which fuse to create a mixed nerve which is part of the peripheral nervous system. At least one dorsal root ganglion (DRG) is disposed along each dorsal root prior to the point of mixing. Thus, the neural tissue of the central nervous system is considered to include the dorsal root ganglions and exclude the portion of the nervous system beyond the dorsal root ganglions, such as the mixed nerves of the peripheral nervous system. Typically, the systems and devices of the present invention are used to selectively stimulate one or more dorsal root ganglia, while minimizing or excluding undesired stimulation of other tissues, such as surrounding or nearby tissues, ventral root and portions of the anatomy associated with body regions which are not targeted for treatment. In other embodiments, dorsal roots, dorsal root entry zones, or portions are targeted for stimulation. It may be appreciated that stimulation of other tissues are contemplated.
  • [0035]
    The target stimulation areas of the present invention, particularly the dorsal root ganglia, are utilized due in part to their effect on the sympathetic nervous system. It is in these areas that sensory fibers are isolated from motor fibers. Sensory fibers are involved in a variety of reflexes and feed-forward physiologic processes that control the sympathetic nervous system and these reflexes and processes can be utilized in the treatment of various disorders. Thus, by stimulating sensory fibers in these areas, fundamental reflexes and processes can be affected to lessen the symptoms of a variety of disorders. In addition, such targeted stimulation reduces undesired side effects, such as painful tingling or unwanted movements caused by direct stimulation of motor nerves, such as within the ventral root.
  • [0036]
    The present invention utilizes such reflex arcs and feed-forward processes to treat patients presenting with one or more disorders. FIG. 1 illustrates an embodiment of an implantable stimulation system 100 for treatment of such patients. The system 100 includes an implantable pulse generator (IPG) 102 and at least one lead 104 connectable thereto. In preferred embodiments, the system 100 includes four leads 104, as shown, however any number of leads 104 may be used including one, two, three, four, five, six, seven, eight, up to 58 or more. Each lead 104 includes at least one electrode 106. In preferred embodiments, each lead 104 includes four electrodes 106, as shown, however any number of electrodes 106 may be used including one, two, three, four five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or more. Each electrode can be configured as off, anode or cathode. In some embodiments, even though each lead and electrode are independently configurable, at any given time the software ensures only one lead is stimulating at any time. In other embodiments, more than one lead is stimulating at any time, or stimulation by the leads is staggered or overlapping.
  • [0037]
    Referring again to FIG. 1, the IPG 102 includes electronic circuitry 107 as well as a power supply 110, e.g., a battery, such as a rechargeable or non-rechargeable battery, so that once programmed and turned on, the IPG 102 can operate independently of external hardware. In some embodiments, the electronic circuitry 107 includes a processor 109 and programmable stimulation information in memory 108.
  • [0038]
    The implantable stimulation system 100 can be used to stimulate a variety of anatomical locations within a patient's body. In preferred embodiments, the system 100 is used to stimulate one or more dorsal roots, particularly one or more dorsal root ganglions. FIG. 2 illustrates example placement of the leads 104 of the embodiment of FIG. 1 within the patient anatomy. In this example, each lead 104 is individually advanced within the spinal column S in an antegrade direction. Each lead 104 has a distal end which is guidable toward a target DRG and positionable so that its electrodes 106 are in proximity to the target DRG. Specifically, each lead 104 is positionable so that its electrodes 106 are able to selectively stimulate the DRG, either due to position, electrode configuration, electrode shape, electric field shape, stimulation signal parameters or a combination of these. FIG. 2 illustrates the stimulation of four DRGs, each DRG stimulated by one lead 104. These four DRGs are located on three levels, wherein two DRGs are stimulated on the same level. It may be appreciated that any number of DRGs and any combination of DRGs may be stimulated with the stimulation system 100 of the present invention. It may also be appreciated that more than one lead 104 may be positioned so as to stimulate an individual DRG and one lead 104 may be positioned so as to stimulate more than one DRG.
  • [0039]
    It may be appreciated that selective stimulation or neuromodulation concepts described herein may be applied in a number of different configurations. Unilateral (on or in root ganglion(s) on one level on one side of the spinal cord), bi-lateral (on or in two root ganglions on the same level on opposite sides of the spinal cord), unilevel (one or more root ganglion on the same level) or multi-level (at least one root ganglion is stimulated on each of two or more levels) or combinations of the above including stimulation of a portion of the sympathetic nervous system and one or more dorsal root ganglia associated with the neural activity or transmission of that portion of the sympathetic nervous system. As such, embodiments of the present invention may be used to create a wide variety of stimulation control schemes, individually or overlapping, to create and provide zones of treatment.
  • [0040]
    FIG. 3 illustrates an example cross-sectional view of an individual spinal level showing a lead 104 of the stimulation system 100 positioned on a target DRG. In this example, the lead 104 is advanced within the epidural space along the spinal cord S to the appropriate spinal level wherein the lead 104 is advanced laterally toward the target DRG. In some instances, the lead 104 is advanced through or partially through a foramen. At least one, some or all of the electrodes 106 are positioned on, near, about or in proximity to the DRG. In preferred embodiments, the lead 104 is positioned so that the electrodes 106 are disposed along a surface of the DRG opposite to the ventral root VR, as illustrated in FIG. 3. It may be appreciated that the surface of the DRG opposite the ventral root VR may be diametrically opposed to portions of the ventral root VR but is not so limited. Such a surface may reside along a variety of areas of the DRG which are separated from the ventral root VR by a distance.
  • [0041]
    In some instances, such electrodes 106 may provide a stimulation region indicated by dashed line 110, wherein the DRG receives stimulation energy within the stimulation region and the ventral root VR does not as it is outside of the stimulation region. Thus, such placement of the lead 104 may assist in reducing any possible stimulation of the ventral root VR due to distance. However, it may be appreciated that the electrodes 106 may be positioned in a variety of locations in relation to the DRG and may selectively stimulate the DRG due to factors other than or in addition to distance, such as due to stimulation profile shape and stimulation signal parameters, to name a few. It may also be appreciated that the target DRG may be approached by other methods, such as a retrograde epidural approach. Likewise, the DRG may be approached from outside of the spinal column wherein the lead 104 is advanced extraforaminally, from a outside a foramen toward the spinal column, optionally passing through or partially through a foramen and is implanted so that at least some of the electrodes 106 are positioned on, about or in proximity to the DRG.
  • [0042]
    In order to position the lead 104 in such close proximity to the DRG, the lead 104 is appropriately sized and configured to maneuver through the anatomy. In some embodiments, such maneuvering includes atraumatic epidural advancement along the spinal cord S, through a sharp curve toward a DRG, and optionally through a foramen wherein the distal end of the lead 104 is configured to then reside in close proximity to a small target such as the DRG. Consequently, the lead 104 is significantly smaller and more easily maneuverable than conventional spinal cord stimulator leads. Example leads and delivery systems for delivering the leads to a target such as the DRG are provided in U.S. patent application Ser. No. 12/687,737, entitled “Stimulation Leads, Delivery Systems and Methods of Use”, incorporated herein by reference for all purposes.
  • [0043]
    FIG. 4 illustrates the lead 104 positioned near a DRG so as to influence the sympathetic nervous system in the treatment of a condition or disorder. In this schematic illustration, a sensory neuron SN is shown having a soma SA disposed within the DRG and an axon AX which extends through the dorsal root DR to the dorsal horn of the spinal cord S. The sensory neuron SN connects with an interconnector neuron IN within the spinal cord S which connects with sympathetic premotor neuron SPMN. The sympathetic premotor neuron SPMN includes a soma SA1 disposed within the ventral horn of the spinal cord S and an axon AX1 which extends through the ventral root VR and enervates a sympathetic ganglion SG. Here, the sympathetic premotor neuron SPMN synapses with a sympathetic motor neuron SMN that ultimately affects a blood vessel BV and alters vascular resistance. The sympathetic motor neuron SMN releases norepinephrine, a neurotransmitter. Norepinephrine increases vascular resistance or blood pressure by increasing vascular tone through α-adrenergic receptor activation. It may be appreciated that in other embodiments, the sympathetic motor neuron may release or co-release other transmitters.
  • [0044]
    As mentioned previously, treatment of a condition involving ischemia or impaired blood flow to a particular region of the body may be treated by inhibition of the sympathetic nervous system. Referring again to FIG. 4, at least one, some or all of the electrodes 106 are positioned on, about or in proximity to the target DRG. In some embodiments, the involved sensory neuron SN, particularly its soma SA within the target DRG, is selectively stimulated by energy provided by at least one of the electrodes 106. Such stimulation is transmitted through the interneuron IN to the sympathetic premotor neuron SPMN which acts upon a sympathetic motor neuron SMN via the associated sympathetic ganglion SG. This inhibits release of norepinephrine by the sympathetic motor neuron SMN which in turn lessens vascular resistance and improves blood flow to the areas that had suffered from restricted blood flow.
  • [0045]
    In some embodiments, selective stimulation of the involved sensory neuron SN is achieved with the choice of the size of the electrode(s), the shape of the electrode(s), the position of the electrode(s), the stimulation signal, pattern or algorithm, or any combination of these. Such selective stimulation stimulates the targeted neural tissue while excluding untargeted tissue, such as surrounding or nearby tissue. In some embodiments, the stimulation energy is delivered to the targeted neural tissue so that the energy dissipates or attenuates beyond the targeted tissue or region to a level insufficient to stimulate modulate or influence such untargeted tissue. In particular, selective stimulation of tissues, such as the dorsal root, DRG, or portions thereof, exclude stimulation of the ventral root wherein the stimulation signal has an energy below an energy threshold for stimulating a ventral root associated with the target dorsal root while the lead is so positioned. Examples of methods and devices to achieve such selective stimulation of the dorsal root and/or DRG are provided in U.S. patent application Ser. No. 12/607,009, entitled “Selective Stimulation Systems and Signal Parameters for Medical Conditions”, incorporated herein by reference for all purposes. It may be appreciated that indiscriminant stimulation of the ventral root, such as from an electrode which emits stimulation energy which directly stimulates the ventral root, typically causes unpleasant sensations for the patient, such as tingling, buzzing or undesired motions or movements. Therefore, it is desired to stimulate sympathetic premotor neurons via synapses in the spinal cord rather than directly via the ventral root.
  • [0046]
    As mentioned previously, given the unique role of the sympathetic system in the body and the ability of the sympathetic system to affect a wide array of internal organs, the sympathetic system may be utilized to treat a variety of conditions throughout the body. In particular, a condition involving ischemia or impaired blood flow to a particular region of the body may be treated by inhibition or activation of the sympathetic nervous system. Some of these conditions will be described in more detail below. However, it may be appreciated that other disorders and conditions may also be treated with the devices, systems and methods of the present invention.
  • Diabetes
  • [0047]
    Diabetes is a metabolism disorder in which the quantity of glucose in the blood is too elevated (hyperglycemia). This is because the body either does not produce enough insulin, produces no insulin, or has cells that do not respond properly to the insulin the pancreas produces. Since insulin makes it possible for cells to take in glucose, this metabolic disorder results in too much glucose building up in the blood.
  • [0048]
    Elevated blood sugar levels cause a variety of health problems and complications for diabetic patients. A very common complication is foot problems, including nerve damage or peripheral neuropathy that results in loss of feeling or pain and burning sensations in the feet and legs. Once nerve damage progresses, it triggers loss of motor control and abnormal gait and can result in ulcers and amputations. The major cause of such nerve damage is loss of circulation. High blood sugars damage both large and small blood vessels that carry oxygen and nutrients to the nerves. If there is not enough blood being sent to the nerves, the nerves are damaged wherein electrical signals can no longer pass or pass at a slower speed. Good messaging in nerves also depends on an outer protective coating called myelin. This electrical insulator is also vulnerable to damage from high blood sugars. Preventing such foot problems in diabetes begins by preventing the loss of circulation that will result in serious nerve damage.
  • [0049]
    Diabetic patients are also twice as likely to have a heart attack or stroke. This is because diabetes worsens atherosclerosis, a condition in which arteries narrow. High blood sugar levels have two effects on cells lining blood vessels. First, it increases the production of free radicals, highly reactive molecules that damage sensitive cell components like DNA, causing premature cell death (apoptosis). Second, it reduces the availability of nitric oxide (NO), which would otherwise enable blood vessels to relax and blood flow to increase. In patients without diabetes, fast blood flow triggers a cascade which leads to dilation of blood vessels and reduced inflammation. The diabetic patient does not have the benefit of such triggering due to the reduction in blood flow, which in turn worsens the condition.
  • [0050]
    Therefore the diabetic patient may be beneficially treated by increasing blood flow to areas of the body by stimulating associated dorsal root ganglions as described above. In particular, such increase in blood flow may reduce the incidence of nerve damage, heart attack and stroke in those suffering from diabetes.
  • Peripheral Vascular Disease
  • [0051]
    Peripheral vascular disease (PVD), refers to the obstruction of large arteries in the periphery of the vascular system. PVD causes either acute or chronic ischemia (lack of blood supply). PVD also includes a subset of diseases classified as microvascular diseases resulting from episodal narrowing of the arteries (Raynaud's phenomenon), or widening thereof (erythromelalgia). For the patient, PVD can manifest as claudication (pain, weakness, numbness, or cramping in muscles due to decreased blood flow), sores, wounds, or ulcers that heal slowly or not at all, noticeable changes in skin color (blueness or paleness) or temperature (coolness) when compared to the other limbs, or diminished hair and nail growth on affected limb and digits, to name a few. Individuals with PVD may require amputation and can have an elevated risk for cardiovascular events and eventual death of a cardiac or cerebrovascular etiology. Thus, patients suffering from peripheral vascular disease may be beneficially treated by increasing blood flow to portions of the peripheral vascular system by stimulating associated dorsal root ganglions as described above.
  • Limb Ischemia
  • [0052]
    Limb ischemia is an obstruction of the arteries that seriously decreases blood flow to the extremities (hands, feet and legs) and has progressed to the point of severe pain and even skin ulcers or sores. Limb ischemia is often present in people suffering from severe cases of peripheral vascular disease. However, there are a variety of risk factors for developing the disease, including age, smoking, diabetes, obesity, sedentary lifestyle, high cholesterol, high blood pressure, and family history of atherosclerosis or claudication. Thus, patients suffering from limb ischemia for any reason may be beneficially treated by increasing blood flow to the limb by stimulating associated dorsal root ganglions as described above.
  • Myocardial Ischemia
  • [0053]
    Myocardial Ischemia develops when coronary blood flow becomes inadequate to meet myocardial oxygen demand. In some instances, myocardial ischemia results from abnormal constriction or deficient relaxation of coronary microcirculation (ie, resistance vessels). Coronary spasm can also reduce coronary flow reserve significantly by causing dynamic stenosis of coronary arteries. Myocardial ischemia causes myocardial cells to switch from aerobic to anaerobic metabolism, with a progressive impairment of metabolic, mechanical, and electrical functions. Angina pectoris, often described as severe chest pain, is a common clinical manifestation of myocardial ischemia. It is caused by chemical and mechanical stimulation of sensory afferent nerve endings in the coronary vessels and myocardium. These nerve fibers extend from the first to fourth thoracic spinal nerves, ascending via the spinal cord to the thalamus, and from there to the cerebral cortex.
  • [0054]
    The heart and coronary arteries are innervated by sympathetic afferent fibers that have their cell bodies concentrated in the dorsal root ganglia of the T2 to T6 spinal segments but can extend as far as the C8 to T9 segments. Dorsal root ganglion cells have axons that enter the tract of Lissauer and terminate in the same segment, or the axons can ascend and descend a few segments before terminating in the spinal gray matter. Patients suffering from myocardial ischemia may be beneficially treated by increasing blood flow in the coronary vascular system by stimulating associated dorsal root ganglions as described above. Likewise, patients presenting with angina pectoris may be beneficially treated for pain symptoms by stimulating associated dorsal root ganglions as described above.
  • Stroke
  • [0055]
    Initial treatment for a stroke varies depending on whether it is an ischemic stroke (caused by a blood clot) or a hemorrhagic stroke (caused by bleeding in the brain). For an ischemic stroke, initial treatment focuses on restoring blood flow. Permanent damage from a stroke often occurs within the first few hours so swift restoration of blood flow will lessen damage that will occur. Current treatments include a clot-dissolving medicine called tissue plasminogen activator (t-PA), which can increase chances of survival and recovery. In addition, the patient may receive aspirin or aspirin combined with another antiplatelet medicine. However, aspirin is not recommended within 24 hours of treatment with t-PA. Other medicines may be given to control blood sugar levels, fever, and seizures. Patients suffering from an ischemic stroke may be beneficially treated by quickly restoring blood flow to the brain by stimulating associated dorsal root ganglions as described above.
  • Erectile Dysfunction
  • [0056]
    Erectile dysfunction is a sexual dysfunction characterized by the inability to develop or maintain an erection of the penis. A penile erection is the hydraulic effect of blood entering and being retained in sponge-like bodies within the penis. Thus, there are a variety of circulatory causes of erectile dysfunction. The most common circulatory causes are cardiovascular disease and diabetes. By treating these circulatory maladies with the devices, systems and methods described herein, erectile dysfunction may be prevented or treated.
  • Sympathetically Mediated Pain
  • [0057]
    Sympathetically mediated pain and sympathetically maintained pain refers to pain signals that are transmitted to the brain from the sympathetic nervous system, the part of the nervous system controlling ‘involuntary’ functions of the body such as heart rate, sweating, constriction of blood vessels, and digestion. In certain abnormal situations the pain signals from the sympathetic nervous system become constant and severe, even though there is no obvious cause of pain. The mechanism by which this happens is complex and not fully understood.
  • [0058]
    Sympathetic pain usually has a severe, burning characteristic and often begins in the hand or foot. The affected area is very hypersensitive to even the lightest touch. Pink or bluish discoloration of the involved area may occur because of abnormal circulation, and abnormal sweating may also be noticed. There are a number of diagnostic phrases used by physicians when discussing sympathetic pain syndromes. In the past the most commonly used phrase was Reflex Sympathetic Dystrophy, or RSD. Other terms used to describe the condition include causalgia and sympathetically mediated pain. Recently, “Chronic Regional Pain Syndrome” or CRPS has become commonly used. Such sympathetic pain can also be treated by selective stimulation of one or more dorsal root ganglions since sympathetic afferents can travel through the DRG. In some embodiments, a negative feedback loop on efferent sympathetic activity is created. And, in other embodiments, a stellate ganglion blockade is used in treating certain pain conditions.
  • [0059]
    Thus, blood vessels are just one of many targets that can be influenced by affecting the sympathetic nervous system via selective stimulation of one or more dorsal root ganglions. A variety of other end organs may also be influenced by selective stimulation of one or more dorsal root ganglions to treat medical conditions associated with these end organs. For example, the lungs may be influenced in the treatment patients suffering from constriction of air passages. There are a variety of circumstances and conditions that cause the bronchi of the lungs to become narrow, or constrict, making it difficult to breathe. Bronchoconstriction, or the narrowing of the airways, is typically caused by the muscles surrounding the lungs becoming tight. A build-up of excess mucous as well as inflammation can also cause constriction. The constriction results in coughing, wheezing and shortness of breath. There are several conditions that cause this; such conditions include but are not limited to: Chronic lung disease (CLD), Emphysema, Exercise-Induced bronchoconstriction, Allergen-induced bronchoconstriction, and Asthma. In some embodiments, bronchodilation, the process by which the bronchi (tubes in the lungs made of connective tissue and muscle) are dilated, or opened, is achieved by selective stimulation of one or more dorsal root ganglions.
  • [0060]
    It is known that bronchodilation can occur as part of the body's natural response. When the sympathetic nervous system is activated in what is commonly known as the “fight or flight” response, the hormones and neurotransmitters of adrenaline (also called epinephrine) and noradrenaline (also called norepinephrine) are released. This response can be naturally triggered by physical or mental stress. And, aspects of this natural response can be harnessed to treat patients suffering from bronchoconstriction. In particular, one or more dorsal root ganglia associated with portions of the sympathetic nervous system involved in bronchodilation are selectively stimulated using the devices, systems and method described and referenced herein. Such selective stimulation leads to desired bronchodilation in treatment of the medical condition suffered by the patient.
  • [0061]
    As mentioned, a variety of end organs may also be influenced by selective stimulation of one or more dorsal root ganglions to treat medical conditions associated with these end organs. FIG. 5 is a schematic illustration of a portion of the sympathetic nervous system and associated target organs and tissues that can be influenced. As shown, each sympathetic ganglion SG along the sympathetic chain is associated with a spinal level, in particular, a dorsal root ganglion on a spinal level. And, one or more sympathetic ganglions SG are associated with a particular organ, system or tissue, such as the heart, liver or stomach, to name a few. It may be appreciated that stimulation of one or more dorsal root ganglions may alternatively or additionally influence other ganglions, such as mesenteric ganglions, celiac ganglions, stellate ganglions and cervical ganglions, to name a few. These ganglions in turn affect particular organs, systems or tissues.
  • [0062]
    FIG. 6 illustrates how embodiments of the present invention may be advantageously utilized for neurostimulation of the sympathetic chain using direct stimulation of an associated DRG. This aspect of the present invention takes advantage of the anatomical placement of the DRG relative to the sympathetic chain in conjunction with gate control theory to direct DRG stimulation for control of the sympathetic system. Thus, selective neurostimulation techniques of the present invention may be advantageously employed to, for example, provide and/or augment therapeutic tools in regards to weight control, hormonal regulation, vascular perfusion, etc. Additional alternative embodiments include the use of specific stimulation to provide organ system autonomic modulation. Through implantation of stimulation electrodes and systems of the present invention to stimulate the appropriate DRG upstream of the associated portion(s) of the sympathetic chain, the associated system may be controlled, modulated or influenced utilizing the electrical and/or pharmacological agent stimulation techniques described herein. Thus, there is provided a method of modulating a neural pathway in the sympathetic nervous system by stimulating a spinal dorsal root ganglion upstream of at least one ganglion of the sympathetic nerve chain to influence a condition associated with the at least one ganglion of the sympathetic nerve chain.
  • [0063]
    In one specific example, by stimulating the DRG 40 associated with spinal level 13.3, as shown in FIG. 6, the portion of the sympathetic chain associated with hormonal regulation may be altered, modified, influenced or controlled. Similarly, by stimulating the DRG 40′ associated with spinal level 13.2 and/or the DRG 40″ associated with level 13.1, the portion of the sympathetic chain associated with the gastrointestinal tract, or urinary incontinence (i.e., urinary bladder, urethra, prostate, etc.) may be altered, modified, influenced or controlled.
  • [0064]
    Optionally or additionally, the direct stimulation techniques described herein may be used to directly stimulate individual nerve ganglion of the sympathetic nervous system, such as, for example, the celiac ganglion, superior mesenteric ganglion, inferior mesenteric ganglion and others listed in FIGS. 5, 6 or known to those of ordinary skill. It is to be appreciated that the stimulation systems, pulse generators, leads, electrodes, and/or microelectrodes and other components are modified and sized as needed to allow for direct stimulation of the ganglion including implanting into the ganglion or within adjacent nerve sheaths leading to the ganglion. FIG. 7 illustrates an embodiment of a combined direct stimulation of a DRG 38 with microelectrode 115 as well as a suitably sized microelectrode 115 implanted in a sympathetic nerve root ganglion 63. The electrodes in FIG. 7 may stimulate independently or in a coordinated fashion to achieve the desired clinical outcome or other desired result. Similar to the discussion above for electrode placement in, on or about the DRG, electrode placement for the sympathetic chain may also be unilateral, bilateral, on adjacent portions of the chain or separate portions of the chain as needed.
  • [0065]
    One aspect of the present invention is a method of modulating a neural pathway in the sympathetic nervous system including stimulating a spinal dorsal root ganglion upstream of at least one ganglion of the sympathetic nerve chain to influence a condition associated with the at least one ganglion of the sympathetic nerve chain. In one specific embodiment, stimulating a spinal dorsal root ganglion comprises stimulating a spinal dorsal root ganglion upstream of at least one ganglion of the sympathetic nerve chain to influence functional activation of a bodily system associated with the at least one ganglion along the sympathetic nerve chain, to influence functional activation of an organ associated with the at least one ganglion along the sympathetic nerve chain, or to influence functional inhibition of a bodily system associated with the at least one ganglion along the sympathetic nerve chain. In specific embodiments, the ganglion of the sympathetic nerve chain is a cervical ganglion, a thoracic ganglion, a lumbar ganglion or a sacral ganglion.
  • [0066]
    It may be appreciated that embodiments of the present invention may be used in conjunction with other neurostimulation techniques by combining an upstream stimulation using specific DRG stimulation of the present invention with another stimulation acting downstream of the DRG stimulation. As used herein, downstream and upstream refer to pathways closer to the brain (i.e., upstream) or further from the brain (i.e., downstream). For example, several stimulation techniques are described by Rezai in US Patent Publication 2002/0116030 and U.S. Pat. No. 6,438,423 and by Dobak in publication 2003/0181958, all of which are incorporated herein by reference. In specific aspects, embodiments of the present invention may be used to provide electrical and combinational (i.e., with a pharmacological agent) stimulation of the sympathetic nerve chain as described by Rezai alone (i.e., using the appropriate DRG stimulation or implanting directly into a nerve root ganglion.). Alternatively or additionally, embodiments of the present invention provide specific, direct stimulation of one or more DRG and are used in combination with the stimulation techniques described by Rezai (i.e., conventional stimulation of the sympathetic chain using one or more of Rezai's techniques).
  • [0067]
    Referring back to FIG. 1, in some embodiments, the implantable pulse generator (IPG) 102 comprises circuitry which initiates or modifies the electrical stimulation in response to one or more sensors. Example sensors include, among others, blood glucose sensors, blood pressure sensors, blood flow sensors (including Doppler and other techniques), heart rate sensors, blood oxygen sensors, temperature sensors, accelerometers, strain gauges, electrocardiograms, brain wave detectors (electroencephalograms, other interiorly and exteriorly measured composite neuronal activity), electrical devices which measure electrical activity in muscles and/or nerves, or other devices capable of measuring physiological parameters indicative of symptoms of the disorder under treatment.
  • [0068]
    In some embodiments, the one or more sensors sense the status of one or more symptoms of the disorder. Such status information is utilized to modify the electrical stimulation to a level which is appropriate to improve status of the disorder in real time. This modification of electrical stimulation may be particularly beneficial in the treatment of conditions which have a time dependency, such as stroke.
  • [0069]
    In some embodiments, the sensor detects one or more of the following functions or aspect of the body: carbon dioxide pressure in a target tissue, action potential conduction (such as in a target nerve), body movement, balance, motor activity including muscle tone, heart rate, blood pressure, capillary pressure, venous pressure, arterial pressure, blood flow, circulation (including blood and lymphatic), perfusion, electrocardiogram, oxygenation (including blood oxygenation levels, oxygen saturation levels, oxygen consumption, oxygen pressure), concentration of certain biological molecules/substances in the body (such as, for example, glucose, liver enzymes, electrolytes, hormones, creatinine, medications, concentration of various cells, platelets, or bacteria), pH levels, chemical production, neurotransmitter levels, electrolyte levels in the circulation/tissue, nitrogen pressure, respiratory function, chest wall expansion, diaphragmatic movement, cognitive activity, electroencephalogram, flushing, galvanic skin responses, perspiration, body temperature regulation, response to external stimulation, pain, speech, temperature, visual activity, intra-bladder pressure, and water pressure.
  • [0070]
    In some embodiments, the sensor is positioned so as to measure sympathetic nerve outflow. In such embodiments, the sensor may be positioned on or near the sympathetic chain.
  • [0071]
    In some embodiments, the implantable pulse generator (IPG) 102 comprises circuitry which initiates or modifies the electrical stimulation in response to a timer or clock. Thus, stimulation may be reduced or eliminated during times in which it is determined that the patient desires reduced or no treatment. Such periods of reduced usage may extend the life of the power supply 110.
  • [0072]
    Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications, and equivalents may be used and the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.
  • INCORPORATION BY REFERENCE
  • [0073]
    All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Claims (23)

  1. 1. A method of modulating a neural pathway in the sympathetic nervous system, comprising:
    positioning at least one electrode of a lead in close proximity to a dorsal root ganglion upstream of at least one ganglion of the sympathetic nerve chain; and
    providing energy to the at least one electrode so as to neuromodulate the dorsal root ganglion in a manner that influences a condition associated with the at least one ganglion of the sympathetic nerve chain while excluding neuromodulation of an associated ventral root.
  2. 2. The method according to claim 1 wherein neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional activation of a bodily system associated with the at least one ganglion along the sympathetic nerve chain.
  3. 3. The method according to claim 2 wherein neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional activation of an organ associated with the at least one ganglion along the sympathetic nerve chain.
  4. 4. The method according to claim 1 wherein neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional inhibition of a bodily system associated with the at least one ganglion along the sympathetic nerve chain.
  5. 5. The method according to claim 4 wherein neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that influences functional inhibition of an organ associated with the at least one ganglion along the sympathetic nerve chain.
  6. 6. The method according to claim 1 wherein neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that lessens vascular resistance of a blood vessel associated with the at least one ganglion along the sympathetic nerve chain.
  7. 7. The method according to claim 1 wherein neuromodulating a dorsal root ganglion comprises neuromodulating a dorsal root ganglion in a manner that improves vascular perfusion to an ischemic body region or tissue.
  8. 8. The method according to claim 1 wherein the condition comprises an ischemic disorder, diabetes, peripheral vascular disease, stroke, erectile dysfunction, a sympathetically maintained or mediate pain condition, Raynaud's disease, heart disease, angina pectoris, vascular disease, a skin ulceration, a wound healing disorder, asthma, hypertension, an immune system disorder or a renal disorder.
  9. 9. The method according to claim 1 wherein the at least one ganglion of the sympathetic nerve chain is a cervical ganglion.
  10. 10. The method according to claim 1 wherein the at least one ganglion of the sympathetic nerve chain is a thoracic ganglion.
  11. 11. The method according to claim 1 wherein the at least one ganglion of the sympathetic nerve chain is a lumbar ganglion.
  12. 12. The method according to claim 1 wherein the positioning step comprises positioning the at least one electrode on the dorsal root ganglion epinurium.
  13. 13. The method according to claim 1 further comprising directly applying stimulation to the at least one ganglion along the sympathetic nerve chain.
  14. 14. The method according to claim 13 wherein the directly applying stimulation step for the at least one ganglion along the sympathetic nerve chain is performed using an electrode exposed to the at least one ganglion along the sympathetic nerve chain.
  15. 15. A method of modulating a portion of a neural pathway in the sympathetic nervous system, comprising:
    positioning at least one electrode of a lead in close proximity to a target dorsal root ganglion associated with the portion of the neural pathway; and
    energizing the at least one electrode so that the portion of the neural pathway is altered and energy provided by the at least one electrode dissipates within the target dorsal root ganglion while excluding an associated ventral root.
  16. 16. A method as in claim 15, wherein the energy provided by the at least one electrode selectively stimulates a soma and/or one of the ascending or descending axons within the target dorsal root ganglion which activates a premotor neuron.
  17. 17. A method as in claim 16, wherein the activation of the premotor neuron acts upon a sympathetic motor neuron causing inhibition of the release of norephinephrine by the sympathetic motor neuron.
  18. 18. A method as in claim 16, wherein the activation of the premotor neuron acts upon a sympathetic motor neuron causing inhibition of vascular resistance in a blood vessel influenced by the sympathetic motor neuron.
  19. 19. A method as in claim 15, wherein the altering of the portion of the neural pathway increases perfusion to a region of the body associated with the portion of the neural pathway.
  20. 20. A method as in claim 19, wherein the region of the body comprises a brain.
  21. 21. A method as in claim 19, wherein the region of the body comprises an ischemic limb.
  22. 22. A method as in claim 19, wherein the altering of the portion of the neural pathway increases perfusion to a portion of a peripheral vascular system affected by a peripheral vascular disease.
  23. 23. A method as in claim 15, wherein the altering of the portion of the neural pathway alleviates sympathetically mediated pain or sympathetically maintained pain.
US13458697 2004-09-08 2012-04-27 Selective stimulation to modulate the sympathetic nervous system Abandoned US20120277839A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US60835704 true 2004-09-08 2004-09-08
US11222516 US7502651B2 (en) 2004-09-08 2005-09-07 Methods for stimulating a dorsal root ganglion
US12369706 US8229565B2 (en) 2004-09-08 2009-02-11 Methods for stimulating a dorsal root ganglion
US201161480958 true 2011-04-29 2011-04-29
US13458697 US20120277839A1 (en) 2004-09-08 2012-04-27 Selective stimulation to modulate the sympathetic nervous system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13458697 US20120277839A1 (en) 2004-09-08 2012-04-27 Selective stimulation to modulate the sympathetic nervous system
US14954740 US9486633B2 (en) 2004-09-08 2015-11-30 Selective stimulation to modulate the sympathetic nervous system
US15346587 US20170274212A1 (en) 2004-09-08 2016-11-08 Selective stimulation to modulate the sympathetic nervous system
US15861592 US20180126166A1 (en) 2004-09-08 2018-01-03 Selective stimulation to modulate the sympathetic nervous system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12369706 Continuation-In-Part US8229565B2 (en) 2004-09-08 2009-02-11 Methods for stimulating a dorsal root ganglion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14954740 Continuation US9486633B2 (en) 2004-09-08 2015-11-30 Selective stimulation to modulate the sympathetic nervous system

Publications (1)

Publication Number Publication Date
US20120277839A1 true true US20120277839A1 (en) 2012-11-01

Family

ID=47068549

Family Applications (4)

Application Number Title Priority Date Filing Date
US13458697 Abandoned US20120277839A1 (en) 2004-09-08 2012-04-27 Selective stimulation to modulate the sympathetic nervous system
US14954740 Active US9486633B2 (en) 2004-09-08 2015-11-30 Selective stimulation to modulate the sympathetic nervous system
US15346587 Abandoned US20170274212A1 (en) 2004-09-08 2016-11-08 Selective stimulation to modulate the sympathetic nervous system
US15861592 Pending US20180126166A1 (en) 2004-09-08 2018-01-03 Selective stimulation to modulate the sympathetic nervous system

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14954740 Active US9486633B2 (en) 2004-09-08 2015-11-30 Selective stimulation to modulate the sympathetic nervous system
US15346587 Abandoned US20170274212A1 (en) 2004-09-08 2016-11-08 Selective stimulation to modulate the sympathetic nervous system
US15861592 Pending US20180126166A1 (en) 2004-09-08 2018-01-03 Selective stimulation to modulate the sympathetic nervous system

Country Status (1)

Country Link
US (4) US20120277839A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080183257A1 (en) * 2007-01-29 2008-07-31 Spinal Modulation, Inc. Sutureless lead retention features
US8518092B2 (en) 2006-12-06 2013-08-27 Spinal Modulation, Inc. Hard tissue anchors and delivery devices
WO2014143577A1 (en) * 2013-03-12 2014-09-18 Spinal Modulation, Inc. Methods and systems for use in guiding implantation of a neuromodulation lead
WO2014186676A1 (en) * 2013-05-16 2014-11-20 Spinal Modulation, Inc. Methods and systems for automatically turning on and off drg stimulation and adjusting drg stimulation parameters
US9005100B2 (en) 2011-12-15 2015-04-14 The Board Of Trustees Of The Leland Stanford Jr. University Apparatus and methods for treating pulmonary hypertension
US9056197B2 (en) 2008-10-27 2015-06-16 Spinal Modulation, Inc. Selective stimulation systems and signal parameters for medical conditions
US9205261B2 (en) 2004-09-08 2015-12-08 The Board Of Trustees Of The Leland Stanford Junior University Neurostimulation methods and systems
US9314618B2 (en) 2006-12-06 2016-04-19 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
US9427570B2 (en) 2006-12-06 2016-08-30 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Expandable stimulation leads and methods of use
US9468762B2 (en) 2009-03-24 2016-10-18 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Pain management with stimulation subthreshold to paresthesia
US9486633B2 (en) 2004-09-08 2016-11-08 The Board Of Trustees Of The Leland Stanford Junior University Selective stimulation to modulate the sympathetic nervous system
US9533155B2 (en) 2014-08-15 2017-01-03 Axonics Modulation Technologies, Inc. Methods for determining neurostimulation electrode configurations based on neural localization
US9555246B2 (en) 2014-08-15 2017-01-31 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US9623233B2 (en) 2006-12-06 2017-04-18 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
US9630011B2 (en) 2011-02-23 2017-04-25 John D Lipani System and methods for diagnosis and treatment of discogenic lower back pain
US9820800B2 (en) 2012-11-13 2017-11-21 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411540A (en) * 1993-06-03 1995-05-02 Massachusetts Institute Of Technology Method and apparatus for preferential neuron stimulation
US5458626A (en) * 1993-12-27 1995-10-17 Krause; Horst E. Method of electrical nerve stimulation for acceleration of tissue healing
US20040122477A1 (en) * 2002-12-19 2004-06-24 Whitehurst Todd K. Fully implantable miniature neurostimulator for spinal nerve root stimulation as a therapy for angina and peripheral vascular disease
US6862479B1 (en) * 2000-08-30 2005-03-01 Advanced Bionics Corporation Spinal cord stimulation as a therapy for sexual dysfunction

Family Cites Families (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US525891A (en) 1894-09-11 Fastener for electric wires
US3724467A (en) 1971-04-23 1973-04-03 Avery Labor Inc Electrode implant for the neuro-stimulation of the spinal cord
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4232679B1 (en) 1977-01-26 1988-05-31
US4141367A (en) 1977-04-29 1979-02-27 Med Telectronics Ltd. Cardiac electrode/pacer system analyzer
US4374527A (en) 1978-07-19 1983-02-22 Medtronic, Inc. Body stimulation lead
US4313448B1 (en) 1980-01-28 1985-04-02
US4298003A (en) 1980-05-12 1981-11-03 Alza Corporation System for delivering agent at zero order rate with emerging agent below saturation
US4414986A (en) 1982-01-29 1983-11-15 Medtronic, Inc. Biomedical stimulation lead
US4479491A (en) 1982-07-26 1984-10-30 Martin Felix M Intervertebral stabilization implant
US4549556A (en) 1982-12-08 1985-10-29 Cordis Corporation Implantable lead
US4739764A (en) 1984-05-18 1988-04-26 The Regents Of The University Of California Method for stimulating pelvic floor muscles for regulating pelvic viscera
US4607639A (en) 1984-05-18 1986-08-26 Regents Of The University Of California Method and system for controlling bladder evacuation
US4590946A (en) 1984-06-14 1986-05-27 Biomed Concepts, Inc. Surgically implantable electrode for nerve bundles
US4573481A (en) 1984-06-25 1986-03-04 Huntington Institute Of Applied Research Implantable electrode array
US4640286A (en) 1984-11-02 1987-02-03 Staodynamics, Inc. Optimized nerve fiber stimulation
US4577642A (en) 1985-02-27 1986-03-25 Medtronic, Inc. Drug dispensing body implantable lead employing molecular sieves and methods of fabrication
US4786155A (en) 1986-12-16 1988-11-22 Fantone Stephen D Operating microscope providing an image of an obscured object
US4920979A (en) 1988-10-12 1990-05-01 Huntington Medical Research Institute Bidirectional helical electrode for nerve stimulation
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US4940065A (en) 1989-01-23 1990-07-10 Regents Of The University Of California Surgically implantable peripheral nerve electrode
US4950270A (en) 1989-02-03 1990-08-21 Boehringer Mannheim Corporation Cannulated self-tapping bone screw
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
DE3918431C1 (en) 1989-06-06 1990-07-26 B. Braun Melsungen Ag, 3508 Melsungen, De
JPH03193393A (en) 1989-12-22 1991-08-23 Dainippon Printing Co Ltd Thermal mimeograph paper
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5358514A (en) 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
US20010006967A1 (en) 1992-09-21 2001-07-05 Stanley M. Crain Method of simultaneously enhancing analgesic potency and attenuating adverse side effects caused by tramadol and other bimodally-acting opioid agonists
US5360441A (en) 1992-10-30 1994-11-01 Medtronic, Inc. Lead with stylet capture member
GB9302335D0 (en) 1993-02-05 1993-03-24 Macdonald Alexander J R Electrotherapeutic apparatus
US5792187A (en) 1993-02-22 1998-08-11 Angeion Corporation Neuro-stimulation to control pain during cardioversion defibrillation
US5344438A (en) 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5417719A (en) 1993-08-25 1995-05-23 Medtronic, Inc. Method of using a spinal cord stimulation lead
US5400784A (en) 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
US5584835A (en) 1993-10-18 1996-12-17 Greenfield; Jon B. Soft tissue to bone fixation device and method
US5411537A (en) 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5419763B1 (en) 1994-01-04 1997-07-15 Cor Trak Medical Inc Prostatic drug-delivery catheter
US5501703A (en) 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5489294A (en) 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
US5505201A (en) 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode
US5514175A (en) 1994-11-09 1996-05-07 Cerebral Stimulation, Inc. Auricular electrical stimulator
US5741319A (en) 1995-01-27 1998-04-21 Medtronic, Inc. Biocompatible medical lead
US5733322A (en) 1995-05-23 1998-03-31 Medtronic, Inc. Positive fixation percutaneous epidural neurostimulation lead
US5755750A (en) 1995-11-13 1998-05-26 University Of Florida Method and apparatus for selectively inhibiting activity in nerve fibers
US5807339A (en) 1995-12-04 1998-09-15 Pacesetter Ab Stylet unit for stiffening a hollow, flexible, elongated component
FR2742058B1 (en) 1995-12-12 1998-03-06 Ela Medical Sa Collapsible probes anchoring barbs to medical device implants, including pacemakers
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US5702429A (en) 1996-04-04 1997-12-30 Medtronic, Inc. Neural stimulation techniques with feedback
US5824021A (en) 1996-04-25 1998-10-20 Medtronic Inc. Method and apparatus for providing feedback to spinal cord stimulation for angina
US5713922A (en) 1996-04-25 1998-02-03 Medtronic, Inc. Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5711316A (en) 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US6161048A (en) 1997-06-26 2000-12-12 Radionics, Inc. Method and system for neural tissue modification
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
US6045532A (en) 1998-02-20 2000-04-04 Arthrocare Corporation Systems and methods for electrosurgical treatment of tissue in the brain and spinal cord
US5885290A (en) 1996-12-09 1999-03-23 Guerrero; Cesar A. Intra-oral bone distraction device
US6785576B2 (en) 1997-04-21 2004-08-31 Medtronic, Inc. Medical electrical lead
DE29703043U1 (en) 1997-02-20 1997-04-24 Signus Medizintechnik Gmbh spinal implant
US5957965A (en) 1997-03-03 1999-09-28 Medtronic, Inc. Sacral medical electrical lead
US5865843A (en) 1997-04-23 1999-02-02 Medtronic Inc. Medical neurological lead with integral fixation mechanism
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
US6839588B1 (en) 1997-07-31 2005-01-04 Case Western Reserve University Electrophysiological cardiac mapping system based on a non-contact non-expandable miniature multi-electrode catheter and method therefor
US5871531A (en) 1997-09-25 1999-02-16 Medtronic, Inc. Medical electrical lead having tapered spiral fixation
US5984896A (en) 1997-10-28 1999-11-16 Ojp #73, Inc. Fixated catheter
US6415187B1 (en) 1998-02-10 2002-07-02 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and insertion needle for use therewith
US6493588B1 (en) 1998-03-18 2002-12-10 Mmc/Gatx Partnership No. 1 Electro-nerve stimulator systems and methods
US6314325B1 (en) 1998-04-07 2001-11-06 William R. Fitz Nerve hyperpolarization method and apparatus for pain relief
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6161047A (en) 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US6120467A (en) 1998-04-30 2000-09-19 Medtronic Inc. Spinal cord simulation systems with patient activity monitoring and therapy adjustments
US6421566B1 (en) 1998-04-30 2002-07-16 Medtronic, Inc. Selective dorsal column stimulation in SCS, using conditioning pulses
US6002964A (en) 1998-07-15 1999-12-14 Feler; Claudio A. Epidural nerve root stimulation
WO2000006249A3 (en) 1998-07-27 2000-05-18 Dominique Durand Method and apparatus for closed-loop stimulation of the hypoglossal nerve in human patients to treat obstructive sleep apnea
US6104957A (en) * 1998-08-21 2000-08-15 Alo; Kenneth M. Epidural nerve root stimulation with lead placement method
US6044297A (en) 1998-09-25 2000-03-28 Medtronic, Inc. Posture and device orientation and calibration for implantable medical devices
US6208902B1 (en) 1998-10-26 2001-03-27 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for pain syndromes utilizing an implantable lead and an external stimulator
US6366814B1 (en) 1998-10-26 2002-04-02 Birinder R. Boveja External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders
US6611715B1 (en) 1998-10-26 2003-08-26 Birinder R. Boveja Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US6205359B1 (en) 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6356788B2 (en) 1998-10-26 2002-03-12 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
ES2228165T3 (en) 1998-12-09 2005-04-01 Cook Incorporated hollow, curved, SUPERELASTICA needle for medical use.
US6909917B2 (en) 1999-01-07 2005-06-21 Advanced Bionics Corporation Implantable generator having current steering means
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
ES2240078T3 (en) 1999-03-09 2005-10-16 Thermage, Inc. Apparatus for treating tissue.
US6835194B2 (en) 1999-03-18 2004-12-28 Durect Corporation Implantable devices and methods for treatment of pain by delivery of fentanyl and fentanyl congeners
US6436099B1 (en) 1999-04-23 2002-08-20 Sdgi Holdings, Inc. Adjustable spinal tether
US6214016B1 (en) 1999-04-29 2001-04-10 Medtronic, Inc. Medical instrument positioning device internal to a catheter or lead and method of use
US6055456A (en) 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6353762B1 (en) 1999-04-30 2002-03-05 Medtronic, Inc. Techniques for selective activation of neurons in the brain, spinal cord parenchyma or peripheral nerve
US6889094B1 (en) 1999-05-14 2005-05-03 Advanced Bionics Corporation Electrode array for hybrid cochlear stimulator
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6517542B1 (en) 1999-08-04 2003-02-11 The Cleveland Clinic Foundation Bone anchoring system
US6298256B1 (en) 1999-09-10 2001-10-02 Frank-Egbert Meyer Device and method for the location and catheterization of the surroundings of a nerve
US7047082B1 (en) 1999-09-16 2006-05-16 Micronet Medical, Inc. Neurostimulating lead
US7949395B2 (en) 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
US6605094B1 (en) 1999-11-19 2003-08-12 Advanced Bionics Corporation Integrated subcutaneous tunneling and carrying tool
US6466821B1 (en) 1999-12-08 2002-10-15 Pacesetter, Inc. AC/DC multi-axis accelerometer for determining patient activity and body position
CN2401143Y (en) 1999-12-15 2000-10-18 杨俊� Lumbar puncture cerebrospinal fluid pressure dynamic monitoring apparatus
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US6438423B1 (en) 2000-01-20 2002-08-20 Electrocore Technique, Llc Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain
US6356786B1 (en) 2000-01-20 2002-03-12 Electrocore Techniques, Llc Method of treating palmar hyperhydrosis by electrical stimulation of the sympathetic nervous chain
US7096070B1 (en) 2000-02-09 2006-08-22 Transneuronix, Inc. Medical implant device for electrostimulation using discrete micro-electrodes
WO2001059447A1 (en) 2000-02-11 2001-08-16 Yale University Planar patch clamp electrodes
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
US7181289B2 (en) 2000-03-20 2007-02-20 Pflueger D Russell Epidural nerve root access catheter and treatment methods
FR2809017B1 (en) 2000-05-16 2002-08-09 Ela Medical Sa Necessary for establishment of a pacing lead of an implantable cardiac cavity in the coronary network
US6748276B1 (en) 2000-06-05 2004-06-08 Advanced Neuromodulation Systems, Inc. Neuromodulation therapy system
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US6754539B1 (en) 2000-08-10 2004-06-22 Advanced Neuromodulation Systems, Inc. Spinal cord stimulation lead with an anode guard
US6832115B2 (en) 2000-08-17 2004-12-14 William N. Borkan Catheter leads for the intrathecal space and method of use
US6510347B2 (en) 2000-08-17 2003-01-21 William N. Borkan Spinal cord stimulation leads
US6871099B1 (en) 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
US6522926B1 (en) 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US6510348B2 (en) 2000-12-20 2003-01-21 Medtronic, Inc. Perfusion lead and method of use
US6704604B2 (en) 2000-12-28 2004-03-09 Medtronic, Inc. System and method for promoting selective tissue in-growth for an implantable medical device
US20020087113A1 (en) 2000-12-29 2002-07-04 Medtronic, Inc. Drug management techniques for an implantable medical device
US6788975B1 (en) 2001-01-30 2004-09-07 Advanced Bionics Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy
US6901287B2 (en) 2001-02-09 2005-05-31 Medtronic, Inc. Implantable therapy delivery element adjustable anchor
US6873342B2 (en) 2001-04-12 2005-03-29 Mitsubishi Electric Research Laboratories, Inc. Method for generating detail directed visibility elements for a graphics model
US6892098B2 (en) 2001-04-26 2005-05-10 Biocontrol Medical Ltd. Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders
US6512958B1 (en) 2001-04-26 2003-01-28 Medtronic, Inc. Percutaneous medical probe and flexible guide wire
US6928320B2 (en) 2001-05-17 2005-08-09 Medtronic, Inc. Apparatus for blocking activation of tissue or conduction of action potentials while other tissue is being therapeutically activated
EP1395335A1 (en) 2001-05-29 2004-03-10 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US6638276B2 (en) 2001-06-06 2003-10-28 Oratec Interventions, Inc. Intervertebral disc device employing prebent sheath
US20020198527A1 (en) 2001-06-21 2002-12-26 Helmut Muckter Implantable screw for stabilization of a joint or a bone fracture
US6606521B2 (en) 2001-07-09 2003-08-12 Neuropace, Inc. Implantable medical lead
US7011647B2 (en) 2001-07-13 2006-03-14 Scimed Life Systems, Inc. Introducer sheath
US7599736B2 (en) 2001-07-23 2009-10-06 Dilorenzo Biomedical, Llc Method and apparatus for neuromodulation and physiologic modulation for the treatment of metabolic and neuropsychiatric disease
US6554809B2 (en) 2001-08-02 2003-04-29 Teodulo Aves Epidural catheter needle
US6535767B1 (en) 2001-08-21 2003-03-18 James W. Kronberg Apparatus and method for bioelectric stimulation, healing acceleration and pain relief
US20030069569A1 (en) 2001-08-29 2003-04-10 Burdette Everette C. Ultrasound device for treatment of intervertebral disc tissue
US6684105B2 (en) 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US6999819B2 (en) 2001-08-31 2006-02-14 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
WO2003026736A3 (en) 2001-09-28 2003-11-06 Vertis Neuroscience Inc Methods and implantable apparatus for electrical therapy
US6934583B2 (en) 2001-10-22 2005-08-23 Pacesetter, Inc. Implantable lead and method for stimulating the vagus nerve
US6745079B2 (en) 2001-11-07 2004-06-01 Medtronic, Inc. Electrical tissue stimulation apparatus and method
US6849075B2 (en) 2001-12-04 2005-02-01 Estech, Inc. Cardiac ablation devices and methods
US6721603B2 (en) 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain
US7717899B2 (en) 2002-01-28 2010-05-18 Cardiac Pacemakers, Inc. Inner and outer telescoping catheter delivery system
EP1476220A4 (en) 2002-02-01 2009-12-16 Cleveland Clinic Foundation Delivery device for stimulating the sympathetic nerve chain
EP1476222A2 (en) 2002-02-01 2004-11-17 The Cleveland Clinic Foundation Neural stimulation delivery device with independently moveable delivery structures
WO2003066154A3 (en) 2002-02-01 2004-04-08 Cleveland Clinic Foundation Modulation of the pain circuitry to affect chronic pain
US7881805B2 (en) 2002-02-04 2011-02-01 Boston Scientific Neuromodulation Corporation Method for optimizing search for spinal cord stimulation parameter settings
US7127287B2 (en) 2002-02-11 2006-10-24 Neopraxis Pty Limited Distributed functional electrical stimulation system
US20040019369A1 (en) 2002-03-11 2004-01-29 Michael Duncan Wireless functional electrical stimulation system
US7239912B2 (en) 2002-03-22 2007-07-03 Leptos Biomedical, Inc. Electric modulation of sympathetic nervous system
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US20030199961A1 (en) 2002-04-03 2003-10-23 Bjorklund Vicki L. Method and apparatus for fixating a pacing lead of an implantable medical device
US7146222B2 (en) 2002-04-15 2006-12-05 Neurospace, Inc. Reinforced sensing and stimulation leads and use in detection systems
WO2003090599A3 (en) 2002-04-25 2004-11-25 Brainsgate Ltd Methods and apparatus for modifying properties of the bbb and cerebral circulation by using the neuroexcitatory and/or neuroinhibitory effects of odorants on nerves in the head
US6968237B2 (en) 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
US6792318B2 (en) 2002-06-13 2004-09-14 Pacesetter, Inc. Technique for fixating a lead
US20040015202A1 (en) 2002-06-14 2004-01-22 Chandler Gilbert S. Combination epidural infusion/stimulation method and system
WO2004007018A1 (en) 2002-07-17 2004-01-22 Remidi (Uk) Limited Apparatus for the application of electrical pulses to the human body
US7993351B2 (en) 2002-07-24 2011-08-09 Pressure Products Medical Supplies, Inc. Telescopic introducer with a compound curvature for inducing alignment and method of using the same
US7107105B2 (en) 2002-09-24 2006-09-12 Medtronic, Inc. Deployable medical lead fixation system and method
US7636597B2 (en) 2002-11-14 2009-12-22 Brainsgate, Ltd. Surgical tools and techniques for stimulation
US6990376B2 (en) 2002-12-06 2006-01-24 The Regents Of The University Of California Methods and systems for selective control of bladder function
US7069083B2 (en) 2002-12-13 2006-06-27 Advanced Neuromodulation Systems, Inc. System and method for electrical stimulation of the intervertebral disc
US6864418B2 (en) 2002-12-18 2005-03-08 Nanoset, Llc Nanomagnetically shielded substrate
US7890188B2 (en) 2002-12-19 2011-02-15 Cardiac Pacemakers, Inc. Implantable lead for septal placement of electrode with fixation mechanism in the pulmonary artery
US20040122498A1 (en) 2002-12-19 2004-06-24 Yongxing Zhang Pulmonary artery lead for atrial therapy
US6945956B2 (en) 2002-12-23 2005-09-20 Medtronic, Inc. Steerable catheter
US6978180B2 (en) 2003-01-03 2005-12-20 Advanced Neuromodulation Systems, Inc. System and method for stimulation of a person's brain stem
US7085605B2 (en) 2003-01-23 2006-08-01 Epic Biosonics Inc. Implantable medical assembly
US20040186528A1 (en) 2003-03-20 2004-09-23 Medtronic, Inc. Subcutaneous implantable medical devices with anti-microbial agents for chronic release
US9446229B2 (en) 2003-04-08 2016-09-20 Omar Omar-Pasha Catheter
US7499758B2 (en) 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Helical fixation elements for subcutaneous electrodes
US7529592B2 (en) 2003-04-11 2009-05-05 Cardiac Pacemakers, Inc. Subcutaneous electrode and lead with temporary pharmacological agents
US7266412B2 (en) 2003-04-22 2007-09-04 Medtronic, Inc. Generation of multiple neurostimulation therapy programs
US20040243210A1 (en) 2003-05-30 2004-12-02 Morgan Kevin L. Fixation of a left heart medical lead in the coronary sinus
US7333857B2 (en) 2003-07-18 2008-02-19 Arcl, Inc. Treatment of pain
US20050027338A1 (en) 2003-07-29 2005-02-03 Advanced Neuromodulation Systems, Inc. Stretchable lead body, method of manufacture, and system
US7359755B2 (en) 2003-08-08 2008-04-15 Advanced Neuromodulation Systems, Inc. Method and apparatus for implanting an electrical stimulation lead using a flexible introducer
US20050033393A1 (en) 2003-08-08 2005-02-10 Advanced Neuromodulation Systems, Inc. Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
US7794476B2 (en) 2003-08-08 2010-09-14 Warsaw Orthopedic, Inc. Implants formed of shape memory polymeric material for spinal fixation
US20050038489A1 (en) 2003-08-14 2005-02-17 Grill Warren M. Electrode array for use in medical stimulation and methods thereof
US7930037B2 (en) 2003-09-30 2011-04-19 Medtronic, Inc. Field steerable electrical stimulation paddle, lead system, and medical device incorporating the same
US20050080325A1 (en) 2003-10-14 2005-04-14 Advanced Neuromodulation Systems, Inc. Low profile connector and system for implantable medical device
US7437197B2 (en) 2003-10-23 2008-10-14 Medtronic, Inc. Medical lead and manufacturing method therefor
US8260436B2 (en) 2003-10-31 2012-09-04 Medtronic, Inc. Implantable stimulation lead with fixation mechanism
US20050159799A1 (en) 2003-11-25 2005-07-21 Advanced Neuromodulation Systems, Inc. Percutaneous-insertion needle and method of implanting a lead
US7747335B2 (en) 2003-12-12 2010-06-29 Synecor Llc Implantable medical device having pre-implant exoskeleton
US7295881B2 (en) 2003-12-29 2007-11-13 Biocontrol Medical Ltd. Nerve-branch-specific action-potential activation, inhibition, and monitoring
US7933661B2 (en) 2004-02-04 2011-04-26 Medtronic, Inc. Lead retention means
US7177702B2 (en) 2004-03-12 2007-02-13 Scimed Life Systems, Inc. Collapsible/expandable electrode leads
US7590454B2 (en) 2004-03-12 2009-09-15 Boston Scientific Neuromodulation Corporation Modular stimulation lead network
US7174219B2 (en) 2004-03-30 2007-02-06 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
WO2005110529A1 (en) 2004-05-10 2005-11-24 Advanced Bionics Corporation Implantable electrode, insertion tool for use therewith, and insertion method
EP1773207A2 (en) 2004-06-02 2007-04-18 KFx Medical Corporation System and method for attaching soft tissue to bone
WO2006012050A3 (en) 2004-06-30 2006-11-30 Stephen L Bolea Connection structures for extra-vascular electrode lead body
US7395120B2 (en) 2004-08-13 2008-07-01 The General Hospital Corporation Telescoping, dual-site pacing lead
US20060041295A1 (en) 2004-08-17 2006-02-23 Osypka Thomas P Positive fixation percutaneous epidural neurostimulation lead
US20120277839A1 (en) 2004-09-08 2012-11-01 Kramer Jeffery M Selective stimulation to modulate the sympathetic nervous system
US9205261B2 (en) 2004-09-08 2015-12-08 The Board Of Trustees Of The Leland Stanford Junior University Neurostimulation methods and systems
US7337006B2 (en) 2004-09-08 2008-02-26 Spinal Modulation, Inc. Methods and systems for modulating neural tissue
CN101022849A (en) 2004-09-20 2007-08-22 皇家飞利浦电子股份有限公司 Deep brain stimulation system
US7738968B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US20060089696A1 (en) 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with reinforced outer jacket
US7734340B2 (en) 2004-10-21 2010-06-08 Advanced Neuromodulation Systems, Inc. Stimulation design for neuromodulation
US20080009927A1 (en) 2005-01-11 2008-01-10 Vilims Bradley D Combination Electrical Stimulating and Infusion Medical Device and Method
US20060167525A1 (en) 2005-01-19 2006-07-27 Medtronic, Inc. Method of stimulating multiple sites
US20060161235A1 (en) 2005-01-19 2006-07-20 Medtronic, Inc. Multiple lead stimulation system and method
GB0502982D0 (en) 2005-02-14 2005-03-16 Algotec Ltd Percutaneous electrical nerve stimulation therapy
US20070060954A1 (en) 2005-02-25 2007-03-15 Tracy Cameron Method of using spinal cord stimulation to treat neurological disorders or conditions
US20060200121A1 (en) 2005-03-03 2006-09-07 Mowery Thomas M Navigable, multi-positional and variable tissue ablation apparatus and methods
US20060206178A1 (en) 2005-03-11 2006-09-14 Kim Daniel H Percutaneous endoscopic access tools for the spinal epidural space and related methods of treatment
US20060247750A1 (en) 2005-04-28 2006-11-02 Seifert Kevin R Guide catheters for accessing cardiac sites
US7672727B2 (en) 2005-08-17 2010-03-02 Enteromedics Inc. Neural electrode treatment
US20070213671A1 (en) 2005-09-07 2007-09-13 Hiatt Mark J Infusion catheter system with telescoping cannula
US7979131B2 (en) 2006-01-26 2011-07-12 Advanced Neuromodulation Systems, Inc. Method of neurostimulation of distinct neural structures using single paddle lead to treat multiple pain locations and multi-column, multi-row paddle lead for such neurostimulation
US8135476B2 (en) 2006-04-27 2012-03-13 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US8075556B2 (en) 2006-05-23 2011-12-13 Andres Betts High frequency epidural neuromodulation catheter for effectuating RF treatment in spinal canal and method of using same
US20080033431A1 (en) 2006-06-29 2008-02-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Position augmenting mechanism
US20080039916A1 (en) 2006-08-08 2008-02-14 Olivier Colliou Distally distributed multi-electrode lead
US20080103580A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical elongated member with dual purpose conduit
US20080103572A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical lead with threaded fixation
US9643004B2 (en) 2006-10-31 2017-05-09 Medtronic, Inc. Implantable medical elongated member with adhesive elements
US7853303B2 (en) 2006-11-16 2010-12-14 National Research Council Of Canada Neurological probe and method of using same
CA2671250A1 (en) 2006-12-06 2008-06-12 Spinal Modulation, Inc. Hard tissue anchors and delivery devices
US9427570B2 (en) 2006-12-06 2016-08-30 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Expandable stimulation leads and methods of use
CA2671575A1 (en) 2006-12-06 2008-06-12 Spinal Modulation, Inc. Grouped leads for spinal stimulation
US9314618B2 (en) 2006-12-06 2016-04-19 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
EP2091594B1 (en) 2006-12-06 2018-06-06 Spinal Modulation Inc. Delivery devices for stimulating nerve tissue on multiple spinal levels
US9044592B2 (en) 2007-01-29 2015-06-02 Spinal Modulation, Inc. Sutureless lead retention features
US8244378B2 (en) 2007-01-30 2012-08-14 Cardiac Pacemakers, Inc. Spiral configurations for intravascular lead stability
US8364273B2 (en) 2007-04-24 2013-01-29 Dirk De Ridder Combination of tonic and burst stimulations to treat neurological disorders
WO2008149289A3 (en) 2007-06-04 2009-01-29 Michel Marcel Jose Decre Insertion system and lead for treatment of a target tissue region
US20090204173A1 (en) 2007-11-05 2009-08-13 Zi-Ping Fang Multi-Frequency Neural Treatments and Associated Systems and Methods
US8019443B2 (en) 2008-04-01 2011-09-13 Boston Scientific Neuromodulation Corporation Anchoring units for leads of implantable electric stimulation systems and methods of making and using
US9259568B2 (en) 2008-04-29 2016-02-16 Cardiac Pacemakers, Inc. Systems and methods for delivering electric current for spinal cord stimulation
EP2271399A2 (en) 2008-04-29 2011-01-12 Cardiac Pacemakers, Inc. Systems for selectively stimulating nerve roots
US8108052B2 (en) 2008-05-29 2012-01-31 Nervo Corporation Percutaneous leads with laterally displaceable portions, and associated systems and methods
US8249701B2 (en) 2008-10-15 2012-08-21 Spinal Modulation, Inc. Methods, devices and systems for programming neurostimulation
CN102202729B (en) 2008-10-27 2014-11-05 脊髓调制公司 Selective stimulation systems and signal parameters for medical conditions
CN102387834B (en) 2009-01-14 2016-02-24 脊髓调制公司 Stimulation lead, delivery system and methods of use
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
WO2010111358A3 (en) 2009-03-24 2011-01-13 Spinal Modulation, Inc. Pain management with stimulation subthreshold to parasthesia
WO2010124128A1 (en) 2009-04-22 2010-10-28 Nevro Corporation Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods
JP5711221B2 (en) 2009-05-15 2015-04-30 スパイナル・モデュレーション・インコーポレイテッドSpinal Modulation Inc. How to neuromodulation spinal tissue, system, and device
CN103079489B (en) 2010-05-10 2016-11-16 脊髓调制公司 A method for reducing the migration, the system and apparatus
EP2646107A2 (en) 2010-12-01 2013-10-09 Spinal Modulation Inc. Agent delivery systems for selective neuromodulation
CN107789730A (en) 2011-07-29 2018-03-13 米克伦设备有限责任公司 Remote control is used to select the polarity of the power or the neurostimulator
JP6076915B2 (en) 2011-01-28 2017-02-08 スティムウェイブ テクノロジーズ インコーポレイテッド Nerve stimulation device system
EP2741810A4 (en) 2011-08-12 2015-05-20 Micron Devices Llc Microwave field stimulator
CN103561811A (en) 2011-02-02 2014-02-05 脊髓调制公司 Devices, systems and methods for the targeted treatment of movement disorders
US9220897B2 (en) 2011-04-04 2015-12-29 Micron Devices Llc Implantable lead
US9242103B2 (en) 2011-09-15 2016-01-26 Micron Devices Llc Relay module for implant
US20140343624A1 (en) 2011-12-07 2014-11-20 Spinal Modulations, Inc. Neuromodulation of subcellular structures within the dorsal root ganglion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411540A (en) * 1993-06-03 1995-05-02 Massachusetts Institute Of Technology Method and apparatus for preferential neuron stimulation
US5458626A (en) * 1993-12-27 1995-10-17 Krause; Horst E. Method of electrical nerve stimulation for acceleration of tissue healing
US6862479B1 (en) * 2000-08-30 2005-03-01 Advanced Bionics Corporation Spinal cord stimulation as a therapy for sexual dysfunction
US20040122477A1 (en) * 2002-12-19 2004-06-24 Whitehurst Todd K. Fully implantable miniature neurostimulator for spinal nerve root stimulation as a therapy for angina and peripheral vascular disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cipolla MJ. The Cerebral Circulation. San Rafael (CA): Morgan & Claypool Life Sciences; 2009. Chapter 3, Perivascular Innervation. Available from: http://www.ncbi.nlm.nih.gov/books/NBK53087/ *
Parasympathetic control of blood flow to the activated human brain, Jasper et al. Experimental Physiology, November 2, 2013, 98 (11) *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9486633B2 (en) 2004-09-08 2016-11-08 The Board Of Trustees Of The Leland Stanford Junior University Selective stimulation to modulate the sympathetic nervous system
US9205261B2 (en) 2004-09-08 2015-12-08 The Board Of Trustees Of The Leland Stanford Junior University Neurostimulation methods and systems
US9314618B2 (en) 2006-12-06 2016-04-19 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
US8518092B2 (en) 2006-12-06 2013-08-27 Spinal Modulation, Inc. Hard tissue anchors and delivery devices
US9623233B2 (en) 2006-12-06 2017-04-18 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
US9427570B2 (en) 2006-12-06 2016-08-30 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Expandable stimulation leads and methods of use
US20080183257A1 (en) * 2007-01-29 2008-07-31 Spinal Modulation, Inc. Sutureless lead retention features
US9044592B2 (en) 2007-01-29 2015-06-02 Spinal Modulation, Inc. Sutureless lead retention features
US9056197B2 (en) 2008-10-27 2015-06-16 Spinal Modulation, Inc. Selective stimulation systems and signal parameters for medical conditions
US9409021B2 (en) 2008-10-27 2016-08-09 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. Selective stimulation systems and signal parameters for medical conditions
US9468762B2 (en) 2009-03-24 2016-10-18 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Pain management with stimulation subthreshold to paresthesia
US9630011B2 (en) 2011-02-23 2017-04-25 John D Lipani System and methods for diagnosis and treatment of discogenic lower back pain
US9789313B2 (en) 2011-02-23 2017-10-17 John D. LIPANI System and methods for diagnosis and treatment of discogenic lower back pain
US9950164B2 (en) 2011-02-23 2018-04-24 John D Lipani System and methods for diagnosis and treatment of discogenic lower back pain
US9028391B2 (en) 2011-12-15 2015-05-12 The Board Of Trustees Of The Leland Stanford Jr. University Apparatus and methods for treating pulmonary hypertension
US9005100B2 (en) 2011-12-15 2015-04-14 The Board Of Trustees Of The Leland Stanford Jr. University Apparatus and methods for treating pulmonary hypertension
US9918776B2 (en) 2012-11-13 2018-03-20 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9872720B2 (en) 2012-11-13 2018-01-23 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9827036B2 (en) 2012-11-13 2017-11-28 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9820800B2 (en) 2012-11-13 2017-11-21 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
WO2014143577A1 (en) * 2013-03-12 2014-09-18 Spinal Modulation, Inc. Methods and systems for use in guiding implantation of a neuromodulation lead
WO2014186676A1 (en) * 2013-05-16 2014-11-20 Spinal Modulation, Inc. Methods and systems for automatically turning on and off drg stimulation and adjusting drg stimulation parameters
US9132272B2 (en) 2013-05-16 2015-09-15 Spinal Modulation, Inc. Methods and systems for automatically turning on and off DRG stimulation and adjusting DRG stimulation parameters
US9561372B2 (en) 2014-08-15 2017-02-07 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US9855423B2 (en) 2014-08-15 2018-01-02 Axonics Modulation Technologies, Inc. Systems and methods for neurostimulation electrode configurations based on neural localization
US9555246B2 (en) 2014-08-15 2017-01-31 Axonics Modulation Technologies, Inc. Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder
US9533155B2 (en) 2014-08-15 2017-01-03 Axonics Modulation Technologies, Inc. Methods for determining neurostimulation electrode configurations based on neural localization

Also Published As

Publication number Publication date Type
US20170274212A1 (en) 2017-09-28 application
US20160082258A1 (en) 2016-03-24 application
US9486633B2 (en) 2016-11-08 grant
US20180126166A1 (en) 2018-05-10 application

Similar Documents

Publication Publication Date Title
EP1181947B1 (en) Spinal cord stimulation leads
US5700282A (en) Heart rhythm stabilization using a neurocybernetic prosthesis
US7797050B2 (en) Neural stimulator to treat sleep disordered breathing
Smith Reflex and central mechanisms involved in the control of the heart and circulation
US5995873A (en) Treatment of pain and of the nervous system
US6832115B2 (en) Catheter leads for the intrathecal space and method of use
US20070156183A1 (en) Treatment of various ailments
US20070150011A1 (en) Neural stimulation system for reducing atrial proarrhythmia
US20060089678A1 (en) Technique for blood pressure regulation
US20110224749A1 (en) Nerve stimulation techniques
US20080249439A1 (en) Treatment of inflammation by non-invasive stimulation
US8140170B2 (en) Method and apparatus for renal neuromodulation
US20100070004A1 (en) Systems and methods for treating dyspnea, including via electrical afferent signal blocking
US7617003B2 (en) System for selective activation of a nerve trunk using a transvascular reshaping lead
US8160701B2 (en) Systems and methods for delivering vagal nerve stimulation
US7734355B2 (en) Treatment of disorders by unidirectional nerve stimulation
US7769450B2 (en) Cardiac rhythm management device with neural sensor
US20070021786A1 (en) Selective nerve stimulation for the treatment of angina pectoris
US20030004549A1 (en) Method and apparatus to minimize the effects of a cardiac insult
US6622041B2 (en) Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US20070276453A1 (en) Method and apparatus to minimize the effects of a cardiac insult
US6556868B2 (en) Methods for improving learning or memory by vagus nerve stimulation
US20070239210A1 (en) System and method for closed-loop neural stimulation
US20060167498A1 (en) Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of disease
US20120172742A1 (en) Systems and methods for using electrical impedance for neuro cardiac therapy

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, DANIEL H.;REEL/FRAME:028556/0574

Effective date: 20120706

Owner name: SPINAL MODULATION, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRAMER, JEFFERY M.;IMRAN, MIR A.;SIGNING DATES FROM 20120604 TO 20120627;REEL/FRAME:028556/0801

AS Assignment

Owner name: SPINAL MODULATION LLC, DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:SPINAL MODULATION, INC.;REEL/FRAME:037150/0872

Effective date: 20150720

AS Assignment

Owner name: ST. JUDE MEDICAL LUXEMBOURG HOLDINGS SMI S.A.R.L.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPINAL MODULATION LLC;REEL/FRAME:037199/0142

Effective date: 20150727