US20120160667A1 - Electrolytic device - Google Patents

Electrolytic device Download PDF

Info

Publication number
US20120160667A1
US20120160667A1 US13/394,482 US201013394482A US2012160667A1 US 20120160667 A1 US20120160667 A1 US 20120160667A1 US 201013394482 A US201013394482 A US 201013394482A US 2012160667 A1 US2012160667 A1 US 2012160667A1
Authority
US
United States
Prior art keywords
electrolyzer
temperature
electrolytic
heater
electrolytic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/394,482
Other languages
English (en)
Inventor
Osamu Yoshimoto
Makoto Hongu
Hiroshi Ohkubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Assigned to TOYO TANSO CO., LTD. reassignment TOYO TANSO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONGU, MAKOTO, OHKUBO, HIROSHI, YOSHIMOTO, OSAMU
Publication of US20120160667A1 publication Critical patent/US20120160667A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object

Definitions

  • the present invention relates to an electrolytic apparatus including an electrolyzer.
  • fluorine gases have been used in various applications such as material cleaning and surface modification.
  • the fluorine gases themselves may be used.
  • Various fluoride-based gases such as NF 3 (nitrogen trifluoride) gas, NeF (neon fluoride) gas, and ArF (argon fluoride) gas that are synthesized based on the fluorine gases may be used.
  • Electrolytic apparatuses that generate fluorine gases by electrolyzing HF (hydrogen fluoride) have generally been used to stably supply the fluorine gases.
  • electrolytic baths composed of KF—HF (potassium-hydrogen fluoride) based mixed molten salts are formed in electrolyzers.
  • the electrolytic baths in the electrolyzers are electrolyzed so that fluorine gases are generated.
  • temperatures of the electrolytic baths in the electrolyzers are required to be kept in predetermined ranges to make electrolytic conditions of the electrolytic apparatuses constant.
  • a hot water jacket is provided on a side surface on the outer periphery of an electrolyzer.
  • the hot water jacket includes a hot water pipe and a heat insulating layer.
  • the hot water pipe is provided to surround the side surface on the outer periphery of the electrolyzer.
  • a heat medium heated by a hot water heating device is circulated.
  • a thermometer is provided in the electrolyzer. The hot water heating device heats a heat medium based on a temperature measured by the thermometer, to keep the electrolytic bath in the electrolyzer at a predetermined temperature.
  • At least a cover portion is required to be grounded to a ground having a reference potential in preparation for discharges in the electrolyzer by electric leakage and static electricity.
  • a hot water heating device electric power with large current is handled. Therefore, the hot water heating device is required to be grounded to a ground having a reference potential to ensure safety.
  • the cover portion of the electrolyzer is electrically connected to the electrolyzer through an electrolytic bath.
  • a closed circuit including the cover portion of the electrolyzer, the electrolytic bath, the electrolyzer, the heat medium having conductivity, the hot water heating device, and the ground is formed.
  • electrolization is started using the electrolyzer forming the closed circuit, a current due to a potential difference in the electrolyzer flows in the closed circuit, and electrochemistry corrosion occurs in a metal portion included in the closed circuit.
  • Patent Document 1 discusses a countermeasure using a piping at least a part of which is insulated and a heat medium having high insulation properties.
  • a heat medium being an insulating solvent (e.g., a fluorine-based solvent) and having such a large heat capacity that a temperature of the electrolyzer can be adjusted does not exist. Therefore, an example of the heat medium having a relatively high electrical resistance and having a large heat capacity is pure water. However, the pure water slightly has electric conductivity. Therefore, the above-mentioned electrochemistry corrosion in the metal portion is not completely prevented.
  • An object of the present invention is to provide an electrolytic apparatus capable of ensuring a heat capacity in which a temperature of an electrolyzer can be sufficiently adjusted while reliably preventing electrochemistry corrosion due to a potential difference.
  • the heat source of the heating unit is electrically insulated from the electrolyzer
  • the heat dissipation source of the cooling unit is electrically insulated from the electrolyzer. In this state, the electrolyzer is heated by the heat source of the heating unit, and is cooled by the heat dissipation source of the cooling unit.
  • the electrolyzer is directly heated and cooled by the heat source and the heat dissipation source, unlike that in heat exchange using a heat medium.
  • a temperature of the electrolyzer can be sufficiently adjusted.
  • a potential is not fed to the electrolyzer via the heat source and the heat dissipation source. Therefore, electrochemistry corrosion in the electrolytic apparatus due to the potential difference in the electrolyzer can be reliably prevented.
  • the heating element of the heater is provided in contact with the outer surface of the electrolyzer with the insulating film interposed therebetween. Therefore, the electrolyzer is directly heated by heat conduction from the heating element of the heater to the electrolyzer. Thus, the electrolyzer can be heated with high responsiveness.
  • the infrared rays are radiated from the infrared heating device spaced apart from the electrolyzer to the electrolyzer.
  • the electrolyzer is directly heated by heat radiation.
  • the infrared heating device is reliably insulated from the electrolyzer.
  • the blower spaced apart from the electrolyzer blows air to the electrolyzer.
  • the electrolyzer is directly cooled by air circulation.
  • the blower is reliably insulated from the electrolyzer.
  • the cooling element is provided in contact with the outer surface of the electrolyzer with the insulating film interposed therebetween.
  • the electrolyzer is directly cooled by absorption of heat from the electrolyzer to the cooling device.
  • the electrolyzer can be cooled with high responsiveness.
  • the electrolyzer electrically insulated from an installation surface, the heat source, and the heat dissipation source functions as a second electrode. Therefore, a stable and accurate voltage can be applied between the first electrode and the second electrode.
  • the controller controls heating of the electrolyzer by the heating unit and cooling of the electrolyzer by the cooling unit.
  • a temperature in the electrolyzer can be stably and reliably kept within the target temperature range.
  • the operation of the heating unit is stopped while the cooling unit operates.
  • the temperature of the electrolyzer can be prevented from exceeding the upper-limit value of the target temperature range due to overshoot.
  • the heating unit When the temperature of the electrolyzer falls to the second temperature higher than the lower-limit value of the target temperature range, the heating unit operates while the operation of the cooling unit is stopped. Thus, the temperature of the electrolyzer can be prevented from being the lower-limit value or less of the target temperature range due to undershoot.
  • the heating unit is stopped while the cooling unit operates, and the heating unit operates while the cooling unit is stopped.
  • an overshoot amount and an undershoot amount at the temperature of the electrolyzer can be reduced.
  • the target temperature range can be reduced, and the temperature of the electrolyzer can be kept substantially constant.
  • the temperature of the electrolyzer is kept substantially constant. Therefore, an electrolyzation condition is kept substantially constant. Thus, more stable electrolyzation can be performed.
  • an electrolytic apparatus that controls a temperature of an electrolytic bath in an electrolyzer stably and with high accuracy in a low-cost and simple configuration.
  • FIG. 1 is a schematic sectional view of an electrolytic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view on the outer side of mainly an electrolyzer in the electrolytic apparatus illustrated in FIG. 1 .
  • FIG. 3 is a flowchart illustrating a control operation of a heater and a blower by a controller.
  • FIG. 4 illustrates results of temperatures of electrolytic bathes in an inventive example and a comparative example.
  • FIG. 5 is a schematic view on the outer side of mainly an electrolyzer in an electrolytic apparatus according to another embodiment of the present invention.
  • FIG. 6 is a schematic view on the outer side of mainly an electrolyzer in an electrolytic apparatus according to still another embodiment of the present invention.
  • FIG. 1 is a schematic sectional view of an electrolytic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view on the outer side of mainly an electrolyzer in the electrolytic apparatus illustrated in FIG. 1 .
  • the electrolytic apparatus 10 illustrated in FIG. 1 is a gas generation apparatus that generates a fluorine gas.
  • the electrolytic apparatus 10 includes an electrolyzer 11 .
  • the electrolyzer 11 includes an electrolyzer main body 11 a, an upper cover 11 b, and an insulating member 11 c.
  • the electrolyzer main body 11 a and the upper cover 11 b are formed of a metal such as Ni (Nickel), Monel, pure iron, or stainless steel or its alloy, for example.
  • the electrolyzer main body 11 a has a bottom portion and four side portions, and has an opening in its upper part.
  • the insulating member 11 c is provided along upper end surfaces of the side portions.
  • the insulating member 11 c is formed of an insulating material such as resin.
  • the upper cover 11 b is arranged on the insulating member 11 c to close the opening of the electrolyzer main body 11 a.
  • the insulating member 11 c electrically insulates the electrolyzer main body 11 a and the upper cover 11 b from each other.
  • a plurality of supporting members 31 composed of an insulating material support the electrolyzer 11 in a housing 32 composed of a conductive material.
  • the supporting member 31 is formed of Bakelite, for example.
  • Wheels 33 composed of an insulating material are attached to a bottom surface of the housing 32 . In this manner, the electrolyzer 11 is electrically insulated from the housing 32 , and the housing 32 is electrically insulated from an installation surface.
  • An electrolytic bath 12 composed of a KF—HF (potassium-hydrogen fluoride) based mixed molten salt is formed in the electrolyzer 11 .
  • a cylindrical partition wall 13 is provided integrally with the upper cover 11 b so that its part is immersed in the electrolytic bath 12 .
  • the partition wall 13 is composed of Ni or Monel, for example.
  • an anode chamber 14 a is formed inside the partition wall 13
  • a cathode chamber 14 b is formed outside the partition wall 13 .
  • An anode 15 a is arranged to be immersed in the electrolytic bath 12 within the anode chamber 14 a.
  • a low-polarizable carbon electrode for example, is preferably used as a material for the anode 15 a.
  • a cathode 15 b is formed on an inner surface of the electrolyzer main body 11 a.
  • a hydrogen gas is mainly generated in the cathode chamber 14 b.
  • Ni for example, is preferably used as a material for the cathode 15 b.
  • An HF supply line 18 a for supplying HF is connected to the upper cover 11 b.
  • the HF supply line 18 a is covered with a temperature adjustment heater 18 b.
  • a liquid level detection device (not illustrated) detects the height of a liquid level of the electrolytic bath 12 . When the height of the liquid level detected by the liquid level detection device becomes lower than a predetermined value, HF is supplied to the electrolyzer 11 through the HF supply line 18 a.
  • the electrolytic apparatus 10 includes a controller 23 .
  • the controller 23 applies a voltage between the anode 15 a and the cathode 15 b.
  • the electrolytic bath 12 in the electrolyzer 11 is electrolyzed.
  • a fluorinate gas is mainly generated in the anode chamber 14 a.
  • the upper cover 11 b is provided with gas exhaust ports 16 a and 16 b.
  • An exhaust pipe 17 a is connected to the gas exhaust port 16 a, and an exhaust pipe 17 b is connected to the gas exhaust port 16 b.
  • the gas exhaust port 16 a communicates with the anode chamber 14 a, and the gas exhaust port 16 b communicates with the cathode chamber 14 b.
  • a gas generated by the anode chamber 14 a is discharged from the gas exhaust port 16 a through the exhaust pipe 17 a, and a gas generated by the cathode chamber 14 b is discharged from the gas exhaust port 16 b through the exhaust pipe 17 b.
  • the electrolyzer 11 includes a heater 21 a and a blower 21 b.
  • a sheathed heater is used as the heater 21 a.
  • the sheathed heater has a configuration in which an electrically-heated wire is coated with an insulating film.
  • the sheathed heater can obtain a desired heat capacity using the electrically-heated wire.
  • the electrolyzer 11 can be quickly heated by providing the heater 21 a in contact with the electrolyzer 11 .
  • the heater 21 a is electrically insulated from the electrolyzer 11 , although provided in contact with the electrolyzer 11 .
  • the heater 21 a is attached to outer surfaces of the side portions of the electrolyzer main body 11 a so as to have a meander shape. Thus, a contact area between the heater 21 a and the electrolyzer main body 11 a increases. The heater 21 a heats the electrolyzer 11 with heat conduction.
  • the blower 21 b is spaced apart from the electrolyzer 11 so as to be insulated therefrom, and blows air to the electrolyzer 11 .
  • the blower 21 b cools the electrolyzer 11 with air circulation in the state of being electrically insulated from the electrolyzer 11 .
  • the heater 21 a and the blower 21 b operate by electric power supplied from a power supply device 21 .
  • the power supply device 21 is grounded to the ground E via a ground wire S 2 to ensure safety.
  • the insulating film provided in the sheathed heater serving as the heater 21 a electrically insulates the heater 21 a and the electrolyzer 11 from each other.
  • Air serving as an insulator electrically insulates the blower 21 b and the electrolyzer 11 from each other.
  • the electrolytic apparatus 10 is provided with a temperature sensor 22 a that detects a temperature of the heater 21 a and a temperature sensor 22 b that detects a temperature of the electrolytic bath 12 in the electrolyzer main body 11 a.
  • the temperature sensors 22 a and 22 b are composed of a thermocouple.
  • the controller 23 controls the heater 21 a and the blower 21 b based on a temperature of the electrolyzer 11 detected by the temperature sensor 22 a and a temperature of the electrolytic bath 12 detected by the temperature sensor 22 b.
  • the electrolytic bath 12 in the electrolyzer 11 assumes a solid state at room temperature and under atmospheric pressure. Therefore, the electrolytic bath 12 is required to be heated to not less than 80° C. nor more than 90° C. and dissolved in a liquid state to electrolyze the electrolytic bath 12 .
  • the controller 23 turns on the heater 21 a.
  • the temperature of the electrolyzer 11 rises, and the temperature of the electrolytic bath 12 in the electrolyzer 11 also rises.
  • the controller 23 controls ON and OFF of the heater 21 a based on the temperature detected by the temperature sensor 22 a until the electrolytic bath 12 is dissolved.
  • the temperature of the electrolyzer 11 (hereinafter referred to as a lower-limit electrolyzer temperature) obtained when the electrolytic bath 12 is dissolved is previously measured.
  • the controller 23 turns off the heater 21 a when the temperature detected by the temperature sensor 22 a becomes an upper-limit value (hereinafter referred to as an upper-limit electrolyzer temperature) previously set to prevent the temperature of the electrolyzer 11 from excessively rising.
  • an upper-limit electrolyzer temperature hereinafter referred to as an upper-limit electrolyzer temperature
  • the temperature sensor 22 b can detect the temperature of the electrolytic bath 12 .
  • Joule heat or the like is generated so that an amount of heat larger than an amount of heat lost by natural heat dissipation is put into the electrolytic bath 12 .
  • the temperature of the electrolytic bath 12 rises even in a state where the heater 21 a is stopped.
  • the controller 23 controls ON and OFF of the heater 21 a and the blower 21 b based on the temperature detected by the temperature sensor 22 b when the temperature detected by the temperature sensor 22 a becomes the lower-limit electrolyzer temperature or more.
  • FIG. 3 is a flowchart illustrating a control operation of the heater 21 a and the blower 21 b by the controller 23 .
  • an upper-limit value of a temperature range of an electrolytic bath most suitable for electrolyzation is referred to as a target upper-limit temperature
  • a lower-limit value of the temperature range of the electrolytic bath most suitable for electrolyzation is referred to as a target lower-limit temperature.
  • a temperature at which the heater 21 a is turned off and the blower 21 b is turned on so that the temperature of the electrolytic bath does not exceed the target upper-limit temperature is referred to as a cooling start temperature
  • a temperature at which the heater 21 a is turned on and the blower 21 b is turned off so that the temperature of the electrolytic bath does not decrease beyond the target lower-limit temperature is referred to as a heating start temperature.
  • the cooling start temperature is set to a value lower by a predetermined temperature (e.g., one degree) than the target upper-limit temperature
  • the heating start temperature is set to a value higher by a predetermined temperature (e.g., one degree) than the target lower-limit temperature.
  • the heater 21 a is turned on, and the blower 21 b is turned off.
  • the controller 23 determines whether the temperature of the electrolytic bath 12 detected by the temperature sensor 22 b rises to the cooling start temperature (step S 1 ). If the temperature of the electrolytic bath 12 does not rise to the cooling start temperature, the controller 23 waits until the temperature of the electrolytic bath 12 reaches the cooling start temperature. If the temperature of the electrolytic bath 12 rises to the cooling start temperature, the controller 23 turns off the heater 21 a (step S 2 ), and turns on the blower 21 b (step S 3 ).
  • the controller 23 determines whether the temperature of the electrolytic bath 12 detected by the temperature sensor 22 b falls to the heating start temperature (step S 4 ). If the temperature of the electrolytic bath 12 does not fall to the heating start temperature, the controller 23 waits until the temperature of the electrolytic bath 12 reaches the heating start temperature. If the temperature of the electrolytic bath 12 falls to the heating start temperature, the controller 23 turns on the heater 21 a (step S 5 ), and turns off the blower 21 b (step S 6 ), and the processing returns to step S 1 .
  • the temperature of the electrolytic bath 12 is kept between a target upper-limit temperature higher by a predetermined temperature than the cooling start temperature and a target lower-limit temperature lower by a predetermined temperature than the heating start temperature.
  • the electrolyzer 11 is supported by the supporting member 31 to be electrically insulated from the housing 32 .
  • the heater 21 a and the blower 21 b are electrically insulated from the electrolyzer 11 .
  • the electrolyzer 11 is heated by heat conduction from the heater 21 a, and is cooled by air circulation from the blower 21 b.
  • the electrolyzer 11 is heated by heat conduction, and is cooled by air circulation. In this case, a heat medium having insulation properties for heating and cooling the electrolyzer 11 is not required. Therefore, the electrolyzer 11 can be heated and cooled in a low-cost and simple configuration.
  • the electrolyzer 11 is directly heated and cooled by heat conduction from the heater 21 a and air circulation form the blower 21 b, unlike that in heat exchange using a heat medium.
  • the temperature of the electrolytic bath 12 in the electrolyzer 11 can be controlled stably and with high accuracy.
  • the electrolytic apparatus 10 illustrated in FIGS. 1 and 2 was used, to control the temperature of the electrolytic bath 12 .
  • An electrolytic apparatus used in the comparative example had the same configuration as that of the electrolytic apparatus 10 illustrated in FIGS. 1 and 2 except that the blower 21 b was not attached thereto.
  • the heating start temperature and the cooling start temperature of the electrolytic bath 12 were respectively set to 85° C. and 86° C.
  • the heater 21 a when the temperature of the electrolytic bath 12 detected by the temperature sensor 22 b rose to 86° C., the heater 21 a was turned off while the blower 21 b was turned on so that the electrolytic bath 12 was forcedly cooled by air blowing.
  • the heater 21 a was turned on while the blower 21 b was turned off so that the electrolytic bath 12 was heated.
  • the heater 21 a when the temperature of the electrolytic bath 12 detected by the temperature sensor 22 b rose to 86° C., the heater 21 a was turned off while the electrolytic bath 12 was naturally cooled. When the temperature of the electrolytic bath 12 detected by the temperature sensor 22 b fell to 85° C., the heater 21 a was turned on, and the electrolytic bath 12 was heated.
  • FIGS. 4 ( a ) and 4 ( b ) are diagrams respectively illustrating results of the temperatures of the electrolytic bathes 12 in the inventive example and the comparative example.
  • the horizontal axis indicates time
  • the vertical axis indicates the temperature of the electrolytic bath 12 .
  • a variation in the temperature of the electrolytic bath 12 was controlled within a range of two degrees for a period of 889 minutes.
  • a variation in the temperature of the electrolytic bath 12 was four degrees or more for a period of 865 minutes.
  • the heater 21 a as well as the blower 21 b was used so that the variation in the temperature of the electrolytic bath 12 could be kept approximately constant.
  • FIG. 5 is a schematic view on the outer side of mainly an electrolyzer in an electrolytic apparatus according to another embodiment of the present invention.
  • An electrolytic apparatus 10 illustrated in FIG. 5 differs from the electrolytic apparatus 10 illustrated in FIGS. 1 and 2 in that a plurality of infrared heating devices 21 c are arranged around an electrolyzer 11 in place of the heater 21 a.
  • the plurality of infrared heating devices 21 c are spaced apart from the electrolyzer 11 , to radiate infrared rays to the electrolyzer 11 .
  • the plurality of infrared heating devices 21 c heat the electrolyzer 11 by heat radiation in the state of being electrically insulated from the electrolyzer 11 .
  • FIG. 6 is a schematic view on the outer side of mainly an electrolyzer in an electrolytic apparatus according to still another embodiment of the present invention.
  • An electrolytic apparatus 10 illustrated in FIG. 6 differs from the electrolytic apparatus 10 illustrated in FIGS. 1 and 2 in that a plurality of cooling devices 21 d are attached thereto in a distributed manner in contact with outer surfaces of side portions of an electrolyzer main body 11 a in place of the blower 21 b.
  • the cooling device 21 d has a configuration in which a Peltier element is insulated by being coated with a ceramic material, an insulating film and the like.
  • a plurality of cooling devices 21 d cool the electrolyzer 11 by performing a heat absorption operation in the state of being electrically insulated from the electrolyzer 11 .
  • the plurality of infrared heating devices 21 c may be provided in place of the heater 21 a illustrated in FIGS. 1 and 2
  • the plurality of cooling devices 21 d may be provided in place of the blower 21 b.
  • the heater 21 a and the infrared heating device 21 c are examples of a heat source and a heating unit
  • the blower 21 b and the cooling device 21 d are examples of a heat dissipation source and a cooling unit
  • the electrically-heated wire of the sheathed heater is an example of a heating element
  • the heater 21 a is an example of a heater
  • the Peltier element is an example of a cooling element
  • the anode chamber 14 a is an example of a first chamber
  • the cathode chamber 14 b is an example of a second chamber
  • the anode 15 a is an example of a first electrode
  • the cathode 15 b is an example of a second electrode
  • the controller 23 is an example of a controller
  • the temperature sensor 22 b is an example of a detector.
  • the present invention is effectively applicable to an electrolytic apparatus such as a gas generation apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
US13/394,482 2009-09-07 2010-09-02 Electrolytic device Abandoned US20120160667A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-205491 2009-09-07
JP2009205491A JP2011058015A (ja) 2009-09-07 2009-09-07 電解装置
PCT/JP2010/005419 WO2011027566A1 (ja) 2009-09-07 2010-09-02 電解装置

Publications (1)

Publication Number Publication Date
US20120160667A1 true US20120160667A1 (en) 2012-06-28

Family

ID=43649121

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/394,482 Abandoned US20120160667A1 (en) 2009-09-07 2010-09-02 Electrolytic device

Country Status (6)

Country Link
US (1) US20120160667A1 (zh)
EP (1) EP2476783A4 (zh)
JP (1) JP2011058015A (zh)
KR (1) KR20120083311A (zh)
CN (1) CN102482790A (zh)
WO (1) WO2011027566A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077199B1 (ko) * 2011-03-14 2011-10-27 김경수 오픈셀 방식의 차아염소산나트륨 제조장치
JP5824256B2 (ja) * 2011-06-29 2015-11-25 東洋炭素株式会社 電解装置
JP5893637B2 (ja) * 2011-10-14 2016-03-23 浦安電設株式会社 水素−酸素ガス発生装置
JP5906742B2 (ja) * 2012-01-05 2016-04-20 セントラル硝子株式会社 フッ素ガス生成装置
WO2014021794A1 (en) * 2012-08-01 2014-02-06 Sukij Tridsadeerak Hpc2 hydrogen separation tank with liquid cooling system
CN108950594B (zh) * 2018-09-29 2020-02-07 青海铜业有限责任公司 电解槽和电解槽系统
AU2020399915B2 (en) * 2019-12-10 2023-12-21 Sunfire Gmbh Solid oxide cell assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812817A (en) * 1954-05-21 1959-04-29 Solar Aircraft Co Electrolytic production of titanium
US2841544A (en) * 1956-04-24 1958-07-01 Minnesota Mining & Mfg Process for the production of fluorinecontaining compounds
US3645879A (en) * 1970-06-08 1972-02-29 Haskett Barry F Construction of electrolytic cell
IT1199898B (it) * 1985-07-22 1989-01-05 Ginatta Marco Elettrochim Impianto per la produzione elettrolitica in bagno di sali fusi di metalli reattivi
JPH0373899A (ja) * 1989-08-15 1991-03-28 Toshiba Corp 溶融塩電解精製装置
JP2000042555A (ja) * 1998-08-04 2000-02-15 Sanyo Electric Co Ltd 電解水冷却装置
CN1327032C (zh) * 2001-12-17 2007-07-18 东洋炭素株式会社 F2气体发生装置与f2气体发生方法及f2气体
DE10234285B4 (de) * 2002-07-26 2006-12-07 Heraeus Kulzer Gmbh Vorrichtung zur galvanischen Abscheidung prothetischer, metallischer Dentalformteile
KR100503886B1 (ko) * 2002-12-21 2005-08-01 김상남 고효율 브라운가스발생기
JP3634858B2 (ja) * 2003-01-22 2005-03-30 東洋炭素株式会社 溶融塩電解装置
JP2004244724A (ja) * 2003-01-22 2004-09-02 Toyo Tanso Kk 溶融塩電解装置
KR100515412B1 (ko) * 2003-01-22 2005-09-14 도요탄소 가부시키가이샤 용융염 전해장치
JP4842585B2 (ja) * 2005-08-10 2011-12-21 本田技研工業株式会社 水電解システムの運転方法

Also Published As

Publication number Publication date
EP2476783A4 (en) 2012-10-31
KR20120083311A (ko) 2012-07-25
CN102482790A (zh) 2012-05-30
EP2476783A1 (en) 2012-07-18
JP2011058015A (ja) 2011-03-24
WO2011027566A1 (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
US20120160667A1 (en) Electrolytic device
KR100390139B1 (ko) 불소셀
US20080128270A1 (en) Electrolytic apparatus for molten salt
US5273635A (en) Electrolytic heater
AU2019200687B2 (en) Heat generating system
JP2011058015A5 (zh)
KR20140064862A (ko) 증기발생 시스템
KR100579385B1 (ko) 용융염 전해욕의 제어 장치와 그 제어 방법
TWI252214B (en) Apparatus for the generation and supply of fluorine gas
US5705036A (en) Water distilling apparatus
Slovetskii et al. Parameters of an electric discharge in electrolytes and physicochemical processes in an electrolyte plasma
JPWO2020085066A1 (ja) フッ素ガス製造装置
CA2613943A1 (en) Water heater with integral pulsed electrolysis heater and method of using same
JP5132959B2 (ja) 真空処理装置
US20220267890A1 (en) Multizone crucible apparatus
JP2014125661A (ja) 処理容器
RU2466213C1 (ru) Электролизер для получения смеси водорода и кислорода
Tazmeev et al. Some specific features of heat and mass transfer of gas-discharge plasma with a liquid electrolytic cathode
CA2613819A1 (en) Water heater utilizing pulsed electrolysis system and method of using same
CA2613908A1 (en) Radiant heating system utilizing heat exchanger and circulated pulsed electrolysis system medium and method of using same
CA2613826A1 (en) Radiant heating system utilizing circulated heat transfer medium from a pulsed electrolysis system and method of using same
ITAN20010005A1 (it) Mezzi per la protezione anticorrosione di serbatoi metallici contenenti liquidi da riscaldare, in particolare di scaldabagni
RU2241320C1 (ru) Способ получения высоковольтного разряда между жидким электролитным катодом и твердотельным анодом, частично погруженным в электролит
JP2785300B2 (ja) プラズマ浸炭炉
JP2013091819A (ja) 電解装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYO TANSO CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIMOTO, OSAMU;HONGU, MAKOTO;OHKUBO, HIROSHI;REEL/FRAME:027835/0255

Effective date: 20120217

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION