US20130301151A1 - Substrate for an euv-lithography mirror - Google Patents

Substrate for an euv-lithography mirror Download PDF

Info

Publication number
US20130301151A1
US20130301151A1 US13/946,516 US201313946516A US2013301151A1 US 20130301151 A1 US20130301151 A1 US 20130301151A1 US 201313946516 A US201313946516 A US 201313946516A US 2013301151 A1 US2013301151 A1 US 2013301151A1
Authority
US
United States
Prior art keywords
substrate according
base body
alloy
substrate
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/946,516
Other languages
English (en)
Inventor
Claudia Ekstein
Holger Maltor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Publication of US20130301151A1 publication Critical patent/US20130301151A1/en
Assigned to CARL ZEISS SMT GMBH reassignment CARL ZEISS SMT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EKSTEIN, CLAUDIA, MALTOR, HOLGER
Priority to US15/399,495 priority Critical patent/US10935704B2/en
Priority to US17/162,439 priority patent/US20210149093A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a substrate for a mirror for Extreme-Ultraviolet (EUV) lithography comprising a base body and also to a mirror for an EUV projection exposure apparatus comprising such a substrate.
  • EUV Extreme-Ultraviolet
  • EUV extreme ultraviolet
  • illumination and projection objectives are fashioned from mirror elements with highly reflective coatings which are adapted to the respective operating wavelength.
  • maximum reflectivities only of less than 80% can be achieved per mirror. Since EUV projective devices generally have a plurality of mirrors, it is necessary for each of these to have the highest possible reflectivity in order to ensure sufficiently high overall reflectivity.
  • mirror substrates or mirrors which are produced by applying a highly reflective layer to the mirror substrate should have the lowest possible microroughness.
  • the root mean squared (RMS) roughness is calculated from the mean value of the squares of the deviation of the measured points over the surface with respect to a central area, which is laid through the surface such that the sum of the deviations with respect to the central area is minimal.
  • the roughness in a spatial frequency range of 0.1 ⁇ m to 200 ⁇ m is particularly important for avoiding negative influences on the optical properties of the optical elements.
  • a substrate for a mirror for EUV lithography comprising a base body, characterized in that the base body is made of a precipitation-hardened alloy, preferably a precipitation-hardened copper or aluminum alloy.
  • an alloy is subjected to heat treatment in order to increase the hardening strength thereof.
  • metastable phases are precipitated in finely distributed form such that they form an effective obstacle to dislocation movements.
  • the precipitation hardening is usually carried out in three steps.
  • a first step which is also referred to as solution annealing, the alloy is heated until all the elements which are needed for precipitation are present in solution.
  • the temperature should be chosen to be very high, but not so high that individual constituents of the microstructure melt.
  • the object is achieved by a substrate for a mirror for EUV lithography comprising a base body, wherein the base body is made of an alloy having a composition which, in the phase diagram, lies in a region which is bounded by phase stability lines. Alloys having such compositions have the advantage that any segregation processes can be stopped entirely by heat treatments, and therefore said alloys then have an increased high-temperature strength.
  • This substrate has an increased long-term stability, as a result of which it is possible to ensure that the roughness values change as little as possible throughout the service life of an EUV projection exposure apparatus comprising mirrors based on this substrate. Particularly in the case of mirrors which are arranged further to the rear in the beam path, for example in the projection system, where they are exposed to lower thermal loading, it is possible to ensure that the roughness values remain constant over long periods of time.
  • the alloy is preferably an alloy with a substitution lattice.
  • substitution lattices alloying components having a relatively low concentration are incorporated into the lattice structure of the component having the highest concentration, such that the lattice strength is further increased. This increases the structural stability given an increase in temperature and in particular over long periods of time.
  • the alloy is particularly preferable for the alloy to be precipitation-hardened.
  • an alloy is subjected to heat treatment in order to increase the hardening strength thereof.
  • metastable phases are precipitated in finely distributed form such that they form an effective obstacle to dislocation movements.
  • the precipitation hardening is usually carried out in three steps. In a first step, which is also referred to as solution annealing, the alloy is heated until all the elements which are needed for precipitation are present in solution.
  • the temperature should be chosen to be very high, but not so high that individual constituents of the microstructure melt.
  • quenching can prevent fusion and thus precipitation of coarse particles.
  • the solid solution remains in a metastable, supersaturated single-phase state.
  • the supersaturated single-phase solid solution is converted into a two-phase alloy.
  • the phase which is predominantly cohesive and generally arises in a higher proportion is called matrix, and the other phase is called precipitation. Since many nuclei were formed during the preceding quenching, many small precipitations which are distributed homogeneously in the microstructure and increase the structural strength are formed. It is advantageous for substrates and mirrors on the basis of a base body made of precipitation-hardened alloys to be used at temperatures which lie considerably below the solution annealing temperature, preferably below the precipitation temperature.
  • the alloy is a copper alloy or an aluminum alloy, very particularly preferably a precipitation-hardened copper alloy.
  • Copper alloys in particular can be readily cooled, and it is therefore possible to ensure that the operating temperature during the EUV lithography is sufficiently low, in particular in the case of precipitation-hardened alloys, in order to be able to prevent structural changes.
  • a substrate for a mirror for EUV lithography comprising a base body, wherein the base body is made of a particulate composite.
  • Particulate composites likewise have a high strength or structural stability. As a result, they are likewise highly suitable for use in mirror substrates for EUV lithography, in particular for long-term applications.
  • Particulate composites have dispersoids which are insoluble in a matrix. It is preferable for the dispersoids to be made of ceramic material, in particular of oxides, carbides, nitrides and/or borides. In a manner similar to the precipitations in the precipitation hardening, the dispersoids form obstacles for dislocation movements within a matrix, in particular when they are present in finely distributed form.
  • the particulate composite prefferably has spheroidal dispersoids. It is thereby possible to reduce the stress or distortion energy in the particulate composite, which can lead to a higher high-temperature strength.
  • Dispersoids having a spheroidal geometry can be obtained by particular soft-annealing processes. By way of example, it is possible to carry out soft-annealing processes in which the material is held for one to two hours at a temperature at which the basic phase of the matrix of the particulate composite is stable, whereas other phases in solutions go just into solution. Then, the temperature of the material is fluctuated repeatedly around this temperature range, and subsequently the material is slowly cooled at about 10° C. to 20° C. per hour. Such temperature treatments can be carried out with the alloys described above such that any precipitations are spheroidized, in particular in the case of precipitation-hardened alloys.
  • the particulate composite has proved to be particularly advantageous for the particulate composite to have dispersoids of an extent of between 1 nm and 20 nm. It is thereby possible to achieve particularly good strengths and at the same time to minimize a negative influence on microroughness values.
  • the particulate composite has a metallic matrix, this particularly preferably being a copper matrix or an aluminum matrix.
  • suitable dispersoids in this case are titanium carbide, aluminum oxide, silicon carbide, silicon oxide or carbon in a graphite or diamond modification.
  • the particulate composite has a ceramic matrix, in particular a silicon or carbon matrix.
  • silicon carbide particles in particular, have proved to be suitable as dispersoids.
  • a substrate for a mirror for EUV lithography comprising a base body, wherein the base body is made of an intermetallic phase of an alloy system.
  • Intermetallic phases are materials with a high strength and a high melting temperature. By way of example, they are used in aircraft engines or exhaust-gas turbochargers. In structural terms, the elementary cells of these special alloys have a high valence electron density. As a result, they have a covalent bond fraction which is high for metals and thereby have a particularly high lattice strength. It has been found that, in addition to a high specific strength and high melting temperatures, intermetallic phases overall have a high thermal stability with low diffusion coefficients and a high creep strength.
  • the base body prefferably be made of an intermetallic phase in which the stoichiometric standard composition is observed.
  • mixed phases of alloys having a differing structure could lead to an increase in microroughness, which could impair the optical quality of a mirror comprising such a substrate.
  • the base body is made of an intermetallic phase having a composition which corresponds to a phase stability line in the phase diagram of the corresponding alloy system.
  • a “phase stability line” is to be understood as meaning a phase boundary line which runs parallel to the temperature axis in the phase diagram.
  • Such compositions have the major advantage that no segregation occurs as the temperatures increase.
  • Particular preference is given to intermetallic phases on a phase stability line which have no phase transition up to the melting point.
  • phase transitions which lie in particular in temperature ranges which can occur during use in EUV projection exposure apparatuses, and the more parallel the phase boundary line runs in relation to the temperature axis, the lesser the probability of the microroughness being adversely affected under the influence of thermal loading as a result of structural changes in the base body of the substrate.
  • the base body prefferably be made of an alloy having a composition which, in the phase diagram, lies in a region which is bounded by phase stability lines. Alloys having such compositions have the advantage that any segregation processes can be stopped entirely by heat treatments, and therefore said alloys then have an increased high-temperature strength.
  • the intermetallic phase has the same Bravais lattice as the components thereof in crystalline form.
  • it is possible to achieve a particularly stable crystalline structure which can further reduce a structural change as the temperature increases and/or over long periods of time, such that the roughness values of a mirror for EUV lithography which is based on such a substrate remain as unimpaired as possible throughout the service life.
  • the alloy system is a binary alloy system, preferably with copper as one of the two components, particularly preferably a binary aluminum-copper system.
  • Copper in particular, has a high thermal conductivity.
  • Substrates comprising a base body with a high copper fraction can thus be cooled particularly readily in order to thereby additionally prevent a structural change over the service life.
  • On the basis of aluminum it is possible to obtain high-strength materials which have a good dimensional stability.
  • intermetallic phases of other alloy systems may also be suitable for mirror substrates for EUV lithography.
  • intermetallic phases of ternary or quaternary alloy systems or alloy systems with five or more components may also be involved.
  • real alloys always also have traces of impurities. Mention is made of components of an alloy system here only if the respective component has a marked influence on the phase diagram of the respective alloy system.
  • the material of the base body As a whole, it has proved to be advantageous in the case of the base body materials described here for the material of the base body to have a face-centered cubic lattice structure. It is thereby possible to further increase the structural strength compared to body-centered cubic structures, for example, and therefore face-centered cubic materials are particularly suitable for use over long periods of time and, if appropriate, at elevated temperatures.
  • the material of the base body experiences no changes in microstructure in the event of changes in temperature from 20° C. to 150° C. over a period of time of 1 year.
  • This temperature range includes those temperatures which are achieved when mirrors based on this substrate are used in an EUV projection exposure apparatus. Since the base body materials experience changes in structure only at temperatures of above 150° C., it is possible to reduce the influence which the structure of the base body has on the roughness values of the mirror substrate or of the mirror based thereon practically to zero.
  • the changes in structure may involve a very wide variety of effects, for example the positional change of dislocations, oscillations of the atoms, instances of roughening, such as the so-called orange peel effect, or else segregation processes.
  • a polishing layer is arranged on the base body. It is advantageous that an adhesion-promoter layer is arranged between the base body and the polishing layer.
  • Preferred polishing layers are, inter alia, layers which have been deposited without external current, for example nickel-phosphorus or nickel-boron layers. In this case, they can be present in a crystalline phase or in an X-ray-amorphous phase. In the case of nickel-phosphorus layers, preference is given to layers containing more than 11% by weight phosphorus.
  • the layers can also be nickel-phosphorus alloy layers which also comprise one or two additional metals.
  • the layers can likewise be nickel-phosphorus or nickel-boron dispersion layers which, if appropriate, likewise contain one or two additional metals. This also applies to nickel-boron layers.
  • the changes in roughness can lie in a region of less than 2.5 angstroms; in the spatial frequency range of 1 ⁇ m to 250 ⁇ m, it is possible to achieve a fluctuation of the roughness values of less than 3 angstroms.
  • the object is achieved by a mirror for an EUV projection exposure apparatus, comprising a substrate as described above and a highly reflective layer on the substrate, in particular on a polishing layer.
  • the mirrors for EUV projection exposure apparatuses are distinguished by a structural strength which is high with regard to long operating periods even at elevated temperatures and therefore by approximately constant roughness values throughout the period of use. In this case, it is possible to achieve service lives of a number of years.
  • the substrates mentioned here in particular on the basis of a base body made of an intermetallic phase, of a precipitation-hardened copper alloy or of a particulate composite, are suitable in particular but not only for use in the illumination system of an EUV projection exposure apparatus, for example in the form of facet mirrors.
  • FIGS. 1 a,b schematically show two variants of a substrate in section
  • FIGS. 2 a,b schematically show two variants of a mirror in section
  • FIG. 3 shows a phase diagram for a binary aluminum-copper system.
  • FIG. 1 a schematically shows a first variant of an embodiment of a substrate 1 comprising a base body 2 and a polishing layer 3 applied thereto.
  • the base body 2 and the polishing layer 3 perform different functions. Whereas a good dimensional stability is a priority for the base body 2 , good machining and polishing properties are of primary importance for the polishing layer 3 .
  • the polishing layer can be applied by conventional vacuum coating processes, for example sputtering processes, electron beam evaporation, molecular beam epitaxy or ion beam-assisted coating. If the polishing layer is a metallic material, for example copper, nickel-phosphorus or nickel-boron, it is preferably applied without external current. Nickel-phosphorus or nickel-boron polishing layers, in particular, can also be applied as dispersion layers, in which case polytetrafluoroethylene can serve as the dispersant, for example.
  • Nickel-phosphorus or nickel-boron polishing layers are preferably applied with relatively high concentrations of phosphorus or boron, such that they are present predominantly or even completely in amorphous form and thereby have better polishing properties. They can then be hardened by, for example, heat treatment, plasma treatment or ion bombardment. Silicon as polishing layer material can also be deposited in amorphous or crystalline form in a manner controlled by the coating process. Amorphous silicon can be polished more effectively than crystalline silicon and, if required, can likewise be hardened by heat treatment, plasma treatment or ion bombardment. Polishing layers made of silicon or silicon dioxide can also be smoothed through use of ion beams. The polishing layer can also be made of silicon carbide or of indium-tin oxide.
  • Preferred thicknesses of the polishing layer 3 can be about 5 ⁇ m to 10 ⁇ m for metal-based, polished polishing layers. In the case of non-metallic polishing layers 3 , preferred layer thicknesses are about 1.5 ⁇ m to 3 ⁇ m.
  • metallic polishing layers can be polished to root mean squared roughnesses of less than 0.3 nm in the spatial frequency range of 1 ⁇ m to 200 ⁇ m and to root mean squared roughnesses of less than 0.25 nm in the spatial frequency range of 0.01 ⁇ m to 1 ⁇ m.
  • non-metallic polishing layers can be polished to root mean squared roughnesses of less than 0.3 nm over the entire spatial frequency range of 0.01 ⁇ m to 200 ⁇ m.
  • FIG. 1 b schematically shows a variant of the substrate 1 shown in FIG. 1 a , in which an adhesion-promoter layer 4 is arranged between the base body 2 and the polishing layer 3 .
  • the adhesion-promoter layer 4 can have a thickness of up to 1 ⁇ m, preferably of between 100 nm and 500 nm.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Such substrates 1 can be further processed to form EUV mirrors 5 , as is shown schematically in FIG. 2 a in a first variant of an embodiment, by applying a highly reflective layer 6 to the polishing layer 3 .
  • the highly reflective layer 6 is particularly preferably a multilayer system of alternating layers of material with a differing real part of the complex refractive index via which a crystal with network planes at which Bragg diffraction takes place is simulated to some extent.
  • a multilayer system of alternating layers of silicon and molybdenum can be applied, for example, for use at 13 nm to 14 nm.
  • the highly reflective layer 6 is configured as a multilayer system, it is preferably applied using conventional vacuum coating processes such as, for example, sputtering processes, electron beam evaporation, molecular beam epitaxy or ion-beam-assisted coating.
  • vacuum coating processes such as, for example, sputtering processes, electron beam evaporation, molecular beam epitaxy or ion-beam-assisted coating.
  • EUV radiation in the wavelength range of about 5 nm to 20 nm and with grazing incidence of radiation
  • mirrors with an uppermost layer of metal for example of ruthenium.
  • FIG. 2 b schematically shows a further variant of the mirror 5 shown in FIG. 2 a , in which an adhesion-promoter layer 4 is arranged between the base body 2 and the polishing layer 3 of the substrate 1 of the mirror 5 .
  • the base body 2 of the mirror 5 or of the substrate 1 can be made of a particulate composite.
  • the base body 2 can be made of a particulate composite having a metallic matrix.
  • the latter can be a 2000 to 7000 series aluminum alloy, preferably a 5000 to 7000 series aluminum alloy, copper, a low-alloy copper alloy or copper niobate.
  • the preferably spheroidal dispersoids of an extent in the range of 1 nm to 20 nm are advantageously titanium carbide, titanium oxide, aluminum oxide, silicon carbide, silicon oxide, graphite or diamond-like carbon, it also being possible for dispersoids of differing materials to be provided in the matrix.
  • the base body 2 can also be made of a particulate composite having a ceramic matrix.
  • particulate composites having a silicon or carbon matrix and silicon carbide dispersoids are particularly suitable. As a result of their covalent bond, they have a particularly high lattice rigidity. It is particularly preferable for the dispersoids to be distributed as homogeneously as possible in the matrix, for said dispersoids to be as small as possible and for the composite to have the smallest possible dispersoid spacings.
  • the base body 2 can be made of an alloy having components which have similar atomic radii and have a structure with a substitution lattice.
  • this may be the alloy system copper-nickel or silicon-aluminum.
  • the base body 2 can be made of a precipitation-hardened alloy.
  • it can be made of precipitation-hardened copper or aluminum alloys such as AlCu4Mg1, CuCr, CuNi1Si, CuCr1Zr, CuZr, CuCoBe, CuNiSi.
  • the alloys were subjected to a further heat treatment after the precipitation hardening, this having the effect that the precipitations assume a spheroidal form in order to reduce stress or distortion energies in the material so as to further increase the high-temperature strength.
  • the material is held for one to two hours at a temperature at which the basic phase of the matrix of the particulate composite is stable, whereas other phases in solutions go indeed into solution. Then, the temperature of the material is fluctuated repeatedly around this temperature range, and subsequently the material is slowly cooled at about 10° C. to 20° C. per hour.
  • the base body 2 can be made of an intermetallic phase.
  • FIG. 3 shows the phase diagram of a binary aluminum-copper system, the intermetallic phases of which are particularly suitable as the material of the base body 2 .
  • sixteen intermetallic phases of Al x Cu y where x, y are integers, are stable. Of these, ten intermetallic phases stay stable upon cooling to room temperature (not shown here).
  • the most important phases are indicated in FIG. 3 with the stoichiometric composition thereof. All of them lie at phase boundary lines which run parallel to the temperature axis over a certain temperature range. As a result, the microstructure thereof remains completely unchanged in these respective temperature ranges.
  • Al 2 Cu, Al 2 Cu 3 or Al 3 Cu 5 are materials of a base body of a mirror substrate for EUV lithography.
  • other binary alloy systems one component of which is copper, for example binary systems of copper and zinc, tin, lanthanum, cerium, silicon or titanium.
  • the base body 2 can also be made of an alloy having a composition which lies between two phase stability lines. These regions are shaded gray in FIG. 3 . Since the precipitation processes have been stopped by heat treatments, these alloys are present in a thermally stable phase. In this respect, preference is given to compositions from particularly wide ranges, for instance between Al 2 Cu and AlCu.
  • the substrates of the examples mentioned here have particularly high strengths of 300 MPa or more, even at temperatures of up to 150° C., and also have a good long-term stability.
  • the substrates, which comprise copper in the base body thereof additionally have high thermal conductivities, and therefore they can be readily cooled.
  • the substrates do not experience any changes in microstructure in temperature ranges which arise in long-term operation of mirrors in EUV projection exposure apparatuses.
  • EUV mirrors having such a substrate have the advantage that the roughness values thereof remain substantially constant over their service life, in particular in the spatial frequency range of 0.1 ⁇ m to 200 ⁇ m.
  • the EUV mirrors described here are suitable both for use in the illumination system, with which a mask or a reticle is illuminated with EUV radiation, and in the projection system, with which the structure of the mask or of the reticle is projected onto an object to be exposed, for example a semiconductor wafer, of an EUV projection exposure apparatus. Owing to their high-temperature strength and resilience, they are particularly suitable for mirrors arranged further forward in the beam path, where the thermal loading is higher, for instance in the illumination system. They are particularly suitable for use as facets of pupil facet mirrors and particularly of field facet mirrors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Sampling And Sample Adjustment (AREA)
US13/946,516 2011-01-21 2013-07-19 Substrate for an euv-lithography mirror Abandoned US20130301151A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/399,495 US10935704B2 (en) 2011-01-21 2017-01-05 Substrate for an EUV-lithography mirror
US17/162,439 US20210149093A1 (en) 2011-01-21 2021-01-29 Substrate for an euv-lithography mirror

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011002953.2 2011-01-21
DE201110002953 DE102011002953A1 (de) 2011-01-21 2011-01-21 Substrat für Spiegel für die EUV-Lithographie
PCT/EP2012/050533 WO2012098062A2 (en) 2011-01-21 2012-01-14 Substrate for mirrors for euv lithography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/050533 Continuation WO2012098062A2 (en) 2011-01-21 2012-01-14 Substrate for mirrors for euv lithography

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/399,495 Division US10935704B2 (en) 2011-01-21 2017-01-05 Substrate for an EUV-lithography mirror

Publications (1)

Publication Number Publication Date
US20130301151A1 true US20130301151A1 (en) 2013-11-14

Family

ID=46510655

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/946,516 Abandoned US20130301151A1 (en) 2011-01-21 2013-07-19 Substrate for an euv-lithography mirror
US15/399,495 Active 2033-01-18 US10935704B2 (en) 2011-01-21 2017-01-05 Substrate for an EUV-lithography mirror
US17/162,439 Pending US20210149093A1 (en) 2011-01-21 2021-01-29 Substrate for an euv-lithography mirror

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/399,495 Active 2033-01-18 US10935704B2 (en) 2011-01-21 2017-01-05 Substrate for an EUV-lithography mirror
US17/162,439 Pending US20210149093A1 (en) 2011-01-21 2021-01-29 Substrate for an euv-lithography mirror

Country Status (9)

Country Link
US (3) US20130301151A1 (enrdf_load_stackoverflow)
EP (2) EP2665839B1 (enrdf_load_stackoverflow)
JP (1) JP6023083B2 (enrdf_load_stackoverflow)
KR (1) KR102080180B1 (enrdf_load_stackoverflow)
CN (3) CN103328664B (enrdf_load_stackoverflow)
DE (1) DE102011002953A1 (enrdf_load_stackoverflow)
ES (1) ES2933686T3 (enrdf_load_stackoverflow)
PL (1) PL3489374T3 (enrdf_load_stackoverflow)
WO (1) WO2012098062A2 (enrdf_load_stackoverflow)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057952A1 (en) * 2009-09-09 2013-03-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Substrate made of an aluminum-silicon alloy or crystalline silicon, metal mirror, method for the production thereof, and use thereof
KR20180123528A (ko) * 2016-03-16 2018-11-16 도요 알루미늄 가부시키가이샤 자외선 반사재용 알루미늄 박 및 그 제조 방법
US10310382B2 (en) 2013-08-07 2019-06-04 Carl Zeiss Smt Gmbh Mirror, in particular for a microlithographic projection exposure apparatus
US10503075B2 (en) * 2016-05-31 2019-12-10 Carl Zeiss Smt Gmbh EUV Collector
US10935704B2 (en) * 2011-01-21 2021-03-02 Carl Zeiss Smt Gmbh Substrate for an EUV-lithography mirror
US11971605B2 (en) 2018-05-09 2024-04-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mirror support for a composite optical mirror and method for its production

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013107192A1 (de) * 2013-07-08 2015-01-08 Carl Zeiss Laser Optics Gmbh Reflektives optisches Element für streifenden Einfall im EUV-Wellenlängenbereich
JP7443337B2 (ja) * 2018-08-27 2024-03-05 マテリオン コーポレイション ディスプレイ製造用のuv反射ミラー
JP2023506697A (ja) * 2019-12-19 2023-02-20 エーエスエムエル ネザーランズ ビー.ブイ. 真空中における熱伝導性の増大
CN112662918A (zh) * 2020-12-02 2021-04-16 国网电力科学研究院武汉南瑞有限责任公司 Al2O3-TiC颗粒增强铝基复合材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093349A (en) * 1976-10-27 1978-06-06 Northrop Corporation High reflectivity laser mirrors
US4482209A (en) * 1981-02-27 1984-11-13 Siemens Aktiengesellschaft Mirror structure
JPS62180301A (ja) * 1986-02-04 1987-08-07 Toshiba Corp 反射鏡
JPH01303404A (ja) * 1988-05-31 1989-12-07 Sumitomo Electric Ind Ltd レーザ反射鏡
ES2028537A6 (es) * 1990-09-17 1992-07-01 Martin Gutierrez Antonio Procedimiento para la decoracion de espejos circulares.
US20010024323A1 (en) * 1999-12-24 2001-09-27 Michio Yanagi Metallic mirror, metallic rotary polygonal mirror, and process for their production
US6377655B1 (en) * 1998-05-08 2002-04-23 Nikon Corporation Reflective mirror for soft x-ray exposure apparatus
US6587263B1 (en) * 2000-03-31 2003-07-01 Lockheed Martin Corporation Optical solar reflectors
US20080163922A1 (en) * 2007-01-08 2008-07-10 Horne William E Conversion of solar energy to electrical and/or heat energy
US20080289958A1 (en) * 2007-04-27 2008-11-27 Janine Kardokus Novel Manufacturing Design and Processing Methods and Apparatus for Sputtering Targets
US20110255068A1 (en) * 2010-04-16 2011-10-20 Media Lario S.R.L EUV mirror module
US20120044473A1 (en) * 2010-08-19 2012-02-23 Carl Zeiss Smt Gmbh Optical element for uv or euv lithography

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1877141A (en) * 1930-04-07 1932-09-13 Alfred J Lyon Aluminum casting alloy
US4412870A (en) * 1980-12-23 1983-11-01 Aluminum Company Of America Wrought aluminum base alloy products having refined intermetallic phases and method
GB2146352B (en) * 1982-09-03 1986-09-03 Alcan Int Ltd Aluminium alloys
JPS61266535A (ja) * 1985-05-21 1986-11-26 Nissan Motor Co Ltd 銅基複合材料
US4643543A (en) * 1986-01-27 1987-02-17 Atlantic Richfield Company Mirror optic article
US4659548A (en) * 1986-02-13 1987-04-21 The United States Of America As Represented By The Secretary Of The Navy Fabrication of metal matrix composite mirror
US4755221A (en) * 1986-03-24 1988-07-05 Gte Products Corporation Aluminum based composite powders and process for producing same
US4803334A (en) * 1987-11-16 1989-02-07 Westinghouse Electric Corp. Method for laser beam welding metal matrix composite components
US5045280A (en) * 1989-10-04 1991-09-03 Mintek Intermetallic compounds
JPH06279897A (ja) * 1992-02-06 1994-10-04 Chuetsu Gokin Chuko Kk 高軟化特性析出硬化型銅合金
JP2684927B2 (ja) * 1992-06-16 1997-12-03 日本鋼管株式会社 光学素子基板
JP3304021B2 (ja) * 1994-07-20 2002-07-22 日産自動車株式会社 高温耐摩耗性に優れた銅合金
DE69520268T2 (de) * 1995-02-01 2001-08-09 Brush Wellman Inc., Cleveland Behandlung von Legierungen und danach hergestellte Gegenstände
US5699188A (en) * 1995-06-26 1997-12-16 Minnesota Mining And Manufacturing Co. Metal-coated multilayer mirror
DE59707198D1 (de) 1996-08-15 2002-06-13 Alcan Tech & Man Ag Reflektor mit resistenter Oberfläche
US6183877B1 (en) * 1997-03-21 2001-02-06 Inco Limited Cast-alumina metal matrix composites
JPH11311704A (ja) * 1998-02-26 1999-11-09 Nikon Corp 紫外光用ミラー
JPH11326598A (ja) * 1998-05-08 1999-11-26 Nikon Corp 反射鏡およびその製造方法
JP3316191B2 (ja) * 1998-12-24 2002-08-19 日本碍子株式会社 鏡面性に優れたベリリウム−銅−亜鉛合金
EP1154289A1 (de) * 2000-05-09 2001-11-14 Alcan Technology & Management AG Reflektor
DE10127086A1 (de) * 2001-06-02 2002-12-05 Zeiss Carl Vorrichtung zur Reflexion von elektromagnetischen Wellen
DE10134267B4 (de) * 2001-07-18 2007-03-01 Gkss-Forschungszentrum Geesthacht Gmbh Einrichtung zur Reflexion von Röntgenstrahlen
US6634760B2 (en) * 2001-08-27 2003-10-21 The Regents Of The University Of California Low-cost method for producing extreme ultraviolet lithography optics
US6921177B2 (en) * 2003-02-24 2005-07-26 Raytheon Company High precision mirror, and a method of making it
JP2005259949A (ja) * 2004-03-11 2005-09-22 Nikon Corp ミラー及び照明光学装置
JP2005268359A (ja) * 2004-03-17 2005-09-29 Nikon Corp ミラー及び照明光学装置
CN1253731C (zh) * 2004-05-20 2006-04-26 中国科学院上海技术物理研究所 大口径轻质复合材料反射镜及制备方法
JP4210239B2 (ja) * 2004-06-01 2009-01-14 日鉱金属株式会社 強度、導電性及び曲げ加工性に優れるチタン銅及びその製造方法
DE102004062289B4 (de) * 2004-12-23 2007-07-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermisch stabiler Multilayer-Spiegel für den EUV-Spektralbereich
JP2006190862A (ja) * 2005-01-07 2006-07-20 Taiheiyo Cement Corp 露光用反射鏡
DE602006012188D1 (de) * 2005-03-29 2010-03-25 Kobe Steel Ltd Al-basis-legierung mit hervorragender wärmebeständigkeit, bearbeitbarkeit und steifigkeit
DE102005026418B4 (de) 2005-06-08 2008-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Spiegelträger für einen optischen Spiegel
CN1719287A (zh) * 2005-06-29 2006-01-11 中国人民解放军国防科学技术大学 三明治式结构SiC基复合材料轻质反射镜及其制备方法
JP5393152B2 (ja) * 2005-09-07 2014-01-22 エム キューブド テクノロジーズ, インコーポレイテッド 金属マトリックス複合体本体、及びこれを作製するための方法
US20090148334A1 (en) * 2007-12-05 2009-06-11 United States of America as represented by the Administrator of the National Aeronautics and Nanophase dispersion strengthened low cte alloy
DE102009000099A1 (de) * 2009-01-09 2010-07-22 Carl Zeiss Smt Ag Mikrospiegelarray mit Doppelbiegebalken Anordnung und elektronischer Aktorik
US8057203B2 (en) * 2008-10-02 2011-11-15 Gap Engineering LLC Pyrospherelator
RU2524288C2 (ru) * 2009-01-22 2014-07-27 Алкоа Инк. Усовершенствованные алюминиево-медные сплавы, содержащие ванадий
DE102009039400A1 (de) * 2009-08-31 2011-03-03 Carl Zeiss Laser Optics Gmbh Reflektives optisches Element zur Verwendung in einem EUV-System
DE102009040785A1 (de) * 2009-09-09 2011-03-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrat aus einer Aluminium-Silizium-Legierung oder kristallinem Silizium, Metallspiegel, Verfahren zu dessen Herstellung sowie dessen Verwendung
DE102010039927A1 (de) * 2010-08-30 2012-03-01 Carl Zeiss Smt Gmbh Substrat für Spiegel für die EUV-Lithographie
DE102011002953A1 (de) * 2011-01-21 2012-07-26 Carl Zeiss Smt Gmbh Substrat für Spiegel für die EUV-Lithographie
DE102016217735A1 (de) * 2016-09-16 2018-03-22 Carl Zeiss Smt Gmbh Komponente für eine Spiegelanordnung für die EUV-Lithographie

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093349A (en) * 1976-10-27 1978-06-06 Northrop Corporation High reflectivity laser mirrors
US4482209A (en) * 1981-02-27 1984-11-13 Siemens Aktiengesellschaft Mirror structure
JPS62180301A (ja) * 1986-02-04 1987-08-07 Toshiba Corp 反射鏡
JPH01303404A (ja) * 1988-05-31 1989-12-07 Sumitomo Electric Ind Ltd レーザ反射鏡
ES2028537A6 (es) * 1990-09-17 1992-07-01 Martin Gutierrez Antonio Procedimiento para la decoracion de espejos circulares.
US6377655B1 (en) * 1998-05-08 2002-04-23 Nikon Corporation Reflective mirror for soft x-ray exposure apparatus
US20010024323A1 (en) * 1999-12-24 2001-09-27 Michio Yanagi Metallic mirror, metallic rotary polygonal mirror, and process for their production
US6916101B2 (en) * 1999-12-24 2005-07-12 Canon Kabushiki Kaisha Metallic mirror, metallic rotary polygonal mirror, and process for their production
US6587263B1 (en) * 2000-03-31 2003-07-01 Lockheed Martin Corporation Optical solar reflectors
US20080163922A1 (en) * 2007-01-08 2008-07-10 Horne William E Conversion of solar energy to electrical and/or heat energy
US20080289958A1 (en) * 2007-04-27 2008-11-27 Janine Kardokus Novel Manufacturing Design and Processing Methods and Apparatus for Sputtering Targets
US20110255068A1 (en) * 2010-04-16 2011-10-20 Media Lario S.R.L EUV mirror module
US20120044473A1 (en) * 2010-08-19 2012-02-23 Carl Zeiss Smt Gmbh Optical element for uv or euv lithography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. Farrell, "Assessment of Aluminum Structural Materials for Service within the ANS Reflector Vessel", Oak Ridge National Laboratory, August 1995. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057952A1 (en) * 2009-09-09 2013-03-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Substrate made of an aluminum-silicon alloy or crystalline silicon, metal mirror, method for the production thereof, and use thereof
US10935704B2 (en) * 2011-01-21 2021-03-02 Carl Zeiss Smt Gmbh Substrate for an EUV-lithography mirror
US10310382B2 (en) 2013-08-07 2019-06-04 Carl Zeiss Smt Gmbh Mirror, in particular for a microlithographic projection exposure apparatus
KR20180123528A (ko) * 2016-03-16 2018-11-16 도요 알루미늄 가부시키가이샤 자외선 반사재용 알루미늄 박 및 그 제조 방법
KR102525721B1 (ko) * 2016-03-16 2023-04-25 도요 알루미늄 가부시키가이샤 자외선 반사재용 알루미늄 박 및 그 제조 방법
US12017264B2 (en) * 2016-03-16 2024-06-25 Toyo Aluminium Kabushiki Kaisha Aluminum foil for ultraviolet light reflecting materials and method for producing same
US10503075B2 (en) * 2016-05-31 2019-12-10 Carl Zeiss Smt Gmbh EUV Collector
US11971605B2 (en) 2018-05-09 2024-04-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mirror support for a composite optical mirror and method for its production

Also Published As

Publication number Publication date
US20170160447A1 (en) 2017-06-08
KR20140018245A (ko) 2014-02-12
CN103328664A (zh) 2013-09-25
CN110376670A (zh) 2019-10-25
EP2665839A2 (en) 2013-11-27
CN105353433A (zh) 2016-02-24
WO2012098062A2 (en) 2012-07-26
CN110376670B (zh) 2022-03-22
CN105353433B (zh) 2019-08-23
DE102011002953A1 (de) 2012-07-26
JP2014506724A (ja) 2014-03-17
ES2933686T3 (es) 2023-02-13
WO2012098062A3 (en) 2012-10-18
KR102080180B1 (ko) 2020-02-24
JP6023083B2 (ja) 2016-11-09
US10935704B2 (en) 2021-03-02
EP3489374B1 (en) 2022-09-21
US20210149093A1 (en) 2021-05-20
EP3489374A1 (en) 2019-05-29
CN103328664B (zh) 2016-01-20
PL3489374T3 (pl) 2023-01-30
EP2665839B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
US20210149093A1 (en) Substrate for an euv-lithography mirror
US8976927B2 (en) Substrate for mirrors for EUV lithography
US10605966B2 (en) Enhanced performance metallic based optical mirror substrates
US20160097885A1 (en) Mirror substrates with highly finishable corrosion-resistant coating
JP5716038B2 (ja) Euvリソグラフィ用反射光学素子
US20130057952A1 (en) Substrate made of an aluminum-silicon alloy or crystalline silicon, metal mirror, method for the production thereof, and use thereof
WO2013014182A1 (en) Mirror, optical system comprising mirror and method for producing a mirror
US7012753B2 (en) Optical device with enhanced mechanical stability operating in the extreme ultraviolet and lithography mask comprising such a device
CN112962064A (zh) 一种耐高温光学反射膜及其制备方法和用途
TWI724319B (zh) 在光刻與其他應用中使用極端紫外線輻射的材料、元件及方法
Kaiser et al. High performance EUV multilayer optics
Chkhalo et al. Effect of ion beam etching on the surface roughness of bare and silicon covered beryllium
Foltyn et al. Preparation and characterization of multilayers for EUV applications
Kaiser et al. A journey from ancient China: bronze mirrors to picometer-shaped interference coatings
Apollonov Optical Coatings

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARL ZEISS SMT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EKSTEIN, CLAUDIA;MALTOR, HOLGER;SIGNING DATES FROM 20130823 TO 20130827;REEL/FRAME:035159/0256

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION